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Abstract

With the rapid accumulation of biodiversity data, data integration has emerged as a hot topic

in soil ecology. Data integration has indeed the potential to advance our knowledge of global

patterns  in  soil  biodiversity  by  facilitating  large-scale  meta-analytical  studies  of  soil

ecosystems.  However,  ecologists  are  still  poorly  equipped  when it  comes to  integrating

disparate datasets. In recent years, knowledge graphs have emerged as a powerful tool for

integrating large amounts of distributed heterogeneous data while making these data more

easily interpretable by humans and computers. This paper presents a practical approach to

constructing  a  biodiversity  knowledge  graph  from  heterogeneous  and  distributed

(semi-)structured data sources. To illustrate our approach, we integrate several datasets on

the trophic ecology of soil organisms into a trophic knowledge graph and show how both

explicit  and implicit  information can be retrieved from the graph to  support  multi-trophic

studies.
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Introduction

In recent  years,  a number of  initiatives aiming at collecting new soil  biodiversity  data or

assembling existing datasets have emerged, resulting in a rapid accumulation of data in soil

ecology [1]. Because of the enormous phylogenetic, taxonomic and functional diversity of

soil organisms, datasets are often collected by individual scientists or small project teams

from  different  communities  or  disciplines  to  answer  precise  research  questions.  These

datasets are typically  small,  with  a limited spatial/temporal/taxonomic  coverage,  and are

formatted according to the project needs, with little or no concern for data standardization

[2]. This causes datasets to be heterogeneous in semantics (differences in terminologies,

meaning  or  interpretation  of  data  in  different  disciplines  or  research  contexts),  schema

(differences in data structures and formats) and syntax (differences in models or languages).

In addition,  datasets are widely distributed: they reside on diverse locations,  e.g. files or

databases on the local network or published on the web, and are accessible using different

interfaces, e.g., files downloads, database queries or web APIs.

Integrating  these  ‘long-tail  data’  dispersed  across  different  datasets  could  help  address

research  questions  at  larger  scales  [3].  Data  integration  is  of  growing  interest  in  the

ecological domain, with much effort directed towards the creation of standard terminologies

for describing, sharing and facilitating the aggregation of biodiversity data, e.g. organismal

trait data [4, 5, 6, 7], into large open databases. Recent initiatives in trait-based ecology have

targeted specific taxonomic groups, e.g. ants [8], spiders [9], soil invertebrates [10, 11], fungi

[12, 13], plants [14]. Although these databases have made aggregated data more readily

accessible  to  scientists,  they  are  not  yet  interoperable.  The difficulty  of  integrating  data

distributed across heterogeneous sources remains. As a result, integrative analyses of soil

communities that span several taxonomic groups and integrate multitrophic interactions are

scarce — see [15] for an example — although essential to improve our understanding of the

links between soil biodiversity and ecosystem functioning [16].
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Figure 1.  Semantic data integration provides the user with a uniform access to a set of

autonomous and possibly heterogeneous data sources in a particular application domain.

Here,  we  address  the  problem  of  semantic  data  integration  in  the  biodiversity  science

domain.  Data integration is defined in [17] as the process of  combining data residing at

different sources, and providing the user with a unified view of these data. (Figure 1). As a

result,  the  user  has  the  ability  to  seamlessly  manipulate  data  from  multiple  sources,

regardless of the original format or location of the data. Semantic data integration aims at

combining heterogeneous data in a way that preserves the original ‘meaning’ of the data in

their  particular  semantic  context.  In practice,  this  often consists in  establishing semantic

correspondences  (also  called  mappings)  between  the  vocabularies  of  the  different  data

sources and a common reference ontology. The result of this process is called a knowledge

graph.
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Figure 2. The RDF data format represents factual statements about entities (here, the taxon

Entomobrya ligata) as triples that consist of a subject, predicate and object. RDF triples form

a labeled directed graph, which is why RDF databases are also called RDF graphs.

A  knowledge  graph  (KG)  is  a  graph-structured  knowledge  base  that  stores  factual

information  in  the  form of  relationships  between  real-world  entities  (like  people,  places,

‘things’) [18]. Under the Resource Description Framework (RDF), the standard data model of

the Semantic Web, a KG is a set of (subject, predicate, object) triples. A RDF triple is a

factual statement about an entity (the subject), connected to another entity or a data value

(the object) by a relationship (the predicate). A set of RDF triples forms a labeled directed

graph, called a RDF graph (Figure 2). But not every RDF graph is a KG. The triples in a KG

can be separated into two distinct, yet connected, layers (Figure 3). The schema layer is the

conceptual model of the KG and is described by an ontology or a collection of ontologies. An

ontology  is  a  formal  shared  conceptualization  of  a  domain  of  interest  [19].  It  defines  a

common agreed upon terminology in terms of concepts (also called classes, i.e. the types of

things that exist in the domain) and the relationships holding among them. An ontology is

specified using a logic-based ontology language — most often the Web Ontology Language

(OWL),  built  upon  RDF  — that  allows  both  humans  and  computers  to  understand  the

semantics (‘meaning’) of the data. The data layer holds the concrete, factual data. These

data are instances of the general concepts (classes) defined in the ontology. For example, if

we were to define a class ‘Article author’ in a hypothetical ontology to describe the concept
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of  'people  who write  scientific  papers',  then 'Nicolas  Le Guillarme'  and 'Wilfried  Thuiller'

would be two instances of this class. In the context of semantic data integration, the data

layer of a KG is populated with instance data from multiple sources. The ontology is used to

link these disparate datasets at the schema-level, acting as a mediator for reconciling the

structural and semantic heterogeneities between data sources.

