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Abstract

Critical care clinicians are trained to analyze simultaneously multiple physiological parame-
ters to predict critical conditions such as hemodynamic instability. We developed the Multi-
task Learning Physiological Deep Learner (MTL-PDL), a deep learning algorithm that pre-
dicts simultaneously the mean arterial pressure (MAP) and the heart rate (HR).

In an external validation dataset, our model exhibited very good calibration: R2 of 0.747
(95% confidence interval, 0.692 to 0.794) and 0.850 (0.815 to 0.879) for respectively, MAP
and HR prediction 60-minutes ahead of time. For acute hypotensive episodes defined as a
MAP below 65 mmHg for 5 minutes, our MTL-PDL reached a predictive value of 90% for
patients at very high risk (predicted MAP ≤ 60 mmHg) and 2‰ for patients at low risk
(predicted MAP > 70 mmHg).

Based on its excellent prediction performance, the Physiological Deep Learner has the
potential to help the clinician proactively adjust the treatment in order to avoid hypotensive
episodes and end-organ hypoperfusion.

Keywords: Critical Care, Shock Hypotension, Multitask Learning, RNN

1. Introduction1

Shock is the clinical presentation of an acute circulatory failure resulting in inadequate2

cellular oxygen supply and utilization.1 It is a common condition that affects approximately3
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one-third of the patients in the intensive care unit (ICU).2 It is clinically characterized by4

an acute hypotension, a rapid decline in the mean arterial pressure (MAP).1 Shock is a5

diagnostic and therapeutic emergency since any delay in treatment initiation may result in6

increased morbi-mortality.3,4 Therefore, early identification of patients at risk of shock is of7

utmost importance.8

As acute hypotension is a key clinical symptom of shock,1 many studies have attempted9

to learn from the arterial blood pressure signal to develop prediction models for acute hy-10

potensive episodes (AHE).5,6, 7, 8, 9, 10,11,12,13,14,15,16 Most predictive models only use the MAP11

signal as input to predict the risk of hypotension. However, in practice, clinicians are trained12

to analyze simultaneously multiple sources of information (including several physiological pa-13

rameters, disease characteristics, treatments)17 to better stratify patient severity and predict14

any forthcoming deterioration. In a previous work, we showed that an ensemble machine15

learning model trained on baseline patient characteristics, severity scores, ICU treatments,16

and several continuous physiological signals (including heart rate (HR), blood pressure (BP)17

and pulse oximetry (SpO2) was very accurate at predicting AHE up to 30 minutes (min) in18

advance.18 In the present study, we propose to augment the concept of learning from multi-19

ple physiological parameters by using a multi-task learning (MTL) approach to improve the20

prediction of AHE in critically ill patients.21

The goal of MTL is to mimic the intensivist’s behavior, namely to learn jointly and22

simultaneously multiple related outcomes to enhance model performance across tasks, as23

opposed to learning each task independently (a.k.a. single-task learning, STL).19 Multi-24

task neural networks have been proposed to predict a variety of clinical outcomes, such as25

postoperative mortality, acute kidney injury, and reintubation,20 mortality,21 hospital length26

of stay, time to the next medical visit22 or classification of disease groupings.23 Because of27

the well-described interdependence between arterial BP and HR,24 we hypothesized that28

applying MTL to jointly predict the MAP and the HR could improve the performance of29

AHE prediction.30

In the recent literature, AHE was defined as a MAP below 65 mmHg.13,25,26 However,31

as previously highlighted by Chan et al.27 this conventional definition of AHE based on a32

single cutoff value may not be suitable for individual patients. Normal BP varies between33

individuals and patients may tolerate hypotension to various degrees before developing end-34

organ damages. To offer the possibility for the clinician to use individualized BP targets35

(and thus individualized AHE definition), we developed an algorithm which primary task is36

not to predict AHE as defined by a specific threshold but rather to predict the actual BP37

value. In this study, we are proposing to use a MTL approach to predict the MAP value up38

to 60-min ahead of time. To validate our approach, we compared two different architectures:39

STL-PDL (Single-Task Learning - Physiological Deep Learner), trained to predict MAP and40

HR separately, and MTL-PDL (Multi-Task Learning - Physiological Deep Learner) trained41

to predict MAP and HR jointly. The data from the Medical Information Mart for Intensive42

Care version 3 (MIMIC-III) waveform database matched subset (version 1.0) were used to43

train the models. A cohort from Lariboisière hospital surgical ICU (AP-HP, Paris, France)44

was used for external validation.45
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2. Methods46

2.1. Datasets47

The Medical Information Mart for Intensive Care version 3 (MIMIC-III) is a publicly48

and freely available database including clinical data, physiologic measurements, treatment49

administration and administrative data of ICU patients. The dataset comprises de-identified50

data from patients admitted to any of the five ICUs of Boston’s Beth Israel deaconess medical51

center (BIDMC, Boston, USA) for a period of seven years (2008-2014).28 A unique identifier52

number was attributed to each patient to match information available in the different tables.53

Data collection was approved by the institutional review boards (IRB) of BIDMC and the54

