
HAL Id: hal-04182275
https://hal.science/hal-04182275v1

Submitted on 17 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Comprehensive Study of Assortment Optimization
with Substitution and Uncertainty: Introducing a

Machine Learning Heuristic
Harrasse Abir

To cite this version:
Harrasse Abir. A Comprehensive Study of Assortment Optimization with Substitution and Uncer-
tainty: Introducing a Machine Learning Heuristic. Mohammed VI polytechnic university. 2023.
�hal-04182275�

https://hal.science/hal-04182275v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Comprehensive Study of Assortment Optimization
with Substitution and Uncertainty: Introducing a

Machine Learning Heuristic

Abir HARRASSE

June 2023

1

Contents

1 Introduction 3
1.1 Glossary . 3
1.2 Analytics in retail . 4
1.3 What is assortment optimization? . 5
1.4 Assortment optimization for retailers: rationale and implementation 6
1.5 Assortment Optimization: State of the Art 7

2 Linear formulation: implementation and development avenues 8
2.1 An initial formulation . 8
2.2 Data: dairy products . 9
2.3 Exact solution: python implementation . 9
2.4 The knapsack problem’s relaxation: introduction and implementation 11
2.5 Conclusion . 13

3 Quadratic formulation and resolution 13
3.1 Assumptions . 13
3.2 Formulation . 14
3.3 Assortment-based substitution: a thorough study 15

3.3.1 Convexity . 16
3.3.2 The quadratic problem linearization 17
3.3.3 Data: the model’s parameters . 18
3.3.4 Exact solution . 20
3.3.5 Our heuristic: an ML based algorithm 21

3.3.5.1 The scoring algorithm . 22
3.3.5.2 The ML model . 27
3.3.5.3 Final results . 28

4 Stochastic model: modeling under demand uncertainty 28
4.1 The model’s parameters . 28
4.2 Customer Arrival Variability: Stochastic Variable KT 29

4.2.1 Stochastic formulation . 29
4.2.2 Exploration of resolution methods . 32
4.2.3 Implementation and testing . 32

4.2.3.1 Generation of scenarios . 32
4.2.3.2 Runtime . 33
4.2.3.3 Solution’s stability . 34
4.2.3.4 Solution’s optimality . 35
4.2.3.5 Solution’s robustness . 36

5 Concluding remarks 37

6 Acknowledgments 38

2

1 Introduction

1.1 Glossary

The following glossary, inspired by [11] and [4], provides definitions and explanations of
key terms commonly used in the retail industry, offering a comprehensive understanding of
concepts related to e-commerce, omnichannel strategies, inventory management, customer
experience, and more.

E-commerce: The buying and selling of goods or services over the internet.

Omnichannel: A strategy that integrates various channels (e.g., online, mobile, physical
stores) to provide a seamless and consistent customer experience.

Inventory Management: The process of efficiently tracking, organizing, and controlling
inventory levels to meet customer demand while minimizing costs.

Point of Sale (POS): The location or system where a customer completes a transaction,
typically referring to the checkout counter or the software used for sales transactions.

Merchandising: The activities and strategies involved in promoting and selling products
to customers, including product selection, pricing, promotion, and presentation.

Supply Chain: The network of organizations, activities, resources, and processes involved
in the production, distribution, and delivery of goods or services to customers.

Customer Experience: The overall interaction and impression a customer has with a
retailer or brand throughout their buying journey, encompassing all touchpoints and
interactions.

Retail Analytics: The practice of collecting, analyzing, and interpreting data to gain in-
sights and make data-driven decisions in various areas of retail, such as sales, customer
behavior, and inventory management.

Footfall: The number of people who enter or visit a retail store or location within a specific
time period.

Conversion Rate: The percentage of visitors or potential customers who complete a de-
sired action, such as making a purchase or signing up for a newsletter.

Upselling: The practice of encouraging customers to purchase additional or higher-priced
items or services to increase the overall transaction value.

Cross-selling: The strategy of recommending or selling complementary or related products
to customers based on their current purchase or interests.

Loyalty Program: A marketing initiative that rewards customers for their repeat business
or loyalty with various incentives, discounts, or exclusive offers.

3

Out-of-Stock: When a desired product is not available for immediate purchase due to
inventory depletion.

Markdown: A reduction in the original selling price of a product to stimulate sales, typi-
cally used for clearance or promotional purposes.

Return on Investment (ROI): A measure of the profitability and effectiveness of an in-
vestment, indicating the return or profit generated relative to the investment cost.

Customer Relationship Management (CRM): The practices, strategies, and technolo-
gies used to manage and nurture customer relationships, often involving the use of
customer data and insights.

Private Label: Products that are manufactured or branded by a retailer and sold under
their own brand name, rather than a third-party brand.

Sales Forecasting: The process of predicting or estimating future sales based on historical
data, market trends, and other relevant factors.

SKU: Stock-keeping unit. This is the basic term for a piece of merchandise.

Price type: Regular, markdown, event, rain check, BOGO (buy one, get one free), or
clearance.

Pack quantities:: Package quantities designate how many items will be packed in a single
bundle.

Gross margin: The difference between cost and selling price (revenue minus cost of goods
sold).

Case pack: Products are shipped in full cases (for example, 12, 24, or 36 units). These
types of products cannot be broken down into smaller quantities.

1.2 Analytics in retail

Analytics has emerged as a powerful tool in various industries, and the retail sector is no
exception. In fact and according to the June 2023 report of McKinsey Company[7], Retail
industry is the 3rd top industry to benefit financially (240-390 $ billion) from generative AI,
a new candidate in the analytics landscape. With the rapid growth of data and advance-
ments in technology, analytics has become increasingly essential for retailers to understand
consumer behavior, optimize operations, and foster business expansion. By leveraging data-
driven insights, retailers can make informed decisions, improve customer experiences, and
stay ahead of the competition.
It encompasses a wide range of applications, leveraging techniques from data analysis, math-
ematical programming, statistical modeling, machine learning, and artificial intelligence. In
the following, we will explore how analytics is used in the retail industry.

4

• Customer Analysis: By analyzing customer data, retailers can understand customer
preferences, segment their customer base, and personalize marketing strategies and
product recommendations to improve customer satisfaction and drive sales.

• Supply Chain Management: Analytics assists retailers in optimizing supply chain
operations by forecasting demand, optimizing inventory levels, and reducing stockouts,
leading to improved efficiency and cost savings.

• Market Basket Analysis: Market basket analysis, a technique in analytics, helps
retailers identify relationships between products frequently purchased together. This
analysis allows retailers to implement cross-selling and upselling strategies, optimize
product placement, and improve recommendations, ultimately increasing sales and
enhancing the customer shopping experience.

• Pricing and Promotions: Retailers can use analytics to determine optimal pric-
ing strategies based on factors such as competition and customer willingness to pay.
Analytics also helps identify effective promotional activities and allocate resources ef-
ficiently to maximize return on investment.

• Merchandising: Effective merchandising strategies, supported by analytics, enable
retailers to make informed decisions on product selection, pricing, and inventory man-
agement. By understanding customer preferences, market trends, and competitor anal-
ysis, retailers can optimize product assortment, placement, and product assortmentp-
resentation to drive sales and enhance customer experience.

• Store placement: By analyzing data on demographics, foot traffic, competitors, and
market trends, retailers can strategically locate their stores for maximum visibility
and accessibility. This data-driven approach helps retailers attract more customers,
increase sales, and identify new market opportunities for expansion.

• Market Trends and Competitive Analysis: Analytics enables retailers to ana-
lyze market trends, monitor competitor performance, and identify opportunities for
differentiation and competitive advantage, guiding strategic decision-making.

• Inventory Management: Through analyzing historical sales data and demand pat-
terns, retailers can optimize inventory levels, reduce excess stock, minimize stockouts,
and improve cash flow management.