Figure  3.  A  knowledge  graph  is  a  graph  database  that  embeds  both  the  data  and  its

semantics in two interconnected layers. The schema layer is an ontology or a collection of

ontologies that integrate datasets at the schema-level and allow logical inference of implicit

knowledge using specialized softwares called reasoners. The data layer is a collection of

data from various sources.

KGs have a number of advantages over other types of databases, such as relational ones.

Their graph structure allows for efficient querying, intuitive visualization, and analysis using

graph algorithms or relational machine learning [18]. Using an ontology as a schema layer,

KGs embed a formal semantics with the data which can be used by computers to interpret

and reason about the data, thus potentially allowing to infer new facts (e.g. the inferrable

relationships in Figure 2). KGs make it easy to integrate new types of data by altering the

ontology or adding a new ontology to the schema layer. When following the Linked Open
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Data principles [20], domain-specific KGs can be easily interconnected into larger (possibly

cross-domain) KGs.

KGs have recently become prevalent as a framework for semantic data integration in many

different domains of science and industry [21]. It was R. Page, in his seminal 2016 paper,

who first  suggested the use of  KGs in the biodiversity  field [22].  Since then,  only a few

examples  of  biodiversity  KGs  have  been  published.  Ozymandias  [23]  is  a  KG  for  the

Australian  fauna that  integrates  data  from several  sources,  including  the Atlas  of  Living

Australia,  the  Australian  Faunal  Directory,  the  Biodiversity  Heritage  Library  and  the

Biodiversity Literature Repository. OpenBiodiv [24] integrates information extracted from the

biodiversity literature into a graph database using the OpenBiodiv-O ontology and an RDF

version of the Global Biodiversity Information Facility (GBIF) taxonomic backbone. TAXREF-

LD [25] is a KG representation of the French national taxonomical register for fauna, flora

and fungus that interlinks information about taxonomy, species interactions,  development

stages, biogeography, conservation statuses, etc. In a recent talk at TDWG 2021, Michel et

al. [26] called for more biodiversity data producers to start publishing KGs. However, for

now, building a KG from multiple data sources is a complex and time-consuming task that

demands high Semantic Web expertise, and we are not aware of an existing tool specifically

designed to help ecologists  transform their  data sets into interoperable KGs — with the

notable exception of the iKNOW project [27], which is very similar in spirit to our work, but

whose current status is unknown to us.

In this paper, we present inteGraph, a framework and toolbox that facilitates the process of

building a KG from heterogeneous and distributed (semi-)structured data sources in  the

biodiversity domain. With inteGraph, users can create automatic and reproducible semantic

data integration pipelines simply through the provision of configuration files. This declarative

approach requires no (or little) code from the user and minimizes the amount of manual

effort and Semantic Web expertise required to turn datasets into interoperable KGs. 

To illustrate our approach, we will show how inteGraph can be used to integrate data on the

trophic  ecology  of  soil  organisms  from  multiple  sources  into  a  KG  that  can  support
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multitrophic studies. Multitrophic studies, spanning multiple trophic levels and/or taxonomic

groups, are essential to identify general patterns in community ecology [28], understand how

diversity is related to ecosystem stability and ecosystem functioning [29], and provide the

necessary  guidance  with  biodiversity  loss  and  environmental  problems [30].  Multitrophic

approaches should acknowledge the complexity of ecosystems while remaining practical.

Large trait  databases have the potential  to address this trade-off  between feasibility  and

completeness.  By  supporting  the  assignment  of  species  (or  higher  taxonomic  ranks)  to

trophic and/or functional groups, they reduce the dimensionality of ecological communities

without biasing studies toward a single trophic level or taxonomic group [31, 15]. Yet, some

challenges still remain. Although we have trait databases available for some groups of soil

organisms, our trait knowledge is limited for most of them. In addition, existing databases

tend to function as data silos whose lack of interoperability can discourage researchers to

include more trophic levels and/or taxonomic groups in their studies.

The ability to create a KG integrating trophic information from a number of trait databases

covering different soil taxonomic groups across several trophic levels could greatly facilitate

multitrophic  studies in soil  ecology research.  Such a trophic KG would provide a unified

access to multigroup, multitrophic, and multisource information. The integration of several

trophic datasets (e.g. a first one containing information on carabid diets and a second one

focusing on the feeding habits of springtails) into a KG allows the use of a single query to

retrieve all organisms with a particular diet, regardless of the format, location or taxonomic

coverage of the original data source. KGs also offer the ability to reason about the integrated

data to derive additional knowledge. Reasoning about trophic interactions and dietary data

opens the way for automatic classification of soil organisms into trophic groups, which can

facilitate the reconstruction of consistent soil food webs from multisource data. This will be

illustrated with examples in the Results section.
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Material and Methods

Overview of the approach

Figure  4  is  a  high-level  representation  of  our  approach  to  constructing  a  KG  from

heterogeneous and distributed (semi-)structured data sources. At the heart of our framework

is inteGraph1, an open-source toolkit for ontology-based data integration in the biodiversity

domain that allows generating data integration pipelines dynamically from configuration files

and scheduling and monitoring the execution of these pipelines.

