
HAL Id: hal-04182458
https://hal.science/hal-04182458

Submitted on 18 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A practical approach to constructing a knowledge graph
for soil ecological research

Nicolas Le Guillarme, Wilfried Thuiller

To cite this version:
Nicolas Le Guillarme, Wilfried Thuiller. A practical approach to constructing a knowledge
graph for soil ecological research. European Journal of Soil Biology, 2023, 117, pp.103497.
�10.1016/j.ejsobi.2023.103497�. �hal-04182458�

https://hal.science/hal-04182458
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Practical Approach to Constructing a Knowledge Graph for

Soil Ecological Research

List of authors: Nicolas Le Guillarme, Wilfried Thuiller

Affiliations:

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France.

Corresponding author: Nicolas Le Guillarme; nicolas.leguillarme@univ-grenoble-alpes.fr

Abstract

With the rapid accumulation of biodiversity data, data integration has emerged as a hot topic

in soil ecology. Data integration has indeed the potential to advance our knowledge of global

patterns in soil biodiversity by facilitating large-scale meta-analytical studies of soil

ecosystems. However, ecologists are still poorly equipped when it comes to integrating

disparate datasets. In recent years, knowledge graphs have emerged as a powerful tool for

integrating large amounts of distributed heterogeneous data while making these data more

easily interpretable by humans and computers. This paper presents a practical approach to

constructing a biodiversity knowledge graph from heterogeneous and distributed

(semi-)structured data sources. To illustrate our approach, we integrate several datasets on

the trophic ecology of soil organisms into a trophic knowledge graph and show how both

explicit and implicit information can be retrieved from the graph to support multi-trophic

studies.

Keywords: data integration, knowledge graph, ontology, reasoning, soil ecology

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Introduction

In recent years, a number of initiatives aiming at collecting new soil biodiversity data or

assembling existing datasets have emerged, resulting in a rapid accumulation of data in soil

ecology [1]. Because of the enormous phylogenetic, taxonomic and functional diversity of

soil organisms, datasets are often collected by individual scientists or small project teams

from different communities or disciplines to answer precise research questions. These

datasets are typically small, with a limited spatial/temporal/taxonomic coverage, and are

formatted according to the project needs, with little or no concern for data standardization

[2]. This causes datasets to be heterogeneous in semantics (differences in terminologies,

meaning or interpretation of data in different disciplines or research contexts), schema

(differences in data structures and formats) and syntax (differences in models or languages).

In addition, datasets are widely distributed: they reside on diverse locations, e.g. files or

databases on the local network or published on the web, and are accessible using different

interfaces, e.g., files downloads, database queries or web APIs.

Integrating these ‘long-tail data’ dispersed across different datasets could help address

research questions at larger scales [3]. Data integration is of growing interest in the

ecological domain, with much effort directed towards the creation of standard terminologies

for describing, sharing and facilitating the aggregation of biodiversity data, e.g. organismal

trait data [4, 5, 6, 7], into large open databases. Recent initiatives in trait-based ecology have

targeted specific taxonomic groups, e.g. ants [8], spiders [9], soil invertebrates [10, 11], fungi

[12, 13], plants [14]. Although these databases have made aggregated data more readily

accessible to scientists, they are not yet interoperable. The difficulty of integrating data

distributed across heterogeneous sources remains. As a result, integrative analyses of soil

communities that span several taxonomic groups and integrate multitrophic interactions are

scarce — see [15] for an example — although essential to improve our understanding of the

links between soil biodiversity and ecosystem functioning [16].

2

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Figure 1. Semantic data integration provides the user with a uniform access to a set of

autonomous and possibly heterogeneous data sources in a particular application domain.

Here, we address the problem of semantic data integration in the biodiversity science

domain. Data integration is defined in [17] as the process of combining data residing at

different sources, and providing the user with a unified view of these data. (Figure 1). As a

result, the user has the ability to seamlessly manipulate data from multiple sources,

regardless of the original format or location of the data. Semantic data integration aims at

combining heterogeneous data in a way that preserves the original ‘meaning’ of the data in

their particular semantic context. In practice, this often consists in establishing semantic

correspondences (also called mappings) between the vocabularies of the different data

sources and a common reference ontology. The result of this process is called a knowledge

graph.

3

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Figure 2. The RDF data format represents factual statements about entities (here, the taxon

Entomobrya ligata) as triples that consist of a subject, predicate and object. RDF triples form

a labeled directed graph, which is why RDF databases are also called RDF graphs.

A knowledge graph (KG) is a graph-structured knowledge base that stores factual

information in the form of relationships between real-world entities (like people, places,

‘things’) [18]. Under the Resource Description Framework (RDF), the standard data model of

the Semantic Web, a KG is a set of (subject, predicate, object) triples. A RDF triple is a

factual statement about an entity (the subject), connected to another entity or a data value

(the object) by a relationship (the predicate). A set of RDF triples forms a labeled directed

graph, called a RDF graph (Figure 2). But not every RDF graph is a KG. The triples in a KG

can be separated into two distinct, yet connected, layers (Figure 3). The schema layer is the

conceptual model of the KG and is described by an ontology or a collection of ontologies. An

ontology is a formal shared conceptualization of a domain of interest [19]. It defines a

common agreed upon terminology in terms of concepts (also called classes, i.e. the types of

things that exist in the domain) and the relationships holding among them. An ontology is

specified using a logic-based ontology language — most often the Web Ontology Language

(OWL), built upon RDF — that allows both humans and computers to understand the

semantics (‘meaning’) of the data. The data layer holds the concrete, factual data. These

data are instances of the general concepts (classes) defined in the ontology. For example, if

we were to define a class ‘Article author’ in a hypothetical ontology to describe the concept

4

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

of 'people who write scientific papers', then 'Nicolas Le Guillarme' and 'Wilfried Thuiller'

would be two instances of this class. In the context of semantic data integration, the data

layer of a KG is populated with instance data from multiple sources. The ontology is used to

link these disparate datasets at the schema-level, acting as a mediator for reconciling the

structural and semantic heterogeneities between data sources.

Figure 3. A knowledge graph is a graph database that embeds both the data and its

semantics in two interconnected layers. The schema layer is an ontology or a collection of

ontologies that integrate datasets at the schema-level and allow logical inference of implicit

knowledge using specialized softwares called reasoners. The data layer is a collection of

data from various sources.

