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Metabolism and DNA replication are the two most fundamental biological
functions in life. The catabolic branch of metabolism breaks down nutrients
to produce energy and precursors used by the anabolic branch of metab-
olism to synthesize macromolecules. DNA replication consumes energy
and precursors for faithfully copying genomes, propagating the genetic
material from generation to generation. We have exquisite understanding
of the mechanisms that underpin and regulate these two biological func-
tions. However, the molecular mechanism coordinating replication to
metabolism and its biological function remains mostly unknown. Under-
standing how and why living organisms respond to fluctuating nutritional
stimuli through cell-cycle dynamic changes and reproducibly and distinctly
temporalize DNA synthesis in a wide-range of growth conditions is impor-
tant, with wider implications across all domains of life. After summarizing
the seminal studies that founded the concept of the metabolic control of
replication, we review data linking metabolism to replication from bacteria
to humans. Molecular insights underpinning these links are then presented
to propose that the metabolic control of replication uses signalling systems
gearing metabolome homeostasis to orchestrate replication temporalization.
The remarkable replication phenotypes found in mutants of this control
highlight its importance in replication regulation and potentially genetic
stability and tumorigenesis.

1. Background
Complex mechanochemical molecular machines, known as replisomes, carry
out genome replication for ensuring faithful genome duplication by accurately
synthesizing two identical copies of the parental DNA. Replisomes assemble at
specific replication initiation sites known as origins, from where they initiate
and carry out DNA synthesis. To ensure that chromosomes replicate once per
cell cycle, overlapping regulatory mechanisms tightly control the initiation
phase of replication and prevent unscheduled re-initiation events [1–3]. Failures
in this control increase the risk of replication errors and double-stranded DNA
breaks, compromising genetic stability and cell viability, and eventually causing
diseases like cancer [4–7].

Since Schaechter’s seminal studies in Salmonella typhimurium in 1958, it is
now well established that replication is under metabolic control (this process
is termed metabolic control of replication, MCR). In bacteria, this process
impacts both the initiation and elongation phases of replication, resulting in a
reproducible temporal compartmentalization of DNA synthesis in the cell
cycle in a wide range of nutritional conditions and growth rates [8–12]. This
system depends on the energy and precursors derived from nutrients rather
than on the actual nature of the carbon and nitrogen sources, as Escherichia
coli cells growing at the same rate in different media exhibit similar temporal
replication patterns [9,11]. In lower eukaryotes, the compartmentalization of
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replication (S phase) also varies with growth and nutritional
conditions [13,14]. Moreover, the cell cycle from yeast to
human cells exhibits an autonomous metabolic/redox oscil-
lation, and the entry and progression of the S phase occur
at the most reductive phase of this cycle [15–17]. The
metabolic oscillation also triggers global changes in the
metabolome, including central carbon pathways [18–27].
Interestingly, metabolic oscillation may also be an intrinsic
behaviour of bacteria as the cell cycle of Caulobacter crescentus
is underpinned by robust metabolite fluctuations [28].

Soon after the Schaechter’s seminal studies, MCR was
assumed to be geared by a passive mechanism involving limit-
ing factors. Initially, the pools of nucleotide precursors that
increase with growth rate was proposed to directly determine
the activity of replication enzymes and the rate of DNA syn-
thesis. Although appealing, this hypothesis is challenged by
data showing that artificial changes (balanced or imbalanced)
in nucleotide pools increase replication errors, double-strand
DNA breaks and ultimately genetic instability [4]. Sub-
sequently, the ATP-bound form of the initiator DnaA that
peaks near the time of initiation was proposed to be the limit-
ing factor of MCR in bacteria [29]. However, this hypothesis is
questioned by data showing that the timing of initiation poorly
correlates to the amount of ATP-DnaA (or DnaA) per origin
[30–35]. Hence, although ATP-DnaA is the motor of initiation,
other factors are needed for proper temporalization of initiation
with respect to nutritional conditions. Since the 2000s, MCR is
thought to involve sophisticated signalling pathways that
chemically sense the cellular metabolic state for temporalizing
DNA synthesis in a broad range of nutritional conditions
[36–40]. In this model, MCR continuously adjusts the size of
precursor pools to the rate of DNA synthesis, preventing
aberrant mutagenic feeding of replication enzymes.

