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Abstract

This paper shows that kinks or discontinuities in economic incentive
schemes, such as taxes or subsidies, simultaneously identify agents’ inten-
sive and participation margin responses. The proposed semi-nonparametric
estimator enables the evaluation of such schemes when existing kink and
discontinuity methods are inapplicable due to the presence of both mar-
gins. The paper applies the estimator to evaluate the German subsidy
for rooftop solar panels, a cornerstone of global climate policies. Due to
sizeable responses at both margins, nonlinearities in the programme only
modestly increase its cost-effectiveness. The results highlight the impor-
tance of simultaneously estimating both margins for optimal policy design.

Keywords: Nonlinear Incentives, Bunching, Participation Margin, Solar Subsidies.
JEL codes: H20, H30, C14.

Nonlinear incentive schemes have a wide range of policy applications in sub-
sidy programmes, taxation, product pricing, and public transfers. A major chal-
lenge in their evaluation and optimal design is reliably estimating how agents
react to them at the intensive and participation margins.1 When agents react
solely at the participation margin, the regression kink design (Card et al., 2015)
can be applied to exploit kinks in the incentive scheme.2 Correspondingly, when
there is only an intensive margin response, the bunching design (Saez, 2010) can
be applied. However, agents often respond at both margins simultaneously. In
such cases, estimating the participation and the intensive margin responses is
necessary to evaluate an incentive scheme. Yet the mentioned estimators are not
applicable because each margin biases the estimate of the other margin.
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1The participation margin is also called the extensive margin.
2Kinks are discontinuities in the marginal incentive scheme.
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As a methodological contribution, this paper proposes an estimator for agents’
responses at both margins. The estimator leverages the effect of kinks in an in-
centive scheme to identify the two responses jointly. As an applied contribution,
the paper evaluates the German subsidy for rooftop solar panels. It is a promi-
nent example of a large and successful deployment subsidy for a nascent green
technology.3

To illustrate the identification strategy, Figure 1 presents the histogram of
solar panel adopters in Germany in 2004. The x-axis shows the capacity choice
of adopters in kilowatt-peak (kWp), while the y-axis depicts the number of
adopters.4 Scales are linear in the left panel of the figure and logarithmic in
the right panel. This year, the German subsidy had a kink: the marginal sub-

Figure 1: The histogram of solar panel adopters in Germany (2004) in linear
scales (left panel) and logarithmic scales (right panel).
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sidy rate for adopting a unit of solar capacity decreased discontinuously at 30
kWp (see Figure 2 in Section 1 for an illustration). The red line illustrates the
location of the kink point in Figure 1. Kinks have two effects on the observable
distribution of agents’ choices. First, they cause bunching, i.e., a discrete mass
of agents at the kink point, which is clearly apparent in the left panel of Fig-
ure 1. Intuitively, compared to a counterfactual linear subsidy, the kink reduces
marginal payments to agents above the kink point. Thus, they react at the in-
tensive margin by reducing their capacity. Consequently, the distribution above

3Gerarden (2022) and Nemet (2019) show that the German programme was instrumental
in driving the enormous price decreases in solar panels over the last two decades, making them
one of the cheapest sources of electricity in 2021 (IRENA, 2022).

4The capacity of a solar panel is the amount of electricity it produces under standardised
conditions. It depends on the size and efficiency of the adopted solar panel.
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the kink point shifts into the distribution below the kink point; at the kink point,
the two parts collide and create a mass point. Second, kinked incentives induce
a slope change in the choice distribution at the kink point, which is strikingly
apparent in the right panel of Figure 1. Intuitively, compared to a counterfactual
linear subsidy, agents receive lower total payments the further above they locate
from the kink point. It triggers responses at the participation margin, which tilts
the distribution above the kink point clockwise (for a detailed illustration of the
two responses, see Section 1.1). Importantly, these observable effects are absent
in years when the German subsidy was linear (see Figure 7 in Section 3.1). It
confirms that, indeed, the kink causes them. Both observable effects, bunching
and the slope change, simultaneously depend on the magnitude of both response
margins, intensive and participation. However, they also depend on them dis-
tinctly. Therefore, modelling the dependence of the two observable moments on
the two margins enables their simultaneous estimation.

The main identifying assumption is the smoothness of the counterfactual
choice distribution absent the kink. Blomquist and Newey (2017) and Bertanha
et al. (2023) point out that the classic bunching estimator implicitly relies on a
parametric functional form assumption on this distribution. As a consequence,
it is vulnerable to misspecification. In this paper, I extend the classic approach
in three dimensions to alleviate these concerns. First, the paper shows that
both margins are point-identified under a weaker assumption: the counterfac-
tual distribution is infinitely differentiable, and the derivatives are sufficiently
regular. Second, leveraging this identification result, the paper proposes a semi-
nonparametric estimator that employs a data-driven selection of the specifica-
tion. Compared to the classic bunching estimator, this procedure reduces bias
by 11 percent and increases precision by two orders of magnitude in my appli-
cation. Third, the paper proposes placebo tests to alleviate concerns of specifi-
cation bias due to an eventual violation of the smoothness assumption. To this
end, it exploits additional observations that do not face a kink. Notably, I do not
find evidence of specification bias in my application.

The novel estimator offers several advantages. Exploiting the quasi-experimental
variation created by the kink circumvents the need for exogenous supply or de-
mand shifters, instruments, control variables, covariates, or panel data to es-
timate the two margins. The estimation relies solely on the easily observable
cross-section of agents’ choices. An adaptation to exploit notches, i.e., discon-
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tinuities in incentive schemes, is straightforward. These low informational and
identifying requirements enhance its applicability for estimating behavioural re-
sponses to taxes, subsidies, transfers, and product prices. A disadvantage of
the estimator is that, like regression kink, regression discontinuity, and classic
bunching designs, it estimates local responses. However, this limitation can
often be mitigated by estimating responses at multiple kink points.

Deployment subsidies for nascent green technologies, such as the German
solar subsidy, have moved to the forefront of climate action (Podesta, 2023).
They can facilitate the direct displacement of polluting activities and catalyse
green innovation (Acemoglu et al., 2012). However, one major caveat is their
potential burden on public finances. To illustrate, the annual payments for the
solar programme in Germany constituted 0.6 per cent of total government ex-
penditure, mainly benefiting wealthy owners of rooftops. A strategy to mitigate
these costs is subsidies that are nonlinear in a technology’s attributes. For ex-
ample, the German government implemented a subsidy that is nonlinear in the
capacity of solar panels adopted by households and firms. Two questions arise.
First, was the subsidy schedule effective at reducing costs without compromis-
ing aggregate adoption goals? Second, what is the most cost-efficient nonlinear
schedule to achieve a certain aggregate capacity goal?5 The answers to both
questions depend critically on how adopters react to the subsidy. Applying the
novel estimator to multiple kinks in the German schedule reveals sizeable re-
sponses at both margins. As a consequence, compared to a simple linear sub-
sidy, the government’s scheme only modestly reduces costs by 0.14 percent.
The most cost-effective nonlinear subsidy triples these savings to 0.45 percent;
however, they remain modest overall. A third counterfactual exercise reveals
that the interaction of the participation margin with the intensive margin limits
the scope for more substantial cost reductions via nonlinear pricing. A fourth
exercise underlines the importance of considering both margins when designing
nonlinear incentive schemes: optimising the subsidy based on intensive mar-
gin estimates alone would increase the programme’s costs instead of decreasing
them.

The results of this paper indicate that nonlinearities can reduce the public
costs of deployment subsidies; however, cost savings can be seriously limited
by the interaction of behavioural responses at both margins. Hence, nonlinear

5Aggregate capacity is the sum of the capacity of installations in a given period.
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subsidies are not a panacea for cost-effectiveness and can even trigger detri-
mental effects. Estimating both response margins is essential for their optimal
design.