KGs have a number of advantages over other types of databases, such as relational ones.

Their graph structure allows for efficient querying, intuitive visualization, and analysis using

graph algorithms or relational machine learning [18]. Using an ontology as a schema layer,

KGs embed a formal semantics with the data which can be used by computers to interpret

and reason about the data, thus potentially allowing to infer new facts (e.g. the inferrable

relationships in Figure 2). KGs make it easy to integrate new types of data by altering the

ontology or adding a new ontology to the schema layer. When following the Linked Open

5

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

Data principles [20], domain-specific KGs can be easily interconnected into larger (possibly

cross-domain) KGs.

KGs have recently become prevalent as a framework for semantic data integration in many

different domains of science and industry [21]. It was R. Page, in his seminal 2016 paper,

who first suggested the use of KGs in the biodiversity field [22]. Since then, only a few

examples of biodiversity KGs have been published. Ozymandias [23] is a KG for the

Australian fauna that integrates data from several sources, including the Atlas of Living

Australia, the Australian Faunal Directory, the Biodiversity Heritage Library and the

Biodiversity Literature Repository. OpenBiodiv [24] integrates information extracted from the

biodiversity literature into a graph database using the OpenBiodiv-O ontology and an RDF

version of the Global Biodiversity Information Facility (GBIF) taxonomic backbone. TAXREF-

LD [25] is a KG representation of the French national taxonomical register for fauna, flora

and fungus that interlinks information about taxonomy, species interactions, development

stages, biogeography, conservation statuses, etc. In a recent talk at TDWG 2021, Michel et

al. [26] called for more biodiversity data producers to start publishing KGs. However, for

now, building a KG from multiple data sources is a complex and time-consuming task that

demands high Semantic Web expertise, and we are not aware of an existing tool specifically

designed to help ecologists transform their data sets into interoperable KGs — with the

notable exception of the iKNOW project [27], which is very similar in spirit to our work, but

whose current status is unknown to us.

In this paper, we present inteGraph, a framework and toolbox that facilitates the process of

building a KG from heterogeneous and distributed (semi-)structured data sources in the

biodiversity domain. With inteGraph, users can create automatic and reproducible semantic

data integration pipelines simply through the provision of configuration files. This declarative

approach requires no (or little) code from the user and minimizes the amount of manual

effort and Semantic Web expertise required to turn datasets into interoperable KGs.

To illustrate our approach, we will show how inteGraph can be used to integrate data on the

trophic ecology of soil organisms from multiple sources into a KG that can support

6

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

multitrophic studies. Multitrophic studies, spanning multiple trophic levels and/or taxonomic

groups, are essential to identify general patterns in community ecology [28], understand how

diversity is related to ecosystem stability and ecosystem functioning [29], and provide the

necessary guidance with biodiversity loss and environmental problems [30]. Multitrophic

approaches should acknowledge the complexity of ecosystems while remaining practical.

Large trait databases have the potential to address this trade-off between feasibility and

completeness. By supporting the assignment of species (or higher taxonomic ranks) to

trophic and/or functional groups, they reduce the dimensionality of ecological communities

without biasing studies toward a single trophic level or taxonomic group [31, 15]. Yet, some

challenges still remain. Although we have trait databases available for some groups of soil

organisms, our trait knowledge is limited for most of them. In addition, existing databases

tend to function as data silos whose lack of interoperability can discourage researchers to

include more trophic levels and/or taxonomic groups in their studies.

The ability to create a KG integrating trophic information from a number of trait databases

covering different soil taxonomic groups across several trophic levels could greatly facilitate

multitrophic studies in soil ecology research. Such a trophic KG would provide a unified

access to multigroup, multitrophic, and multisource information. The integration of several

trophic datasets (e.g. a first one containing information on carabid diets and a second one

focusing on the feeding habits of springtails) into a KG allows the use of a single query to

retrieve all organisms with a particular diet, regardless of the format, location or taxonomic

coverage of the original data source. KGs also offer the ability to reason about the integrated

data to derive additional knowledge. Reasoning about trophic interactions and dietary data

opens the way for automatic classification of soil organisms into trophic groups, which can

facilitate the reconstruction of consistent soil food webs from multisource data. This will be

illustrated with examples in the Results section.

7

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Material and Methods

Overview of the approach

Figure 4 is a high-level representation of our approach to constructing a KG from

heterogeneous and distributed (semi-)structured data sources. At the heart of our framework

is inteGraph1, an open-source toolkit for ontology-based data integration in the biodiversity

domain that allows generating data integration pipelines dynamically from configuration files

and scheduling and monitoring the execution of these pipelines.

Figure 4. A high-level representation of the proposed declarative approach for constructing a

knowledge graph from distributed (semi-)structured data sources.

Data sources

Data sources can be (and often are) distributed on several machines, on a local network

and/or on the web. Data must be accessible in a (semi-)structured form, for instance as

tabular (e.g. tables in relational databases or in CSV files) or hierarchical data (e.g. data in

XML or JSON format). At present, inteGraph does not include information extraction

components that would allow the integration of unstructured textual data from the literature.

1 Available at https://github.com/nleguillarme/inteGraph

8

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

9

In our running example, we will use inteGraph to build a trophic KG from the following three

data sources:

 The FunFun database [13] collates fungal functional trait data, including information

about trophic guilds, from a variety of sources, for thousands of species across the

fungal tree of life. Data are provided in a tabular format (CSV file) and can be

downloaded from Zenodo (https://zenodo.org/record/1216257).

 BETSI [11] is an open database gathering data on morphological traits and

ecological preferences for 7 taxonomic groups of soil invertebrates (Aranae,

Carabidae, Chilopoda, Collembola, Diplopoda, Isopoda and Diplotesticulata) from

about 2000 literature references. BETSI is accessible on demand via a web portal

(https://portail.betsi.cnrs.fr) that provides the user with an interface to write queries

and download subsets of the database in a tabular format (CSV file). In the following,

we will integrate a dataset containing Carabidae diet data.

 The Global Biotic Interactions (GloBI) provides open access to species interaction

data (e.g. predator-prey, pollinator-plant, pathogen-host, parasite-host) aggregated

from existing open datasets [32]. As of April 2023, GloBI contains over 17M

interaction records obtained from 342 datasets, covering 823,033 taxa. GloBI

provides several ways to access its data, including a web portal

(https://www.globalbioticinteractions.org/), a downloadable snapshot of the entire

database in a tabular format (CSV file), and a web API. In our example, we will use

the web API to download data about the trophic interactions of Collembola.