The catabolic branch of metabolism, also called central
carbon metabolism (CCM), encompasses approximately 40
ancestral, highly conserved enzymes organized in pathways
(figure 1) [41,42]. It extracts from nutrients the precursors
and energy needed for macromolecular synthesis and bio-
mass production. By sensing the supply and demand in
biosynthetic reactions, it also orchestrates metabolome
homeostasis [43–45]. Because of its strategic position, CCM
was proposed to play an important role in MCR. This
hypothesis is supported by an ever-increasing body of data
in both prokaryotic and eukaryotic cells linking CCM to
replication (see below and figure 1 for a summary) and show-
ing that CCM determinants often operate as signalling and
sensor molecules ensuring moonlighting functions in non-
metabolic activities [46]. Note that in addition to MCR, two
systems are proposed to couple replication to growth. They
involve molecules whose concentration reflects the metabolic
state of the cell: the nucleotide analogues guanosine tetra-
and penta-phosphate [47] (see however [34,48]) and reactive
oxygen species [27,49–54].

2. CCM-replication links
In bacteria, replication initiation involves assembly of mul-
tiple copies of the initiator protein DnaA at the origin (oriC)
to form a nucleoprotein complex that triggers origin unwind-
ing, replicative helicase loading, replisome assembly and
replication firing [55,56]. Two CCM metabolites were
suggested to modulate this replication step in E. coli: acetyl-

CoA and acetyl-phosphate. These metabolites acetylate
DnaA through an acetyltransferase (YfiQ) or non-enzymati-
cally, respectively, collectively inhibiting ATP and ADP
binding to DnaA and impeding formation of the active
DnaA-origin nucleoprotein complex [57]. DnaA acetylation
is removed by the deacetylase CobB. Although DnaA acety-
lation/deacetylation is documented in vivo and in vitro, its
exact contribution to initiation regulation in steady-state
growing cells remains uncertain, as DnaA acetylation is so
far only known to peak at the stationary phase compared
to the exponential growth phase. Interestingly, another
study links the acetylation potential to DnaA activity. In
that work, a general decrease in protein acetylation induced
by CCM mutations depleting the pools of acetyl-CoA and
acetyl-phosphate or by deleting the major acetyltransferase
yfiQ was found to suppress initiation defects of a DnaA
mutant (dna46) [58]. Despite this, the authors were unable
to conclude on the role of DnaA acetylation in initiation regu-
lation in exponentially growing cells, as suppression still
occurs in conditions of general increase in acetylation (in
cobB knockout cells). Instead, they proposed various scen-
arios where initiation is modulated by other metabolic
determinants impacting formation of the DnaA-origin
nucleoprotein complex. One such scenario may involve
cyclic AMP which interacts in vitro with DnaA and promotes
the production of the active DnaA-ATP form and its binding
to the replication origin [59].