Related literature. Methodologically, this paper builds on the semi-nonparametric
sieve estimation literature (see Chen, 2007). It is closely related to Gautier and
Gaillac (2021) and Iaria and Wang (2024), who use the same smoothness as-
sumption for identification in models distinct from mine: the nonparametric
estimation of densities and discrete choice models. Moreover, the paper builds
on the bunching and regression kink design literature. The bunching design
estimates intensive margin responses using bunching at kink and notch points
within the budget set, but it does not account for participation margin responses
(see Saez, 2010, Chetty et al., 2011, Kleven and Waseem, 2013, and reviews by
Kleven, 2016 and Bertanha et al., 2023). Exceptions are Gelber et al. (2021) and
Marx (2024), who estimate both margins exploiting panel data. As in my appli-
cation, data often lacks a panel dimension.6 Kleven (2016) discusses participa-
tion margin responses as a threat to identification in bunching designs. Indeed, I
find that ignoring the participation margin leads to a 12 percent downward bias
in my intensive margin estimate.

The participation margin responses at kink points can be estimated using a
regression kink design (see Nielsen, Sørensen and Taber, 2010 and Card et al.,
2015). However, if there is a positive intensive margin, the classic regression
kink design suffers from endogeneity because agents sort into treatment. Ignor-
ing this effect biases the results by 5% in my application. The simultaneous es-
timation in my paper addresses these biases of the classic approaches. Gerard,
Rokkanen and Rothe (2020), Bachas and Soto (2021), and Caetano, Caetano
and Nielsen (2024) propose methods to correct for endogenous sorting in the
regression discontinuity design and in regression models. Similarly, Kopczuk
and Munroe (2015) control for, but do not estimate, standard participation mar-
gin responses when investigating market unravelling as a response to a notch.
These methods do not aim at simultaneously estimating intensive and partic-
ipation responses. Blomquist et al. (2021), Bertanha, McCallum and Seegert
(2023), and Goff (2022), propose conditions for the partial identification of in-
tensive margin responses in bunching designs. My paper proposes conditions for
point-identification, which is necessary for conducting my counterfactual exer-

6Repeated cross-sectional data is insufficient to apply their approaches.
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cises. Bertanha, McCallum and Seegert (2023) show that point-identification
in the classic bunching design can also be achieved using covariates. As in my
application, data often lacks such variables.

From an applied perspective, the paper contributes to the literature evaluat-
ing subsidies for solar panels. To the best of my knowledge, it is the first paper to
evaluate and optimise the cost-effectiveness of nonlinearities in solar subsidies.
One strand of the solar literature uses structural models to study the dynamics of
the adoption decision (e.g., De Groote and Verboven, 2019; Feger, Pavanini and
Radulescu, 2022; Langer and Lemoine, 2022; Gerarden, 2022). Another strand
of the solar literature uses reduced-form methods.7 For example, Germeshausen
(2018) uses a difference-in-difference approach to estimate the treatment effect
of introducing a new kink in Germany in 2012. The paper does not estimate
elasticities at the two adoption margins nor evaluate the cost-effectiveness of
counterfactual schemes.8 It relies on a parallel trend assumption, which is un-
necessary in my approach and is violated in my sample. Theoretically, my coun-
terfactual exercises build on the literature on second-degree price discrimination
with intensive and participation margin responses (see Rochet and Stole, 2002,
Saez, 2002, and Jacquet, Lehmann and Van der Linden, 2013). Using the theo-
retical results in Rochet and Stole (2002), I solve for the optimal mechanism in
a concrete empirical application.

The rest of the paper proceeds as follows. Section 1 outlines the model and
discusses identification. Section 2 presents the estimator. Section 3 discusses the
empirical application. Section 4 evaluates the policy, and Section 5 concludes.

1 The model

Consider the standard model used in the bunching literature (see Kleven, 2016
and Bertanha et al., 2023). There is a mass of heterogeneous agents indexed by
i. They choose a quantity q ∈ R+ for which they receive a payment S(q). They

7Hughes and Podolefsky (2015) use geographical discontinuities in California to study
adoption behaviour. Such discontinuities are not available in Germany. Srivastav (2023) studies
feed-in-tariffs and their effect on the financial frictions faced by adopters.

8Methodologically, Germeshausen (2018) follows Best and Kleven (2017). Kleven et al.
(2013), Ruh and Staubli (2019), Slemrod, Weber and Shan (2017), and Besley, Meads and
Surico (2014) are similar. All these papers use a difference-in-difference approach, controlling
for or using bunching. In the same vein, Myhre (2021) combines bunching with a regression
discontinuity design in the time dimension.
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solve a standard maximisation problem:

πiv = max
q
S(q)− civ(q), (1)

where the function civ(.) denotes the increasing and convex variable cost of agent
i; πiv denotes the variable profit. Contrary to the standard model, this paper
adds a participation margin to the decision problem. To this end, assume that
agents participate if and only if πiv ≥ cif , where cif denotes the fixed cost of
participation of agent i. The fixed and variable costs are unobservable and may
also contain unobservable benefits. Note that, in particular, the fixed cost may be
homogeneous and equal to zero; hence, the model nests the standard bunching
model. In an income tax context, q is gross income, S(q) is the net of tax
income, civ(q) is the effort-cost of producing income q, and cif is the fixed cost
of participating in the labour market. In the application of this paper, q is the
capacity of the solar panel, S(q) is the subsidy payment, civ(q) is the variable
cost of adopting capacity q, and cif is the fixed cost of adopting a solar system.
For ease of exposition, consider the example of solar subsidies from now on.

The subsidy S(.) in (1) can take two forms: the observed kinked subsidy
Sk(.) and the counterfactual linear subsidy Sl(.). Comparing adopters’ reac-
tions under the kinked subsidy to reactions under the linear subsidy is useful for
deriving the estimator. However, this comparison is a thought experiment. The
estimator does not exploit changes in a subsidy scheme over time but the effect
of the kinked scheme on the cross-section of adopters in a given period. The
kinked subsidy Sk(q) is:

Sk(q) = slq, for q ≤ qK ; (2)

Sk(q) = slq
K + (q − qK)ρsl, for q > qK . (3)

The kink point is denoted by qK ; sl is the marginal subsidy rate below the kink
point, and ρ sl is the marginal subsidy rate above the kink point, where ρ ∈ (0, 1)

is the relative change in subsidy rates. The counterfactual linear subsidy Sl(q)
is:

Sl(q) = slq, for all q. (4)

7



Figure 2: The kinked subsidy Sk and the counterfactual subsidy Sl.

qK

S(q)

q

sl

ρ sl

Note: The thick solid line shows the kinked subsidy Sk. The dashed line shows
the counterfactual subsidy Sl.

Figure 2 illustrates both subsidies. Denote by fk(.) the observable distribution
of adopters’ choices under the kinked subsidy Sk and by fl(.) the counterfac-
tual distribution of adopters’ choices under the linear counterfactual subsidy Sl.
Technically, fl(.) and fk(.) are measures.9

1.1 The graphical intuition behind identification

This section gives graphical intuition on how the distribution of adoptions under
the kinked scheme Sk depends on the intensive and the participation margin. It
explains the effect on the distribution using a hypothetical change in the subsidy
schedule from Sl to Sk. Depending on their production choice under the linear
subsidy, the kink affects adopters differently. There are three groups of adopters.

