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1 Simulation of HGRNs

This appendix formally describes the simulation of HGRNs.
Consider a state h = (π, ds) and a trajectory τ which reaches h at t > 0.

– If h does not belong to any boundary, then dτ(t)
dt = cs (the temporal deriva-

tive of a hybrid state h = (π, ds) is defined as dh
dt = dπ

dt ).
– If h only belongs to one boundary e, let us consider that e is the upper

boundary in ith dimension (the result is easily adapted when e is the lower
boundary). In case dis is not the maximal discrete level of ith gene, the
discrete state on the other side of e is noted as dr, where dks = dkr for all
k ̸= i, and dis + 1 = dir. There are four possible cases:
• If cis < 0, then the trajectory from the current state will enter the interior

of the current discrete state. e called an input boundary of ds.
dτ(t+)

dt = cs,
dτ(t−)

dt = cr and τ(t) = ((π′, dr), (π, ds)), where π′k = πk for all k ̸= i,
and π′i = 0, which means that there is an instant transition from (π′, dr)
to (π, ds) at t.

• If cis = 0, then the trajectory from the current state will slide along
the boundary e, which is then called a neutral boundary of ds.

dτ(t+)
dt =

dτ(t−)
dt = cs and τ(t) = (π, ds).

• If cis > 0, and either dis is the maximal discrete level of the ith gene, or dis
is not the maximal discrete level of the ith gene but the ith component
of cr is negative, then the trajectory from the current state will slide
along the boundary e, which is called an attractive boundary of ds. If τ

reaches e at t, then: dτ(t+)
dt

k
= cks for all k ̸= i, dτ(t+)

dt

i
= 0, dτ(t−)

dt = cs

and τ(t) = (π, ds). If τ reaches e at t0 < t, then: dτ(t)
dt

k
= cks for all k ̸= i,

dτ(t)
dt

i
= 0, and τ(t) = (π, ds).

• If cis > 0, dis is not the maximal discrete level of the ith gene, and the
ith component of cr is positive, then the trajectory from the current
state will cross instantly the boundary e and enter the discrete state
dr. e is called an output boundary of ds.

dτ(t+)
dt = cr,

dτ(t−)
dt = cs and

τ(t) = ((π, ds), (π
′, dr)), where π′k = πk for all if k ̸= i, and π′i = 0.
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– If h belongs to several boundaries, then the previous cases can be mixed:
• If in these boundaries there is no output boundary, then the trajectory

from the current state will exit all input boundaries and slide along all
attractive or neutral boundaries.

• If in these boundaries there is only one output boundary, then the tra-
jectory from the current state will cross this output boundary.

• If in these boundaries there are several output boundaries, then the tra-
jectory from the current state can cross any of them, but can only cross
one boundary at one time, which causes non-deterministic behavior.

2 Proof of Theorem 1

Proof. For a trajectory τ attracted by a cycle of discrete domains, ∃t0
such that after t0, τ always stays in a cycle of discrete domains CT =
(D0,D1,D2, ...,Dp,D0) and before t0, τ has already crossed at least one dis-
crete state. τ can be separated on two trajectories by t0: the restriction of τ
on time interval [0, t0], noted by τ[0,t0], and the restriction of τ on time interval
[t0,∞], noted by τ[t0,∞].

For the trajectory τ[0,t0], whether it reaches R2 is decidable. If it reaches R2,
then it is reachable. And if it does not reach R2, then we need to consider τ[t0,∞].

For the trajectory τ[t0,∞], in case that τ[0,t0] does not reach R2, whether τ[t0,∞]

reaches R2 is equivalent to whether it reaches Preds2
(R2) =

⋃
i∈{1,2,...,q} Zi.