In addition to metabolites, key CCM enzymes are also
involved in replication. In Bacillus subtilis, several catabolic
enzymes are linked to three replication proteins essential
for the initiation and elongation phases of replication: the
DnaC helicase, the DnaG primase and the lagging strand
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Figure 1. Schematic of central carbon metabolism and its main links to repli-
cation. Coloured lines and labels stand for glycolysis (red), gluconeogenesis
(green), tricarboxylic acid cycle (TCA) (blue), pentose phosphate pathway
(PPP) (dark), pyruvate metabolism (Pyr) (orange) and metabolites (violet).
Key metabolic determinants (genes/enzymes and metabolites) connected
to DNA replication in bacteria (green star) or in eukaryotes (red star) are
listed using the following abbreviations: hk, hexokinase; pgi, glucose 6-phos-
phate isomerase; pfk, phosphofructokinase; gapA, glyceraldehyde 3-
phosphate dehydrogenase, NAD-dependent; gapB, glyceraldehyde 3-phos-
phate dehydrogenase, NADP-dependent; pgk, phosphoglycerate kinase;
pgm, phosphoglycerate mutase; eno, enolase; pykA, pyruvate kinase; ldh, lac-
tate dehydrogenase; pta, phosphotransacetylase; ackA, acetate kinase; cit,
citrate synthase; cl, ATP-citrate lyase; aco, aconitase; mdh, malate dehydro-
genase; fh, fumarase; sdh, succinate dehydrogenase; zwf, glucose 6-
phosphate dehydrogenase; H6PD, hexo-6-phosphate pyrophosphokinase;
RPE, ribulose 5-phosphate epimerase; TALDO, transaldolase. Abbreviations
of metabolites are as follows: Ac-CoA, acetyl-CoA; Ac-P, acetyl-phosphate.
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DNA polymerase DnaE. These proteins are loaded early at
the origin during initiation, and may form a ternary complex
in the replisome to carry out DNA melting, RNA priming
and lagging strand synthesis during DNA polymerization
[60,61]. The first group of CCM enzymes important for repli-
cation are subunits of the pyruvate dehydrogenase PDH and
related enzymes. They interact with DnaC, DnaG and the
origin region and inhibit initiation [62–65]. Recently, our lab-
oratories reported that the pyruvate kinase PykA modulates
in vitro the activities of DnaC, DnaG and DnaE, and that
the catalytic (CAT) domain of PykA interacts with DnaE
when the polymerase is bound to primed DNA templates
[66,67]. In vivo, PykA impacts replication in two ways: the
CAT domain stimulates elongation while the C-terminal
PEPut (phosphoenolpyruvate utilizer) domain inhibits
initiation. Interestingly, these phenotypes are independent
from PykA catalytic activity and occur in conditions where
the enzyme is dispensable for growth (e.g. in a gluconeogenic
medium) and does not significantly contribute to the metabo-
lome. Therefore, the replication defects in PykA mutants are a
direct consequence of amino acid residue changes rather than
an indirect consequence of changes in cellular metabolism. It
was thus proposed that PykA typifies a new family of
replication control factors that gears MCR [66].

Genetic studies have been carried out to investigate the
CCM-replication links more comprehensively. In B. subtilis,
these studies uncovered a toolbox of nutrient-dependent acti-
vated CCM-replication links important for replication
temporalization. This toolbox comprises on one side, CCM
reactions ensuring the 3C part of glycolysis and reactions of
the downstream pyruvate metabolism, and on the other
side, the replication enzymes DnaC, DnaG and DnaE.
Mutations in this CCM area suppress replication defects in
dnaC, dnaG and dnaE (but not in dnaI, dnaD, polC, dnaX and
dnaN) conditional mutants through a process involving con-
formational changes in replication enzymes [68]. These
mutations also alter initiation and elongation in a medium-
dependent manner and disturb the metabolic control of repli-
cation [34,69]. Similar links were described in E. coli [70–72]
and possibly C. crescentus [73].

In eukaryotes, CCM determinants (proteins and metab-
olites) found in the nucleus [74–76] often exert moonlighting
replication functions. For instance, the timing of origin
firing depends on histone acetylation promoted by an increase
in nuclear acetyl-CoA. This increase is geared by the redox
metabolic cycle in yeast, and by nuclear forms of the ATP-
citrate lyase and PDH complexes in mammalian cells
[77–80]. In addition, the nuclear glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and lactate dehydrogenase (LDH)
in human cells are integral parts of the transcription cofactor
OCA-S [81,82]. In response to the local NAD+/NADH redox
status, these metabolic enzymes control the association of
OCA-S with the transcription factor Oct-1 for regulating his-
tone H2B expression and S phase progression. Moreover,
core histone gene expression and S phase entry are impeded
by exogenous pyruvate [83] and chromatin and chromatin fac-
tors are important for origin selection, fork rate optimization
and lagging strand priming [84–86]. Collectively, these data
suggest that CCM metabolites and enzymes playing funda-
mental role in histone biology and gene expression [75,87]
also ensure important MCR functions. However, eukaryote
MCR may also operate through histone-independent path-
ways. Indeed, the phosphoglycerate kinase PGK interacts

with the protein kinase CDC7 to stimulate replication initiation
by enhancing the CDC7-mediated activation of the replicative
MCM helicase in human cells [88]. Also, mammalian LDH,
PGK and GAPDH modulate the activity of the replicative
polymerases Polα, Polε and Polδ in vitro [89–91]. We may
also note here that impaired expression of CCM genes delays
the entry of human fibroblasts into the S phase or decreases
the number of cells in this phase [92–94]. Collectively, these
data show that CCM impacts both the initiation and
elongation phases of replication from bacteria to humans.