The first group produces more than the kink point under both subsidy schemes.
The thin purple line in the left panel of Figure 3 illustrates the marginal cost
curve of such an adopter locally around the kink point. Additionally, the fig-
ure depicts the kinked marginal subsidy as a solid black line and the linear
marginal subsidy as a dashed line. The change in subsidy has two effects on
these adopters. First, they face a lower marginal subsidy under the kinked
scheme than under the linear scheme. Therefore, they adopt less capacity. Note

9For example, for any interval of capacity [q1, q2],
∫ q2
q1

fk(q)dq is the mass of adopters in
the interval under the subsidy Sk(.).
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Figure 3: The effect of the kinked scheme Sk on adopters above the kink point.

qK

sl

S ′(q)

civ
′
(q)

q

∆π

πk

qK

sl

S ′(q)

civ
′
(q)

q

∆π

πk

Note: The thick black line depicts the kinked marginal subsidy S ′
k, and the

dashed line depicts the linear marginal subsidy S ′
l . The thin purple lines il-

lustrate the marginal cost curves civ
′ of adopters who, counterfactually, adopt

above the kink point. The capacity choice under the kinked scheme, depicted
by the full dot, is lower than the choice under the linear scheme, depicted by
the empty dot. The adopter in the right panel bunches at the kink point. The
two coloured areas depict the variable profit under the linear subsidy. The light
green area πk depicts the variable profit under the kinked subsidy, and the dark
green area ∆π depicts the change in profit.

that the optimal choice under each scheme is where the marginal cost curve
crosses the marginal subsidy curve. The empty dot depicts the optimal choice
under the counterfactual; the full dot depicts the optimal choice under the kinked
scheme. The figure shows that the optimal capacity is lower under the kinked
scheme than under the linear scheme. Second, the total subsidy payment under
the kinked scheme is lower than under the linear scheme. Therefore, adopters
earn less variable profit. Fixed costs are heterogeneous, and therefore, some
adopters stop participating. Note that the variable profit is the area between the
marginal cost and the marginal subsidy curve. The left panel of Figure 3 depicts
the variable profit under the linear scheme as the total coloured area. The light
green area πk is the variable profit under the kinked scheme. The dark green
area ∆π is the reduction in profit under the kinked subsidy.

The second group of adopters produces above but close to the kink point
under the linear scheme. The thin purple line in the right panel of Figure 3
illustrates the marginal cost curve of such an adopter locally around the kink
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point. Their marginal cost curves cross the kinked marginal subsidy precisely
between the two marginal rates. Again, the change in subsidy has two effects on
them. First, they reduce production precisely to the kink point, i.e., they bunch
at the kink point. Second, they lose profit ∆π, depicted as the dark green area
in the right panel of Figure 3. Again, due to heterogeneous fixed costs, some of
them stop participating under the kinked scheme.

The third group of adopters produces less than the kink point under both sub-
sidy schemes. Their marginal cost curves cross both marginal subsidy schemes
below the kink point. Therefore, they are not affected by a change in the scheme.
They produce the same amount and earn the same profit under both schemes.
Their participation does not change (for an illustration, see Figure 11 in Ap-
pendix B.1).

The distinct effect of the kinked subsidy on these three groups of adopters
affects the distribution of adoptions. First, to better understand the effect on the
distribution, consider the case where fixed costs are homogeneous and equal to
zero. As a consequence, there are no participation responses. This is the case
considered by Saez (2010). The left panel of Figure 4 depicts the counterfactual
measure fl as a black dashed line and the observable measure under the kinked
subsidy fk as a red line. Above the kink point, the change in schemes has two
effects on the measure. First, the measure shifts to the left because adopters
reduce production; second, the measure changes shape because the distribution
of adopters’ mass changes.10 At the kink point, there is a mass point B, i.e., the
bunching mass. It consists of adopters from the second group. Counterfactually,
their mass is the shaded red area. These adopters reduce production; however,
they hit the kink point qK when doing so. By reaching the kink point, they are
no longer affected by the subsidy change. Therefore, they "bunch" precisely at
the kink point. Below the kink point, the measures under the kinked and linear
schemes are the same; adopters in this range are not affected by the change in
schemes. How is the measure of adoptions, as illustrated in Figure 4, useful to
identify the intensive margin response? Consider the adopter depicted by the
thin purple marginal cost curve in the right panel of Figure 4. Her marginal
cost crosses the lower marginal subsidy rate exactly at the kink point. The lit-

10Depending on the exact response, the mass in each interval increases or decreases because
mass needs to be conserved. It is the standard effects of a change-in-variable on a measure, i.e.,
the effect of the Jacobian.
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Figure 4: The observable measure fk when there is only an intensive margin.

qK

fk(q)

q

B

∆q

qK

sl

S ′(q)

civ
′
(q)

q

∆q

Note: The left panel shows the counterfactual measure fl as a dashed black
line and the observable measure fk as a red line. At the kink point, there is a
mass point B. The right panel shows the marginal cost curve of the marginal
buncher. This agent reduces capacity by ∆q. The dots in the right panel show
the marginal buncher in the measure of adoptions. Adopters in the shaded area
to her left bunch at the kink point.

erature calls this adopter the "marginal buncher" (see Saez, 2010). In response
to the change in marginal subsidy, the adopter reduces production by ∆q. The
dots in the left panel of Figure 4 show the marginal buncher in the measure of
adoptions. If marginal cost functions do not cross, all adopters in the shaded
area to her left "bunch" at the kink point. Since mass is preserved, the bunching
mass is approximately proportional to the reduction in the marginal buncher’s
production ∆q. The bunching mass identifies the response ∆q, which, under
an additional assumption on the cost function, identifies the intensive margin
elasticity.

Next, consider the case when fixed costs are present and heterogeneous. Fig-
ure 5 illustrates the consequent participation effects on the measure of adoptions.
The blue line illustrates the measure when there are responses at both margins.
In comparison, the red dash-dotted line illustrates the measure when there is a
response only at the intensive margin; the black dashed line illustrates the coun-
terfactual. Again, the range below the kink point is unaffected by the subsidy
change. Above the kink point, adopters from the first group illustrated in Figure
3 suffer from a profit loss despite adopting less capacity. Due to heterogeneous
fixed costs, some of them stop participating; hence, the loss ∆π causes a drop in

11



Figure 5: The observable measure fk when there are responses at both margins.

qK

fk(q)

q

B

∆f ⇐ ∆π

Counterfactual
Only intensive margin
Both margins

Note: The change in profit ∆π causes a change in participation ∆f . Above
the kink point, the change in profit increases in capacity. Therefore, the change
in participation increases in capacity, causing a slope change in the measure.
Adopters at the kink point also react at the participation margin. Therefore,
there is less bunching.

the participating mass ∆f . The larger the capacity q, the larger the loss in profit
∆π. Therefore, the larger the capacity q, the larger the drop in participation ∆f .
This effect is responsible for the slope change in the measure.11 As in a regres-
sion kink design (e.g., see Card et al., 2015), the kink in the subsidy causes only
a small change in incentives ∆π. Consequently, the change in behaviour ∆f
is also small. However, the effect of interest depends on ∆f/∆π, which, as in
the regression kink design, makes it possible to exploit even small changes ∆f
and ∆π for identification. At the kink point, adopters from the second group
also suffer from a loss in profit; consequently, some of them stop participating.
The bunching mass B decreases from the empty red dot to the full blue dot.
Appendix D.7 shows that this effect biases the classic bunching estimates.

Note that the theoretical prediction, illustrated in Figure 5, is strikingly sim-
ilar to the observed adoption behaviour in Figure 1. Contrary to the counter-
factual, the measure under the kinked subsidy is observable. The observable
bunching mass and the slope change distinctly depend on the magnitudes of
both margins. Under some assumptions, it is possible to formalise the depen-

11These statements provide intuition but implicitly assume sufficiently regular responses.
See Section 1.2 below for the exact assumptions necessary for identification
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dence of each part of the distribution on the magnitude of the two margins. Two
observable moments, bunching and slope change, are then sufficient to identify
the unknown magnitudes of the two margins. The following section carries out
this exercise.

1.2 The distribution of adoptions

This section derives how the observed distribution of adoptions under the kinked
subsidy depends on the three unknowns: the intensive margin elasticity, the par-
ticipation margin elasticity, and the counterfactual distribution. Remember, the
counterfactual distribution fl(.) is the capacity distribution under the counter-
factual linear subsidy Sl(.); the capacity ql denotes the counterfactual choice of
an adopter.

Assumption 1 (Intensive margin). For small variations in the subsidy and adopters

close to the kink point, the intensive margin response is isoelastic and bounded.12

Assumption 2 (Participation margin). For small variations in the subsidy and

capacities close to the kink point, the participation margin response is isoelastic

and bounded.