Information from these three data sources will populate the data layer of our trophic KG once

it has been transformed into a common representation.

Target ontology

InteGraph adopts a top-down approach to KG creation. In this type of approach, the schema

layer of the KGis populated with a predefined ontology. The semantic data integration

process then consists of populating the data layer of the KG with data extracted from the

10

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

different data sources, and creating semantic links between the schema of the sources and

the (global) schema of the KG using mapping rules.

To reconcile schematic and semantic heterogeneities between our trophic data sources, the

schema layer of our example KG will be populated with two ontologies: the NCBITaxon

ontology and the Soil Food Web Ontology (SFWO) [7]. NCBITaxon is a formal translation of

the NCBI Taxonomy database into an ontology, in which each taxon is treated as a class

whose instances would be individual organisms, e.g. 'Nicolas Le Guillarme' instance_of

NCBITaxon_9606 (Homo sapiens). To our knowledge, the NCBI Taxonomy database is the

only taxonomic nomenclature available as an OWL ontology. SFWO is an ontology for

representing knowledge on the trophic ecology of soil organisms across taxonomic groups

and trophic levels. SFWO captures the semantics of trophic concepts such as trophic

interactions, feeding processes, diets or trophic groups. SFWO also includes machine-

interpretable definitions for most of these concepts, that allow for inference of implicit

knowledge using automated reasoning, e.g. deducing a consumer’s diet(s) from the trophic

interaction(s) in which it participates.

Triplestore

A triplestore is a database management system, i.e., a software used for storing and

querying a database, specifically designed to support the storage and the efficient querying

of RDF triples. A triplestore is needed to store both the schema and data layers of a KG.

Information stored in the triplestore can be retrieved using SPARQL queries. A multitude of

triplestore implementations are available (see [33] for a survey), which offer different

capabilities and performance in terms of data storage and indexing, query processing,

reasoning, etc.

InteGraph assumes the existence of a running triplestore instance. It is not tied to a specific

implementation and provides connectors to several triplestore solutions. The user is

expected to provide connection information as part of the pipeline configurations. As a top-

11

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

down approach, inteGraph assumes that the target ontology has been loaded in the

triplestore before the data integration process starts.

To store our example knowledge graph, we will use GraphDB Free2, a RDF triplestore

solution that can manage billions of explicit statements on a desktop hardware, while

providing optimized query evaluation and OWL reasoning.

Configuration files

InteGraph implements a declarative approach to building KGs, which means that it provides

control over the creation and execution of semantic data integration pipelines using

configuration files. InteGraph requires the user to provide two types of configuration files: a

single graph configuration file (Figure 5a), and a set of source configuration files, one for

each data source (Figure 5b).

The graph configuration file contains global information, including the name of the KG (that

acts as a prefix to create an identifier for each graph generated from a data source), the

name of the directory containing the source configuration files, the triplestore connection

information, and the declaration of the target ontologies.

The source configuration file is where the user specifies the information needed by

inteGraph to instantiate the Extract and Transform components of the data integration

pipeline for a given source. This includes:

 the internal identifier of the data source;

 data access information, which determines the type of data source – file-like or HTTP

– and the appropriate data extraction component to be added to the pipeline;

 information about the format of the input data, e.g. tab or comma-separated values;

 the path to an (optional) data cleansing script;

 for each entity (e.g. taxon, trait) in the input data, the name of the columns containing

information about the entity (label and/or identifier), and a sequence of semantic

2 https://graphdb.ontotext.com/documentation/10.2/about-graphdb.html

12

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

13

annotation components whose role is to map the entity to its equivalent in the target

ontology;

 the path to the spreadsheet containing the schema mapping rules.

(a) Graph configuration (b) Source configuration for the FunFun database

Figure 5. InteGraph implements a declarative approach to KG construction, giving the user

control over the creation of data integration pipelines through simple configuration files.

14

252

253

254

255

256

257

15

Figure 6. An illustration of the application of data transformation to our example datasets

(D1: FunFun, D2: Carabidae diet data from BETSI, D3: Collembola trophic interaction data

from GloBI). Figure 6d shows the set of RDF triples (in N-quads format) generated from the

first row of each data table.

Anatomy of inteGraph pipelines

InteGraph pipelines are structured according to the Extract-Transform-Load (ETL) paradigm.

An ETL pipeline collects data from an input source (extract), cleans and maps the data from

a source schema — the schema of the original data source — to a target schema

(transform), and saves the transformed data into a triplestore (load). In a typical ETL

process, a copy of the extracted data is stored in a data staging area and all transformations

are applied to the staged data. In inteGraph, an ETL pipeline is dynamically created at

runtime for each data source from the configuration files provided by the user. This ETL

pipeline extracts and stages the raw data from the data source, transforms the staged data

into a RDF graph, and loads the RDF graph into the data layer of the triplestore.

Data extraction

This first step of the ETL data integration process involves collecting data from the data

source. InteGraph implements a number of components to connect to different types of data

sources. At the moment, inteGraph supports the following types of data sources:

 File-like data sources: inteGraph can download files from remote or local file-like

sources by specifying the local path or the URL of the source in the configuration.

Archive files, including compressed archives, are supported, and unpacked before

staging.

 HTTP data sources: inteGraph can extract data from remote databases exposed

through a web-based API by sending HTTP GET requests to the API endpoint. In

that case, the user is expected to provide the URL of the endpoint and the query

string. Paginated results are supported using the limit and offset parameters.

16

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

These two components alone are sufficient to access most ecological datasets. We plan to

add more connectors in the future, including connectors to SQL databases, RDF databases,

etc. The extracted data are staged on the local file system.

Figure 6a shows the data extracted from our three example data sources. The three

datasets use different data structures and terminologies to organize and describe taxonomic

and trophic information.

 The FunFun database uses the Index Fungorum taxonomic nomenclature. Each line of

the data table contains a single trait information for a given taxon. The name of the

trait is given in the trait_name column and its value(s) is given in the value column.

The terminology used to describe the guild of each taxon is inherited from the

FunGuild database.