3. Basic principles of MCR
Here, we propose that MCR is orchestrated by an active pro-
cess organized as a toolbox of overlapping mechanisms
differently activated in response to nutritional stimuli. In
this toolbox, signalling metabolites and cognate CCM pro-
teins convey metabolic information to enzymes of the
initiation and elongation replication machineries for coupling
replication temporalization to metabolism (figure 2). The
transmission of metabolic information is thought to involve
sophisticated (indirect) mechanisms (e.g. MCM helicase acti-
vation by PGK via CDC7 [88]; initiation firing by acetyl-CoA
via histone acetylation [77–80]), although simpler (direct)
mechanisms could also operate (e.g. cAMP binding to
DnaA [59]). Interestingly, MCR appears to have common
roots with metabolism regulation, as the CCM determinants
committed to replication often continuously signal and
sense metabolic fluctuations for achieving metabolome
homeostasis. Hence, our MCR model implies that allosteric
regulation of CCM enzymes by signalling metabolites
coordinates simultaneously metabolome homeostasis and
replication temporalization. The numerous CCM-replication
links described above potentially highlight the diversity of
these coordinating systems and similar mechanisms may be
at play for integrating many cellular behaviours to metab-
olism [46]. Molecular insights in the B. subtilis PykA-driven
MCR are presented below.

4. PykA-driven MCR in B. subtilis
4.1. PykA allosteric regulation
Pyruvate kinases are ancestral, highly conserved homotetra-
mers that carry out the last reaction of glycolysis and
anaplerotic activities in gluconeogenic conditions. Almost
all pyruvate kinases are homotropically activated by the sub-
strate phosphoenolpyruvate and allosterically regulated by
heterotrophic effectors [95]. The mechanism of allosteric regu-
lation involves conformational changes within each subunit
and between neighbouring subunits for stabilizing the
protein in the metabolically active R-state conformation
[95,96]. As mentioned above, the B. subtilis PykA protein
comprises a CAT (catalytic) domain containing the substrate
and effector binding sites, and a PEPut domain. This latter
domain is highly similar to the PEP utilizer domain of pyru-
vate orthophosphate dikinase and other metabolic enzymes
[97]. In these enzymes, the PEP utilizer moves around a flex-
ible arm [98,99] and is phosphorylated at a conserved TSH
motif at the expense of phosphoenolpyruvate and ATP to
drive sugar imports and catalytic or regulatory activities
[98,100–106]. The PEPut domain of PykA is not required for
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the catalytic activity of the enzyme [67,107]. However, it inter-
acts with CAT via a hydrogen bond between E208 (CAT) and
L536 (PEPut), as shown in a structural study of the highly
homologous (72.5% identity) Geobacillus stearothermophilus
PykA [108]. In B. subtilis, this interaction seems to stimulate
PykA activity and to be negatively regulated by phosphoryl-
ation of the T residue of the TSH motif which maps
immediately downstream of the interacting L536 amino
acid (residues 537–539) [66,67]. An AlphaFold2 analysis pre-
dicts two B. subtilis PykA monomer structures with a highly
similar spatial CAT domain and alternative PEPut positions
(figure 3, top left panel) [109,110], indicating that PEPut is
carried by a flexible arm, as in other PEP utilizer containing
metabolic enzymes [98,99]. The tetrameric structures built
from these monomeric predictions also mostly differ in the
PEPut position (figure 3, middle and right panels): this pep-
tide faces the A’ domain of CAT of another subunit in the left
configuration while it is directed outward of CAT in the right
configuration. A close-up view (figure 3, inset) of the PEPut-
A’ region of the left structure suggests a H-bond interaction
between L536 (PEPut) and E2080 (A’), as expected from crys-
tallography studies [108]. Hence, the AlphaFold2 study
predicted two conformers of B. subtilis PykA tetramers in
which PEPut interacts (left configuration) or not (right con-
figuration) with CAT. These configurations are proposed to
be related to the classical R- and T-state of PykA conformers,
respectively [96]. The proximity of T537 with the E2080-L536
H-bound (figure 3, inset) suggests that T537 phosphorylation
inhibits the CAT-PEPut interaction, R-state conformer for-
mation and PykA activity by bringing positive charges at
the CAT-PEPut interface. We infer from these results that
the CAT-PEPut interaction assists the heterotrophic effectors
(AMP and ribose 5-phosphate [111]) in stabilizing the active