• Fraud Detection and Loss Prevention: Analytics helps retailers detect patterns
of fraudulent activities, identify potential risks, and implement preventive measures to
minimize losses due to theft, fraud, or security breaches.

1.3 What is assortment optimization?

Assortment optimization is a strategic process employed by retailers and businesses to max-
imize their product offerings and meet the diverse needs of their customers. It involves
analyzing vast amounts of data, such as sales history, market trends, and customer pref-
erences, to determine the ideal assortment of products to offer. By understanding which

5

items perform well and appeal to the target market, businesses can make informed decisions
about which products to stock, which to discontinue, and how to allocate limited shelf space
effectively. Assortment optimization aims to strike a balance between variety and efficiency,
ensuring that customers find the products they desire while minimizing costs and maximizing
profitability for the retailer. This data-driven approach empowers businesses to tailor their
assortments to specific customer segments, enhancing customer satisfaction, driving sales,
and ultimately fostering long-term success.

1.4 Assortment optimization for retailers: rationale and imple-
mentation

The assortment optimization problem is gaining importance due to several reasons, including:

• An increasing number of SKUs.

• Limited shelf space.

• Growing supply chain complexity.

• Location-dependent dynamics of stores.

• An increasing number of clients.

• With a wide range of products and slim gross margins, precise optimization is essential
to remain profitable

According to Target’s study case, for each project aiming to implement assortment op-
timization methods, several steps are essential. The proof of concept stage is crucial to
gain the retailer’s confidence and develop methods tailored to the specific case. Following
this, the insights from the proof of concept are utilized, developed further, and integrated
into the internal functioning of the retailer, ensuring that analytical methods are effectively
incorporated.

To maximize the added value of the developed models, collaboration with the client’s
business and marketing teams is essential, as it helps uncover the internal structure of the
company, its aspirations, constraints, operational rules, and more. Finally, having access to
data alone is not sufficient; the ability to manipulate and expand the data’s scope by lever-
aging historical data is critical. This enables understanding of various trends and facilitates
the proposal of highly customized models for the client (Marjane).

The significance of optimization methods applied to assortment stems from the continu-
ous growth in data size (the number of SKUs). The ability to process and store this ever-
increasing volume of data has become challenging. Thus, the importance of incorporating
optimization.

6

1.5 Assortment Optimization: State of the Art

Research in assortment optimization, also known as ”the assortment optimization problem,”
has seen numerous publications and advancements. This problem has been studied under
different frameworks, and both exact and heuristic algorithms have been developed in this
context. In this section, we will provide a brief overview of the literature on this topic.

In the last 60 years, extensive research has been conducted on the assortment problem,
particularly in relation to sectors such as apparel [8] or grocery. This research can be grouped
into different categories based on the specific problem framework and its definition, including:

• Demand: deterministic vs. stochastic.

• Demand pattern: discrete vs. continuous: The demand pattern in assortment
optimization can be either discrete, characterized by distinct quantities or counts of
demand at different time periods, or continuous, representing a smooth distribution of
demand over time.

• Dimensions: single vs. multiple: The dimension in assortment optimization refers
to the number of attributes used to describe products, with single dimension focusing
on one attribute (e.g., size) and multiple dimensions considering multiple attributes
(e.g., size, color, brand).

• Number of sizes to stock: fixed vs. to be determined.

• Cost substitution structure: linear vs. non-linear: The cost structure in as-
sortment optimization can be either linear (proportional relationship between cost and
quantity) or non-linear (complex or nonlinear cost patterns).

• Inventory’s model stability: stationary vs. non-stationary: Inventory model
stability in assortment optimization refers to whether the inventory levels exhibit con-
sistent patterns (stationary) or fluctuate (non-stationary) over time.

Unfortunately, in the case of Marjane (the retailer studied), these types of results will be
of limited use to us since they mainly focus on the case of size assortments in apparel, where
the diversity and complexity are far from that of our case in which the depth/breadth level
of each article category is very large.

Fortunately, research has also focused on our specific case, and we can find publications
and studies within various frameworks:

• Omni-channel structure: Retailers are experiencing a trend where sales are con-
ducted both in physical stores and online [2][6]. In the following sections, we will
explore how this trend is well-justified and examine different works done in this direc-
tion to develop algorithms that solve these cases.

• Time-based assortment optimization: In this research framework, the focus is on
the real-world scenario where the assortment can only be changed after specific time
intervals (which can be interpreted as waiting for the shelves to empty before refilling
them) [5] [6].

7

• Consideration of synergy and cannibalization effects: In this model, the strong
effects between products in the same assortment are taken into consideration [6].

• Incorporating uncertainty: Certainty in the study of assortment problems is a
significant simplifying assumption, hence the necessity of introducing the uncertainty
factor into a model that aims to approximate reality [9].

In the following, we will begin with a simple formulation and its implementation. Then,
the model will be developed based on the latest research mentioned above, and a dataset
will be implemented to demonstrate the effectiveness of the algorithms.

We will work under the assumption that the overall optimal assortment is the same as
the union of assortments made under each product category (e.g., Dairy products, Books...).
Therefore, the following formulation only considers a single category, and the rest is sim-
ple: replicate the corresponding algorithm for different categories and combine the resulting
assortments. The final result is the assortment to adopt.

2 Linear formulation: implementation and develop-

ment avenues

After the discussion with Marjane, we concluded on the parameters to include in our model:

• Linear footage (1)

• Customer type (2)

• Minimum number of facings per product (3)

• List of essential items (4)

In the following, we will gradually build our model while introducing the different required
parameters.

2.1 An initial formulation

For this formulation, we will only consider parameters (1) and (3). Hence, for each product,
a minimum facing is provided. We suppose that we only display the minimum facing
for each product for the sake of simplification.

Thus, our formulation is as follows:

Max:
N∑
k=1

pkxk

S.t:
N∑
k=1

wkbkxk ≤ C

(1)

Where:
. pk: is the gross profit of the product k.

8

. bk: the minimum facing of the product k (The quantity that will be displayed).

. wk: the volume per product i.

. C: The shelf constraint.

. xk: A binary variable (equals 1 if the product is in the assortment, 0 otherwise)

We observe that this initial formulation is similar to the knapsack problem. Therefore,
this problem is NP-hard, and obtaining an exact solution using an exact algorithm is not
feasible for large products’ sets. The use of a heuristic must be necessary.

This will be the focus of the next section!

2.2 Data: dairy products

First, we will start by generating fake data for dairy products in a store:
We generate 170 dairy products, each with its corresponding profit margin, volume per

item, and the minimum number of items to include. Below are the first few lines of this
data:

Products Gross proft (MAD) Volume (ml) Minimum facing
XYZ Dairy Milk 2.8 1000 60

ABC Farms Yogurt 1.95 150 55
Dairy Delights Cheese 4.2 250 70
Golden Spread Butter 3.1 500 75
Sweet Treats Ice Cream 6.8 1000 80

Table 1: Dairy data

Therefore, we utilize the generated data to implement the aforementioned formulation in
Python. We use the PuLP package to obtain a list of products to include in the assortment.
This list maximizes the retailer’s profit while adhering to the space constraint.

2.3 Exact solution: python implementation

As mentioned before, our problem is exponential in the size of the inputs. Therefore, we
can expect the runtime, which did not exceed one second for our dataset of 170 products, to
explode as we increase the number of products we choose from. To verify our hypothesis, we
plot a curve representing the runtime against the input size. The result is indeed exponential,
as we previously stated.

9

Figure 1: Runtime as a function of inputs size

We notice that the assortment for 10,000 products can be done within a reasonable time
(approximately 1 minute). However, the runtime explodes to 23 days for 20,000 products!

The need for a heuristic and a powerful computer is evident. As for the computing,
we decided to use a more efficient solver such as the FICO Xpress optimizer. The results
improved as the following curves suggest:

Figure 2: Runtime’s comparison between Xpress and PuLP solutions

The runtime of the algorithm using the FICO Xpress solver for 20000 products improved
to 2days (computed using an extrapolation) compared to 23days in the previous setting!