 BETSI does not encode taxonomic information using identifiers from a reference

taxonomy. Taxa are designated only by their scientific name. Similar to FunFun, each

line of the data table contains a single trait information for a given taxon. The diet

terminology is taken from the T-SITA thesaurus [4].

 Each line in GloBI’s data table contains information about a single interaction. The

interaction is directed, so each line contains information about the source and target

taxa (names and identifiers in an external reference taxonomy, e.g. ITIS, NCBI,

GBIF…) and the interaction name. GloBi maintains a mapping between different

taxonomic nomenclature internally, but each taxon in the data table is linked to a

single identifier. The target of the trophic interaction can also be a non-taxonomic

entity, e.g. rotten wood.

Data transformation

The second step of the ETL data integration process involves transforming the staged data

into a RDF graph, i.e. a set of RDF triples. In inteGraph, data transformation consists of two

successive operations: data cleansing and schema mapping.

17

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Under the term data cleansing, we include all the dataset-specific data processing

operations that aim at formatting the extracted data so that they are ready for further

processing by the schema mapping component. This includes operations such as removing

or filling missing values, removing duplicates, dropping irrelevant data, splitting strings (i.e.

splitting a string representing a set of values, e.g. ‘bacterivore-detritivore’, into a set of

strings, each string representing a single value, e.g. ‘bacterivore’, ‘detritivore’), joining two or

more data tables, etc. Figure 6b shows an example of applying cleansing operations to the

FunFun dataset so that each line of the data table contains a single guild value. As possible

cleansing operations are very diverse and highly dependent on the structure of the input

data, they cannot be specified in the source configuration file. Instead, the user should

provide a Python or R script that implements the data cleansing operations as a separate

file. This script should respect some input/output constraints so that it can be ingested by

inteGraph at runtime and incorporated into the ETL pipeline.

After data cleansing is complete and cleansed data are staged, the pipeline moves on to

schema mapping which involves converting data from the schema of the original data source

to the schema of the knowledge graph, i.e. the target ontology. Schema mapping in

inteGraph consists of two successive tasks: semantic annotation and RDF graph generation.

Semantic annotation is the process of linking the input data with the concepts in the target

ontology that best capture the semantics of the data (Figure 6c). InteGraph provides several

components for semantic annotation of biodiversity data. The first component maps

taxonomic entities (identified by their name and/or identifier in a source taxonomic

nomenclature) to a target taxonomy — in our running example, the NCBITaxon ontology.

Taxonomic mapping uses GNparser [34] to parse scientific names and nomer [35] to match

taxon names and identifiers to their equivalent in the target taxonomy. The second

annotation component allows any entity (e.g. trait name, trait value, interaction type) to be

linked to concepts in a target ontology using exact string matching. For instance, to link the

term ‘Plant pathogen’ found in the FunFun database to the corresponding class in the Soil

Food Web Ontology, the component will retrieve all the classes whose label (or the label of

18

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

one of its synonyms) matches exactly the lookup term. If a single eligible class is found, the

term in the input data is annotated with this concept identifier, here SFWO:0000159 which is

the identifier of the class ‘plant pathogen’ in SFWO. A third annotation component allows the

user to provide a YAML file containing a dictionary with term:concept pairs. Semantic

annotation components can be chained together to handle mismatched terms (see the

source configuration file example in Figure 5b). Figure 6c shows the result of applying

semantic annotation on our example datasets.

Once the relevant data have been linked to the corresponding concepts in the target

ontology, the final step of schema mapping is the conversion of the annotated dataset into

an RDF graph (Figure 6d). InteGraph uses RDF Mapping Language (RML) [36] rules to

transform tabular data into RDF triples. RML is a declarative language for expressing rules

that map data in heterogeneous structures to the RDF data model. These rules describe the

desired graph structure, that is how the data and schema layers of the graph should be

connected to each other. The schema mapping rules should be provided by the user as part

of the data source configuration. However, writing RML mapping documents is beyond the

reach of most non-expert users. To face this issue, inteGraph enables to specify mapping

rules in spreadsheets that are automatically translated into RML documents using

Mapeathor [37] (Figure 7). This provides a more user-friendly manner to declare mapping

rules in a language-independent way. Finally, inteGraph applies Morph-KGC [38], a modern

RML processing engine with a focus on speed and scalability, to execute the RML mapping

rules and generate the RDF graph. Morph-KGC uses the RML rules to determine how the

annotated data should be transformed into RDF triples. The RML rules are applied to each

row in the annotated data to generate the RDF representation of the information in the row.

In case of missing data (e.g. a taxonomic entity that could not be mapped to the target

taxonomic), the RDF triples that use the missing data are not materialized. RML rules

processing results in a RDF graph which is the sum of the sets of RDF triples generated for

each row. Figure 4d shows an extract of the RDF graphs obtained by applying RML rules to

our example datasets. RDF graphs are staged in N-quads format, a serialization format for

19

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

RDF data that associates each triple with an optional context value at the fourth position.

This context value takes the form of a graph label, indicating which RDF graph the triple

belongs to. This graph label is used to keep track of the data provenance (original data

source) after the different RDF graphs are merged into a single KG in the triplestore.

Figure 7. InteGraph allows the user to specify schema mapping rules in a spreadsheet,

which are automatically converted into RML rules using Mapeathor. The RML rules are

executed using Morph-KGC to generate the RDF graph.

Data loading

The third and final step of the ETL data integration process is to save the RDF graph

generated during the data transformation stage in an external RDF database, i.e. a

triplestore. The triplestore must be set up beforehand, either on the same machine running

inteGraph or on a dedicated server. Different triplestore implementations may use different

techniques to ingest RDF data. InteGraph provides connectors to the following triplestore

solutions: RDFox, GraphDB, and Virtuoso. InteGraph also supports loading RDF data to a

triplestore using SPARQL Update operations. In our example, the trophic KG is stored on an

instance of GraphDB Free. The GraphDB connector provided by inteGraph simply loads

RDF data to the triplestore using an HTTP POST request.

At the moment, inteGraph supports full load only. This means that the transformed data are

loaded in full at each run of the ETL pipeline. Therefore, the KG is reconstructed from

20

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

scratch every time the data integration pipelines are executed. A useful alternative would be

incremental data load, i.e. updating the KG at regular intervals by loading only the data that

has changed (new or updated data) since the last execution. This requires additional tools to

compare the data from the data source with the existing data present in the KG. Incremental

data load has a number of advantages over full load, including faster processing and

preservation of data history.