R-state conformer and that this stimulation is negatively
regulated by T537 phosphorylation [66,67,96]. Hence, PykA
is a metabolic sensor that resides in individual cells in differ-
ent conformations at levels depending on ligand (PEP, AMP
and ribose 5-phosphate) concentrations and kinase activities
that control PEPut phosphorylation and the CAT-PEPut
interaction to provide the active R-state conformer at a
concentration sufficient for biosynthetic needs and metabo-
lome homeostasis (figure 4, left panel). We foresee that the
pattern of PykA conformers is used by cells for dynamically
characterizing nutritional conditions.

4.2. PykA-driven MCR
In addition to being a key regulator of PykA catalytic activity
and metabolome homeostasis, PEPut operates as a negative
regulator of replication initiation in gluconeogenic growth
conditions [66]. Interestingly, this function strongly depends
on determinants involved in PykA conformers regulation,
namely the CAT-PEPut interaction and T537 phosphoryl-
ation. When these determinants favour formation of the
R-state conformer (i.e. when PEPut efficiently interacts with
CAT), a wild-type initiation activity is found while cells
over-initiate in conditions favouring the accumulation of the
T-state conformer (i.e. when the CAT-PEPut interaction is
impeded) (figure 4, right panel). In addition to these distinct
effects of PykA conformers on initiation, it was shown that (i)
PykA physically interacts with the polymerase DnaE via its
CAT domain when the replication enzyme is bound to
primed DNA [67], (ii) PEPut modulates the strength of this
interaction and its effect on the DnaE polymerase activity
[66,67], and (iii) DnaE is early recruited at replication origins
during initiation [61]. We thus suggest from these data that

bacteria

eukarya

replication
temporalization

nucleus

initiation

elongation

cytosol

metabolome

oscillating
metabolome

signalling
metabolites

signalling
metabolites

allosteric
regulation

allosteric
regulation

replication
enzymes

histone
biology replication

enzymes

initiation

elongation

replication
temporalization

metabolic
enzymes

metabolic
enzymes

Figure 2. Basic principles of the metabolic control of replication. (a) Model for bacteria. CCM signalling metabolites allosterically regulate CCM enzymes for adjusting
the metabolome to the energy afforded by available nutrients. The information contained in signalling metabolites and metabolic enzyme conformers is then
conveyed to replication enzymes for regulating initiation and elongation and temporalizing replication in the cell cycle in a broad range of nutritional conditions.
The transmission of information may involve physical interactions between CCM determinants and replication enzymes. (b) Model for eukaryotes. The cellular metab-
olism oscillates spontaneously and regulates cell cycle progression. Nuclear signalling metabolites and CCM enzymes sense and convey this information for
modulating accordingly replication enzyme activity and replication temporalization through direct ( physical interactions between CCM determinants and replication
proteins) or indirect (through histone biology) pathways. The dashed box represents the nuclear membrane.
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the MCR initiation depends on the effect of PykA conformers
on DnaE activity during initiation. Although different mech-
anisms can be envisioned at this stage of our knowledge, we
tentatively propose a model in which only the R-state confor-
mer interacts with DnaE at initiation sites for reducing the
DnaE polymerase activity and preventing early initiation
(figure 4, right panel). In an alternative model (not shown),
both conformers are recruited at initiation sites by DnaE.
However, while the T-state conformer dramatically increases
DnaE activity and causes early initiation, the R-state confor-
mer allows a proper polymerase activity and initiation
timing. Together, these results suggest that the signalling
system gearing the balance between the R- and T-state
PykA conformers controls simultaneously and dynamically
PykA activity, metabolome homeostasis and MCR initiation.
However, although cells allosterically regulate PykA catalytic
activity in a broad range of nutritional conditions, the PEPut-
driven initiation function of PykA is active in gluconeogenic
conditions but inactive in glycolytic media [66]. This suggests
that the initiation function of PykA conformers depends on
the polarity of the carbon flux travelling CCM and that
cells temporalize initiation through different mechanisms in
glycolytic and gluconeogenic conditions.