Figure 4. A high-level representation of the proposed declarative approach for constructing a

knowledge graph from distributed (semi-)structured data sources.

Data sources

Data sources can be (and often are) distributed on several machines, on a local network

and/or on the web. Data must be accessible in a (semi-)structured form, for instance as

tabular (e.g. tables in relational databases or in CSV files) or hierarchical data (e.g. data in

XML  or  JSON  format).  At  present,  inteGraph  does  not  include  information  extraction

components that would allow the integration of unstructured textual data from the literature.

1 Available at https://github.com/nleguillarme/inteGraph
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In our running example, we will use inteGraph to build a trophic KG from the following three

data sources:

 The FunFun database [13] collates fungal functional trait data, including information

about trophic guilds, from a variety of sources, for thousands of species across the

fungal  tree  of  life.  Data  are  provided  in  a  tabular  format  (CSV file)  and  can  be

downloaded from Zenodo (https://zenodo.org/record/1216257).

 BETSI  [11]  is  an  open  database  gathering  data  on  morphological  traits  and

ecological  preferences  for  7  taxonomic  groups  of  soil  invertebrates  (Aranae,

Carabidae,  Chilopoda,  Collembola,  Diplopoda,  Isopoda  and  Diplotesticulata)  from

about 2000 literature references. BETSI is accessible on demand via a web portal

(https://portail.betsi.cnrs.fr) that provides the user with an interface to write queries

and download subsets of the database in a tabular format (CSV file). In the following,

we will integrate a dataset containing Carabidae diet data.

 The Global Biotic Interactions (GloBI) provides open access to species interaction

data (e.g.  predator-prey,  pollinator-plant,  pathogen-host,  parasite-host)  aggregated

from  existing  open  datasets  [32].  As  of  April  2023,  GloBI  contains  over  17M

interaction  records  obtained  from  342  datasets,  covering  823,033  taxa.  GloBI

provides  several  ways  to  access  its  data,  including  a  web  portal

(https://www.globalbioticinteractions.org/),  a  downloadable  snapshot  of  the  entire

database in a tabular format (CSV file), and a web API. In our example, we will use

the web API to download data about the trophic interactions of Collembola.

Information from these three data sources will populate the data layer of our trophic KG once

it has been transformed into a common representation.

Target ontology

InteGraph adopts a top-down approach to KG creation. In this type of approach, the schema

layer  of  the  KGis  populated  with  a  predefined  ontology.  The  semantic  data  integration

process then consists of populating the data layer of the KG with data extracted from the

10

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200



different data sources, and creating semantic links between the schema of the sources and

the (global) schema of the KG using mapping rules.

To reconcile schematic and semantic heterogeneities between our trophic data sources, the

schema layer of  our example KG will  be populated with two ontologies:  the NCBITaxon

ontology and the Soil Food Web Ontology (SFWO) [7]. NCBITaxon is a formal translation of

the NCBI Taxonomy database into an ontology, in which each taxon is treated as a class

whose  instances  would  be  individual  organisms,  e.g.  'Nicolas  Le  Guillarme'  instance_of

NCBITaxon_9606 (Homo sapiens). To our knowledge, the NCBI Taxonomy database is the

only  taxonomic  nomenclature  available  as  an  OWL ontology.  SFWO is  an  ontology  for

representing knowledge on the trophic ecology of soil organisms across taxonomic groups

and  trophic  levels.  SFWO  captures  the  semantics  of  trophic  concepts  such  as  trophic

interactions,  feeding  processes,  diets  or  trophic  groups.  SFWO  also  includes  machine-

interpretable  definitions  for  most  of  these  concepts,  that  allow  for  inference  of  implicit

knowledge using automated reasoning, e.g. deducing a consumer’s diet(s) from the trophic

interaction(s) in which it participates.

Triplestore

A  triplestore  is  a  database  management  system,  i.e.,  a  software  used  for  storing  and

querying a database, specifically designed to support the storage and the efficient querying

of RDF triples. A triplestore is needed to store both the schema and data layers of a KG.

Information stored in the triplestore can be retrieved using SPARQL queries. A multitude of

triplestore  implementations  are  available  (see  [33]  for  a  survey),  which  offer  different

capabilities  and  performance  in  terms  of  data  storage  and  indexing,  query  processing,

reasoning, etc.

InteGraph assumes the existence of a running triplestore instance. It is not tied to a specific

implementation  and  provides  connectors  to  several  triplestore  solutions.  The  user  is

expected to provide connection information as part of the pipeline configurations. As a top-
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down  approach,  inteGraph  assumes  that  the  target  ontology  has  been  loaded  in  the

triplestore before the data integration process starts.

To store  our  example  knowledge  graph,  we will  use GraphDB Free2,  a  RDF triplestore

solution  that  can  manage  billions  of  explicit  statements  on  a  desktop  hardware,  while

providing optimized query evaluation and OWL reasoning.

Configuration files

InteGraph implements a declarative approach to building KGs, which means that it provides

control  over  the  creation  and  execution  of  semantic  data  integration  pipelines  using

configuration files. InteGraph requires the user to provide two types of configuration files: a

single graph configuration file (Figure 5a), and a set of source configuration files, one for

each data source (Figure 5b).