Massachusetts institute of technology (MIT, Cambridge, Massachusetts, USA). We specifi-55

cally used the MIMIC-III waveform matched subset database (version 1.0), which contains56

22, 247 numeric records (recording of physiological signals every minute) matched and time-57

aligned with 10, 282 MIMIC-III clinical database records (global clinical information about58

the ICU stay).29
59

The Lariboisière cohort was used for external validation. This database includes clinical60

data, physiological signals, treatment and administrative data prospectively consecutively61

collected at the bedside over a two-year period (2017-2018) in the surgical ICU of Lariboisière62

hospital (AP-HP, Paris, France). This cohort was notably built to be similar in structure63

to MIMIC-III. This study received IRB approval (CE-SRLF 14-356), and signed informed64

consent was waived.30 Every patient was orally informed about inclusion in this database.65

2.2. Data partitioning66

Following recommendations from Chen and al.,31 90% of the analyzed patients from67

MIMIC-III were randomly assigned to the "development set": 80% of the patients allocated68

to the training set (used to estimate model parameters), 10% to the tuning set (used to69

perform hyper-parameter search) and the remaining 10% (MIMIC-III validation set) was70

used to evaluate prediction performance. Model performance was also evaluated externally71

on the data from the Lariboisière cohort. The experimental workflow is detailed in Fig. 1A72

2.3. Periods’definition73

Each patient ICU stay was divided into successive periods, as depicted in Fig. 1B For74

a given period t, our objective was to predict the average MAP and the average HR values75

observed during the last 5-min of this period (referred to as the prediction window) using76

only the data from the first 30-min of the same period (referred to as the observation win-77

dow). In clinical practice, such a prediction is only useful if it is made available sufficiently78

in advance to allow for therapeutic adjustments. Thus, a time gap (referred to as the gap79

window) was inserted between the observation window and the prediction window. Five time80

gaps were tested: 5, 10, 15, 30, and 60-min. The following features were used for the predic-81

tion task: baseline characteristics at ICU admission (age, gender, simplified acute physiology82

score-II (SAPS-II), sequential organ failure assessment (SOFA) score, type of ICU, i.e., med-83

ical, surgical, cardiac, mixed), time-evolving treatment characteristics (including mechanical84

ventilation, vasopressors, and sedation), as well as the five following physiological signals85

collected every minute: HR, pulse oximetry (SpO2), systolic arterial pressure (SAP), dias-86

tolic arterial pressure (DAP) and MAP. Patients or periods with missing clinical information87
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(baseline characteristics, time-evolving characteristics, severity scores, time-evolving treat-88

ments) were excluded. Finally, only patients with at least one period with available data for89

the 5-min time gap window were included in the analyses.90

2.4. Sampling periods and predicting on new patients91

As the length of ICU stay was different for each patient, our data were uneven in terms92

of the number of periods per patient, creating two types of challenges:93

i. The model should not overfit to patients with more data, i.e. more periods94

ii. The model should be aware of the correlation between periods coming from the same95

patient96

To address (1), at the beginning of each iteration of the learning process (i.e., epoch) a new97

balanced dataset was obtained by sampling with replacement the same number of periods98

per patient. The median number of periods per patient included in the study was used99

to determine the number of periods to be drawn per patient. Models were trained with100

balanced datasets for multiple epochs. Thus, at each epoch, a different sample of the data101

was used; consequently, all the data were used during the training process. Challenge (2)102

was addressed by adding patient id as a variable in our models. In deep learning literature,103

there is a long history of representing categorical variables with n-dimensional vectors.32
104

This approach has been particularly useful for the representation of clinical data in modern105

natural language processing to predict several ICU conditions.33,34 These vectors are learned106

by the models together with other parameters during training. The matrix of vectors is107

often referred to as an embedding layer.35 In this paper, we train a embedding vector108

representation for each patient id in the training set. As a result of training, patients with109

similar predictors characteristics get a similar vector representation. Hence, by adding the110

patient id to predictors and training a embedding vector for each patient id, we were able111

to fully handle the correlation between periods coming from the same patient. However, in112

validation and testing sets, patients were different than those of the training set. Thus, we113

were unable to build vector representations for the new patients ids. To be able to predict114

new patients we used the following approach. At each training process iteration (i.e epoch),115

we overwrote 10% of the periods at random to have id 0. By doing that, the vector associated116

with the id 0 was trained to be the "average user". Thus we could use this average user for117

prediction of a new patient for model validation and testing.118

2.5. Predictors and outcomes119

Fixed predictors included baseline characteristics:120

• Quantitative characteristics: age; initial severity scores: Simplified Acute Physiology121

Score-II (SAPS-II)36 and Sequential Organ Failure Score (SOFA)37
122

• Categorical characteristics: gender; patient id ; type of ICU123

Two types of time-dependent characteristics were considered:124

• Period-evolving treatment characteristics: status of mechanical ventilation; adminis-125

tration of vasopressors and sedation medication126
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• Physiological signals: heart rate (HR); pulse oximetry (SpO2); systolic (SAP); diastolic127