Denote the intensive margin elasticity by ϵ and the participation margin elas-
ticity by η; ϵ, η denote their upper bounds. Assumption 1 is standard in the
bunching literature. It is a local parametric approximation to the nonparametric
variable cost function. Assumption 2 is simply the corresponding assumption
for the participation margin. It is a local parametric approximation to the non-
parametric distribution of total costs.

Theory predicts that the bunching mass is located precisely at the kink point.
However, in practice, the excess mass scatters around the kink point due to
agents’ optimisation errors. The literature calls this phenomenon non-sharp
bunching. To account for non-sharp bunching, it is standard in the bunching
literature to choose a bunching interval [qL, qH ] around the kink point after vi-
sual inspection of the histogram (see Kleven, 2016). The literature implicitly

12Formally, small variations in the subsidy means for marginal subsidy rates s ∈ [ρsl, sl] and
total payment S(q) ∈ [Sk(q), Sl(q)]. Close to the kink points means for counterfactual capacity
in a small interval (q, q) around the kink point.
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assumes that non-sharp bunching is limited to this interval. Note that bunch-
ing in my application is very sharp (e.g., see Figure 1). Therefore, I follow the
standard approach in this respect.13

Proposition 1 (The observed density). Under Assumptions 1 and 2, and close

to the kink point, the observable measure fk(.) is a function of three unknowns:

the intensive margin elasticity ϵ, the participation margin elasticity η, and the

counterfactual measure fl(.). Three parts of the observable measure fk(.) de-

pend distinctly on the three unknowns:

fk(q) = fl(q), for q < qL; (5)

B =

∫ qHρ−ϵ

qL
R(ql, ϵ)

ηfl(ql)dql

qH − qL
, for q ∈ [qL, qH ]; (6)

fk(q) = R(q ρ−ϵ, ϵ)ηfl(q ρ
−ϵ)ρ−ϵ, for q > qH . (7)

If bunching is sharp qL = limq↑qK and qH = limq↓qK and B is a mass point.

Note: The variable qK denotes the kink point; [qL, qH ] denotes the bunching inter-

val; ρ denotes the relative change in marginal subsidy rates, and the function R(., ϵ)

is the net subsidy payment to an adopter under the kinked scheme relative to the sub-

sidy payment under the counterfactual scheme. The definition of R(., ϵ) is in Appendix

A.1.1.

The proof of Proposition 1 is in Appendix A.1. Below the bunching interval,
the observable measure fk(.) depends only on the counterfactual measure fl(.).
In the bunching interval, there is an observable mass B. The mass depends on
all three unknowns. The measure above the bunching interval depends on all
three unknowns as well. However, generically, all observables depend on the
three unknowns distinctly, a property crucial for identification.

1.3 Identification

This section shows under which conditions the observed measure fk(.) identi-
fies the three unknowns. The pseudo-parameter fl(.) in Proposition 1 is infinite-

13 Bunching in Figure 1 is much sharper than, for example, in Chetty et al. (2011). A slight
scattering of the bunching mass around the kink point is visible. It can be explained by the
unavailability of the exact optimal system size at the purchase date. For papers that explicitly
consider non-sharp bunching see Anagol, Davids and Lockwood (2022), Bosch, Dekker and
Strohmaier (2020), and McCallum and Navarrete (2022).
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dimensional. Equation (5) shows that below the bunching interval, the observ-
able measure fk(.) is equal to fl(.). Therefore, fl(.) is identified for values
smaller than qL. However, fl(.) is part of Equation (6) and (7) evaluated at
values larger than qL. The function is unobservable at these points. For this rea-
son, the elasticities ϵ and η are not identified without further restrictions on the
counterfactual distribution fl(.). As noted by Blomquist and Newey (2017) and
Bertanha, McCallum and Seegert (2023), the same problem also appears for the
identification of the intensive margin in the classic bunching design. The classic
design solves this problem by implicitly relying on a parametric functional form
assumption on the counterfactual distribution, making it vulnerable to misspeci-
fication (see Bertanha et al., 2023 for a detailed discussion). This section shows
that a weaker smoothness assumption allows for the point-identification of both
elasticities without restricting fl(.) to a parametric function.

Consider a sufficiently large interval of quantities (q, q) ⊋ [qL, qHρ
−ϵ] around

the kink point and a transformation of the counterfactual measure fl(.). For ease
of exposition, consider a logarithmic transformation of fl(.) and an interval such
that ln qK − ln q = ln q − ln qK .

Assumption 3.a (Smoothness a). The logarithm of the counterfactual measure

ln fl(.) is infinitely differentiable in ln ql at each point in (q, q) and the deriva-

tives are bounded by∣∣∣∣∣d(p) ln fl(ql)

d ln q(p)l

∣∣∣∣∣ ≤M
p!

(ln q − ln qK)p
for all p ∈ N, (8)

where the bound M > 0 denotes a large real number.

Intuitively, this assumption states that the logarithm of the counterfactual
measure is sufficiently smooth. It is infinitely differentiable with sufficiently
well-behaved derivatives. Note that the assumption is weaker than assuming
the derivatives are all bounded since the fraction p!/(ln q − ln qK)p diverges to
infinity as p goes to infinity. Therefore, the assumption only states that the
derivatives do not go to infinity too fast as p increases. Note that ϵ, M , q,
and q are assumed to fulfil the properties above but may be unknown to the
econometrician.

Alternatively, consider the following assumption:
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Assumption 3.b (Smoothness b). The logarithm of the counterfactual measure

ln fl(.) has a locally convergent power series representation:

ln fl(ql) =
∞∑
p=0

γp

(
ln

ql
qK

)p
for all ql ∈ (q, q), (9)

where γp =
d(p) ln fl(qK)

d ln q(p)l

/p!.

While Assumption 3.a is more intuitive, it implies the slightly weaker As-
sumption 3.b (see Lemma 10 in Appendix B.3 for then proof). The weaker
Assumption 3.b is sufficient for the results in the rest of the paper. An exten-
sive and flexible class of functions fulfils these assumptions. For example, it
includes: finite polynomials; the probability distribution functions of the ex-
ponential, normal, and type-I generalised extreme value distribution; any finite
mixture of these probability distribution functions; any infinitely differentiable
function with bounded derivatives; any finite mixture or composition of such
functions. Assumption 3.a or 3.b implies that ln fl(.) has a convergent power se-
ries representation at each point in the interval (q, q). Such functions are called
real analytic on the interval (q, q). See Gautier and Gaillac (2021) and Iaria and
Wang (2024) for identification results using such functions in other applications.

Equations (6) and (7) form a simultaneous, nonlinear system of equations.
Intuitively, they provide infinitely many moments, i.e., one for each q, to iden-
tify the two parameters ϵ and η. However, as acknowledged by Newey and
McFadden (1994), it is inherently difficult to prove identification in nonlinear
models. A common solution in the estimation of nonlinear models is to impose
an additional condition:

Condition 1 (Global rank condition). The true counterfactual measure fl(.)

fulfils the following property: there exits a q such that Equations (6) and (7)

have a unique intercept in the parameters (ϵ, η).

For a formal definition of Condition 1 see Appendix B.4.1. The condition
can be verified ex-post estimation. See Appendix D.6.4 for the estimates in the
application of this paper. Moreover, Lemma 11 in Appendix B.4.2 provides
a series of very general sufficient conditions on fl(.) that guarantee Condition
1 holds. In particular, the lemma shows that Condition 1 holds generically.
Moreover, the lemma shows that the condition holds if d ln fl(.)/d ln q < −1;
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a property that holds true in the application of this paper (see Appendix D.6.4).
Note that the necessity of Condition 1 is unrelated to fl(.) being parametric or
nonparametric; in particular, the lemma shows that the condition is not neces-
sary for the identification of the intensive margin when there is no participation
margin. Appendix B.4.4 discusses the economic intuition behind Condition 1.

Proposition 2 (Identification). Under Assumptions 1, 2, 3.b and Condition 1,

the observable measure fk(.) identifies the counterfactual measure fl(.), the

intensive margin elasticity ϵ, and the participation margin elasticity η.