The graph configuration file contains global information, including the name of the KG (that

acts as a prefix to create an identifier for each graph generated from a data source), the

name of the directory containing the source configuration files,  the triplestore connection

information, and the declaration of the target ontologies.

The  source  configuration  file  is  where  the  user  specifies  the  information  needed  by

inteGraph  to  instantiate  the  Extract  and  Transform  components  of  the  data  integration

pipeline for a given source. This includes: 

 the internal identifier of the data source;

 data access information, which determines the type of data source – file-like or HTTP

– and the appropriate data extraction component to be added to the pipeline;

 information about the format of the input data, e.g. tab or comma-separated values;

 the path to an (optional) data cleansing script;

 for each entity (e.g. taxon, trait) in the input data, the name of the columns containing

information about  the entity  (label  and/or  identifier),  and a sequence of  semantic

2 https://graphdb.ontotext.com/documentation/10.2/about-graphdb.html
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annotation components whose role is to map the entity to its equivalent in the target

ontology;

 the path to the spreadsheet containing the schema mapping rules.

(a) Graph configuration (b) Source configuration for the FunFun database

Figure 5. InteGraph implements a declarative approach to KG construction, giving the user

control over the creation of data integration pipelines through simple configuration files.
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Figure 6. An illustration of the application of data transformation to our example datasets

(D1: FunFun, D2: Carabidae diet data from BETSI, D3: Collembola trophic interaction data

from GloBI). Figure 6d shows the set of RDF triples (in N-quads format) generated from the

first row of each data table.

Anatomy of inteGraph pipelines

InteGraph pipelines are structured according to the Extract-Transform-Load (ETL) paradigm.

An ETL pipeline collects data from an input source (extract), cleans and maps the data from

a  source  schema  —  the  schema  of  the  original  data  source  —  to  a  target  schema

(transform),  and  saves  the  transformed  data  into  a  triplestore  (load).  In  a  typical  ETL

process, a copy of the extracted data is stored in a data staging area and all transformations

are applied  to the staged data.  In  inteGraph,  an ETL pipeline  is  dynamically  created at

runtime for each data source from the configuration files provided by the user. This ETL

pipeline extracts and stages the raw data from the data source, transforms the staged data

into a RDF graph, and loads the RDF graph into the data layer of the triplestore.

Data extraction

This first step of the ETL data integration process involves collecting data from the data

source. InteGraph implements a number of components to connect to different types of data

sources. At the moment, inteGraph supports the following types of data sources:

 File-like data sources:  inteGraph can download files from remote or  local  file-like

sources by specifying the local path or the URL of the source in the configuration.

Archive files, including compressed archives, are supported, and unpacked before

staging.

 HTTP data  sources:  inteGraph can extract  data from remote databases exposed

through a web-based API by sending HTTP GET requests to the API endpoint. In

that case, the user is expected to provide the URL of the endpoint and the query

string. Paginated results are supported using the limit and offset parameters.
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These two components alone are sufficient to access most ecological datasets. We plan to

add more connectors in the future, including connectors to SQL databases, RDF databases,

etc. The extracted data are staged on the local file system.

Figure  6a  shows  the  data  extracted  from  our  three  example  data  sources.  The  three

datasets use different data structures and terminologies to organize and describe taxonomic

and trophic information.

 The FunFun database uses the Index Fungorum taxonomic nomenclature. Each line of

the data table contains a single trait information for a given taxon. The name of the

trait is given in the trait_name column and its value(s) is given in the value column.

The  terminology  used  to  describe  the  guild  of  each  taxon  is  inherited  from  the

FunGuild database.

 BETSI  does not  encode taxonomic  information  using identifiers  from a reference

taxonomy. Taxa are designated only by their scientific name. Similar to FunFun, each

line of the data table contains a single trait information for a given taxon. The diet

terminology is taken from the T-SITA thesaurus [4].

 Each line in GloBI’s data table contains information about a single interaction. The

interaction is directed, so each line contains information about the source and target

taxa (names  and  identifiers  in  an  external  reference  taxonomy,  e.g.  ITIS,  NCBI,

GBIF…) and the interaction  name.  GloBi  maintains  a  mapping  between different

taxonomic nomenclature internally,  but each taxon in the data table is linked to a

single identifier. The target of the trophic interaction can also be a non-taxonomic

entity, e.g. rotten wood.

Data transformation

The second step of the ETL data integration process involves transforming the staged data

into a RDF graph, i.e. a set of RDF triples. In inteGraph, data transformation consists of two

successive operations: data cleansing and schema mapping.
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Under  the  term  data  cleansing,  we  include  all  the  dataset-specific  data  processing

operations  that  aim  at  formatting  the  extracted  data  so  that  they  are  ready  for  further

processing by the schema mapping component. This includes operations such as removing

or filling missing values, removing duplicates, dropping irrelevant data, splitting strings (i.e.

splitting  a  string  representing  a  set  of  values,  e.g.  ‘bacterivore-detritivore’,  into  a  set  of

strings, each string representing a single value, e.g. ‘bacterivore’, ‘detritivore’), joining two or

more data tables, etc. Figure 6b shows an example of applying cleansing operations to the

FunFun dataset so that each line of the data table contains a single guild value. As possible

cleansing operations are very diverse and highly dependent on the structure of the input

data,  they cannot  be specified  in  the source configuration  file.  Instead,  the user  should

provide a Python or R script that implements the data cleansing operations as a separate

file. This script should respect some input/output constraints so that it can be ingested by

inteGraph at runtime and incorporated into the ETL pipeline. 