10

As for the heuristic approach, there are many choices to pick from, we can work with a
metaheuristic such as the genetic algorithm, which is well-suited for the Knapsack Problem.

In this sense, the literature offers implementations that are well-suited for large inputs
[10].

Another option is to implement a heuristic which is more ”tailored” to the knapsack
problem. In the following, we introduce a heuristic and we compare it to the previous exact
resolution using Xpress solver.

2.4 The knapsack problem’s relaxation: introduction and imple-
mentation

We solve the knapsack problem under its relaxed form, where the decision variables xi are
chosen in the interval [0, 1] rather than binary variables. The problem is then solved as
an LP with xi in the range [0, 1], and the list of xi values is arranged in decreasing order.
We include the products i based on the list of xi values, while ensuring they satisfy the
constraint C representing the weight limitation. By allowing xi to take fractional values
and sorting them in descending order, we prioritize the most valuable items for inclusion in
the knapsack. Sequentially considering the products in this order, we add each product to
the knapsack as long as the cumulative weight constraint C is not exceeded. This approach
strikes a balance between computational efficiency and obtaining a close approximation to
the optimal solution, as it optimizes the value of the knapsack while respecting the weight
limitation.

Another equivalent approach is to classify the products i by their profit densities pk
wkbk

in decreasing order, instead of solving the LP relaxation version. This alternative method
offers the advantage of reducing both the runtime and complexity of the algorithm. By
prioritizing items with higher profit densities, calculated as the ratio of profit pk to weight
wkbk of the product, we can streamline the selection process. Sorting the products based on
profit densities ensures that more valuable items are considered first. By focusing on this
criterion, we can optimize the algorithm’s efficiency, leading to improved performance and
faster computation times as the following curve suggests:

11

Figure 3: Runtime’s comparison between the LP algorithm and the knapsack heuristic

Furthermore, employing the knapsack heuristic algorithm to solve the assortment problem
yields a solution that is remarkably close to the actual value of the objective function. In fact,
the deviation or error incurred by this relaxed approach is minimal, typically less than 1%.
This indicates that the knapsack heuristic algorithm provides an accurate approximation,
allowing us to efficiently and effectively optimize the assortment while maintaining a high
level of fidelity to the optimal solution.

Figure 4: Error of the knapsack heuristic algorithm computing the objective function com-
pared to the objective function’s value

12

Figure 5: Error of the knapsack heuristic algorithm computing the objective function

2.5 Conclusion

So far, we have examined our problem from a very simplified perspective, considering only
the space constraint. However, this framework involves many simplifying assumptions:

• The demand is not taken into account.

• The stochastic nature of the problem, mainly arising from uncertain demand, is omit-
ted.

• The effects of substitution are not considered.

These simplifying assumptions overlook several important aspects of the problem. It would
be wise to further develop our formulation by addressing these points! We can even consider
working on more realistic paradigms by considering:

• The risk of stock-out and the fact that the retailer only has access to assortment
change after a period T, where the assortment offered to customer n depends on both
the choice of customer n− 1 and the initial assortment offered by the retailer.

• The online and in-store activities of the retailer to consider both entities under a unified
view and optimize the overall business operations.

3 Quadratic formulation and resolution

3.1 Assumptions

In our work, as mentioned in the previous paragraph, we will consider both the demand and
its uncertain nature, as well as the effect of substitution.

13

Regarding substitution, it is well-known in the marketing literature [3] that substitution
generally occurs in two forms: assortment-based and stock-out based:

• Assortment-based substitution: occurs when a customer substitutes their preferred
product x with another product y when x is not available in the store’s assortment.

• Stock-out based substitution: occurs when a customer substitutes their preferred prod-
uct x with another product y due to the unavailability of x (stock-out).

It has been demonstrated by Campo et al. (2004) [3] that both types of substitution
exhibit significant similarities. Initially, we can consider only one type of substitution, such
as assortment-based substitution. Therefore, we present our working assumptions as follows:

• We work within a period T during which the retailer does not have access to their
assortment. This allows us to consider substitution due to stock-outs.

• The number of customers K during period T is a random variable. Two approaches
can be considered: either predict the number of customers using available data for
a given period T, or consider K as a random variable and determine its distribution
based on the data.

• The price of each product is fixed.

• Each customer makes only one substitution: if they decide to substitute their preferred
product x with product y, and if y is also unavailable, the customer decides not to make
a purchase.

• A customer decides to make a substitution with a probability δ, otherwise, they leave
the store without making a purchase with a probability 1− δ.

In fact, it has been demonstrated [1] that multiple substitutions with a probability δ′

are equivalent to a single substitution with a probability δ′′ where δ′′ > δ′ (if δ′ is not
too large).

3.2 Formulation

In this formulation, we will take into consideration only the assortment based sub-
stitution, the stock-out based substitution will be tackeled under uncertainty later
on.
The following is the formulation we suggest:

max
S⊆N

∑
i∈N

KTpidixi +
∑
i∈N

KTpi
∑
j ̸=i

δ(αjidj(1− xj)xi)−
∑
i∈N

ciui (2)

14

s.t.
∑
i∈N

wiui ≤ C

ui ≤ Mxi ∀i ∈ N

ui ≥ KTdixi +KT

∑
j ̸=i

δαjidj(1− xj)xi) ∀i ∈ N

x in {0, 1}n, u in Nn

Our objective function comprises two components: the original demand represented
by the first part of the sum and the assortment-based substitution by the second part.

Below, we define the parameters of our model, where the index T represents the specific
day or period being considered. We have:
Decision variables:
. xi: Binary decision variable that takes a value of 1 if product i is included in the
assortment and 0 otherwise.
. ui: Integer decision variable indicating the quantity of product i stocked over the
period T .
Model parameters:
. KT : The number of customers who visit the store during the period T
. pi: The unit price of product i
. di: The demand for product i.
. δ: The probability of considering substituting a preferred product.
. αij: The assortment substitution rate from i to j.
. ci: The storage cost per unit for product i.
. wi: Volume per product i.
. M : Big-M constraint.
Constraints:
The first constraint expresses the space limitation in the section reserved for this cate-
gory. The second constraint uses the Big-M constraint technique, which states that the
quantity of product i chosen will be zero if product i is not included in the assortment
(xi = 0).

To determine the optimal assortment, we will work incrementally. It should be noted
that demand and the number of customers arriving at the store are random variables.
We will start with the simple case where these variables are treated as deterministic
(which is not far from reality as the number of customers and demand can be predicted
using machine learning models). We will then study the more general stochastic case
under both assortment and stock-out based substitution.

3.3 Assortment-based substitution: a thorough study

Our problem:

max
S⊆N

∑
i∈N

KTpidixi +
∑
i∈N

KTpi
∑
j ̸=i

δ(αjidj(1− xj)xi)−
∑
i∈N

ciui (3)

15

s.t.
∑
i∈N

wiui ≤ C

ui ≤ Mxi ∀i ∈ N

ui ≥ KTdixi +KT

∑
j ̸=i

δαjidj(1− xj)xi) ∀i ∈ N

x in {0, 1}n, u in Nn

is a quadratic problem. This adds a layer of complexity to it. However, it will be interesting
to study the convexity of the problem. If the problem is convex, the resolution becomes
simplified!