The proof is in Appendix A.2. Intuitively, due to Assumption 3.b, it is
possible to use the pseudo-parameter θ = (ϵ, η, γ) instead of (ϵ, η, fl), where
γ = (γ0, γ1, ...) is the infinite sequence of parameters in Equation (9). Propo-
sition 2 shows that there exists a population criterion with a minimum at the
true θ.14 Intuitively, observations below the bunching interval uniquely identify
γ, which, due to analyticity, uniquely identifies the nonparametric counterfac-
tual distribution. Condition 1 implies that observations in the bunching interval
and observations above the bunching interval jointly identify the two response
margins. Moreover, Assumption 3.b implies that the population criterium is
continuous in θ and that the parameter space is compact. Therefore, minimising
the population criterion is a well-posed problem.15

Proposition 2 has three important implications. First, the result allows de-
riving a point-estimator of the two response margins (see Section 2). Such
point-estimates are necessary to conduct the counterfactual exercises in Section
4. Second, it is not necessary to restrict fl(.) to a parametric functional form,
which alleviates concerns of specification bias. Third, since fl(.) is a nonpara-
metric object, the specification of the estimator can be selected using standard
nonparametric estimation techniques (see Section 2)

1.4 Further notes on Proposition 2

Note that Proposition 2 does not rely on additional assumptions on the param-
eters of the subsidy scheme qK , sl, and ρ, i.e., the location and the size of the

14The population criterion is the square distances of the model to the true observable mea-
sure. See Equation (17) in Appendix A.2.

15In particular, no additional completeness condition, such as in nonparametric instrumental
variable problems, is necessary.
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kink.16 These variables may be randomly chosen by the policymaker or endoge-
nous. Moreover, the proposition does not rely on additional assumptions on ϵ
and η. In particular, η may be zero and is identified as such. This is the case
when, locally, fixed costs are not heterogeneous. Therefore, the model nests the
classic bunching estimator with only intensive margin responses. In principle, it
is applicable whenever the classic bunching model is applicable.

Following the non-structural econometric literature, Assumptions 1 and 2
are reduced form assumptions on endogenous objects. However, Appendix
B.2.1 shows that they are equivalent to the structural Assumptions 4 and 5: the
variable cost function and the distribution of total costs are locally isoelastic. As
a consequence, locally, the elasticities ϵ and η are structural parameters of the
problem. Moreover, the counterfactual choice ql is equivalent to the adopters’
type-parameter; hence, the nonparametric counterfactual distribution fl(.) is a
structural pseudo-parameter. Note that Assumptions 1 and 2 do not rule out a
correlation between fixed and variable costs. See Appendix B.2.1 for a detailed
derivation of these points.

Assumptions 3.a and 3.b use a logarithmic transformation of fl and q.17 One
could also use other strictly increasing and continuous transformations. In par-
ticular, one could use the identity, i.e., no transformation. However, the loga-
rithmic transformation has the advantage that its series expansion contains the
uniform distribution, the Pareto distribution, and the log-normal distribution as
special cases. These are common distributions for random variables on a posi-
tive domain. Moreover, Figures 1 and 7 show that the observed distributions are
very close to linear on a logarithmic scale in the empirical application of this pa-
per. This shape suggests that the counterfactual distribution is close to a Pareto
distribution; hence, it is advantageous to use the logarithmic transformation.

The following appendices discuss Proposition 2 further. Appendix B.4.3 dis-
cusses conditions for local identification. Appendix B.6 compares Proposition 2
to the identification results with only intensive responses in Chetty et al. (2011),
Blomquist and Newey (2017), Bertanha, McCallum and Seegert (2023), and

16The identification result in Proposition 2 does not rely on an assumption about the size of
the kink. However, the size influences the properties of the estimator presented in Section 2.
Large kinks have the advantage of creating stronger variation. Hence, everything else equal,
estimates have lower variance. Small kinks have the advantage that, as discussed by Kleven
(2016), estimates have smaller specification biases when Assumptions 1-3.b only hold approxi-
mately.

17The assumptions imply that fl(.) is uniformly strictly larger than zero.
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Goff (2022). In particular, Blomquist and Newey (2017) show that, even when
bunching is sharp, the bunching mass does not identify the intensive margin elas-
ticity if fl(.) is differentiable only finitely many times. Appendix B.6 discusses
why their non-identification result does not contradict Proposition 2. Moreover,
Appendix B.7 illustrates Proposition 2 using simulations. It illustrates that, un-
der Assumption 3.b, both elasticities are identified even when bunching overlaps
with a hump in the counterfactual distribution and when the bunching interval
is large. Appendix B.8 generalises the result in Proposition 2 to the case when
there is a discontinuity (i.e., a notch) in the incentive scheme.

2 Estimation

Figure 6 illustrates the estimation using the distribution of solar panel adoptions
in Germany in 2004. This year, the German subsidy had a kink at a capacity
of 30 kWp, marked by the red line in the figure. The black dots show the nor-
malised histogram and the black bar depicts the mass in the bunching interval.
Scales are logarithmic, and the kink point is normalised to zero. Intuitively, the
estimation minimises the distance between the observed log-histogram and the
model in Proposition 1. The blue line depicts the estimated model. The purple
dashed line depicts the estimated counterfactual distribution.

The next paragraphs describe the estimation in detail. A first step constructs
the variables ̂ln f(qj), an estimate of the log-density at capacity qj , and l̂nB,
the logarithm of the normalised number of adopters in the bunching interval
[qL, qH ]. These are the black dots and the black bar in Figure 6. See Appendix
C.1 for the details of their estimation.

The pseudo-parameter fl(.) in Proposition 1 is infinitely dimensional. There-
fore, I use a semi-nonparametric sieve estimator (see Chen, 2007):

ln fl(q) =

P (n)∑
p=0

γp

(
ln

q

qK

)p
. (10)

The vector (γ0, ..., γP ) denotes the parameters of the series and P (n) denotes the
order. It converges slowly to infinity as the sample size n converges to infinity.
The interval [b, b] ⊋ [qL, qH ] is the bandwidth. It is the interval of values around
the kink point used for estimation, i.e., the range of qj . Note that the bandwidth
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Figure 6: The distribution of adoptions in 2004 with the estimated model.
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Note: The x-axis shows the normalised logarithm of capacity. The y-axis shows
the logarithm of the density. The black dots show the logarithm of the histogram;
the number of observations in a bin is normalised by the bin size and the total
number of observations. The black bar shows the mass in the bunching inter-
val. The red line marks the kink point. The estimation minimises the distance
between the data in black and the model in blue. The dashed purple line depicts
the estimated counterfactual.

is not to be confused with the bin sizes of the log-histogram.
The estimation follows a two-step least square procedure. It iteratively min-

imises the square distance between the model and the log-histogram outside and
inside the bunching interval until the estimates converge:

(η̂, γ̂P ) = argmin
η,γP

∑
qj∈[b,qL]∪[qH ,b]

(
̂ln f(qj)− ln fk(qj | ϵ̂, η, γP )

)2
,

ϵ̂ = argmin
ϵ

(
l̂nB − lnB(ϵ, η̂, γ̂P )

)2
, (11)

where fk(qj | ϵ̂, η, γP ) and B(ϵ, η̂, γ̂P ) denote the model in Proposition 1 as a
function of the parameters. By a slight abuse of notation γP denotes the vector
of coefficients of the series. Appendix C.2 shows that the estimator is consistent.
Following Chetty et al. (2011), the standard errors can be estimated using the
nonparametric bootstrap.

The selection of the nonparametric specification is data-driven. As standard
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in nonparametric estimations, the estimates’ bias and variance depend on the
specification. There are two main specification-parameters. The first parameter
is the order of the series P . The higher the order P , the lower the bias and the
larger the variance. The second parameter is the bandwidth [b, b]. The smaller
the bandwidth, the lower the bias and the larger the variance.18 As is standard in
nonparametric estimations, I choose the specification that minimises an estimate
of the mean squared error (MSE). Appendix C.3 discusses the estimator of the
mean squared error in detail. Appendix C.4 gives a summary and step-by-step
guide of the entire estimation procedure.