Pipeline creation, scheduling and monitoring

InteGraph uses Apache Airflow3 to schedule and monitor the execution of the data

integration pipelines. Airflow provides a flexible programmatic (i.e. code-based) approach to

easily build scheduled data processing pipelines as directed acyclic graphs (DAGs) of tasks.

DAGs are a natural representation for ETL pipelines as each step in the ETL process is

executed after the previous one has been completed (there is no circular dependency

between ETL tasks). Tasks in Airflow should be atomic – they either succeed and produce

some proper result or fail in a manner that does not affect the state of the system – and

idempotent, i.e. rerunning a task without changing the inputs should not change the overall

output.

At runtime, inteGraph parses the graph and source configuration files and creates one

Airflow pipeline per data source, decomposing the full ETL pipeline into a DAG of atomic and

idempotent tasks. A schedule interval can be assigned to each pipeline, which determines

when and how often the pipeline is run. Alternatively, the user can manually trigger the

execution of a pipeline in Airflow's graphical user interface. This interface also allows to

visualize the pipelines generated by inteGraph and monitor their execution (Figure 8). Airflow

can handle failures in ETL operations by retrying them a couple of times. If the error persists,

the user can easily explore the logs of the failing task, identify the cause of the failure, and

rerun the failing task (together with any subsequent tasks that depend on that task). Airflow

also has the ability to run multiple tasks in parallel. Therefore, pipelines can be executed

3 https://airflow.apache.org/

21

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

22

efficiently, taking advantage of any parallelism inherent in the tasks dependency structure.

For example, inteGraph can split the input data into chunks that are transformed in parallel

and merged before loading, reducing pipeline execution time. In addition, ETL pipelines can

run in parallel as each data source is independent of the others.

Figure 8. A high-level view of the ETL pipeline for the FunFun database in the Airflow user

interface.

Results

Knowledge retrieval

At the end of the semantic data integration process, the target ontology and the transformed

data are both saved in a single triplestore. The triplestore is responsible for storing the KG

and executing SPARQL queries to retrieve information from it. SPARQL is a query language

for retrieving and manipulating data stored in RDF format. SPARQL is based on matching

graph patterns against the RDF graph. The basic graph pattern is the triple pattern, which is

like a RDF triple where any part of the triple can be replaced by a variable. A graph pattern is

a combination of such triple patterns. When executing a SPARQL query against a KG in a

triplestore, the triplestore searches for the set(s) of triples that exactly match the graph

23

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

patterns defined in the query, regardless of the provenance (i.e. the original source) of the

triples, unless explicitly requested. This means that the set of RDF triples returned in

response to a SPARQL query may contain facts originating from different data sources. The

KG provides the user with a unified view of the original data sources through querying, and

enables combining multisource information as part of a query response. Figure 9 shows a

SPARQL query searching the KG for phytophagous species. The same query returns both

springtail and carabid species, whose dietary information originates from the GloBi and

BETSI databases respectively. This simple example shows how a single query against the

KG can retrieve information from multiple sources simultaneously, thus greatly facilitating

integrative studies across taxonomic groups and/or trophic levels.

Figure 9. Example of a SPARQL query returning the species names of phytophagous taxa. ?

x denotes a variable called x. The LIMIT keyword is used to limit the number of results to the

24

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

first 10 entries. The query returns information about both phytophagous springtails (from the

GloBi database) and phytophagous carabid beetles (from the BETSI database).

Making implicit knowledge explicit

The semantic data integration process builds a KG by linking heterogeneous datasets at the

schema level using an ontology. During the process, the data layer of the KG is populated

with the factual information stated in the different datasets and transformed into knowledge

through semantic annotation and transformation into a RDF graph. Based on these explicit

facts, additional knowledge that is not explicitly present in the data can be derived using

reasoning. This ability is a direct consequence of OWL (the standard language for specifying

ontologies) being based on a subset of first-order logic. Therefore, automated reasoners can

be employed to evaluate the logical implications of the knowledge encoded in the ontology

on the explicitly stated data.

There are two principle strategies for logical inference: forward chaining and backward

chaining [38]. Forward chaining, also known as materialization, derives all the facts that can

be logically deduced from the existing facts and a set of logical rules, and stores these

inferred facts in the triplestore for later querying. Precomputing all inferred facts enables

efficient query answering, but it can also be very expensive both in time (the materialization

process needs to consider all possible inferences) and memory (the process can derive a

large number of facts). In addition, materialization must be redone each time the data is

updated.

Backward chaining (query rewriting) starts from a query and applies the logical rules only as

far as they are needed to answer the query. With backward chaining, reasoning is done at

runtime and no time- and space-consuming precomputation is needed. Furthermore, no

recomputation has to be done when the data is updated. However, a major drawback of

backward chaining is that reasoning must be done for each new query, which can be

computationally expensive and slow.

25

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

In our running example, the target ontologies (the NCBITaxon ontology and the Soil Food

Web Ontology) are loaded in a triplestore supporting reasoning based on forward chaining.

The Soil Food Web Ontology provides a set of logical rules that map consumer-resource

interactions to diets (e.g. an animal feeding on detritus is a detritivore), as well as rules for

classifying soil-associated consumers into hybrid taxonomic-trophic groups (e.g.

detritivorous springtails are members of the group Collembola.detritivores). These rules

make it possible to automate the process of assigning taxa to trophic groups using logical

inference, thus reducing the burden of manual trophic group assignment.

Figure 10 illustrates how information about trophic group membership is made explicit in our

trophic KG using materialization. After transformed data are loaded in the triplestore at the

end of the data integration pipeline, inference rules are applied repeatedly to the asserted

(explicit) statements until no further inferred (implicit) statements are produced. Given (1) the

explicit information about Entomobrya ligata feeding on rotting wood (see first line of data

table D3 in Figure 6a), (2) the hierarchy of taxonomic concepts provided by the NCBITaxon

ontology, and (3) the logical rules provided by the Soil Food Web Ontology, the triplestore

reasoner is able to materialize the following logical implications:

 E. ligata is a species of springtails (Collembola) ;

 E. ligata is a detritivore, as it feeds on rotten wood, which is a type of detritus ;

 E. ligata belongs to the group of detritivorous springtails (Collembola.detritivores) as

a logical consequence of the two previous assertions.