As mentioned above, CAT stimulates DNA elongation in
gluconeogenic growth conditions and this moonlighting
activity depends on substrates (ADP and phosphoenolpyru-
vate) binding but not on PykA catalytic activity [66].
Moreover, CAT physically interacts with DnaE when the
polymerase is bound to primed DNA and DnaE is frequently
recruited to and released from replication forks to initiate

DNA synthesis from the RNA primers produced during
lagging strand synthesis [60,112–114]. Together, these results
suggest that PykA is repeatedly recruited by DnaE in the
replisome, allowing a highly dynamic transmission of the
metabolic information contained in PykA conformers to
replication forks. By modulating DnaE activity and fork
speed, this system is proposed to gear the MCR elongation.

5. Conclusion and perspectives
In both prokaryotic and eukaryotic cells, CCM does more than
simply producing precursors and energy for anabolic reac-
tions. It also drives fundamental biological processes. To do
so, many CCM metabolites and enzymes operate as signalling
and sensor molecules that not only carry out metabolome
homeostasis but also ensure moonlighting functions in non-
metabolic activities [46]. DNA synthesis is demanding in
energy and precursors. It must also be completed once
initiated to prevent DNA damage that risk cell survival and
health. It is therefore not surprising that DNA replication is
under a metabolic control. The ever-increasing number of
reports since the 1960s describing the impact of nutritional
conditions on DNA replication temporalization and tight
links between CCM and replication from bacteria to humans
highlights the importance of such a control in all living organ-
isms. However, despite significant efforts, the molecular
mechanism and biological function of MCR remain largely
unknown. This is likely due to the fact that this control
involves a toolbox of complex and overlapping processes
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Figure 3. AlphaFold2 analysis of B. subtilis PykA conformers. Top left panel: AlphaFold2 predicted structure (ranked 0) of the PykA monomer coloured to highlight
the A, B and C domains of the catalytic region (CAT) and PEPut. A monomer with a lower ranking (19) is superposed as a cartoon onto the coloured structure. Both
structures are highly similar, differing mostly by an alternative PEPut position. Right panel: tetrameric structures built from the ranked 0 (leftward configuration) and
ranked 19 (rightward configuration) monomer predictions (two views of each tetramer are provided). They mostly differ in the PEPut position. Inlet: Close-up view of
the PEPut-A’ region of the left tetrameric structure suggesting a H-bound interaction between L536 (PEPut) and E2080 (A’).
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differently activated in response to nutritional stimuli. Because
of their genetic tractability, relative cellular simplicity and
robust cell cycle response to nutrient fluctuations, bacteria
are attractive models for unraveling the mechanism and func-
tion of MCR. The recent discovery that side chain mutations in
the B. subtilis PykA dramatically impact replication temporali-
zation independently of their effect on PykA catalytic activity
and cellular metabolome validates this notion and paves the
way for further studies in this bacterium as well as in distantly
related organisms. Insights from this and other organisms
suggest that (i) CCM elements that signal and sense the cellu-
lar metabolic state for ensuring metabolome homeostasis
are key players in MCR, and that (ii) the metabolic informa-
tion contained in signalling molecules is conveyed to the
replication machinery through protein-protein interactions
physically connecting metabolic and replication enzymes
and/or by inducing conformational changes in histone pro-
teins via post-translational modifications. We foresee that the
CCM-replication links discussed above highlight new PykA-
like multifunctional regulators from bacteria to humans.
Finally, it is interesting to note here that the MCR model pro-
posed here suggests that DNA replication depends on a few
key signalling metabolites in addition to the well-characterized
classical replication control functions [1–3].