3 Empirical application

3.1 Policy description

The German subsidy for solar panels was introduced on April 1st, 2000. The
subsidy is a guaranteed feed-in tariff, paid per kWh (kilowatt-hour) of produced
electricity sold to the grid. A fixed tariff rate is guaranteed for 20 years once a
household or firm decides to adopt. Typically, agents only adopt once during the
sample period. Since this paper focuses on deployment subsidies for early-stage
technologies, it studies the first years of the German programme from 2000 to
2008. Over this period, households and firms sell all the produced electricity to
the government at the subsidised rate. Therefore, the problem is equivalent to
a procurement problem: the principal (i.e., the government) procures the instal-
lation of capacity to agents (i.e., households and firms). The tariff rates depend
on the time point of adoption and the adopted capacity. The capacity of a solar
panel, measured in kilowatt-peak (kWp), is the amount of electricity it produces
under standardised conditions. Because produced electricity is proportional to
capacity, for agents who adopted from 2000 to 2003, the present discounted
value of subsidy payments was simply linear in their system’s capacity.19

The subsidy programme was very successful at incentivising households and
firms to adopt solar panels; numbers increased rapidly in most years (see Ta-

18For a given bandwidth, the bias and the variance of the estimates depend on the order of
the polynomial P . For the estimates to be consistent, it suffices that P goes to infinity as the
sample size goes to infinity. A smaller bandwidth reduces the bias for any given P ; however,
the bandwidth does not need to shrink with sample size for the estimates to be consistent.

19See Appendix D.2.1 for a formal derivation of this statement
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ble 7 in Appendix D.1). However, as a consequence, the programme became
very costly, mainly benefiting the wealthy owners of rooftops. For example,
total yearly payments in 2016 were 9 billion euros (Übertragungsnetzbetreiber,
2016), corresponding to 0.6 percent of total government spending.20 To curtail
these costs, in 2004, the government introduced two kink points in the subsidy
schedule. For agents who adopted from 2004 to 2008, the present discounted
value of subsidy payments was nonlinear in their system’s capacity. At a ca-
pacity of 30 kWp, the marginal subsidy rate decreased by 5%; at 100 kWp, it
decreased by 1%. Note that the policy change did not affect agents who had
adopted before. See Appendix D.1 for a more detailed description of the policy
and data.

Consistent with the theoretical predictions in Section 1, the kinks affected
the adopters’ behaviour. Figure 1 in the introduction shows the histogram of all
solar panel adoptions in the year 2004 around the kink point at 30 kWp. Many
adopters bunch at the kink point, and the distribution shows an evident slope
change. In contrast, Figure 7 shows the distribution of adopters who adopted
in 2003 when the subsidy was linear. The distribution is remarkably smooth
around the future kink point. There is no significant bunching mass or visible
slope change as in 2004. It confirms that the slope change and bunching in
2004 are indeed caused by the kink, hence evidence for responses at the two
margins.21 One could suspect that the slope change in the distribution in 2004 is
caused by a trend that adds concavity to the distribution over time. The left panel
of Figure 19 in Appendix D.1 shows the histogram of adoptions from 2000 to
2002. There is no evidence for a time trend in the concavity of the distribution.
Moreover, the right panel in Figure 19 shows that the histogram in 2005 has the
same pattern as the histogram in 2004. Therefore, the pattern in 2004 is not a
particularity of that year.

To evaluate and optimise the subsidy’s cost-effectiveness, it is necessary to
know how agents react to it at the participation and intensive margin. While
subsidy rates and prices for solar panels vary over time, in a large market like
Germany, this variation is endogenous to demand, making it unsuitable for iden-
tifying the two margins. Methods for estimating both margins proposed by Best

20The total government spending in 2016 was 1,390 billion euros (DESTATIS, 2023).
21On a side note, the subsidy rate in 2003 was lower than in 2004. While it is not directly

relevant to the shape of the distributions, it explains why the number of adopters in 2004 was
higher than in 2003.
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Figure 7: The histogram of adoptions in 2003 (logarithmic scales).
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Note: The red line marks the kink point. Scales are logarithmic. There is no
significant mass point or visible slope change in the distribution.

and Kleven (2017), Gelber et al. (2021), and Marx (2024) are not applicable
since capacity-specific time-trends in adoption are not parallel and the data lacks
a panel dimension. Therefore, the following section exploits the effect of kinks
on the cross-sectional distribution of adopters’ behaviour in Figure 1. It directly
applies the model presented in Section 1 for estimating the two margins.

In the context of this application, examples of the cost components in model
(1) are: the monetary costs of the installation, warm-glow preferences for solar
panels, the opportunity and aesthetic costs of using space on the roof, oppor-
tunity costs of time and money, the opportunity cost of adopting at a different
point in time, and eventual direct benefits from consuming electricity produced
by the solar panel.22 The subsidy S(.) in model (1) is the present discounted
value of the feed-in-tariff payments. Appendix D.2.1 shows that the model in
Section 1 encompasses subsidy payments via a feed-in tariff since electricity
production is proportional to the adopted capacity. In particular, the model ac-
counts for adopter-specific heterogeneity due to climate conditions or discount-
ing of future payments. An adopter can increase capacity by using more area on

22For an example of heterogeneous fixed costs, consider two firms with the same roof size.
Firm one, e.g., an innovative start-up, is very productive and has high opportunity costs of time.
Firm two, e.g., a traditional farm, is not very productive. The opportunity costs of time are low,
and the firm is already familiar with the administrative process of receiving subsidy payments.
Administering the installation of the solar system has a fixed time component. Therefore, firm
one has a higher fixed cost than firm two.
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the roof or by adopting a system of higher efficiency (i.e., higher capacity per
area). Therefore, as in model (1), the variable cost of adopting solar panels is
increasing and convex.23 Appendix D.2.2 further discusses the convexity of the
variable cost function. Appendix D.2.3 discusses how the model encompasses
dynamic decisions.

3.2 Empirical results

Without loss of generality, normalise the rate sl in Equation (2) to one. It cor-
responds to choosing a monetary unit. Consequently, the monetary unit of all
monetary variables is the present discounted value of payments to one kWp of
capacity. Since the bunching literature estimates behavioural responses as elas-
ticities, the empirical model estimates the participation margin response as the
elasticity η. However, in the theoretical literature on nonlinear pricing, it is more
common to use participation semi-elasticities (see Rochet and Chone, 1998 and
Jacquet, Lehmann and Van der Linden, 2013). Therefore, this section reports
the results at the participation margin as semi-elasticities κ. The interpretation
is as follows: a lump sum payment equivalent to the present discounted value of
one kWp increases participation by a factor κ.24

Table 1 shows the main empirical results: the estimates at the two kink points
at 30kWp and 100 kWp, pooling observations from 2004 to 2008. The results
show sizeable responses at the intensive margin, with statistically equal elastic-
ities at different capacities. The participation margin semi-elasticity is sizeable
at the lower kink point but decreases with capacity. For an interpretation of this
pattern, see Appendix D.3. I cannot exploit data after 2008 since the kink points
overlap with other policy changes. I pool yearly observations to increase sample
size and to estimate the long-run elasticities over this time period.

Appendix D.4 presents and discusses the specification. Correspondingly to
Figure 6, Figures 21 and 22 in Appendix D.4 depict the data and illustrate the
estimation. Appendix D.5 discusses the details of selecting the specification.

23The opportunity costs of area on the roof are convex. Moreover, the cost of increasing
capacity via efficiency is convex; the more efficient a system, the higher the cost of increasing
its efficiency further.

24The relation between the two variables is η = κ×S, where S is the subsidy payment. The
standard deviation of κ̂ follows from the delta method: SDκ = SDη/S(q).
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Table 1: The estimates at 30 and 100 kWp pooling observations from 2004 to
2008.