(DAP); mean arterial pressure (MAP)128

We denoted quantitative characteristics by xcont, categorical characteristics (except binary)129

by xcat, gender and period-evolving treatment binary characteristics (collected every pe-130

riod) by xbinary and physiological signals (collected every min during the 30-min observa-131

tion window) by xseries. Thus, we defined a vector representation of predictors as x =132

(xcont, xcat, xbinary, xseries) associated with the two outcomes yMAP and yHR where yMAP and133

yHR represented respectively the MAP and HR averaged over the 5-min prediction window134

for each patient period.135

2.6. Model architecture136

Deep learning models handle complex relationships between a large number of explana-137

tory predictors and desired outputs, such as patient outcome.18 Based on a succession of138

layers (each layer receives its inputs from the previous one’s outputs), deep learning models139

use backpropagation algorithms to update their internal parameters and optimize their pre-140

dictions. The Physiological Deep Learner (PDL) was designed to predict the MAP and/or141

HR by mapping x to yMAP and/or yHR. Different PDL were implemented and compared,142

two single-task learning PDL (STL-PDL) predicting separately the MAP and the HR, and143

one Multi-task learning PDL (MTL-PDL) trained to jointly predict the MAP and HR.144

To render the comparison between STL-PDL and MTL-PDL as fair as possible, all es-145

timation processes were identical except the last step (Fig. 2). The PDL maps the vector146

of predictors x = (xcont, xcat, xbinary, xseries) to yMAP and/or yHR, and follows the following147

steps:148

i. xseries is input to a Gated Recurrent Unit (GRU)38 a type of recurrent neural network149

(RNN) that outputs a vector r. For tasks that involve time series predictors, such as150

physiological signals overtime, it is often better to use RNNs. RNNs process an input151

time series one element at a time, maintaining in their hidden units a "state vector"152

that implicitly contains information about the history of all the past elements of the153

time series.39
154

ii. Each categorical variable in xcat is input to an separate embedding layers given the155

outputs e1 and e2. Embedding layers are initialized randomly and learned by the156

model in the optimization process. In particular models learn a vector representation157

for each patient id. This is particularly helpful to account for within-patient correlation158

between the periods of a same patient.159

iii. r, e1, e2, xbinary and xcont get concatenated to form c160

iv. c gets fed into multiple linear regression layers and non-linear functions (ReLU) re-161

turning h.162

v. Two architectures depending on the algorithm:163

(a) STL: h gets fed into a linear regression layer to predict MAP or HR independently.164
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(b) MTL: h gets fed into linked linear regression layers to predict MAP and HR165

jointly.166

To make the comparison between STL-PDL and MTL-PDL as fair as possible all models are
identical until the last step. Here a summary of all steps for the two PDL’s architectures:

Single-task learning Multi-task learning
r = GRU(xseries) r = GRU(xseries) (1)

e1 = EMB1(xcat[1]) e1 = EMB1(xcat[1]) (2)
e2 = EMB2(xcat[2]) e2 = EMB2(xcat[2]) (3)

c = (r, e1, e2, xbinary, xcont) c = (r, e1, e2, xbinary, xcont) (4)
h = Batchnorm(ReLU(Linear1(c))) h = Batchnorm(ReLU(Linear1(c))) (5)

ŷMAP = Linear2(h) or ŷHR = Linear2(h) (ŷMAP ; ŷHR) = jointLinear(h) (6)

where GRU is a gated recurrent unit; xcat[1] and xcat[2] are patient id and type of ICU167

respectively; EMB1 and EMB2 are two embedding layers; ŷ is either yMAP or yHR; Linear1,168

Linear2 and jointLinear, are 3 linear regression layers; Batchnorm is batch-normalization169

layer;40 ReLU(x) is the rectified linear unit function.41
170

2.7. Model Optimization171

2.7.1. Single-task learning172

Let D = {{x(ip), y
(ip)
MAP , y

(ij)
HR}tp=1}ni=1 be the set of training observations, where t, the

number of periods and n the number of patients. The basic idea is to find out a relationship
f(.) between x and y (either yMAP or yHR), which represents the clinical risk model that
takes x as input and outputs ŷ as predictions. Thus, the model is specified by ŷ = f(x). To
predict MAP and HR values, we considered two separate STL-PDL, one for each task, and
used mean squared error (MSE) as loss function. Concretely, let `MAP and `HR be the MSE
for the outcomes yMAP and yHR, respectively and ŷMAP and ŷHR the predictions output by
the two separated clinical risk models, fMAP (.) and fHR(.). Then, `MAP and `HR are defined
as follows:

`MAP (fMAP )(D) =
1

N

N∑
i=1

(y
(i)
MAP − ŷ

(i)
MAP )

2, (7)

`HR(fHR)(D) =
1

N

N∑
i=1

(y
(i)
HR − ŷ

(i)
HR)