3.3.1 Convexity

To study the convexity of the problem, it is sufficient to calculate the Hessian and check its
positive definiteness. We define our objective function:

f(x) =
∑
i∈N

KTpidixi +
∑
i∈N

KTpi
∑
j ̸=i

δ(αjidj(1− xj)xi)−
∑
i∈N

ciui

We denote by:

πi = KTpidi

A is the matrix whose coefficients are:

aji = KTpiδdjαji ∀i ∈ N si i ̸= j
aii = 0 ∀i ∈ N

Thus, our objective function becomes::

f(x) = π · x+ xT · A · (e− x)− c · u

Therefore, we define a as a new variables vector such that:

a =

[
x
u

]
and:

d =

[
π
−c

]
We also transform A, which was originally a n× n matrix to a 2n× 2n matrix. We denote
it as A. The first block of A will be equal to the original matrix A, and all other entries will
be zeros. The objective function then becomes:

f(x) = d · a+ aT · A · (e− a)

16

To study the convexity of the function, we first calculate the gradient of the function and
then its Hessian. Let’s first calculate the differential. We omit the linear term as it will
disappear when calculating the Hessian. We have:

f(x+ h) = (x+ h)T · A · (e− (x+ h))

= f(x) + (hT · A · e− hT · A · x− xT · A · h)− hT · A · h

Thus, the gradient of f is:

∇f(x) = A · e− A · x− AT · x

We find the hessian of the objective function:

Hf (x) = −(A+ AT)

This matrix is not generally positive definite! Therefore, we need to check the Hessian for
the objective function of our problem. Since the coefficients of the substitution are not fixed,
it would be wise not to rely on the convexity of the problem!

3.3.2 The quadratic problem linearization

To facilitate the resolution of the quadratic problem, a common approach is to linearize the
problem. We introduce the decision variable yij such that:

yij = (1− xj)xi

The problem becomes:

max
S⊆N

∑
i∈N

KTpidixi +
∑
i∈N

KTpi
∑
j ̸=i

δ(αjidjyij)−
∑
i∈N

ciui (4)

s.t.
∑
i∈N

wiui ≤ C

ui ≤ Mxi ∀i ∈ N

ui ≥ KTdixi +KT

∑
j ̸=i

δαjidjyij) ∀i ∈ N

yij ≤ xi ∀i, j ∈ N

yij ≤ (1− xj) ∀i, j ∈ N

yij ≥ xi − xj ∀i, j ∈ N

x in {0, 1}n, u in Nn

17

3.3.3 Data: the model’s parameters

Before implementing our model, we need to estimate the parameters of the demand di
for all products under consideration, the substitution matrix (αij)i,j∈N , the probability of
considering a substitution δ, and finally, the number of customers: to be fixed in this first
part.

With the data collected from Marjane, we can draw inspiration from A. Gürhan Kök et
al. [1] to estimate all these parameters:

• Demand di for a product i: This parameter can be estimated using three other
probabilities that can be calculated from the data[1]. We have:

di = γbiqi

where: - γ: The incidence of sales, the probability that a customer visiting the store
buys an item from the category under study.

γ =
Sales of the category under study

Total store sales

- bi: The purchase probability of product i.

pi =
Number of product i items sold

Total category sales

- qi: The average quantity purchased by a customer.

• Substitution probability δ: This probability, combined with the substitution prob-
abilities (αij)i,j∈N , replaces choice models (e.g., MNL) that we could have used. The
advantage here, according to A. Gürhan Kök et al. [1], is to consider differences in
substitution preferences between categories that may have the same initial demand. In
this case, to maintain the model tractable, the customer makes only one substitution.
If the product they want to substitute with is no longer available, they abandon their
purchase.

To estimate this parameter, we adopt the following approach assuming we have access
to different stores of the same retailer:

We group the different stores into clusters where stores with similar characteristics
(customer demographics, sales volume, geographical location, store size, etc.) are
grouped together. To estimate the substitution probability δ in a store h, we locate
the cluster C to which this store belongs and identify the store h′ in cluster C with
the largest assortment in terms of inclusion. We assume it is complete (containing all
the products from which we choose the assortment). Therefore, we have Sh ⊆ Sh′ . We
can define δ as follows:

18

δ =

∑
j∈S(Dj −D′

j)

D′
NT −D′

ST

We notice that to establish the substitution probability of the category we are working
on in store h, we used the demands (how much was purchased) in store h′ under
the assumption of similarity in terms of characteristics (hence, the same substitution
probability a priori). However, we normalize the demands by the number of customers
who visited the store: the demands D are per customer.

The formula is very simple. It states that under the assumption of similarity and since
assortment Sh in store h is present in store h′ with the largest assortment Sh′ , δ is
given by:

δ =
Number of substitutions

Unfulfilled demand

– Number of substitutions: It is the sum, for each product belonging to assort-
ment S, of the demand in store h minus the demand in store h′ for product j.
Assuming that store h′ contains all the products that consumers need, they will
not make substitutions, so the observed demand is the true demand for product
j. However, the demand Dj in store h includes the demand that results from
substitution.

– Unfulfilled demand: This time, we only consider the demand in store h′ with
the largest assortment. The unfulfilled demand is given by the demand for assort-
ment Sh′ (in the case where all products are available) minus the demand when
only assortment Sh is presented.

• Substitution matrix: Here, too, there are two simplified approaches to tackle the
problem. Of course, we can compute a substitution matrix that tackles the substitution
relationship between every two products distinctly, but we think that the approaches
we will represent are good enough for a start.

– Random substitution: Here, we assume that customers generally have no prefer-
ences other than their favorite products. In this case:

αij =
1

|S|

– Proportional substitution: In this case, we assume that a customer’s preference, on
average, is proportional to the demand for the product in the category. Therefore,
we have:

αij =
dj∑
l ̸=i dl

19

Now that we know how to find all the parameters of the model, we can start solving it
using a solver (such as Xpress).

We suppose βij coefficients to be equal to αij, because as mentionned earlier, there’s a
very strong similarity between assortment based and stock-out based substitutions.

3.3.4 Exact solution

Our problem is a Mixed Integer Linear Programming Problem (MILP), and for inputs of
limited size, we can simply use available solvers (such as Xpress in our case).
We start by implementing it in PuLP(with Xpress as a solver) and using fake data to feed
the model.

To simplify the model, we might replace the decision variable yij that indicates whether
product i is substituted by j by the variable zij, this time defined as follow:

zij = xixj

This will reduce the number of decision variables yij by 2. Thus, our formulation becomes:

max
S⊆N

∑
i∈N

KTpidixi +
∑
i∈N

KTpi
∑
j ̸=i

δ(αjidj(xi − zij))−
∑
i∈N

ciui (5)

s.t.
∑
i∈N

wiui ≤ C

ui ≤ Mxi ∀i ∈ N

ui ≥ KTdixi +KT

∑
j ̸=i

δαjidj(xi − zij) ∀i ∈ N

zij ≤ xi ∀i, j ∈ N

zij ≤ xj ∀i, j ∈ N

zij ≥ xi + xj − 1 ∀i, j ∈ N

x in {0, 1}n,z in {0, 1}n2

, u in Nn

By implementing the model in Xpress, and trying out different inputs’ sizes, we end up with
the following curve:

20

Figure 6: Runtime as a function of inputs size

The process of finding the optimal assortment from a set of 150 SKUs requires approxi-
mately one hour!, highlighting the significant time investment involved. This underscores
the necessity for a heuristic approach to address this challenge efficiently. Consequently, our
upcoming section will focus on exploring and implementing a heuristic method to solve this
problem effectively.

3.3.5 Our heuristic: an ML based algorithm

In this section, we will introduce a heuristic approach to address our problem under the
assortment-based substitution. The primary objective is to attain solutions that are close
to optimal while ensuring that the computational time remains low. By leveraging this
heuristic method, we aim to strike a balance between solution quality and efficiency in our
problem-solving process.

Our approach draws inspiration from the knapsack heuristic algorithm we discussed ear-
lier. The key concept is to assign a score to each product, reflecting its performance. These
products are then ranked in descending order based on their scores. We include products
with higher scores in the assortment, with quantities matching their respective demand, un-
til the shelf space constraint is exceeded. When that happens, we remove the last product
included in the assortment and replace it with the remaining quantity from the product with
the highest performance score. This iterative process helps us optimize the assortment while
considering both product performance and shelf space limitations.