Capacity ϵ̂ (SD) κ̂ (SD)

30 kWp 4.37 (0.13) 2.31 (0.06)
100 kWp 4.63 (0.84) 0.00 (0.02)

Note: The table reports the estimated intensive margin elasticity ϵ̂ and partic-
ipation margin semi-elasticity κ̂ at the kink points at 30 and 100 kWp. The
standard errors are in brackets. The estimation pools observations from 2004
to 2008.

3.3 Robustness

One concern for the estimation is the violation of Assumption 3.b because of
irregularities in the counterfactual. There might be an excessive mass or a slope
change at the kink point for reasons other than the subsidy’s kink. Moreover,
there might be a continuous bump or a concavity in the counterfactual distribu-
tion, which is not or only hardly predictable from observations to the left and
right of the kink point.

As a robustness check, I estimate the model on observations from 2000 to
2003 when there was no kink in the subsidy. I use the same specification as in
2004-2008. Figure 8 shows the distribution in 2000-2003, with the estimated
model and counterfactual. The estimates in Table 2 are insignificant, alleviating
the above-mentioned concerns. Appendix D.6.1 reports the robustness check
for the estimates at 100 kWp. Again, the estimates are not significant.

Table 2: The estimates in 2000-2003 (placebo).

Capacity ϵ̂ (SD) κ̂ (SD)

30 kWp 0.51 (0.36) 0.00 (0.15)

Note: The table shows the results of the robustness check. The standard errors
are in brackets. The estimates are not significant.

As an additional robustness check, Appendix D.6.2 shows how to directly
estimate an eventual specification bias caused by the violation of Assumption
3.b. Again, the estimator exploits untreated observations responding to a sub-
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Figure 8: The distribution of adoptions in 2000-2003 with the estimated model.
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Note: The x-axis shows the normalised logarithm of capacity. The y-axis shows
the logarithm of the density. The black dots show the logarithm of the histogram.
The red line marks the kink point. The estimated model in blue is equal to the
estimated counterfactual in purple. The estimates are not significant.

sidy without kink, such as the observations from 2000-2003. Table 12 in Ap-
pendix D.6.2 reports the results. The point estimates are qualitatively small
and statistically insignificant. Appendix D.6.3 reports robustness checks to the
choice of the bunching interval; the estimates are robust. Appendix D.6.4 veri-
fies the rank condition, which holds by a large amount.

3.4 Comparison to the classic bunching and regression kink design

The estimator in Section 2 differs from the classic bunching estimator in three
dimensions. First, it correctly specifies the shape of the counterfactual distribu-
tion fl(.) in the range [qK , qKρ−ϵ], alleviating the concerns of specification bias
raised by Blomquist and Newey (2017).25 Second, it explicitly accounts for par-
ticipation margin responses. Third, it estimates the counterfactual distribution
nonparametrically outside the bunching interval, choosing the order of the series
P optimally. Appendix D.7 further discusses these differences and quantifies
them for the main estimates of this paper. It finds that the implicit assumptions

25Note that this is the theoretical range of agents who bunch sharply. It is a subinterval of
the interval [qL, qHρ−ϵ] in Equation (6) .
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of the classic bunching estimator downward bias the intensive margin estimate
by 23 %. Half of the bias is attributable to the misspecified counterfactual and
half to ignoring the participation margin (see Table 17 in Appendix D.7). More-
over, Table 18 in Appendix D.7 shows estimates using the suboptimal order of
the series P = 7, which is the specification used in Chetty et al. (2011). The
exercise gives much noisier point estimates: the standard errors of the partici-
pation margin increase by two orders of magnitude. The comparison underlines
the importance of choosing the series order based on the mean squared error to
avoid unnecessarily imprecise estimates.

Similarly, Appendix D.7 shows that ignoring the intensive margin introduces
an upward bias of 5% in the estimate of the participation margin. These results
show that it is essential to estimate both margins simultaneously. It confirms
that the classic regression kink design as in Card et al. (2015) is not applicable
to estimate participation margin responses when agents select into treatment via
the intensive margin.

4 Policy evaluation

This section uses the estimates to evaluate and optimise the subsidy. It builds
on the results of Rochet and Stole (2002), who provide a theoretical solution to
the nonlinear pricing problem of a monopoly when there are intensive and par-
ticipation margin responses. In line with the empirical results in Section 3, this
section assumes globally isoelastic intensive margin responses and a normally
distributed fixed cost to conduct the counterfactual exercises. Appendices D.3
and E.1 discuss these assumptions and the calibration. Note that, in line with
the bunching literature, so far, the term counterfactual refers to the linear sub-
sidy without a kink. This section calls any subsidy different from the observed
kinked subsidy a counterfactual subsidy.

Assume the government’s objective is to incentivise the adoption of the ob-
served aggregate capacity QT at a minimal public cost:

min
S(.)

∫
S(q)dFS(q) such that

∫
q dFS(q) ≥ QT , (12)

where FS(q) is the distribution of capacity under subsidy S(.). This section uses
the simple objective (12), which avoids taking a detailed stand on governmen-
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tal preferences. For a detailed discussion and extension of this objective, see
Appendix E.2.

4.1 Results of the counterfactual exercises

This section discusses four counterfactual exercises. The first exercise solves for
the optimal linear subsidy, which serves as a benchmark. Appendix E.3.1 de-
scribes the procedure. Compared to this benchmark, the government’s subsidy
achieves a modest cost reduction of 0.14 percent. The second exercise solves
for the optimal nonlinear subsidy using mechanism design. The analysis follows
the screening problem in Rochet and Stole (2002) and is outlined in Appendix
E.3.2. The optimal nonlinear subsidy is 0.45 percent less costly than the lin-
ear benchmark. Cost savings are by a factor 3.14 larger than the cost savings
of the government’s subsidy. Figure 9 compares the optimal marginal subsidy
schedule S ′(q(ql)) to the linear benchmark and the observed marginal subsidy.
Qualitatively, the optimal marginal subsidy is mostly downward sloping; hence,

Figure 9: The observed and the optimal marginal subsidies S ′(q(ql)).
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Note: The figure compares the observed marginal subsidy with the optimal lin-
ear and the optimal nonlinear marginal subsidies. Note that the first marginal
subsidy rate of the observed subsidy is normalised to one.

it is similar to the subsidy used by the government. However, quantitatively, the
range of optimal marginal subsidy rates is larger than the range used by the gov-
ernment. The optimal scheme reduces rents more than the observed scheme by
paying higher rates to small adopters and lower rates to large adopters. While
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the result shows room for improving the government’s scheme, the overall ben-
efits of using a nonlinear subsidy scheme remain modest.

To better understand what limits the scope for curtailing costs, a third thought
experiment assumes adopters can only respond at the intensive margin. Without
participation margin, the optimal nonlinear subsidy would be 8.6 percent less
costly than the linear benchmark. See Appendix E.3.2 for the detailed analy-
sis. This result shows that the interaction of the participation margin with the
intensive margin limits the scope for cost reduction via a nonlinear subsidy.
Figure 10 compares the optimal marginal subsidy without participation to the
optimal marginal subsidy with participation. The marginal subsidy schedule is

Figure 10: The optimal marginal subsidy S ′(q(ql)) with and without participa-
tion margin.

0 50 100 150 200
Capacity ql

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Marginal Subsidy Rate

Both margins

Only intensive margin

Optimal linear subsidy

Note: The dotted orange line depicts the optimal marginal subsidy when there
is no participation margin. The blue line shows the optimal marginal subsidy
when there are both margins.

increasing, and the distance to the linear benchmark is much more significant
than when the participation margin is present. The shape of the scheme follows
from simple intuition. On the one hand, it is optimal to pay a high marginal rate
to large adopters. Reacting only to marginal rates, large adopters install larger
capacities than under the linear benchmark. On the other hand, the marginal rate
paid to small adopters is low. They adopt lower quantities than under the linear
benchmark. By definition, the net capacity effect is zero, and the government
achieves the fixed capacity goal. However, the net cost effect is not zero. The
total payment to large adopters is the integral under the orange/dotted curve.
The low marginal rates for small adopters extract profit from large adopters be-
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cause they receive a lower payment for infra-marginal units. Therefore, the
scheme is less costly than the linear scheme. In contrast, when, as in reality,
there are participation margin responses, this strategy to extract profits is inef-
fective. Low marginal subsidy rates for small capacities affect larger adopters
by reducing their profit margins. It triggers responses at the participation margin
and, therefore, a loss in capacity. This effect limits the room for rent extraction
through nonlinear pricing when the participation margin is active. Therefore,
cost-savings when both margins are active remain moderate.