If ∀i ∈ {0, 1, 2, ..., p}, ∀j ∈ {1, 2, 3, ..., q}, Zj ̸⊆ Di, then Preds2
(R2) is not

reachable. Otherwise, if ∃i0 ∈ {0, 1, 2, ..., p} and ∃j0 ∈ {1, 2, 3, ..., q}, such that
Zj0 ⊆ Di0 , then to verify if Zj0 is reachable, we need to consider the relation
between the intersection points of τ[t0,∞] with Di0 noted by a infinite sequence
(hp1, hp2, ...) and Zj0 as following. (Need to mention that when a trajectory
reaches a discrete domain, it might slide inside this discrete domain, in this case,
based on the general meaning of "intersection", the intersection points of this
trajectory and this discrete domain are not singular points. In this paper, we
define that the intersection points between a trajectory and a discrete domain
are the points where the trajectory just reaches the discrete domain.)

Since τ always stays inside this cycle of discrete domains, the sequence
(hp1, hp2, ...) converges asymptotically to a state or reaches a state which be-
longs to the closure of the compatible zone of CT . For both cases, this particular
state is noted by h∞.

If h∞ ∈ Zj0 , then Preds2
(R2) is reachable. Need to mention that, in case that

h∞ is on the boundary of Zj0 and the sequence (hp1, hp2, ...) converges asymp-
totically to h∞ without reaching reaching directly Zj0 , Zj0 is also considered as
reachable, which in fact is reached after an infinite times of intersections.

If h∞ /∈ Zj0 , then we can find a small neighborhood of h∞ inside Di0 , noted
by Nh∞ , such that ∀h ∈ Nh∞ , h /∈ Zj0 . Since the sequence (hp1, hp2, ...) converges
to h∞ or finally reaches h∞, we can find n0 such that ∀n > n0, hpn ∈ Nh∞ .
This means that after that τ[t0,∞] reaches hpn0

, it will never reach Zj0 . So, in
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this case, to verify if Zj0 is reached, we only need to verify if the finite sequence
(hp1, hp2, ..., hpn0

) ever reaches Zj0 , which is decidable.
Now we see that, for a certain Zi, whether τ[t0,∞] reaches Zi or not is decid-

able. Since Preds2
(R2) has a finite number of such Zi, whether τ[t0,∞] reaches

Preds2
(R2) is also decidable. ⊓⊔

3 Proof of Theorem 2

Proof. Firstly, we prove that it is a sufficient condition:
In the case that a trajectory τ is attracted by a cycle of discrete domains, then

after certain moment, τ will always stay in the same cycle of discrete domains,
noted by CT = (D0,D1,D2, ...,Dp,D0).

We consider at first the case that there is one Di of CT such that Di has
at least one free dimension (meaning that there exists one dimension such that
the boundaries are not reached in this dimension), without loss of generality we
assume that D0 has at least one free dimension, so the first condition is satisfied.

A priori, we cannot ensure the second condition, because the decomposition
of r(h0) − r∞ in the directions of certain eigenvectors of the reduction matrix
of CT can be zero and these eigenvectors happen to be associated to eigenvalues
of which the absolute values are greater than 1, however this is extremely rare.
So in this paper we ignore this case, and based on this assumption, we must
have that for any eigenvalue λi, |λi| ≤ 1, otherwise we cannot ensure that τ
always stays inside this cycle, because if there exists an eigenvalue such that
|λi| > 1, then r∞ is infinitely far away from r(h0). If there exists λi = −1,
we can double this cycle of discrete domains (the doubled cycle of discrete do-
mains is (D0,D1,D2, ...,Dp,D0,D1, ...,Dp,D0)) to eliminate this eigenvalue. So
the second condition is satisfied.

The intersection points of τ with D0 will converge to or reach certain state
h∞ = (π∞, ds0) which belongs to the closure of the compatible zone. We have
that r∞ is the short version of π∞ by only considering the dimensions where
boundaries are not reached in D0. Based on Assumption 3, the reduction com-
patible zone can be described by {x | Wx > c}. If h∞ belongs to the compatible
zone, then we have ∀i ∈ {1, 2, ..., n0}, Wir∞ > ci, else if h∞ does not belong to
the compatible zone but belongs to the closure of the compatible zone, then we
have that for some i ∈ {1, 2, ..., n0}, Wir∞ = ci, meaning that some "boundaries"
of the reduction compatible zone are reached, and for other i ∈ {1, 2, ..., n0}, we
have Wir∞ > ci. So the third condition is satisfied.