2, (8)

where N = t × n corresponds to the total number of observations. Finally, the parameter173

estimation of each clinical risk model (i.e., tacks) is determined by minimizing the MSE loss174

function.175

2.7.2. Multi-task learning176

In contrast, MTL involves jointly estimating several prediction models.42 The intuition
is that a joint estimation can do better than an independent estimation of the tasks shar-
ing similarities. MTL refers to the optimization of a global loss function. Therefore, the
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minimization of the global MTL cost function allows the simultaneous estimation of the
parameters associated with the MAP and those associated with the HR based on common
predictors. Thus, the final estimated parameters reflect the understanding found to predict
the two tasks together. They are consequently different from those estimated independently
with single-task models. In that case, we can treat our problem as building one prediction
model for the two tasks, and use mean squared error (MSE) as loss function. Concretely,
Let L be the global MSE for the outcomes yMAP and yHR and ŷMAP and ŷHR the predictions
output by f(.) the joint clinical risk model. Hence, our global multi-task learning loss of L
is defined as follows:

L(f)(D) = 1

2N

{
N∑
i=1

(y
(i)
MAP − ŷ

(i)
MAP )

2 + (y
(i)
HR − ŷ

(i)
HR)

2

}
(9)

PDLs development was performed using PyTorch version 1.4 library.43 We used Adam44
177

for optimization. It is computationally efficient, has little memory requirements, is invariant178

to diagonal re-scaling of the gradients. The optimization of hyperparameters was based on179

the best models’performances on the tuning set. Thus, we fixed the learning rate to 0.003,180

the hidden size to 100 units, the number of epochs to 20, and the weight decay to 10−5.181

Then best models were fitted on the two validation sets to report final performance results.182

Graphical representations of the final results were performed using R version 3.6.3 library.45
183

2.8. Assessment of performance184

2.8.1. Evaluation of the averages prediction of MAP and HR185

Graphical representations of the final results were performed using R version 3.6.3 li-
brary.45 To assess models’ performance in both validation sets, R-squared (R2) together
with its 95% confidence interval (95%CI) and root mean square error (RMSE), defined as

RMSE =

√√√√ 1

N

N∑
i=1

(ŷ(i) − y(i))2, (10)

where ŷ(i) is a generic outcome predicted and y(i) a generic outcome observed, were computed.186

Differences between observed and predicted outcomes against observed outcomes were plot-187

ted to quantify 95% limits of agreement (95% LOA) predictions. Finally, calibration plots188

were plotted. To do so, patients were grouped into observed and predicted outcomes deciles.189

Within each decile, the true mean per decile defined as the average of observed 5-min MAP190

or 5-min HR values was computed. Similarly, the predicted mean per decile defined as the191

average 5-min MAP or 5-min HR values was also computed. Then, each couple of means192

was plotted according to time gaps for each validation set. Thus, the closer the line to the193

diagonal, the better the calibration.194

2.8.2. Acute hypotensive episodes prediction195

To indicate what would be the performance of an AHE alert device based on our findings,196

we defined a threshold for the MAP at 65 mmHg as this threshold is commonly used to197

defined AHE.13,46,47 Therefore, we classified the patients using the following rule:198
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i. "AHE", if observed average 5-min MAP ≤ 65199

ii. "No AHE", either200

Note that our MTL-PDL was not trained to predict this binary outcome, but we directly201

defined classes of predicted risk of AHE on the continuous predicted 5-min MAP from the202

MTL-PDL according to the following rule:203

i. "Very high", if predicted MAP ≤ 60204

ii. "High", if 60 < predicted MAP ≤ 65205

iii. "Moderate", if 65 < predicted MAP ≤ 70206

iv. "Low", if predicted MAP > 70207

We examined the performance of the MTL-PDL by comparing the observed classes to the208

predicted classes. Relying on the crossing matrices, we calculated for each predicted classes209

("Very high", "High", "Moderate" or "Low"), the probability of AHE knowing the class,210

P (AHE|k) and the probability of no AHE knowing the class, P (NoAHE|k), where k is the211

predicted risk class. Moreover, by applying the same risk classes definitions to the observed212

and predicted MAP values we displayed Bangdiwala’s agreement chart for each validation set213

and each time gap. This chart assesses the concordance between two methods of measure-214

ment of ordinal categorical data.48 Thus, it gives an overview of misclassification between215

observed and predicted classes. For each class, exact agreement between the observed and216

predicted is represented by a rectangle filled with the bleakest color. Partial agreement is217

reached when the closest class is predicted instead of the actual class. It is represented by218

an intermediate color between exact and no agreement. No agreement is obtained when the219

farthest class is predicted instead of the actual class. It is represented by the lightest color.220

The more the diagonal goes through the corners of the rectangles, the greater the global221

agreement.222

3. Results223

Data Preparation. Within MIMIC-III and Lariboisière cohort, all patients with complete224

data (baseline characteristics, time-evolving characteristics and physiological signals) were225

selected. Among them, all patients with at least one complete set of 3 successive windows226

(i.e. observation, gap, prediction) with a time gap of at least 5 min were included in the227

analysis (Fig. 3). From MIMIC-III, 2,308 patients (74,159 periods) qualified to be included228

in the analysis, among which, 2,290 patients (62,951 periods) still had data available when229

increasing the time gap to 10 min, 2,261 patients (52,413 periods) with a time gap of 15 min,230