The crux of the issue lies in determining a score for each product. Attempting to achieve
this in a greedy manner, where we compare each product with all others and explore every
conceivable combination to select an assortment, proves to be an infeasible task. The sheer
number of combinations makes this approach impractical and computationally prohibitive.

To address this challenge, we devised a strategy to estimate the scores for a limited set of
products. Specifically, we focused on studying 1000 products out of a total of 10000. With

21

the scores obtained from this subset and considering the relevant features of each product
(such as demand, inventory cost, and the substitution matrix (αij)i,j∈N , we built a machine
learning (ML) model. This model is designed to predict the score of a product i based on
its specific features. By adopting this approach, we aim to significantly reduce the expected
runtime while still obtaining reasonably accurate score estimates for the products in our
assortment.

Our work will be structured into four distinct sections. Firstly, we will present our
approach for determining the scores of a limited set of products, specifically 1000 items. After
this, we will present the implementation of our method. Next, we will proceed with training
a machine learning (ML) model using this set to establish the scores for each individual
product. Finally, armed with the derived scores, we will proceed to construct our assortment.

3.3.5.1 The scoring algorithm
Our reasoning will revolve around evaluating the scores for a set of 1000 products. To achieve
this, we will divide the initial set of 1000 products into multiple subsets, following the rules
outlined below:

1. Initially, we partition the initial set into ten subsets, each containing 100 elements.
2. Afterward, each subset of 100 elements will be further divided into two sets, each

consisting of 50 elements.

1000

· · · 100

50 50

· · ·

Presently, our rationale revolves around every node comprising 100 elements:

100

50 50

Let’s denote by:

S100: every set of 100 elements
S50: every set of 50 elements

We adhere to the following guidelines for evaluating the elements in both the S50 and S100

type subsets:
1. For each S50 subset, we solve an optimization problem in its deterministic form to

select a set of products. The solution of this problem, denoted as (x, u), allows us to assign
a score to each product, referred to as the initial score sd.

22

(sd)i =
ui

max(ui, i ∈ N)

2. After scoring the two S50 subsets, we proceed to establish a global score by comparing
the elements of (S50)1 with those of (S50)2. This involves the following steps:

2.1. We set a threshold of 0.5 to partition each S50 subset into two parts: the most
high-performing elements B50 and the less high-performing elements L50.

(L50)1

(B50)1

(L50)2

(B50)2

2.2. We create new subsets T50 by forming various combinations from the initial sets (S50)1
and (S50)2. The resulting sets are defined as follows:

(B50)2

(B50)1

(L50)1

(B50)2

(L50)2

(B50)1

(L50)2

(L50)1

The concept involves comparing the top-performing elements within each subset S50 against
each other, comparing the lower-performing elements against each other, and finally, com-
paring the top-performing elements of one subset S50 against the lower-performing elements
of the other subset. This approach allows us to generate a score that considers the relation-
ship between each pair of products comprehensively.

2.3. Afterward, a score is computed for each product i as a weighted average of the scores
obtained from every set T50 along with the initial sets S50. When comparing a product i with
a high-performing set, a weight of 2 is assigned, while a weight of 1 is given for comparisons
with low-performing sets. let’s denote by sd, the score we get in this step:

(sm)i =

∑3
i=1 wiscorei∑3

i=1wi

(6)

Where:
-i: denotes the specific T50 or S50 set studied.
-wi: denotes a score of 2 or 1 depending on the set of elements, i was put with.
-scorei: denotes the score that product i gets in the ith set of type T50 or S50 it belongs to.

23

It should be noted that the sum in (6) includes the initial score sinitial introduced earlier!

With the computed scores sm, we now have rankings for each of the ten sets S100. Our
next step is to partition each S100 set into two groups: the most high-performing products
and the less high-performing products, as we did previously. Afterward, we will execute a
similar combination routine on these ten sets, ensuring that we do not exceed a total size
of 100 products in the deterministic optimization model.

Our objective is to ensure that each product i in either category L100 or B100 is compared
to all other products from different categories in the other sets S100. However, we also aim
to minimize the number of combinations while obtaining the best possible results.
By carefully selecting the appropriate combinations and the best formulation of scores, we
can efficiently evaluate the relationships between products across all sets and arrive at an
optimal solution.

As before, we initially divide each S100 set into two parts using the same threshold as
previously set: p = 0.5. We call these sets instance I1

(L100)1

(B100)1

(L100)2

(B100)2

(L100)3

(B100)3 · · ·

· · ·

(B100)10

(L100)10

The subsequent step involves creating four instances: I2, I3, I4, I5 of sets following a
10-cycle that look like the following:

(B100)2

(B100)1

(B100)3

(B100)2

(B100)4

(B100)3 · · ·

· · ·

(B100)10

(B100)1

(L100)2

(L100)1

(L100)3

(L100)2

(L100)4

(L100)3 · · ·

· · ·

(L100)10

(L100)1

(L100)2

(B100)1

(L100)3

(B100)2

(L100)4

(B100)3 · · ·

· · ·

(B100)10

(L100)1

24

(B100)2

(L100)1

(B100)3

(L100)2

(B100)4

(L100)3 · · ·

· · ·

(L100)10

(B100)1

The goal is to compare each product to a maximum number of other products while
adhering to the constraint of working with the 40 generated sets mentioned earlier. However,
we notice that each L/B set is only compared to 3 other sets instead of 18 in the instances
we suggested.
To address this issue, we leverage the 10-cycle structure inherent in the sets. For instance,
the first set in I1 generates a comparison between (B100)1 and (B100)2, and the second set
generates a comparison between (B100)2 and (B100)3, resulting in a comparison between
(B100)1 and (B100)3. Continuing this pattern, we find that (B100)1 is compared to all the
other sets (B100)i, and similarly, all the B/L sets are compared to each other.

Our task is to devise a score that considers these relationships between different sets,
even if they are not directly compared.
We denote by:

.(sck)i: the average score of product i in the instance Ik. It’s computed by averaging over
the scores of product i obtained in the sets of instance Ik that include product i (namely 2
sets per product).
.S(IK)l: the lth set in the instance Ik.

To accomplish this, we introduce the following formula:

(sf)ik = max

(
(sck)i,

[
(sck)j +

1

1000
| if (sck)j < (sck)i and (i, j) ∈ S(Ik)l ∀l ∈ [1, 10] where k ∈ [1, 4]

])
This formula ensures a connection between the various products and assigns an instance’s

score to product i that surpasses the instance’s score of product j if i is found to perform
better than j in any comparison conducted.

The overall score of product i is computed as follows:

(sf)i =

∑
m ∈ indi

wm.(sf)i,m∑
m ∈ indi

wm

Where:
.indi: is the set of the indices of instances where product i appeared (there’s 4 instances for
each product)

The final scores are given by the vector: sf .
The algorithm is the following:

25

Algorithm 1 The Scoring Algorithm

Input: A list of 10000 items
Output: A list of overall scores for 1000 items
Function Main:

Step 1: Draw 1000 items out of 10000 randomly
Step 2: Divide the 1000 items into 10 sets S100i of 100 items each

for each i do
Step 3: Divide the set S100i into 2 subsets S50i1 and S50i2 of 50 elements each
Step 4: Run the optimization model on each set S50i1 or S50i2

Step 5: Establish a score for each element in these sets using the formula

(sd)i =
ui

max(ui, i ∈ N)

Step 6: Divide each set S50i1 or S50i2 into two parts L50i1 , B50i1 , L50i2 , B50i2 using a
threshold p = 0.5
Step 7: Form 4 new sets T50i1 , T50i2 , T50i3 , T50i4 by merging (L50i1 , L50i2), (L50i1 , B50i2),
(B50i1 , L50i2), (B50i1 , B50i2)
for each set T50i do

Step 8: Run the optimization model and compute the scores as done previously

end
Step 9: Compute the total score for each element i in S100i

(sm)i =

∑3
i=1wiscorei∑3

i=1 wi

end
Step 10: Generate the 4 instances of elements I2, I3, I4, I5 using the 10-cycle

for each instance do
for each set in the instance do

Step 11: Compute the average score for each element in each instance using the
formula

(sf)ik = max

(
(sck)i,

[
(sck)j +

1

1000
| if (sck)j < (sck)i and (i, j) ∈ S(Ik)l

])
Step 13: Use the formula to compute the score inside the instance for each prod-
uct

(sf)i =

∑
m ∈ indi

wm.(sf)i,m∑
m ∈ indi

wm

end

end
Step 14: Use the formula to compute the overall scores
return The list of overall scores

26

We utilize it to obtain a list of scores for 1000 elements randomly selected from a pool
of 10000 products. This list of scores will be used for labeling the data that will be fed into
the subsequent ML model.