After data cleansing is complete and cleansed data are staged, the pipeline moves on to

schema mapping which involves converting data from the schema of the original data source

to  the  schema  of  the  knowledge  graph,  i.e.  the  target  ontology.  Schema  mapping  in

inteGraph consists of two successive tasks: semantic annotation and RDF graph generation.

Semantic annotation is the process of linking the input data with the concepts in the target

ontology that best capture the semantics of the data (Figure 6c). InteGraph provides several

components  for  semantic  annotation  of  biodiversity  data.  The  first  component  maps

taxonomic  entities  (identified  by  their  name  and/or  identifier  in  a  source  taxonomic

nomenclature) to a target taxonomy — in our running example, the NCBITaxon ontology.

Taxonomic mapping uses GNparser [34] to parse scientific names and nomer [35] to match

taxon  names  and  identifiers  to  their  equivalent  in  the  target  taxonomy. The  second

annotation component allows any entity (e.g. trait name, trait value, interaction type) to be

linked to concepts in a target ontology using exact string matching. For instance, to link the

term ‘Plant pathogen’ found in the FunFun database to the corresponding class in the Soil

Food Web Ontology, the component will retrieve all the classes whose label (or the label of
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one of its synonyms) matches exactly the lookup term. If a single eligible class is found, the

term in the input data is annotated with this concept identifier, here SFWO:0000159 which is

the identifier of the class ‘plant pathogen’ in SFWO. A third annotation component allows the

user  to  provide  a  YAML  file  containing  a  dictionary  with  term:concept  pairs.  Semantic

annotation  components  can  be  chained  together  to  handle  mismatched  terms  (see  the

source configuration  file  example  in  Figure  5b).  Figure  6c  shows the result  of  applying

semantic annotation on our example datasets.

Once  the  relevant  data  have  been  linked  to  the  corresponding  concepts  in  the  target

ontology, the final step of schema mapping is the conversion of the annotated dataset into

an RDF graph (Figure 6d).  InteGraph uses RDF Mapping Language (RML) [36] rules to

transform tabular data into RDF triples. RML is a declarative language for expressing rules

that map data in heterogeneous structures to the RDF data model. These rules describe the

desired graph structure, that is how the data and schema layers of the graph should be

connected to each other. The schema mapping rules should be provided by the user as part

of the data source configuration. However, writing RML mapping documents is beyond the

reach of most non-expert users. To face this issue, inteGraph enables to specify mapping

rules  in  spreadsheets  that  are  automatically  translated  into  RML  documents  using

Mapeathor [37] (Figure 7). This provides a more user-friendly manner to declare mapping

rules in a language-independent way. Finally, inteGraph applies Morph-KGC [38], a modern

RML processing engine with a focus on speed and scalability, to execute the RML mapping

rules and generate the RDF graph. Morph-KGC uses the RML rules to determine how the

annotated data should be transformed into RDF triples. The RML rules are applied to each

row in the annotated data to generate the RDF representation of the information in the row.

In case of missing data (e.g. a taxonomic entity that could not be mapped to the target

taxonomic),  the  RDF triples  that  use  the  missing  data  are  not  materialized.  RML rules

processing results in a RDF graph which is the sum of the sets of RDF triples generated for

each row.  Figure 4d shows an extract of the RDF graphs obtained by applying RML rules to

our example datasets. RDF graphs are staged in N-quads format, a serialization format for
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RDF data that associates each triple with an optional context value at the fourth position.

This context value takes the form of a graph label, indicating which RDF graph the triple

belongs to. This graph label is used to keep track of the data provenance (original data

source) after the different RDF graphs are merged into a single KG in the triplestore.

Figure 7.  InteGraph allows the user to specify schema mapping rules in  a spreadsheet,

which are automatically  converted into  RML rules using Mapeathor.  The RML rules are

executed using Morph-KGC to generate the RDF graph.

Data loading

The third and final  step of  the  ETL data  integration  process is  to  save the RDF graph

generated  during  the  data  transformation  stage  in  an  external  RDF  database,  i.e.  a

triplestore. The triplestore must be set up beforehand, either on the same machine running

inteGraph or on a dedicated server. Different triplestore implementations may use different

techniques to ingest RDF data. InteGraph provides connectors to the following triplestore

solutions: RDFox, GraphDB, and Virtuoso. InteGraph also supports loading RDF data to a

triplestore using SPARQL Update operations. In our example, the trophic KG is stored on an

instance of GraphDB Free.  The GraphDB connector provided by inteGraph simply loads

RDF data to the triplestore using an HTTP POST request.

At the moment, inteGraph supports full load only. This means that the transformed data are

loaded in  full  at  each run of  the ETL pipeline.  Therefore,  the KG is  reconstructed from
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scratch every time the data integration pipelines are executed. A useful alternative would be

incremental data load, i.e. updating the KG at regular intervals by loading only the data that

has changed (new or updated data) since the last execution. This requires additional tools to

compare the data from the data source with the existing data present in the KG. Incremental

data  load  has  a  number  of  advantages  over  full  load,  including  faster  processing  and

preservation of data history.