2,153 patients (34,499 periods) with a time gap of 30 min and 1,996 patients (17,870 periods)231

with a time gap of 60 min. Forty nine patients from Lariboisière cohort were included in the232

external validation analysis. All 49 patients had data available with 5, 10, 15 and 30-min233

time gaps, representing a total of 1,417, 1,226, 1,024, and 629 periods respectively. Only 43234

patients (295 periods) had data available with a time gap of 60 min. Patients characteristics235

are summarized in Table 1.236
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MAP prediction.. STL- and MTL-PDL performance for each time gap (5, 10, 15, 30, and237

60-min) are presented in Fig. 4. When evaluated using the MIMIC-III validation set and the238

external validation cohort, the correlation coefficient R2 (95% confidence interval) between239

the actual and the predicted MAP was consistently very close to 1 whatever the PDL archi-240

tecture and the time gap. With a STL structure, the R2 obtained in MIMIC-III validation241

set ranged from 0.954 (0.952-0.956) to 0.839 (0.824-0.853), and from 0.937 (0.93-0.943) to242

0.754 (0.7-0.8) in the external validation cohort. With a MTL structure, the R2 ranged from243

0.958 (0.956-0.96) to 0.833 in (0.817-0.847) in MIMIC-III, and from 0.952 (0.946-0.956) to244

0.747 (0.692-0.794) in the external validation cohort. However, when compared to MTL-245

PDL, STL-PDL was consistently associated with a larger root mean square error (RMSE)246

(middle panel, Fig. 4). In MIMIC-III validation set, the RMSE for the STL-PDL was of247

4.16, 4.73, 4.86, 6.15 and 7.44 for the 5, 10, 15, 30, and 60-min time gaps respectively. In248

contrast, the RMSE for the MTL-PDL was consistently lower: 3.93, 4.42, 4.77, 6.06 and 7.38249

respectively. A similar pattern was observed in the external validation cohort: STL-PDL250

RMSE of 6.86, 7.24, 7.84, 10.03, and 13.42 at 5, 10, 15, 30, and 60-min respectively and for251

MTL-PDL 5.68, 6.39, 7.23, 9.44 and 12.14 respectively. Fig. 4, right panel illustrates the252

concordance between observed and predicted MAP by quantifying the limits of prediction253

agreement. In general, all differences between observed and predicted values lied within the254

95% Limits Of Agreement (95% LOA) for each time gap and validation set. MTL-PDL was255

associated with more accurate predictions as illustrated by an average difference between256

observed and predicted MAP consistently closer to zero. In MIMIC-III validation set, the257

average difference between observed and predicted MAP for each time gap was of 0.59 [95%258

LOA = -7.48-8.67], -0.06 [-9.34-9.22], 0.85 [-8.54-10.24], 1.52 [-10.15-13.2], 1.69 [-12.52-15.9]259

for STL-PDL, while it was of 0.28 [-7.41-7.97], 0.12 [-8.54-8.77], -0.27 [-9.59-9.06], -1.26 [-260

12.89-10.36], -0.26 [-14.73-14.2] for MTL-PDL. The average difference between observed and261

predicted MAP were larger in the external validation cohort than in the MIMIC-III val-262

idation dataset, but MTL-PDL was also superior to STL-PDL: average difference for the263

STL-PDL was 2.81 [-9.47-15.09], 2.33 [-11.1-15.76], 2.55 [-11.99-17.09], 3.15 [-15.53-21.84],264

6.26 [-17.05-29.56] at 5, 10, 15, 30, and 60-min respectively and for the MTL-PDL 1.74 [-265

8.85-12.34], 0.04 [-12.49-12.57], 0.19 [-13.98-14.37], 0.80 [-17.64-19.24] 1.54 [-22.1-25.18]. The266

superiority of the MTL-PDL over STL-PDL was also confirmed using calibration plots (Fig.267

5).268

Prediction of acute hypotensive episodes.. In Fig. 6 are displayed predictive values for risk of269

acute hypotensive episodes. In both validation sets, the higher the predicted risk, the higher270

the probability of observing a MAP below 65 mmHg. P (AHE|k) was 99% in MIMIC-III271

and 90% in the external validation cohort for the "Very high risk" class. P (NoAHE|k) was272

99.5% in MIMIC-III and 99.8% in the external validation cohort for the "Low risk" class.273

Finally, by applying the same risk classes definitions to the observed and predicted MAP274

values, we assessed the MTL-PDL misclassification error in both validation set (Fig. 7 and275

8). As expected, the agreement decreased as the time gap increased. However, it seems that276

the misclassification always goes in the direction of partial agreement (i.e. the closest class277

predicted instead of the current class) rather than total disagreement (i.e. the farthest class278

predicted instead of the current class) between observed and predicted AHE class risk.279
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HR prediction.. Comparable results are provided in Fig. 9 for HR prediction. Similar to280

MAP prediction, MTL-PDL was found to outperform STL-PDL for HR prediction, especially281

with 30 and 60-min time gaps. In both internal and external validation sets, the R2 was282

similar and close to 1. RMSE was consistently lower with MTL-PDL except for 5 and 10-283

min gaps in the external validation cohort where there was no difference between the two284