We note the intersection states of τ and D0 as the sequence (h0, h1, h2, ...).
We have that r(hn) = r∞ +

∑n1

i=1 λ
n
i αivi where vi are eigenvectors of the

reduction matrix of CT and r(h0) − r∞ =
∑n1

i=1 αivi, by choosing λ1 as the
eigenvalue with maximum absolute eigenvalue among the eigenvalues that differ
from 1, if λ1 ̸= 0, then we have: limn→∞|λn

1α1| >> |λn
i αi| where i ̸= 1, and

limn→∞
∑n1

i=1 λ
n
i αivi → 0. This proves that the fifth and the sixth conditions

are satisfied.
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Supposing that λ1 ̸= 0. Since the sequence (h0, h1, h2, ...) is inside the com-
patible zone, if Ie is not empty, then for any j ∈ Ie, we should have ∀n ∈
N,Wj

∑n1

i=1 λ
n
i αivi > 0. When n is sufficiently big, for any j ∈ Ie, the sign of

Wj

∑n1

i=1 λ
n
i αivi is dominated only by Wjλ

n
1α1v1, meaning that Wj

∑n1

i=1 λ
n
i αivi

and Wjλ
n
1α1v1 have the same sign, in fact, when n is sufficiently big, we have

|Wjλ
n
1α1v1| >

∑n1

i=2|Wjλ
n
i αivi|, this means that adding

∑n1

i=2 Wjλ
n
i αivi to

Wjλ
n
1α1v1 does not change the sign of Wjλ

n
1α1v1. So the sign of λ1 is posi-

tive, otherwise we can not ensure that ∀j ∈ Ie,∀n ∈ N,Wj

∑n1

i=1 λ
n
i αivi > 0,

which is equivalent to ∀j ∈ Ie,∀n ∈ N,Wjλ
n
1α1v1 > 0 when n is sufficiently big.

This proves that the forth condition is satisfied.
In the case that any Di of CT has no free dimension, we can easily see that

it is a sufficient condition.
Secondly, we prove that it is a necessary condition.
If D0 has no free dimension, then τ reaches a limit cycle which is a special

case of that τ is attracted by a cycle of discrete domains.
If these six conditions are satisfied, to prove that τ is attracted by a cy-

cle of discrete domains, we only need to prove that τ always returns to the
compatible zone of CT . This can be easily proved if λ1 = 0. From now on,
we suppose the λ1 ̸= 0. We note that trajectory from h0 returns to D0 at
h1. We have that r(h1) − r∞ =

∑n1

i=1 λiαivi. A sufficient condition for "h0

belongs to the compatible zone" is (∀j ∈ Ie,Wj

∑n1

i=1 αivi > 0) ∧ (∀j ∈
In,maxβ∈{−1,1}n1 ∥

∑n1

i=1 βiαivi∥2< Wjr∞−ci
∥Wj∥2

) which is satisfied in this case. In
fact, the first part of this sufficient condition is a necessary condition for that
h0 belongs to the compatible zone and the second part is ensured by the
sixth condition. Now we want to prove that this sufficient condition is also
satisfied for h1. The fifth condition indicates that for any j ∈ Ie the sign of
Wj

∑n1

i=1 αivi is dominated by the sign of Wjα1v1, so Wjα1v1 is also positive.
Since ∀i ̸= 1, we have either |λ1| > |λi| or |λ1| < |λi| ∧ αi = 0, so we have
∀j ∈ Ie,∀i ∈ {2, ..., n1} , |Wjv1λ1α1| > n1|Wjviλiαi|. This means that for any
j ∈ Ie the sign of Wj

∑n1

i=1 αiλivi is also dominated by the sign of Wjα1λ1v1.
Since λ1 is positive if Ie is not empty, we have ∀j ∈ Ie,Wj

∑n1

i=1 λiαivi > 0,
because the sign of Wj

∑n1

i=1 λiαivi is same as the sign of Wjα1λ1v1 which is
same as the sign of Wjα1v1 of which the sign is positive. Since ∀λi, |λi| ≤ 1,
we have maxβ∈{−1,1}n1 ∥