Pipeline creation, scheduling and monitoring

InteGraph  uses  Apache  Airflow3 to  schedule  and  monitor  the  execution  of  the  data

integration pipelines. Airflow provides a flexible programmatic (i.e. code-based) approach to

easily build scheduled data processing pipelines as directed acyclic graphs (DAGs) of tasks.

DAGs are a natural representation for ETL pipelines as each step in the ETL process is

executed  after  the  previous  one  has  been  completed  (there  is  no  circular  dependency

between ETL tasks). Tasks in Airflow should be atomic – they either succeed and produce

some proper result or fail in a manner that does not affect the state of the system – and

idempotent, i.e. rerunning a task without changing the inputs should not change the overall

output.

At  runtime,  inteGraph  parses  the  graph  and  source configuration  files  and  creates  one

Airflow pipeline per data source, decomposing the full ETL pipeline into a DAG of atomic and

idempotent tasks. A schedule interval can be assigned to each pipeline, which determines

when and how often the pipeline  is  run.  Alternatively,  the user can manually  trigger the

execution of  a pipeline in Airflow's graphical  user interface. This interface also allows to

visualize the pipelines generated by inteGraph and monitor their execution (Figure 8). Airflow

can handle failures in ETL operations by retrying them a couple of times. If the error persists,

the user can easily explore the logs of the failing task, identify the cause of the failure, and

rerun the failing task (together with any subsequent tasks that depend on that task). Airflow

also has the ability to run multiple tasks in parallel. Therefore, pipelines can be executed

3 https://airflow.apache.org/
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efficiently, taking advantage of any parallelism inherent in the tasks dependency structure.

For example, inteGraph can split the input data into chunks that are transformed in parallel

and merged before loading, reducing pipeline execution time. In addition, ETL pipelines can

run in parallel as each data source is independent of the others.

Figure 8. A high-level view of the ETL pipeline for the FunFun database in the Airflow user

interface.

Results

Knowledge retrieval

At the end of the semantic data integration process, the target ontology and the transformed

data are both saved in a single triplestore. The triplestore is responsible for storing the KG

and executing SPARQL queries to retrieve information from it. SPARQL is a query language

for retrieving and manipulating data stored in RDF format. SPARQL is based on matching

graph patterns against the RDF graph. The basic graph pattern is the triple pattern, which is

like a RDF triple where any part of the triple can be replaced by a variable. A graph pattern is

a combination of such triple patterns. When executing a SPARQL query against a KG in a

triplestore,  the triplestore searches for  the set(s)  of  triples  that  exactly  match the graph
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patterns defined in the query, regardless of the provenance (i.e. the original source) of the

triples,  unless  explicitly  requested.  This  means  that  the  set  of  RDF  triples  returned  in

response to a SPARQL query may contain facts originating from different data sources. The

KG provides the user with a unified view of the original data sources through querying, and

enables combining multisource information as part of a query response. Figure 9 shows a

SPARQL query searching the KG for phytophagous species. The same query returns both

springtail  and  carabid  species,  whose  dietary  information originates  from the  GloBi  and

BETSI databases respectively. This simple example shows how a single query against the

KG can retrieve information from multiple sources simultaneously,  thus greatly facilitating

integrative studies across taxonomic groups and/or trophic levels.

Figure 9. Example of a SPARQL query returning the species names of phytophagous taxa. ?

x denotes a variable called x. The LIMIT keyword is used to limit the number of results to the
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first 10 entries. The query returns information about both phytophagous springtails (from the

GloBi database) and phytophagous carabid beetles (from the BETSI database).

Making implicit knowledge explicit

The semantic data integration process builds a KG by linking heterogeneous datasets at the

schema level using an ontology. During the process, the data layer of the KG is populated

with the factual information stated in the different datasets and transformed into knowledge

through semantic annotation and transformation into a RDF graph. Based on these explicit

facts, additional knowledge that is not explicitly present in the data can be derived using

reasoning. This ability is a direct consequence of OWL (the standard language for specifying

ontologies) being based on a subset of first-order logic. Therefore, automated reasoners can

be employed to evaluate the logical implications of the knowledge encoded in the ontology

on the explicitly stated data.

There  are  two  principle  strategies  for  logical  inference:  forward  chaining  and  backward

chaining [38]. Forward chaining, also known as materialization, derives all the facts that can

be logically  deduced from the existing facts and a set of logical  rules,  and stores these

inferred facts in the triplestore for later querying.  Precomputing all  inferred facts enables

efficient query answering, but it can also be very expensive both in time (the materialization

process needs to consider all possible inferences) and memory (the process can derive a

large number of facts). In addition, materialization must be redone each time the data is

updated.

Backward chaining (query rewriting) starts from a query and applies the logical rules only as

far as they are needed to answer the query. With backward chaining, reasoning is done at

runtime and no time-  and space-consuming precomputation  is  needed.  Furthermore,  no

recomputation has to be done when the data is updated. However, a major drawback of

backward  chaining  is  that  reasoning  must  be  done  for  each  new query,  which  can  be

computationally expensive and slow.
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In our running example, the target ontologies (the NCBITaxon ontology and the Soil Food

Web Ontology) are loaded in a triplestore supporting reasoning based on forward chaining.