3.3.5.2 The ML model

In this section, we perform predictions on a subset of 3000 products, as the process
remains the same for 10000 products.

First, we preprocess the data by dropping unnecessary columns, such as product indices.
Additionally, we break down the substitution vectors (αji)i,i∈N into card(N) columns, where
each column represents the substitution probability of product j by product i. With a total
of 3000 products, this results in 3005 features to feed into our model. While this is a
large number of features, reducing it would lead to a loss of valuable information. Using a
metric that replaces the vector (αji)i,i∈N (e.g., its mean) is suboptimal, as it would result in
information loss. Hence, we retain the individual substitution probabilities to preserve the
richness of information.

After data pre-processing, we proceed with selecting the most suitable regression algo-
rithm for our dataset. To achieve this, we leverage a Python library called PYCARET,
which automates the process of running various regression algorithms and comparing their
performances.

PYCARET simplifies the task by automating the algorithm selection and evaluation
process. It efficiently tests multiple regression models and provides valuable insights into
their respective performances, allowing us to identify the best-performing algorithm for our
specific data.

After the comparison performed by PYCARET, we get the following results:

Model MAE MSE RMSE R2 RMSLE
rf 0.0319 0.0058 0.0752 0.4034 0.0604
et 0.0322 0.0060 0.0758 0.4019 0.0607

lightgbm 0.0359 0.0063 0.0775 0.3841 0.0625
knn 0.0309 0.0067 0.0804 0.2812 0.0643
gbr 0.0373 0.0072 0.0838 0.2370 0.0675
ada 0.0629 0.0078 0.0870 0.1992 0.0729

Table 2: Regression Model Performance

Despite the relatively low R2 values, which can be attributed to the large number of
features and the moderate dataset size, we decide to proceed with the Random Forest Re-
gressor. The choice is driven by our specific objective, as our primary goal is not to achieve
high precision but rather to rank the products based on their scores.

As the final step before using our algorithm to predict the scores, we conduct hyper-
parameter tuning to optimize its performance. This results in increasing the R2 value to
0.54!

27

3.3.5.3 Final results

Now that we have the scores for each product in our list, we proceed with the following
steps:
1. Rank the products in descending order based on their scores.
2. Select products i from the ranked list, each with a quantity ui = KTdi, until the shelf
constraint C is reached. The chosen products form the assortment set A, while the remaining
products are in set B.
3. Update the values ui to include the assortment-based substitution terms:

ui = KTdi + δKT

∑
j∈B αjidj

4. Compare the sum of ui for products in set A with the constraint C. If it exceeds C,
adjust sets A and B by removing products with the least scores until the constraint is met.
5. Repeat steps 3 and 4 until an equilibrium is reached.

By implementing these steps, we obtain the optimal assortment using our heuristic ap-
proach.

To evaluate the optimality of our solution, we compare the objective values obtained from
the exact resolution and the heuristic. The results demonstrate that our heuristic performs
well.

When comparing the runtimes of the two algorithms, especially on larger product sets
(e.g., 10000 products), our heuristic significantly outperforms the traditional solution. For
instance, the exact solution may take approximately 11 days for 200 products, while our
heuristic takes only around 1 hour for 10000 products.

4 Stochastic model: modeling under demand uncer-

tainty

In this section, our focus shifts towards a comprehensive exploration of a ”complete” version
of the problem. Here, we will delve into an enriched model that incorporates demand un-
certainty, assortment base substitution, and stock-out based substitution. The decision to
address stock-out based substitution within the stochastic resolution framework was deliber-
ate, as stock-outs lack meaningful interpretation in a deterministic context. We will begin by
introducing the parameters of our model, followed by the formulation of the problem itself.
Then, we will explore different resolution methods, engaging in a comparative analysis to
identify the most suitable approach. Once a resolution method is selected, we will proceed
with its implementation and thorough testing.

4.1 The model’s parameters

In the deterministic setting, we consistently rely on the established parameters of the assort-
ment based substitution framework, which included the demand vector d, the substitution
probability , the substitution rate matrix (αij)i,jN , the price vector p, and the cost vector
c.

28

However, when dealing with stochastic scenarios, the presence of demand uncertainty
introduces a new dimension of stock-out based substitution. To comprehensively capture the
customers’ substitution behavior in this context, we introduce the stock-out substitution
matrix (βij)i,j∈N . This additional matrix complements the existing parameters and fully
characterizes the dynamic nature of substitutions.

The decision variables x and u remain unchanged.
In the following, the number of customers KT and their demand d are unknown. Instead,

this information is randomly drawn from some finite space Ω.
We begin our exploration in the stochastic setting by focusing on the stochastic variable

KT , representing the number of customers arriving at the store during period T. Subse-
quently, we advance to the next phase, where our attention shifts to the uncertainty sur-
rounding the demand variable d. This progression enables us to specifically address and
account for the inherent variability and unpredictability in customer demand.

4.2 Customer Arrival Variability: Stochastic Variable KT

4.2.1 Stochastic formulation

We considerKT to be a random variable drawn from our finite sample spaceΩ of nonnegative
integer values.

In this setup, we introduce two additional factors:

• Minimum facing f : For each product, we establish a minimum quantity that should
be displayed on the shelf.

• Maximum product limit within a category MAX: To prevent overwhelming
customers with an extensive selection of products, we set a maximum threshold for the
number of products allowed within a given category.

Our formulation becomes:

max
S⊆N

EKT

[∑
i∈N

pimi(ω) +
∑
i∈N

∑
j ̸=i

piδαjiqji(ω) +
∑
i∈N

∑
j ̸=i

piδβjisji(ω)−
∑
i∈N

ciui

]

29

s.t.
∑
i∈N

wiui ≤ C∑
i∈N

xi ≤ MAX

ui ≤ Mxi ∀i ∈ N

ui ≥ f ixi ∀i ∈ N

mi(ω) ≤ ui ∀i ∈ N ∀ω ∈ Ω

mi(ω) ≤ KT (ω)di ∀i ∈ N ∀ω ∈ Ω

qij(ω) ≤ Mxj ∀i ∈ N ∀j ∈ N ∀ω ∈ Ω

qij(ω) ≤ M(1− xi) ∀i ∈ N ∀j ∈ N ∀ω ∈ Ω

sij(ω) ≤ Mxi ∀i ∈ N ∀j ∈ N ∀ω ∈ Ω

sij(ω) ≤ Mxj ∀i ∈ N ∀j ∈ N ∀ω ∈ Ω

mi(ω) +
∑
j ̸=i

qij(ω) +
∑
j ̸=i

sij(ω) = KT (ω)di ∀i ∈ N ∀ω ∈ Ω

mi(ω) +
∑
j ̸=i

qji(ω) +
∑
j ̸=i

sji(ω) ≤ ui ∀i ∈ N ∀ω ∈ Ω

x in {0, 1}n, u, m in Nn, q, s in Nn2

In our updated formulation, the objective function consists of four components. Firstly,
we have the original demand, which is represented by the first part of the sum. Secondly, we
include assortment-based substitution, similar to the previous formulation, which is repre-
sented by the second part of the sum. Additionally, we introduce a new component related to
stock-out based substitution, represented by the third term of the sum. Lastly, we continue
to consider the inventory cost by incorporating the fourth term of the sum as before.