26

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

Figure 10. Example of a SPARQL query returning the trophic groups to which Entomobrya

ligata belongs. A trophic group is defined in the Soil Food Web Ontology as ‘a collection of

organisms that feed on the same food sources and have the same consumers’ [7, 31].

SFWO provides a logical formalization of the hierarchical classification of soil consumers

proposed in [39].

Performance

InteGraph relies on a number of external tools with a strong focus on scalability (e.g.

GNparser for scientific name parsing, Morph-KGC for RML rules execution). This, combined

with Airflow’s ability to run independent tasks in parallel, makes inteGraph itself quite

efficient at handling large datasets in a reasonable time. In our experiments, we were able to

convert tabular data with over 440K rows into an RDF graph in about 6 minutes on a laptop

with twelve 2.60GHz Intel Core i7 CPUs and 16GB of RAM. Currently, the main bottlenecks

are taxonomic mapping, which in some cases may require many calls to web APIs, and

logical inference, the performance of which depends on the types of reasoning and the

optimisations implemented by the triplestore (inteGraph provides no reasoning component,

the inference is left entirely to the triplestore).

With the ability to chain semantic annotation components, including user-provided dictionary-

like mapping files, inteGraph is able to convert most of the input data into RDF, with however

some entries being dropped because they cannot be linked to concepts in the target

ontology. Most of the time, this happens because the taxonomic entities could not be

mapped to the target taxonomy. This can be due to the source and target taxonomies being

incompatible, the taxon name being ambiguous or deprecated, etc. For example, in the

FunFun database, 41 of the 508 unique taxa could not be mapped to the NCBITaxon

ontology, resulting in 15% of the input data being dropped during the data integration

27

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

process. In the Carabidae dataset extracted from BETSI, this proportion is only 0.3% (with

18 of the 5491 unique taxa for which inteGraph could not find a correspondence in the

NCBITaxon ontology).

Discussion

Multitrophic studies require harmonizing and integrating datasets across a large variety of

taxonomic groups and trophic levels. Despite considerable efforts to make more biodiversity

data freely available in a (semi-)structured format, the multiple dimensions of data

heterogeneity (semantic, structural, syntactic) constitute a major obstacle to the

interoperability of data sources [3]. Here, we introduced a practical approach to data

integration that aims at making heterogeneous and distributed biodiversity data sources

interoperable as part of a single KG. KGs provide a unified representation of disparate data

sources and allow for retrieving data across these sources using a single query. By using

ontologies as global schemas, they add semantics to the integrated data, making it easier for

humans and computers to interpret the data and for reasoners to infer additional facts. As

seen from the example discussed in the Results section, the ability to reason about the data

in our trophic KG opens avenues for automatic classification of soil organisms, which can

facilitate the reconstruction of consistent soil food webs from multisource data. In addition,

KGs provide support for a number of applications [41], including both in-KG, e.g. link

prediction, error detection, and out-of-KG applications, e.g. relation extraction from text,

recommender systems, etc.

Despite their many advantages, KG construction is currently out-of-reach for most

biodiversity data providers and consumers as they require in-depth expertise in Semantic

Web technologies. InteGraph is an attempt to make semantic data integration and KG

construction more accessible to the biodiversity science community. Requiring little or no

code and minimal knowledge of the Semantic Web, inteGraph facilitates the processes of

converting a biodiversity dataset into a KG and of integrating multiple datasets into a single

28

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

KG. Given a set of distributed data sources and a target ontology, inteGraph allows the user

to control the creation and execution of reproducible ontology-based data integration

pipelines through a set of simple configuration files. This declarative approach relieves the

user of the implementation burden. Instead, the user can focus on the desired structure of

the target KG and on the schema mapping rules needed to transform the input data into

RDF graphs. InteGraph relies on high-performance third-party tools (gnparser, nomer,

Morph-KGC, Airflow), which guarantees a certain ability to scale to large datasets. The

viability of our approach has been tested by creating a KG of soil trophic ecology from

multiple open trait databases, using the Soil Food Web Ontology and the NCBITaxon

ontology as the KG schema. Currently, inteGraph is at the proof-of-concept stage. It still

needs some development to make it more robust, scalable and user-friendly. We also plan

to add more advanced features in the future, especially regarding data provenance tracking

and continuous KG updating.

Although it represents a significant advance in the field of ontology-based biodiversity data

integration, inteGraph suffers limitations related to current practices in biodiversity data

management. First, inteGraph requires the data sources to provide data in a

(semi-)structured format through a programmatic interface, e.g. a URL to download the data

file or a web API that handles HTTP requests. Still lots of data about soil biodiversity are not

accessible this way, e.g. data from the BETSI database must be downloaded manually. We

are confident that this situation will become less frequent in the future. Second, as a top-

down approach to KG creation, inteGraph requires a predefined ontology to act as the

mediating schema to link heterogeneous data sources. Creating an ontology to model

knowledge in a domain of interest is a complex process that requires a significant investment

of time and effort. Ontology engineering asks for a group of experts to produce a consensual

conceptualization of the domain. For instance, in the domain of soil trophic ecology, this

means trying to harmonize the use of diet terms that may have different meanings from one

taxonomic group to another. However, we believe that the result is worth the effort, as a

29

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

properly designed ontology can benefit the whole community by facilitating knowledge

sharing, dataset standardization and, ultimately, data integration.

Finally, although it aims to make semantic data integration more accessible to a non-expert

audience, inteGraph still requires a minimum of knowledge of Semantic Web technologies

(RDF data, ontologies, SPARQL queries…). Just as the environmental community has

begun to embrace new artificial intelligence tools from recent developments in deep machine

learning, we encourage the community to take an interest in Semantic Web tools for better

biodiversity knowledge management.

Continuing our efforts to develop more and more biodiversity ontologies [42, 25, 43, 7] would

allow us to envision increasing semantification of the ecology domain in the near future.

Combined with tools such as inteGraph, which facilitate the conversion of biodiversity

datasets into graph knowledge bases, these semantic resources could support the creation

by different communities of numerous domain-specific KGs, which could eventually be

interconnected to form a single biodiversity KG covering the entire tree of life and the full

diversity of global ecosystems.

Box 1. Glossary

Class: in an ontology, a description of a concept in the domain of interest.

A class is a set of individuals that share common characteristics, and the class definition

gives the properties that these individuals must fulfill to be members of the class.