The Soil Food Web Ontology provides a set of logical rules that map consumer-resource

interactions to diets (e.g. an animal feeding on detritus is a detritivore), as well as rules for

classifying  soil-associated  consumers  into  hybrid  taxonomic-trophic  groups  (e.g.

detritivorous  springtails  are  members  of  the  group  Collembola.detritivores).  These  rules

make it possible to automate the process of assigning taxa to trophic groups using logical

inference, thus reducing the burden of manual trophic group assignment.

Figure 10 illustrates how information about trophic group membership is made explicit in our

trophic KG using materialization. After transformed data are loaded in the triplestore at the

end of the data integration pipeline, inference rules are applied repeatedly to the asserted

(explicit) statements until no further inferred (implicit) statements are produced. Given (1) the

explicit information about  Entomobrya ligata feeding on rotting wood (see first line of data

table D3 in Figure 6a), (2) the hierarchy of taxonomic concepts provided by the NCBITaxon

ontology, and (3) the logical rules provided by the Soil Food Web Ontology, the triplestore

reasoner is able to materialize the following logical implications:

 E. ligata is a species of springtails (Collembola) ;

 E. ligata is a detritivore, as it feeds on rotten wood, which is a type of detritus ;

 E. ligata belongs to the group of detritivorous springtails (Collembola.detritivores) as

a logical consequence of the two previous assertions.
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Figure 10. Example of a SPARQL query returning the trophic groups to which Entomobrya

ligata belongs. A trophic group is defined in the Soil Food Web Ontology as ‘a collection of

organisms that  feed on the same food sources and have the same consumers’  [7,  31].

SFWO provides a logical formalization of the hierarchical classification of soil  consumers

proposed in [39].

Performance

InteGraph  relies  on  a  number  of  external  tools  with  a  strong  focus  on  scalability  (e.g.

GNparser for scientific name parsing,  Morph-KGC for RML rules execution). This, combined

with  Airflow’s  ability  to  run  independent  tasks  in  parallel,  makes  inteGraph  itself  quite

efficient at handling large datasets in a reasonable time. In our experiments, we were able to

convert tabular data with over 440K rows into an RDF graph in about 6 minutes on a laptop

with twelve 2.60GHz Intel Core i7 CPUs and 16GB of RAM. Currently, the main bottlenecks

are taxonomic mapping, which in some cases may require many calls to web APIs, and

logical  inference,  the performance of  which depends on the types of  reasoning and the

optimisations implemented by the triplestore (inteGraph provides no reasoning component,

the inference is left entirely to the triplestore).

With the ability to chain semantic annotation components, including user-provided dictionary-

like mapping files, inteGraph is able to convert most of the input data into RDF, with however

some  entries  being  dropped  because  they  cannot  be  linked  to  concepts  in  the  target

ontology.  Most  of  the  time,  this  happens  because  the  taxonomic  entities  could  not  be

mapped to the target taxonomy. This can be due to the source and target taxonomies being

incompatible,  the taxon name being ambiguous or  deprecated,  etc.  For  example,  in  the

FunFun database,  41  of  the  508  unique  taxa  could  not  be  mapped to  the  NCBITaxon

ontology,  resulting  in  15% of  the  input  data  being  dropped  during  the  data  integration
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process. In the Carabidae dataset extracted from BETSI, this proportion is only 0.3% (with

18 of  the 5491 unique taxa for  which inteGraph could not  find a correspondence in the

NCBITaxon ontology).

Discussion

Multitrophic studies require harmonizing and integrating datasets across a large variety of

taxonomic groups and trophic levels. Despite considerable efforts to make more biodiversity

data  freely  available  in  a  (semi-)structured  format,  the  multiple  dimensions  of  data

heterogeneity  (semantic,  structural,  syntactic)  constitute  a  major  obstacle  to  the

interoperability  of  data  sources  [3].  Here,  we  introduced  a  practical  approach  to  data

integration  that  aims at  making heterogeneous and distributed  biodiversity  data  sources

interoperable as part of a single KG. KGs provide a unified representation of disparate data

sources and allow for retrieving data across these sources using a single query. By using

ontologies as global schemas, they add semantics to the integrated data, making it easier for

humans and computers to interpret the data and for reasoners to infer additional facts. As

seen from the example discussed in the Results section, the ability to reason about the data

in our trophic KG opens avenues for automatic classification of soil organisms, which can

facilitate the reconstruction of consistent soil food webs from multisource data. In addition,

KGs  provide  support  for  a  number  of  applications  [41],  including  both  in-KG,  e.g.  link

prediction,  error  detection,  and  out-of-KG applications,  e.g.  relation  extraction  from text,

recommender systems, etc.