PDL architectures. Fig. 10 shows excellent and better calibration profile with MTL-PDL as285

compared to STL-PDL.286

4. Discussion287

We developed the Physiological Deep Learner that processes baseline characteristics and288

multiple continuous physiological signals to accurately predict the evolution of the MAP and289

the HR in critically ill patients. More precisely, the major novelty of this study was the use290

of a MTL architecture to improve the prediction performance by jointly modeling MAP and291

HR. This learning framework is similar to the way clinicians are trained to jointly analyze292

the evolution of the HR and the MAP given their close physiological interdependence. To293

render this new prediction tool useful in clinical practice, we trained the Physiological Deep294

Learner to predict the MAP and the HR with incremental time gaps, up to 60-min ahead of295

time. Compared to a more traditional STL-PDL approach, our MTL-PDL achieved better296

performance, with better calibration profile and fewer errors. In addition, the Physiological297

Deep Learner was able to predict with high accuracy the occurrence or not of an acute298

hypotensive episode.299

Several AHE prediction models were developed over the past 20 years. In 2009, the 10th300

annual PhysioNet/Computers in cardiology challenge49 was set to promote the development301

of methods for identifying ICU patients at imminent risk of AHE. During this challenge, mul-302

tiple ML prediction models were proposed.5,6, 7, 8, 9, 10, 11,12 However, none of them achieved303

sufficient accuracy to be adopted in clinical practice. More recently, Hatib et al.13 used a304

logistic regression model to predict hypotension based on 3,022 features extracted from the305

MAP waveform signal. Their model reached a sensitivity of 88% (95% CI, 85 to 90%) and306

a specificity of 87% (95% CI, 85 to 90%) but tended to underpredict the risk of hypotension307

in the higher-risk subgroups. Thus far, most predictive models used historical MAP values308

as their only input variable, ignoring other patient characteristics and/or time-dependent309

variables, e.g., heart rate, known to be highly correlated with the arterial BP. Our group46
310

proposed to use multiple physiological signals in addition to patient and treatment charac-311

teristics to train an ensemble machine learning model to predict AHE. This model exhibited312

promising performance, with an area under the curve (AUC) of 0.890 (95% CI, 0.886 to313

0.895). Kendale et al.14 also used an ensemble learning model to predict hypotension fol-314

lowing anesthesia induction using intraoperative vital signs, medications and comorbidities315

as features and obtained an AUC of 0.74 (95% CI, 0.72 to 0.77).316

Very recently, Hyland et al.47 used gradient-boosted ensemble tree classifiers trained on317

209 variables to predict circulatory failure in critically ill patients. As expected based on318

physiological knowledge, this study reported that HR was among the top-5 most important319

predictors for circulatory failure. Based on the idea that MAP and HR are intrinsically cor-320

related, we developed the Physiological Deep Learner using a multi task learning approach.321

MTL is generally used for i) the prediction of separate outcomes or ii) to identify separate322
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subpopulations. Our formulation falls into the first category, where HR and MAP prediction323

were defined as the two different tasks. There are several expected benefits to MTL.42 First,324

MTL works even if one of the outcomes is missing. Thus, one can still train the model to325

do both tasks at the same time and allow easy implementation in real practice. The other326

advantage is data amplification. When we consider two tasks with independent noise added327

to their training signals, both profit from computing a hidden layer feature F of the inputs.328

Determining both can optimize the learning of F by averaging F across the different noise329

processes.42 In addition, focusing on one task carries the risk of overfitting while learning330

to predict MAP and HR values jointly is associated with increased generalizability.50 This331

was confirmed in the present study, where we were able to integrate MTL to jointly predict332

MAP and HR up to 60 min in advance and found high calibration and accuracy even when333

tested in an external dataset.334

In most studies on hypotension prediction in the ICU, AHE is defined as a binary status335

based on a single MAP threshold. This binary approach carries some limitations. First, def-336

initions are often heterogeneous across studies. Second and most importantly, a definition337

based on a single cutoff value may not be suitable for individual patients. Indeed, blood338

pressure varies between individuals, as does individual organ capacity to tolerate hypoten-339

sion.27 Accordingly, Futier et al.51 showed among patients undergoing abdominal surgery,340

that targeting individualized systolic blood pressure goals reduced the risk of postoperative341

organ dysfunction. Chan et al.27 introduced the concept of a patient-specific definition of342

AHE based on the use of two moving averages of MAP recordings in which the outcome of343

interest was defined as a 20% drop in the averages. The Physiological Deep Learner goes344

even beyond that since it was trained to predict the actual blood pressure rather than any345

binary transform of the MAP. As an example, Fig. 11 shows individual MAP and HR pre-346

dictions for four different patients with a time gap of 15 minutes. Our goal was to develop a347

more clinically meaningful algorithm by i) providing the clinician with an information, i.e.348

the predicted actual MAP, similar to the one he/she is using in his/her clinical practice (i.e.349

the actual MAP), and ii) leaving to the clinician the latitude to interpret this prediction and350

classify it or not as a possible hypotensive episode.351

Finally, most previous studies applied different methods of features extraction to physio-352

logical signals time series to summarize them into finite values. However, in doing so, a large353

part of the information is being lost. In a previous study, we demonstrated how sensitive354

deep learning models are to the method used to summarize the information from physiologi-355

cal time series.46 A strength of the present study is that we used gated recurrent unit cells,38
356

which are able to effectively retain long-term dependencies in time series. According to Le357