For instance, ‘bacterivore’ is the class of all individual organisms that feed on bacteria.

Extract-Transform-Load: a three-phase data integration process that combines data from

multiple sources into a single central repository.

Instance (individual): a real-world realization of a concept defined in an ontology. In

ontological terms, an individual is an instance of a class in the ontology.

Knowledge graph: a knowledge base that uses a graph-structured data model to

integrate data.

30

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

N-quads: a line-based, plain text format for storing and transmitting RDF data. A N-quads

statement is a RDF triple extended with an optional context value that takes the form of a

graph label, indicating which graph the triple belongs to.

Ontology: the formal and consensual description of a domain of interest as a set of

interrelated concepts.

Reasoner: a computer program that uses an ontology to infer logical consequences from

a set of asserted facts.

Resource Description Framework (RDF): the standard data model of the Semantic

Web. RDF represents any piece of information as subject-predicate-object triples.

RDF Mapping Language: a language for expressing mapping rules from heterogeneous

data structures to the RDF data model.

Semantic data integration: the process of combining data from different sources into a

single, unified view using ontologies.

Semantic Web: a set of standard technologies - including the Resource Description

Framework (RDF), Web Ontology Language (OWL), and SPARQL - that help make

computers better able to interpret data and information published on the web.

SPARQL: the standard query language for retrieving and manipulating data stored in RDF

format.

Triplestore: a database engine optimized for the storage and retrieval of RDF data.

Web API: an interface consisting of one or more endpoints publicly exposed on the web,

that allow a user to programmatically access some specific features or the data of an

application, e.g. a database.

Web Ontology Language (OWL): a family of knowledge representation languages and

the World Wide Web Consortium's (W3C) standard for authoring ontologies, built on RDF

and characterized by formal semantics based on description logics (decidable fragments

of first-order logic).

31

Acknowledgements

We acknowledge support from the European Union’s Horizon Europe under grant

agreement N°101060429 (NaturaConnect), the French Agence Nationale de la Recherche

through the EcoNet (ANR-18-CE02-0010), GlobNet (ANR-16-CE02-0009) and FishPredict

projects and the MIAI@Grenoble Alpes (ANR-19-P3IA-0003) institute.

References

[1] White, H. J., León Sánchez, L., Burton, V. J., Cameron, E. K., Caruso, T., Cunha, L., ... &‐

Caplat, P. (2020). Methods and approaches to advance soil macroecology. Global Ecology

and Biogeography, 29(10), 1674-1690.

[2] Poisot, T., Bruneau, A., Gonzalez, A., Gravel, D., & Peres-Neto, P. (2019). Ecological

data should not be so hard to find and reuse. Trends in ecology & evolution, 34(6), 494-496.

[3] Vanderbilt, K., & Gries, C. (2021). Integrating long-tail data: How far are we?. Ecological

Informatics, 64(C).

[4] Pey, B., Laporte, M. A., Nahmani, J., Auclerc, A., Capowiez, Y., Caro, G., ... & Hedde, M.

(2014). A thesaurus for soil invertebrate trait-based approaches. PLoS One, 9(10), e108985.

[5] Garnier, E., Stahl, U., Laporte, M. A., Kattge, J., Mougenot, I., Kühn, I., ... & Klotz, S.

(2017). Towards a thesaurus of plant characteristics: an ecological contribution. Journal of

Ecology, 105(2), 298-309.

[6] Schneider, F. D., Fichtmueller, D., Gossner, M. M., Güntsch, A., Jochum, M., König Ries,‐

B., ... & Simons, N. K. (2019). Towards an ecological trait data standard. ‐ Methods in Ecology

and Evolution, 10(12), 2006-2019.

[7] Le Guillarme, N., Hedde, M., Potapov, A., Berg, M. P., Briones, M. J. I., Hohberg, K., … &

Thuiller, W. (2023). The Soil Food Web Ontology: aligning trophic groups, processes, and

resources to harmonise and automatise soil food web reconstructions. bioRxiv doi:

10.1101/2023.02.03.526812

32

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

[8] Parr, C. L., Dunn, R. R., Sanders, N. J., Weiser, M. D., Photakis, M., Bishop, T. R., ... &

Gibb, H. (2017). GlobalAnts: a new database on the geography of ant traits (Hymenoptera:

Formicidae). Insect Conservation and Diversity, 10(1), 5-20.

[9] Pekár, S., Wolff, J. O., Černecká, Ľ., Birkhofer, K., Mammola, S., Lowe, E. C., ... &

Cardoso, P. (2021). The World Spider Trait database: a centralized global open repository

for curated data on spider traits. Database, 2021.

[10] Potapov, A., Sandmann, D., & Scheu, S. (2019). Ecotaxonomy: Linking traits, taxa,

individuals and samples in a flexible virtual research environment for ecological studies.

Biodiversity Information Science and Standards, 3, e37166.

[11] Joimel, S., Nahmani, J., Hedde, M., Auclerc, A., Léa, B., Bonfanti, J., ... & Benjamin, P.

(2021, April). A large database on functional traits for soil ecologists: BETSI. In Global

Symposium on Soil Biodiversity (pp. 523-528).

[12] Soudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., ...

& Tedersoo, L. (2020). FungalRoot: global online database of plant mycorrhizal associations.

New Phytologist, 227(3), 955-966.

[13] Zanne, A. E., Abarenkov, K., Afkhami, M. E., Aguilar Trigueros, C. A., Bates, S.,‐

Bhatnagar, J. M., ... & Treseder, K. K. (2020). Fungal functional ecology: bringing a trait‐

based approach to plant associated fungi. ‐ Biological Reviews, 95(2), 409-433.

[14] Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., ... & Cuntz, M.

(2020). TRY plant trait database–enhanced coverage and open access. Global change

biology, 26(1), 119-188.

[15] Calderón Sanou, I., Zinger, L., Hedde, M., Martinez Almoyna, C., Saillard, A., Renaud,‐ ‐

J., ... & Thuiller, W. (2022). Energy and physiological tolerance explain multi trophic soil‐

diversity in temperate mountains. Diversity and Distributions, 28(12), 2549-2564.