Despite  their  many  advantages,  KG  construction  is  currently  out-of-reach  for  most

biodiversity data providers and consumers as they require in-depth expertise in Semantic

Web technologies.  InteGraph  is  an  attempt  to  make  semantic  data  integration  and  KG

construction more accessible to the biodiversity science community. Requiring little or no

code and minimal knowledge of the Semantic Web, inteGraph facilitates the processes of

converting a biodiversity dataset into a KG and of integrating multiple datasets into a single
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KG. Given a set of distributed data sources and a target ontology, inteGraph allows the user

to  control  the  creation  and  execution  of  reproducible  ontology-based  data  integration

pipelines through a set of simple configuration files. This declarative approach relieves the

user of the implementation burden. Instead, the user can focus on the desired structure of

the target KG and on the schema mapping rules needed to transform the input data into

RDF  graphs.  InteGraph  relies  on  high-performance  third-party  tools  (gnparser,  nomer,

Morph-KGC,  Airflow),  which guarantees a  certain  ability  to  scale  to large datasets.  The

viability  of  our  approach has been tested by creating a KG of  soil  trophic  ecology from

multiple  open  trait  databases,  using  the  Soil  Food  Web  Ontology  and  the  NCBITaxon

ontology as the KG schema. Currently,  inteGraph is at the proof-of-concept stage. It  still

needs some development to make it more robust, scalable and user-friendly. We also plan

to add more advanced features in the future, especially regarding data provenance tracking

and continuous KG updating.

Although it represents a significant advance in the field of ontology-based biodiversity data

integration,  inteGraph  suffers  limitations  related  to  current  practices  in  biodiversity  data

management.  First,  inteGraph  requires  the  data  sources  to  provide  data  in  a

(semi-)structured format through a programmatic interface, e.g. a URL to download the data

file or a web API that handles HTTP requests. Still lots of data about soil biodiversity are not

accessible this way, e.g. data from the BETSI database must be downloaded manually. We

are confident that this situation will become less frequent in the future. Second, as a top-

down approach to  KG creation,  inteGraph requires  a  predefined  ontology  to act  as the

mediating  schema to  link  heterogeneous  data  sources.  Creating  an  ontology  to  model

knowledge in a domain of interest is a complex process that requires a significant investment

of time and effort. Ontology engineering asks for a group of experts to produce a consensual

conceptualization of the domain. For instance, in the domain of soil  trophic ecology, this

means trying to harmonize the use of diet terms that may have different meanings from one

taxonomic group to another. However, we believe that the result is worth the effort, as a
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properly  designed  ontology  can  benefit  the  whole  community  by  facilitating  knowledge

sharing, dataset standardization and, ultimately, data integration. 

Finally, although it aims to make semantic data integration more accessible to a non-expert

audience, inteGraph still requires a minimum of knowledge of Semantic Web technologies

(RDF  data,  ontologies,  SPARQL  queries…).  Just  as  the  environmental  community  has

begun to embrace new artificial intelligence tools from recent developments in deep machine

learning, we encourage the community to take an interest in Semantic Web tools for better

biodiversity knowledge management.

Continuing our efforts to develop more and more biodiversity ontologies [42, 25, 43, 7] would

allow us to envision increasing semantification of the ecology domain in the near future.

Combined  with  tools  such  as  inteGraph,  which  facilitate  the  conversion  of  biodiversity

datasets into graph knowledge bases, these semantic resources could support the creation

by  different  communities  of  numerous  domain-specific  KGs,  which  could  eventually  be

interconnected to form a single biodiversity KG covering the entire tree of life and the full

diversity of global ecosystems.

Box 1. Glossary

Class: in an ontology, a description of a concept in the domain of interest. 

A class is a set of individuals that share common characteristics, and the class definition 

gives the properties that these individuals must fulfill to be members of the class. 

For instance, ‘bacterivore’ is the class of all individual organisms that feed on bacteria.

Extract-Transform-Load: a three-phase data integration process that combines data from

multiple sources into a single central repository.

Instance (individual): a  real-world  realization  of  a concept  defined in  an ontology.  In

ontological terms, an individual is an instance of a class in the ontology.

Knowledge  graph: a  knowledge  base  that  uses  a  graph-structured  data  model  to

integrate data.
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N-quads: a line-based, plain text format for storing and transmitting RDF data. A N-quads

statement is a RDF triple extended with an optional context value that takes the form of a

graph label, indicating which graph the triple belongs to.

Ontology:  the formal  and consensual  description  of  a  domain  of  interest  as  a  set  of

interrelated concepts.

Reasoner: a computer program that uses an ontology to infer logical consequences from

a set of asserted facts.

Resource  Description  Framework  (RDF): the  standard  data  model  of  the  Semantic

Web. RDF represents any piece of information as subject-predicate-object triples.

RDF Mapping Language: a language for expressing mapping rules from heterogeneous

data structures to the RDF data model. 

Semantic data integration:  the process of combining data from different sources into a

single, unified view using ontologies.

Semantic  Web: a  set  of  standard  technologies  -  including  the  Resource  Description

Framework  (RDF),  Web  Ontology  Language  (OWL),  and  SPARQL  -  that  help  make

computers better able to interpret data and information published on the web.

SPARQL: the standard query language for retrieving and manipulating data stored in RDF

format.

Triplestore: a database engine optimized for the storage and retrieval of RDF data.

Web API: an interface consisting of one or more endpoints publicly exposed on the web,

that  allow a user to programmatically  access some specific  features or the data of  an

application, e.g. a database.

Web Ontology Language (OWL): a family of knowledge representation languages and

the World Wide Web Consortium's (W3C) standard for authoring ontologies, built on RDF

and characterized by formal semantics based on description logics (decidable fragments

of first-order logic).
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