∑n1

i=1 βiλiαivi∥2≤ maxβ∈{−1,1}n1∥
∑n1

i=1 βiαivi∥2. So we
also have ∀j ∈ In,maxβ∈{−1,1}n1 ∥

∑n1

i=1 βiλiαivi∥2< Wjr∞−ci
∥Wj∥2

. By now we prove
that h1 also belongs to the compatible zone. By mathematical induction, we can
prove that τ always returns to the compatible zone of CT . So τ is attracted by
a cycle of discrete domains. ⊓⊔

4 Details about the function Stop_condition

The details of the function Stop_condition are presented in Algorithm 1. Its
objective is, knowing that a trajectory is attracted by a cycle of discrete domains,
to determine if the trajectory can reach R2 after an infinite number of transitions
(see Fig 3 right), in this case, return “Reached”, or if from the current moment,
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there is no more chance to reach R2 (see Fig 3 middle), in this case, return “Yes”,
otherwise return “No”. The cases other than “No” mean that the main algorithm
for reachability analysis can be stopped.

In order to describe the Non-intersection condition in Algorithm 1, we note
the predecessor in the same discrete state of R2 as Preds2

(R2) =
⋃

i∈{1,2,...,q} Zi.
We note r(Zi) as the set of the reduction vectors of all states of Zi.

This Non-intersection condition (its formal definition will be given
later) is a sufficient condition for that ∀j ∈ {1, 2, ..., q} , if Zj ⊂
Di, then

{
x ∈ Sr(Di) | ∥x− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1 ∥
∑n1

k=1 βkαkvk∥2
}

∩
r(Zj) = ∅ where Sr(Di) is the reduction compatible zone of this cycle inside
Di, n1 is the dimension of Sr(Di), r(hi) − r(h∞

i ) =
∑n1

k=1 αkvk, vk are the
eigenvectors of the reduction matrix of this cycle (Di, ...,Di).

The idea of the Non-intersection condition is illustrated by
Fig 1. Firstly, we want to verify ∀j ∈ {1, 2, ..., q} , if Zj ⊂
Di, then

{
x ∈ Sr(Di) | ∥x− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1 ∥
∑n1

k=1 βkαkvk∥2
}

∩
r(Zj) = ∅ where Sr(Di) is the reduction compatible zone of this cycle inside
Di. This is equivalent to that the black box does not intersect the blue
boxes in Fig 1 left. The reason why we want to verify this condition, noted
here as Condition1, is that once it is satisfied, there is no more chance that
the trajectory can reach R2 from Di inside this discrete state. However, it
is complicated to compute directly the intersection of these sets. So, firstly
we overestimate all states in this discrete state which can be reached by{
h ∈ S(Di) | ∥r(h)− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}

(black box)
by the red zone in Fig 1 middle (need to mention that Fig 1 is just a illustration,
the shape of the real red zone is slightly different from the one in this figure). If
this red zone does not intersect the blue rectangle, then Condition1 is satisfied.
However, this intersection is still difficult to compute. So secondly, we move the
"thickness" of the red zone to the blue rectangle in Fig 1 right. Now to verify if
Condition1 is satisfied, we only need to verify if the red trajectory in Fig 1 right
reaches the blue and red zone, which can be done automatically and is called
Non-intersection condition.

Fig. 1: Illustration of the Non-intersection condition in Algorithm 1.
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The Non-intersection condition is defined formally in the following.

Algorithm 1 Stop condition
Input 1: A list of hybrid states Cycleh = (h0, h1, h2, ...., hp, h

′
0) which de-

scribes a simulation of a model
Input 2: A list of discrete domains CycleD = (D0,D1,D2, ...,Dp,D0) such

that ∀i ∈ {0, 1, 2, ..., p} , hi ∈ Di, h
′
0 ∈ D0 and the trajectory from h0 is attracted

by (D0,D1,D2, ...,Dp,D0)
Input 3: A region R2 =

{
(π, ds2) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}

}
Output (three possibilities): Yes, No, and Reached

1: Compute the states h∞
0 , h∞

1 , h∞
2 , ..., h∞

p such that the intersection states between
this trajectory and D0,D1,D2, ...,Dp converge to or reach these states when t→∞.