Below, we define the parameters of our model, where the index T represents the specific
day or period being considered.
We have:
Decision variables:

. xi: Binary decision variable that takes a value of 1 if product i is included in the as-
sortment and 0 otherwise.
. ui: Integer decision variable indicating the quantity of product i stocked over T .
. mi(ω): equals min(KT (ω)di, ui). in the scenario ω
. qij(ω): the quantity of product i substituted by j due to assortment based substitution in
the scenario ω ∈ Ω.
. sij(ω): the quantity of product i substituted by product j due to stock-out based substitu-
tion in the scenario ω ∈ Ω.

Model parameters:

30

. KT (ω): The number of customers who visit the store during the period T in the sce-
nario ω ∈ Ω
. pi: The unit price of product i
. di: The demand for product i.
. δ: The probability of considering substituting a preferred product.
. αij: The assortment substitution rate from i to j.
. βij: The stockout substitution rate from i to j.
. ci: The storage cost per unit for product i.
. wi: Volume per product i.
. f i: the minimum facing of the product i.
. MAX: the maximum number of products to consider for the category studied.
. M : Big-M constraint.

Constraints:

The first constraint captures the spatial limitations within the designated category sec-
tion, ensuring that the available space is not exceeded. The second constraint enforces a
maximum limit, ensuring that no more than a specified number of products are included in
the assortment.

To incorporate the concept of exclusivity, the third constraint utilizes the Big-M con-
straint technique. It guarantees that if a product (let’s call it ”i”) is not included in the
assortment, its quantity (xi) will be zero.

Moving on, the fourth constraint emphasizes that for each product chosen in the as-
sortment, a minimum quantity (fi) must be displayed to meet visibility requirements. This
ensures that products receive sufficient exposure.

The fifth and sixth constraints impose minimum values on ui and KT (ω)di for mi(ω),
ensuring that they align with the respective product’s requirements.

Continuing with the assortment-based substitutions, the seventh and eighth constraints
establish the relationship between the assortment quantities qij(ω) and the presence of prod-
ucts ”i” and ”j” in the assortment. If ”j” is included and ”i” is not, then qij(ω) represents
the quantity of product ”i” substituted by product ”j”.

Similarly, the ninth and tenth constraints connect the quantity sij(ω) to the presence of
both products ”i” and ”j” in the assortment, indicating the amount of product ”i” substi-
tuted by product ”j” when both are included.

To address the demand for a particular product, the last two constraints come into play.
The first ensures that the total quantity provided, derived from either the direct items of
product ”i” or items of product ”j” available for substitution, equals the demand for product
”i”.

Lastly, the final constraint safeguards against exceeding the available quantity ui, en-
suring that the quantity provided to fulfill the demand for product ”i” remains within the
specified limit.

31

4.2.2 Exploration of resolution methods

Having formulated our problem, the next step is to explore the various methods available for
solving it within the stochastic programming framework. Fortunately, it provides a range of
methods, each tailored to specific problem settings, offering us a diverse set of approaches
to tackle our problem.

• Stochastic Dynamic Programming (SDP): enables sequential decision-making by
decomposing the problem into smaller subproblems and solving them iteratively. In the
specific context of assortment optimization, this approach, known as Sequential Deci-
sion Processes (SDP), offers the flexibility to dynamically adjust the assortment based
on the fluctuating number of customers arriving. However, it should be noted that
our adopted framework for this problem does not allow for changes to the assortment
during the designated period T.

• Scenario-based Methods: These methods discretize the uncertainty of customer
arrivals into scenarios or samples. By constructing deterministic optimization problems
based on these scenarios, they provide insights into the selection and allocation of
products within the assortment considering various customer arrival scenarios.

• Stochastic Decomposition: Assortment optimization problems can be decomposed
into deterministic subproblems, facilitating independent optimization of product selec-
tion and inventory allocation. This approach allows for efficient decision-making by
considering the stochastic nature of customer arrivals in each subproblem.

• Robust optimization: it prioritizes worst-case scenarios to ensure resilience. By
considering a range of customer arrival patterns, these techniques aim to identify as-
sortments that perform well under the most challenging conditions. The focus is on
mitigating the impact of uncertainty by selecting robust assortments that can with-
stand unfavorable outcomes. This approach enhances the reliability and stability of the
optimization process, providing safeguards against potential losses or negative impacts.

• Simulation-based Optimization: Simulation-based optimization leverages the stoch-
astic nature of customer arrivals by using simulation models to generate outcomes based
on different customer arrival scenarios. Optimization algorithms then find the optimal
assortment configuration based on the simulated outcomes, accounting for customer
variability.

We will use the scenario-based method to address our problem, with a potential inclusion of
a robust optimization component towards the end of the resolution. This approach allows us
to consider various customer arrival scenarios and gain insights into the optimal solutions.
By incorporating robust optimization techniques, we can further enhance the resilience and
feasibility of the obtained solutions, ensuring their effectiveness across different scenarios.

4.2.3 Implementation and testing

4.2.3.1 Generation of scenarios
Using the Poisson distribution for modeling the number of customers arriving at the store

32

during period T is a common choice in scenarios where discrete count data is encountered.
The Poisson distribution is particularly suitable because it allows us to model events that
occur with a known average rate, represented by the parameter λ. In this case, we set λ to
100, indicating an average of 100 customers expected during period T.

The Poisson distribution offers simplicity in implementation and is well-suited for han-
dling rare events, which can be significant in customer arrival patterns. Additionally, it
enables the generation of different scenarios by randomly drawing KT values from the dis-
tribution.

Furthermore, the parameter λ can be adjusted based on the duration of period T, allowing
customization to reflect different average rates of customer arrivals depending on the time
interval. This adaptability makes the Poisson distribution a versatile choice for modeling
customer flow in a store during varying time periods.

We set the parameter λ or the mean of the distribution to be equal to 100.

λ = 100

In this case, we assume that during period T, the expected number of customers is 100. It
should be noted that the value of λ can be chosen differently depending on the duration of
period T.

4.2.3.2 Runtime

To begin our analysis, we focus on the efficiency of our algorithm, which we evaluate
using the runtime key performance indicator (KPI). It is important to note that this time,
the runtime is influenced not only by the size of the set of SKUs we choose from but also by
the number of scenarios considered.

As always, having a larger set of products to choose from can lead to increased profitabil-
ity. The same principle applies to the number of scenarios: the more scenarios we consider,
the closer we come to the actual optimal value, leveraging the law of large numbers. There-
fore, our goal is to consider the largest number of products and scenarios available to us.
However, it is essential to acknowledge that there is always a trade-off to be made due to
computational constraints.

In the subsequent analysis, we will examine the relationship between runtime and the
number of scenarios and products. This can be expressed as a function:

runtime = f(Nscenarios, Nproducts)

However, it is important to note that for this investigation, we will be working with
smaller quantities of products and scenarios compared to the earlier analysis. The reason
lies in the fact that the runtime explodes going from a few minutes when dealing with a
small number of products to over an hour, as observed with 40 products, for example.

We obtain the following result:

33

Figure 7: Runtime as a function of the number of scenarios and the number of scenarios

We conclude that a heuristic could be of great use when dealing with larger products’
set.

4.2.3.3 Solution’s stability

In the following analysis, we delve deeper into our investigation. A crucial aspect to
explore is determining the number of scenarios at which the solution (profit, x, u) stabilizes.
This knowledge is essential as it allows us to identify the ideal number of scenarios needed
to achieve an actual optimal profit and assortment.