Cun et al.,39 this is the most optimal way to encode temporal information about the entire358

patient ICU stay since it preserves the longitudinal changes and the original time-dependent359

order in patient physiological signals.360

Our study carries some limitations. Although appealing, our results will need to be361

confirmed in a larger validation set. Indeed, the external validation dataset was relatively362

limited in size. Real-life data from bedside monitors and electronic medical systems are prone363

to missing values, errors and artifacts, adding significant noise to the data.52 In this study,364

we only included patients with complete data and particularly complete physiological time-365

series. However, missingness is likely to be informative in some ICU patients. Therefore, our366

algorithm may lack generalizability to patients presenting a lot of missing data. In future367

11



iterations of our algorithms, we will need to include a more robust approach to managing368

missing values. We were not able to provide prediction intervals around MAP and HR369

predicted values. However we are confident that this will be possible in the near future.370

Producing valid prediction intervals for machine learning models is an active area of research371

within our group. Finally, in this iteration of the Physiological Deep Learner, we gave the372

same weight to each prediction task. In the future, weighting differently the two tasks to373

reflect their relative clinical importance may result in better prediction performance for the374

primary task.375

5. Conclusion376

The Physiological Deep Learner trained to predict simultaneously the mean arterial blood377

pressure and the heart rate up to 60 min in advance, demonstrated very good performance378

both internally and externally. Although further prospective validation is needed, these re-379

sults support the use of a deep learning model with multitask learning structure to learn from380

multiple physiological signals in the ICU. Based on this result, we believe that algorithms381

such as the Physiological Deep Learner will help the clinician to predict the evolution of key382

physiological features at the bedside and thereby allow them to adapt their treatment and383

avoid critical events. This hypothesis remains to be tested in a prospective manner.384
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Figures captions400

Fig. 1| Periods definition and learning framework process. A. From MIMIC-III,401

80% of the patients were randomly assigned to the training set, 10% to the tuning set, and402

the remaining 10% to the validation set. The latter corresponds to the MIMIC-III validation403

set. Data from the Lariboisière cohort were exclusively used for external validation of the404

models. Note that the allocation of the data in the different sets was performed in such a405

way that all periods of the same patient were assigned to the same set. MIMIC-III, Medi-406

cal Information Mart for Intensive Care III. B. Patients from MIMIC-III and Lariboisière407

cohort, have their ICU stay divided, from the admission to the discharge into periods of408

the same duration. Each period was divided into 3 successive windows (Observation, Gap,409

Prediction). To predict the average 5-min MAP and HR of the prediction window, only data410

recorded during the observation window were used.411

412

Fig. 2| Comparison between single-task learning and multi-task learning. Each413

input variable is treated differently by our model during the specific processing layer when it414

is necessary. Then, they are concatenated and fed into successive layers until the output. In415

single-task learning, the output corresponds to the prediction of one outcome while in multi-416

task learning, the outputs correspond to two distinct outcome predictions. ID, identifier;417

ICU, Intensive Care Unit; Linear, linear regression; SOFA, Sequential Organ Failure As-418

sessment; SAPS-II, Simplified Acute Physiology Score; GRU, Gated Recurrent Unit; ReLU,419

Rectified Linear Unit; Batchnorm; Batch normalization.420

421

Fig. 3| Flow-chart of patients selection. All patients with no missing data on phys-422

iological signals and clinical information from the MIMIC-III and Lariboisière cohort were423

selected. Then, only patients with at least one period with a time gap of 5 min were in-424

cluded. ICU, Intensive Care Unit; MIMIC-III, Medical Information Mart for Intensive Care425

III databases; SAPS-II, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure426

Assessment; HR, Heart Rate; SpO2, pulse oximetry; MAP, Mean Arterial Pressure, DAP,427

Diastolic Arterial Pressure, SAP, Systolic Arterial Pressure.428

429

Fig. 4| Models performances to predict the value of MAP averaged over 5 min.430

Left, R2 together with its 95% confidence interval were computed to measure the linear431

regression agreement between observed and predicted. As its value can vary from 0 to 1,432

a focus has been done to see the results properly. Middle, For each validation set and433

architecture, we calculated root mean square error(RMSE). Note, the closer RMSE is to 0,434

the better it is. Right, Differences between observed and predicted values against observed435

values were represented. The plain line represents the average difference and the dotted436

lines the 95% limits of agreement (95% LOA). The closer the average difference is to 0, the437

better the performance is. MAP, Mean Arterial Pressure, MIMIC-III, Medical Information438

Mart for Intensive Care III; STL, Single-Task Learning; MTL, Multi-Task Learning; R2,439

R-squared; RMSE, Root Mean Square Error.440

441

Fig. 5| Calibration plots for the value of MAP averaged over 5 min. Patients442

were grouped into deciles. Within each decile, the average observed and predicted MAP443
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is calculated. The first corresponds to the observed mean per decile and the latter to the444

predicted mean per decile. Each couple of mean is plotting according to the time gap for445

both validation sets. The closer the line is to the diagonal, the better the calibration is.446