[16] Eisenhauer, N., Bender, S. F., Calderón Sanou, I., de Vries, F. T., Lembrechts, J. J.,‐

Thuiller, W., ... & Potapov, A. (2022). Frontiers in soil ecology—Insights from the World

Biodiversity Forum 2022. Journal of Sustainable Agriculture and Environment, 1(4), 245-261.

33

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

[17] Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems

(pp. 233-246).

[18] Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. (2015). A review of relational

machine learning for knowledge graphs. Proceedings of the IEEE, 104(1), 11-33.

[19] Madin, J. S., Bowers, S., Schildhauer, M. P., & Jones, M. B. (2008). Advancing

ecological research with ontologies. Trends in ecology & evolution, 23(3), 159-168.

[20] Mountantonakis, M., & Tzitzikas, Y. (2019). Large-scale semantic integration of linked

data: A survey. ACM Computing Surveys (CSUR), 52(5), 1-40.

[21] Ryen, V., Soylu, A., & Roman, D. (2022). Building Semantic Knowledge Graphs from

(Semi-) Structured Data: A Review. Future Internet, 14(5), 129.

[22] Page, R. D. M. (2016). Towards a biodiversity knowledge graph. Research Ideas and

Outcomes, 2.

[23] Page, R. D. M. (2019). Ozymandias: a biodiversity knowledge graph. PeerJ, 7, e6739.

[24] Penev, L., Dimitrova, M., Senderov, V., Zhelezov, G., Georgiev, T., Stoev, P., & Simov,

K. (2019). OpenBiodiv: a knowledge graph for literature-extracted linked open data in

biodiversity science. Publications, 7(2), 38.

[25] Michel, F., Faron, C., Tercerie, S., Gargominy, O. (2017-2022) TAXREF-LD: Knowledge

Graph of the French taxonomic registry. https://doi.org/10.5281/zenodo.5848916

[26] Michel, F., Ettorre, A., Faron, C., Kaplan, J., & Gargominy, O. (2021). Biodiversity

Knowledge Graphs: Time to move up a gear!. Biodiversity Information Science and

Standards, 5, e73699.

[27] Babalou, S., Kleinsteuber, E., El Haouni, B., Zander, F., Costa, D. S., Kattge, J., &

König-Ries, B. (2022). iKNOW-A Knowledge Graph Management Platform for the

Biodiversity Domain. International Semantic Web Conference (ISWC) 2022: Posters,

Demos, and Industry Tracks.

[28] Gaüzere, P., O'Connor, L., Botella, C., Poggiato, G., Münkemüller, T., Pollock, L.J.

Brose, U., Maiorano, L., Harfoot, M.H. and Thuiller, W. (2022) The diversity of interactions

34

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

complements functional and phylogenetic facets of biodiversity. Current Biology, 32(9),

2093-2100

[29] Thompson, R. M., Brose, U., Dunne, J. A., Hall Jr, R. O., Hladyz, S., Kitching, R. L., ... &

Tylianakis, J. M. (2012). Food webs: reconciling the structure and function of biodiversity.

Trends in ecology & evolution, 27(12), 689-697.

[30] Seibold, S., Cadotte, M. W., MacIvor, J. S., Thorn, S., & Müller, J. (2018). The necessity

of multitrophic approaches in community ecology. Trends in ecology & evolution, 33(10),

754-764.

[31] Hedde, M., Blight, O., Briones, M. J., Bonfanti, J., Brauman, A., Brondani, M., ... &

Capowiez, Y. (2022). A common framework for developing robust soil fauna classifications.

Geoderma, 426, 116073.

[32] Poelen, J. H., Simons, J. D., & Mungall, C. J. (2014). Global biotic interactions: An open

infrastructure to share and analyze species-interaction datasets. Ecological Informatics, 24,

148-159.

[33] Ali, W., Saleem, M., Yao, B., Hogan, A., & Ngomo, A. C. N. (2020). Storage, Indexing,

Query Processing, and Benchmarking in Centralized and Distributed RDF Engines: A

Survey. arXiv preprint arXiv:2009.10331.

[34] Mozzherin, D. Y., Myltsev, A. A., & Patterson, D. J. (2017). “gnparser”: a powerful parser

for scientific names based on Parsing Expression Grammar. BMC bioinformatics, 18(1), 1-

14.

[35] Salim, J. A., & Poelen, J.. (2022). globalbioticinteractions/nomer: 0.4.8 (0.4.8). Zenodo.

https://doi.org/10.5281/zenodo.7458675.

[36] Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., & Van de Walle,

R. (2014). RML: a generic language for integrated RDF mappings of heterogeneous data.

Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd

International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014.

35

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

[37] Iglesias-Molina, A., Pozo-Gilo, L., Dona, D., Ruckhaus, E., Chaves-Fraga, D., & Corcho,

O. (2020, January). Mapeathor: Simplifying the specification of declarative rules for

knowledge graph construction. In ISWC (Demos/Industry).

[38] Arenas-Guerrero, J., Chaves-Fraga, D., Toledo, J., Pérez, M. S., & Corcho, O. (2022).

Morph-KGC: Scalable knowledge graph materialization with mapping partitions. Semantic

Web.

[39] Antoniou, G., Batsakis, S., Mutharaju, R., Pan, J. Z., Qi, G., Tachmazidis, I., ... & Zhou,

Z. (2018). A survey of large-scale reasoning on the web of data. The Knowledge

Engineering Review, 33.

[40] Potapov, A. M., Beaulieu, F., Birkhofer, K., Bluhm, S. L., Degtyarev, M. I., Devetter,

M., ... & Scheu, S. (2022). Feeding habits and multifunctional classification of soil associated‐

consumers from protists to vertebrates. Biological Reviews, 97(3), 1057-1117.

[41] Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey

of approaches and applications. IEEE Transactions on Knowledge and Data Engineering,

29(12), 2724-2743.

[42] Walls, R. L., Deck, J., Guralnick, R., Baskauf, S., Beaman, R., Blum, S., ... & Wooley, J.

(2014). Semantics in support of biodiversity knowledge discovery: an introduction to the

biological collections ontology and related ontologies. PloS one, 9(3), e89606.

[43] Abdelmageed, N., Algergawy, A., Samuel, S., & König-Ries, B. (2021). BiodivOnto:

towards a core ontology for biodiversity. In The Semantic Web: ESWC 2021 Satellite Events:

Virtual Event, June 6–10, 2021, Revised Selected Papers 18 (pp. 3-8). Springer International

Publishing.

36

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