To accomplish this, we work with a predefined set of products and solve the stochastic
program under various numbers of scenarios. For each value of N, we generate a set of
scenarios SN with a cardinal of N, drawn from the Poisson distribution mentioned earlier.
We observe the evolution of the optimal solution as a function of the number of scenarios
considered. The following are the results:

34

Figure 8: Objective value’s stability with the number of scenarios

As the number of scenarios increases, we observe a reduction in the variance of the objec-
tive value. Due to computational constraints, we were unable to explore larger numbers of
scenarios in-depth. However, based on theoretical insights, it is confirmed that the objective
value will converge as the number of scenarios substantially increases.

Based on our analysis, we conclude that using 500 scenarios from this point forward in
our stochastic program would be acceptable.

4.2.3.4 Solution’s optimality

In this section, our goal is to assess the optimality of our solution. To achieve this, we
will attempt to compute an upper bound against which we can compare our results. Let
S represent the set of scenarios under consideration. A natural upper bound is defined as
follows:

Πmax(x, u, S) =
1

|S|
∑
ω∈S

Π(x, u, ω)

To provide further clarity, we follow the process of generating the set of scenarios S and
proceed to solve the problem deterministically for each individual ω within S. We calculate
the optimal objective value Π(x, u, ω) for each scenario. By averaging over all these objective
values Π(x, u, ω), we obtain our upper bound.

To ensure the validity of our analysis, we iterate over different sets of scenarios SN ,
defined by their cardinal N . For each set SN , we calculate the following value:

F (x, u, S) =
Π(x, u, S)

Πmax(x, u, S)

35

This analysis demonstrates that the objective value reaches 35% of the upper bound for
up to 500 scenarios.

It is important to highlight that the upper bound established earlier remains applicable
regardless of any heuristics we may consider in the future.

4.2.3.5 Solution’s robustness

The analysis conducted previously raises concerns regarding the suitability of the selected
stochastic programming framework. It becomes apparent that we experience a loss in opti-
mality without any discernible advantages. This situation arises mainly because we have not
yet accounted for the robustness effects that the stochastic framework offers to our solution.

To address the robustness effect our scenario based method has on the solution, we may
want to compare the deterministic solution to the stochastic one.

For such comparison to hold:
1. We generate a random set R of KT always from the Poisson distribution defined earlier.
2. We solve the problem deterministically using a random generated KT value. We save the
solution (xd, ud) for later use
3. We solve the problem under the stochastic framework using a set of scenarios S. We save
the solution (xs, us) for later use
4. for each KT value in the set R, we compute the profit generated and the lost sales under
both the solutions (xd, ud) and (xs, us) .

The results are as follows:

Figure 9: Robustness of the solutions

Based on our analysis, when we base our reasoning on a specific value of KT (customers’
arrival), the model may produce sub-optimal solutions, leading to potential losses as depicted
in the figure. As we deviate from the randomly chosen KT = 92, the solution becomes in-
creasingly non-optimal compared to the solution generated by the scenario-based (stochastic)

36

method. By considering only 100 scenarios, we can typically prevent most losses.

5 Concluding remarks

In this report, we delved into the realm of assortment optimization in the retail industry,
an essential aspect of retail analytics. We explored various formulations and algorithms to
maximize the profit while adhering to shelf constraints.

Initially, we presented a linear formulation, which laid the foundation for our subsequent
development. Through a Python implementation, we demonstrated how exact solutions can
be derived, providing valuable insights into the assortment selection process.

We then ventured into a quadratic formulation, which introduced a thorough study of
assortment-based substitution. Linearizing and leveraging the model’s parameters, we at-
tained exact solutions and devised a novel ML-based heuristic algorithm. Our scoring al-
gorithm, implemented through an ML model, yielded promising results in optimizing the
assortment.

In the pursuit of comprehensive assortment optimization, we also addressed the challeng-
ing problem of modeling under demand uncertainty. By introducing a stochastic approach,
we recognized the importance of accounting for variability in the number of visiting cus-
tomers, which is prevalent in real-world retail scenarios. The stochastic model allowed us
to explore how customer arrival variability affects assortment decisions. We formulated the
stochastic variables and explored various resolution methods to handle the uncertainty in-
herent in demand data. Our implementation and testing of stochastic scenarios revealed the
stability, optimality, and robustness of our proposed solution.

As perspectives for future research, there are several important aspects that were not
thoroughly studied in this report, presenting potential development avenues for further in-
vestigation:

1. Incorporating Demand Uncertainty: The demand data d plays a crucial role
in assortment optimization, but in this study, we assumed deterministic demand values.
Exploring the uncertainty that arises from demand variability could provide a more realistic
representation of the retail environment. Future research could focus on modeling demand
uncertainty using probabilistic or stochastic methods, allowing for more robust and risk-
aware assortment decisions.

2. Developing a Heuristic for Stochastic Formulation: While we successfully
formulated and explored the stochastic model, a dedicated heuristic tailored to this specific
formulation was not developed in this report. The design of an efficient heuristic algorithm
that handles stochastic scenarios effectively could significantly enhance the scalability and
computational efficiency of the stochastic assortment optimization process.

To conclude, this report sheds light on the intricacies of assortment optimization for
retailers. We’ve demonstrated the effectiveness of our algorithms in providing optimal as-
sortments while accounting for shelf constraints and customer arrival’s uncertainty. Our
findings offer valuable insights and practical implications for retail businesses seeking to en-
hance their product assortments and better serve their customers. As retailers continue to
embrace analytics-driven strategies, the methodologies discussed herein present compelling
avenues for further exploration and potential implementation in real-world retail settings.

37

Future work could extend this study to address the identified perspectives, providing a more
comprehensive understanding of assortment optimization in the face of demand uncertainty
and dynamic market conditions. Additionally, incorporating an omnichannel structure and
comparing various assortment optimization algorithms could further enhance the efficacy
and adaptability of the assortment selection process.

6 Acknowledgments

I extend my heartfelt gratitude to Prof. Agnès GORGE for her invaluable guidance,
mentorship, and insightful contributions throughout the course of this research. Her expertise
in the field of Business Analytics has been instrumental in shaping the direction of my
study and providing me with valuable perspectives. Her unwavering support and thoughtful
feedback have greatly enriched the quality of this paper. I am profoundly thankful for her
time, encouragement, and dedication to fostering a nurturing academic environment. This
work stands as a testament to her impactful influence on my academic journey.

References

[1] Marshall L. Fisher A. Gürhan Kök. Demand estimation and assortment optimization
under substitution: Methodology and application. Operations Research, Informs, 2007.

[2] Ralf W. Seifert Andrey Vasilyev, Sebastian Maier. Assortment optimization using an
attraction model in an omnichannel environment. European Journal of Operational
Research, 2022.

[3] Gijsbrechts Els Nisol Patricia Campo, Katia. Dynamics in consumer response to product
unavailability: do stock-out reactions signal response to permanent assortment reduc-
tions? Business Research, Elsevier, 2004.

[4] Emmett Cox. Retail analytics: the secret weapon.

[5] David P. Williamson James M. Davis, Huseyin Topaloglu. Assortment optimization
over time. Cornell University, 2013.

[6] Venus Hiu Ling Lo. Capturing product complementarity in assortment optimization.
Cornell University, 2019.

[7] Roger Roberts et al. Michael Chui, Eric Hazan. The economic potential of generative
ai.

[8] David W. Pentico. The assortment problem: A survey. European Journal of Operational
Research, 2008.

[9] Harald J. van Heerde Robert P. Rooderkerk. Robust optimization of the 0–1 knapsack
problem: Balancing risk and return in assortment optimization. European Journal of
Operational Research, 2015.

38

[10] R. Spillman. Solving large knapsack problems with a genetic algorithm. IEEE, 2002.

[11] Square. Abbreviations 101. Square, 2021. Accessed on 01/07/2023.

39