Surprisingly, B. subtilis mutants of MCR suffer from pro-
found initiation and elongation defects, causing dramatic
changes in replication compartmentalization and cell cycle
[66]. As these phenotypes occur in cells fully proficient in
‘classical’ replication control functions [1–3], these results
show that MCR plays an important role in DNA synthesis
and that the control geared by ‘classical’ replication functions
is not sufficient to properly time DNA synthesis in a broad
range of nutritional conditions. Regulation of DNA replica-
tion is of prime importance for faithful propagation of the
genetic material to daughter cells. Failures in this control
cause chromosomal lesions (double-strand DNA breaks,
nucleotide misincorporations) with a high mutagenic
potential that increases the risk of genetic diseases like

cancer [4–7]. Towards the beginning of the twentieth century,
it was shown that cancer cells exhibit chromosomal abnorm-
alities, elevated glucose uptake and accelerated glycolysis
flux to lactate even in the presence of sufficient oxygen
(Warburg effect). We know now that genome instability
and altered metabolism are two hallmarks of cancer [115].
Genome instability has been investigated continuously since
its discovery leading to the proposal that it is due to DNA
replication stresses caused by deregulation of initiation and
fork speed. A large core of data shows that these replication
abnormalities are induced by tumorigenesis drivers like
oncogenes, tumour suppressors and/or mutator genes
[116–119]. On the other side, altered metabolism has been
rejuvenated as a research area only recently and since then,
it was shown that the Warburg effect is a crucial component
of malignancy that satisfies bioenergetic and biosynthetic
demands, mitigates oxidative stress and contributes to cell
transformation and metastasis [120,121]. Nowadays, cancer
is thought to originate from mutations caused by replication
stresses, and other hallmarks of cancer, including the altered
metabolism, are thought to be a consequence of these
mutations rather than the cause [116,122,123]. However,
recent studies have shown that altered metabolism impacts
genetic stability. Indeed, mutations in CCM enzymes and
changes in the level of CCM metabolites were shown to
directly cause mutagenic DNA damage, impede DNA
repair and trigger nucleotide imbalance [124–126]. Moreover,
CCM mutations disrupting MCR may cause replication phe-
notypes known to increase genetic instability, and alteration
of the synchrony between the reductive stage of the metabolic
cycle and the S phase in yeast increases the rate of spon-
taneous mutagenesis [66,127]. Collectively, these data
suggest that CCM changes underpinning the Warburg
effect may be an additional root cause of genetic instability
and cancer initiation. It is of interest to note here that the
past two decades have shown that many metabolites pro-
duced by the gut microbiome of mammals enter the
bloodstream, impacting the blood metabolome and the

weak PykA activity

strong PykA activity

metabolome
signalling

metabolites
allosteric
regulation

R-state
conformer

DnaE DnaG DnaC

proper
initiation
timing

metabolic control
of initiation

T-state
conformer

early
initiation

Figure 4. Roles of PykA conformers in metabolome homeostasis and replication compartmentalization. Left panel: CCM signalling metabolites allosterically regulate
the ratio between the active (R-state) versus inactive (T-state) PykA conformers for achieving metabolome homeostasis. Right panel: the R-state PykA conformer is
recruited by DnaE bound to primed DNA at initiation sites for ensuring a wild-type initiation timing. The T-state-conformer does not interact with DnaE at initiation
sites allowing early initiation firing.
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chemical environment of tissues and host cells [128–130]. In
humans, this transport is a major determinant of blood
metabolite variability and human health [131–135]. More-
over, the cross-talk between bacterial metabolites, histone
biology and cancer highlights the links between altered
microbiomes (dysbiosis) and intracellular pools of chemicals
involved in DNA damage, DNA repair and potentially
MCR [136–138]. Finally, it is becoming increasingly clear
that metabolism plays an active role through moonlighting
functions in cellular processes as diverse as transcription,
posttranslational modifications, cell division, apoptosis,
pathogenicity, innate immunity and development [22,36,74–
76,139–147]. Therefore, CCM may provide a toolbox of
links connecting determinants gearing metabolome homeo-
stasis to a wide range of cellular processes in addition to
DNA replication. Future efforts should focus on revealing
the extent and mechanisms by which these determinants
may actively drive and tune main cellular functions.
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