MAP, Mean Arterial Pressure, MIMIC-III, Medical Information Mart for Intensive Care III.447

448

Fig. 6| Predictive values for acute hypotensive episodes prediction. For each pre-449

dicted classes ("Very high", "High", "Moderate" or "Low"), the probability of AHE knowing450

the class, P (AHE|k) and the probability of no AHE knowing the class, P (NoAHE|k), where451

k is the predicted risk class were calculated. Note that in the Lariboisière data, some values452

are missing due to the absence of patients in the category. AHE, Acute Hypotensive Episode;453

MIMIC-III, Medical Information Mart for Intensive Care III.454

455

Fig. 7| Agreement plots for acute hypotensive episodes on the MIMIC-III vali-456

dation set. This chart gives an overview of classification/misclassification between observed457

and predicted risk class of AHE ("Very high", "High", "Moderate" or "Low"). The exact458

agreement between the observed and predicted is obtained when the rectangle is filled with459

the bleakest color. The partial agreement is obtained when the closest class is predicted460

instead of the current. It is represented by an intermediate color between exact and no461

agreement. No agreement is obtained when a class farther than the very next class are462

predicted instead of the current class. It is represented by the lightest color. The more463

the diagonal goes through the corners of the rectangles, the greeter the global agreement is.464

MIMIC-III, Medical Information Mart for Intensive Care III.465

466

Fig. 8| Agreement plots for acute hypotensive episodes on Lariboisière cohort.467

This chart gives an overview of classification/misclassification between observed and pre-468

dicted risk class of AHE ("Very high", "High", "Moderate" or "Low"). The exact agreement469

between the observed and predicted is obtained when the rectangle is filled with the bleakest470

color. The partial agreement is obtained when the closest class is predicted instead of the471

current. It is represented by an intermediate color between exact and no agreement. No472

agreement is obtained when a class farther than the very next class are predicted instead of473

the current class. It is represented by the lightest color. The more the diagonal goes through474

the corners of the rectangles, the greeter the global agreement is.475

476

Fig. 9| Models performances to predict the value of HR averaged over 5 min.477

Left, R2 together with its 95% confidence interval were computed to measure the linear478

regression agreement between observed and predicted. As its value can vary from 0 to 1,479

a focus has been done to see the results properly. Middle, For each validation set and480

architecture, we calculated root mean square error(RMSE). Note, the closer RMSE is to 0,481

the better it is. Right, Differences between observed and predicted values against observed482

values were represented. The plain line represents the average difference and the dotted lines483

the 95% limits of agreement (95% LOA). The closer the average difference is to 0, the better484

the performance is. HR, Heart Rate; MIMIC-III, Medical Information Mart for Intensive485

Care III; STL, Single-Task Learning; MTL, Multi-Task Learning; R2, R-squared; RMSE,486

Root Mean Square Error.487

488
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Fig. 10| Calibration plots for the value of HR averaged over 5 min. Patients489

were grouped into deciles. Within each decile, the average observed and predicted MAP490

is calculated. The first corresponds to the observed mean per decile and the latter to the491

predicted mean per decile. Each couple of mean is plotting according to the time gap for492

both validation sets. The closer the line is to the diagonal, the better the calibration is. HR,493

Heart Rate; MIMIC-III, Medical Information Mart for Intensive Care III.494

495

Fig. 11| Physiological Deep Learner’s predictions examples Individual predictions496

of MAP and HR for four different patient’s periods with a time gap of 15 minutes are pre-497

sented. A and B correspond to patients with average observed 5-min MAP below 65 mmHg498

and C and D to patients with average observed 5-min MAP greater than 65 mmHg. HR,499

heart rate; MAP, mean arterial pressure.500

501

Tables502

Table 1: Patients characteristics

Variables MIMIC-III Lariboisière cohort
Number of patients 2,308 49
Age 66 [56-76] 56 [49-68]
Gender (Female) 884 (39.1%) 22 (44.9%)
Status at admission
SAPS-II score 28[21-36] 41 [21-59]
SOFA score 3[1-5] 7 [4-10]
Site
CCU 410 (17.8%)
CSRU 812 (35.2%)
MICU 366 (15.9%)
SICU 529 (22.9%) 49 (100%)
TSICU 191 (8.4%)
Organ-support therapies
Vasopressors 310 (13.4) 18 (36.7%)
Sedation 861 (37.3%) 27 (55.1%)
Mechanical ventilation 1,218(52.8%) 32 (65.3%)

All patients from both dataset with no missing data: baseline characteristics, time-
evolving characteristics (i.e., organ-support therapies), and physiological signals consid-
ered in the analyses. Continuous variables are presented as median [InterQuartile Range];
binary or categorical variables as count (%). MIMIC-III, Medical Information Mart for
Intensive Care III; SAPS-II, Simplified Acute Physiology Score II; SOFA, Sequential Or-
gan Failure Assessment; CCU: Cardiac Care Unit; CSRU: Cardiac Surgery Recovery
Unit, MICU: Medical Intensive Care Unit; SICU: Surgical Intensive Care Unit; TSICU:
Trauma Surgical Intensive Care Unit
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