2: var_stop← True
3: for i ∈ {0, 1, 2, ..., p} do
4: if Di is on an input boundary of ds2 then
5: if Trajectory from h∞

i reaches R2 inside ds2 then
6: return “Reached”
7: else if Non-intersection condition is satisfied then
8: var_stop← var_stop ∧ True
9: else if Non-intersection condition is not satisfied then

10: var_stop← var_stop ∧ False
11: end if
12: end if
13: end for
14: if var_stop = True then
15: return “Yes”
16: else if var_stop = False then
17: return “No”
18: end if

The trajectory from h∞
i can be represented by h∞

i = h∞
i,0 → h∞

i,1 →
... → h∞

i,K where
{
h∞
i,j , j ∈ {1, 2, ...,K}

}
represents all states at which this

trajectory reaches new boundaries and h∞
i,K represents the state at which

this trajectory reaches an output boundary of ds2 for the first time. We
note uj , j ∈ {1, 2, ...,K} as the left derivative of state h∞

i,j . We use wj ∈
{0, 1}N , j ∈ {1, 2, ...,K} to describe the dimension where new boundary is
reached in each elementary transition, for the transition h∞

i,j−1 → h∞
i,j , j ∈

{1, 2, ...,K}, if the new boundary is reached in mth
j dimension, then w

mj

j =

1 and wk
j = 0, k ∈ {1, 2, ..., N} \ {mj}. We associate a distance lj , j ∈

{1, 2, ...,K,K + 1} to each transition, which is computed as following: l1 =

maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2 and ∀j ∈ {2, 3, ...,K,K + 1} , lj =
lj−1

|
uj ·wj
∥uj∥2

|

where uj · wj is the inner product of uj and wj . The Non-intersection
condition is satisfied if the trajectory from h∞

i,0 does not reach the region
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R′
2 =

{
(π, ds2) | πi ∈ [max(ai − lK+1, 0),min(bi + lK+1, 1)], i ∈ {1, 2, ..., N}

}
in-

side the discrete state ds2 .
We note this trajectory h∞

i = h∞
i,0 → h∞

i,1 → ... → h∞
i,K which begins from

h∞
i,0 and finally reaches h∞

i,K as τi. If the Non-intersection condition is satisfied,
then for any state hx which belongs to R2 and for any state hy which belongs to
τi, the distance between hx and hy is greater than lK+1. On the other hand, for
any trajectory τx which is inside this discrete state and begins from the region{
h ∈ S(Di) | ∥r(h)− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1∥
∑n1

k=1 βkαkvk∥2
}

where S(Di)
is the compatible zone of this cycle inside Di, for any state h′

x on τx, we can find a
state h′

y on τi, such that the distance between h′
x and h′

y is smaller than lK+1. If
τx crosses R2, then there exists a state h′′

y which is on τx and also belongs to R2,
such that ∃h′′

x on τi, the distance between h′′
x and h′′

y is smaller than lK+1 which
is not possible as h′′

y belongs to R2. This proves that ∀j ∈ {1, 2, ..., q} , if Zj ⊂
Di, then

{
x ∈ Sr(Di) | ∥x− r(h∞

i )∥2 ≤ maxβ∈{−1,1}n1 ∥
∑n1

k=1 βkαkvk∥2
}

∩
r(Zj) = ∅.

In fact, if hi is sufficiently close to h∞
i , then the Non-intersection condition

must be satisfied, because LK+1 is sufficiently close to 0 in this case. Based on
this fact, it can be proved that if trajectory from h1 is attracted by a cycle of
discrete domains and does not reach R2, then the Non-intersection condition
must be verified in finite time for all discrete domains which belong to an input
boundary of the discrete state of R2 and belong to the attractive cycle of discrete
domains (the cycle of discrete domains which attracts the trajectory from h1).
In this case, this algorithm returns "Yes", meaning that the trajectory from h1

has no more chance to reach R2.
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