The results in Figure 10 show that the participation margin changes the shape
of the optimal marginal subsidy. However, is it counterproductive to ignore par-
ticipation when, in reality, such a margin is present? Rochet and Stole (2002)
show that when the type distribution fl(.) is uniform, the optimal intensive al-
location bounds the optimal allocation with both margins. Their result suggests
that implementing the optimal intensive schedule in Figure 10 might reasonably
approximate the optimum. Appendix E.3.3 shows that their result is not robust
to more general forms of the type distribution: for the type distribution in this
application, the optimal allocation is close to but outside the bounds derived by
Rochet and Stole (2002). To gather additional evidence, a fourth counterfactual
exercise assumes the policymaker implements the optimal intensive schedule,
but adopters react at both margins. I keep aggregate capacity constant again to
allow for a meaningful comparison to the other counterfactual exercises. The
exercise finds that the optimal intensive schedule increases costs by 3.1 percent
instead of decreasing them, i.e., ignoring participation has a sizeable adverse ef-
fect on costs. The result shows that combining the theoretical results in Rochet
and Stole (2002) with estimates of the intensive and participation margin re-
sponses is crucial for implementing the optimal schedule. Optimising incentive
schemes based on intensive margin estimates alone may even be counterproduc-
tive.

Appendix E.3.4 compares the results in this paper to the results in Germe-
shausen (2018). My estimates imply a treatment effect very close to the one
estimated by Germeshausen (2018), which provides evidence for the validity
of the respective identifying assumption in both studies. Table 20 and 21 in
Appendix E.3.5 summarise the results of the four counterfactual exercises.
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5 Conclusion

This paper shows how to leverage kinks or notches to estimate agents’ intensive
and participation margin responses simultaneously. An application to the Ger-
man subsidy for rooftop solar panels demonstrates how to use these estimates to
evaluate and optimise a nonlinear incentive scheme. The relatively low informa-
tional requirements of the proposed estimator enhance its potential applicability
in other contexts.

Kinks and notches are common features of economic incentive schemes in
taxation, health care, labour regulation, environmental regulation, education,
product pricing, and finance. Consequently, the bunching estimator has been
widely used to estimate intensive margin responses (see Bertanha et al., 2023
for a review). However, in many applications, not only intensive but also par-
ticipation margin responses to the incentive scheme are plausible. For exam-
ple, as a response to income taxation, workers may cease active participation in
the formal labour market, instead relying on welfare programmes, unemploy-
ment insurance, or informal work. Certain taxpayers may decide to migrate.
Secondary earners may decide to engage in household production instead of
earning wage income. Indeed, the theoretical contributions by Saez (2002) and
Jacquet, Lehmann and Van der Linden (2013) point out that participation margin
responses are important to consider when designing optimal income taxes. The
empirical evidence on participation margin responses to income taxes is mixed
(e.g., see Blundell, Bozio and Laroque, 2011, Chetty et al., 2013, and Kleven,
2024). Potential simultaneous responses are not limited to income taxes. Cor-
porate taxes may influence firms’ extensive choice of corporation type and for-
mality, along with the intensive choice of reported profit. Nonlinear product
prices may influence whether consumers purchase from a certain firm, as well
as the purchased quantity. Size-based regulations of products may distort firms’
production decisions at an intensive and extensive margin. The results of this
paper highlight the importance of estimating both margins for the evaluation of
such nonlinear incentive schemes.
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A Appendix: Proofs

A.1 Proof of Proposition 1

Denote by ql the choice and by ct the total cost of adopter i under the coun-
terfactual subsidy Sl. Denote by Ft|ql(ct|ql) the conditional CDF of total costs.
It follows by Assumptions 1 and 2 that, locally around the kink point, the cost
functions of adopters and the CDF of total costs can be expressed as

c(q, ql, ct) =
sl

ql
1
ϵ

ϵ

1 + ϵ
q1+

1
ϵ︸ ︷︷ ︸

variable cost

+ ct − qlsl
ϵ

1 + ϵ︸ ︷︷ ︸
fixed cost

, (13)

Ft|ql(ct|ql) =
(

ct
ct(ql)

)η
, (14)

where ql and ct are equivalent to type parameters and ct(ql) is the upper bound
of total costs.26 Proposition 1 follows from solving the adopters’ maximisation
problem (1) using Equations (13) and (14). For a detailed step-by-step deriva-
tion of Proposition 1, see Appendix B.2.

A.1.1 The definition of function R(., ϵ) in Proposition 1

The function R(ql, ϵ) in Proposition 1 denotes the net subsidy payment to an
adopter under the kinked scheme relative to the subsidy payment under the linear
scheme. The function R(ql, ϵ) = 1, for ql < qK ; R(ql, ϵ) = RB(ql, ϵ) for ql ∈
[qK , qKρ−ϵ]; and R(ql, ϵ) = R2(ql, ϵ) for ql > qKρ−ϵ; where

RB(ql, ϵ) =
qK

ql
+

ϵ

1 + ϵ

(
1−

(
qK

ql

) 1+ϵ
ϵ

)
; (15)

R2(ql, ϵ) = (1− ρ)
qK

ql
+

ϵ

1 + ϵ

(
1 +

ρϵ+1

ϵ

)
. (16)

A.2 Proof of Proposition 2

This section denotes the true functions and parameters in the population with
superscript "o", while functions and parameters without superscript denote the

26This formulation of the cost depends on the counterfactual subsidy rate sl. However, since
sl is observable and fixed, this dependence poses no problem.
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general values of these objects. Denote by γ = (γ0, γ1, ...) the infinitely di-
mensional vector of coefficients γp in Assumption 3.b and by θ = (ϵ, η, γ) the
pseudo-parameter. The functional fl(q|γ) denotes the counterfactual measure
as a function of the sequence γ. The interval [b, b] denotes the bandwidth, i.e., a
range of points around the kink point such that [qL, qH ] ⊊ [b, b] ⊊ (q, qρϵ).

Consider the population criterion Q(θ):

Q(θ) =

∫ qL

b

(ln f ok (q)− ln fk (q | ϵ, η, γ))2 dFw+

(lnBo − lnB(ϵ, η, γ))2+∫ b

qH

(ln f ok (q)− ln fk (q | ϵ, η, γ))2 dFw. (17)

The function f ok (.) denotes the observable measure of agents in the population.
The function fk(.|ϵ, η, γ) denotes the respective function in Proposition 1, where
the general function fl(.) is replaced by the power series fl(.|γ). Bo denotes
the observable mass of agents in the bunching interval in population, while
B(ϵ, η, γ) denotes the respective function in Proposition 1, where the general
function fl(.) is replaced by the power series fl(.|γ). The function Fw denotes
a weighting measure. It assigns strictly positive weight to any open interval
(qx, qy) ⊂ [b, qL] ∪ [qH , b], where qx < qy.27

Lemma 1. Under Assumptions 1, 2, 3.b, in any minimum of Q(θ) it holds that

γ = γo. Under Condition 1, θo = (ϵo, ηo, γo) is the globally unique minimum of

Q(θ).

PROOF Lemma 1:
By Proposition 1 and Assumption 3.b, f ok (q) = fk(q | ϵo, ηo, γo) and Bo =

B(ϵo, ηo, γo). It is easy to see that Q(θo) = 0 and Q(θ) ≥ 0 for all θ. Therefore,
θ = θo is a minimum of Q(.). If another minimum θ exists, it needs to hold that
Q(θ) = 0.

Suppose a pseudo-parameter θ minimizes Q(.). Using Proposition 1 and
Assumption 3.b, it follows that the first integral in Equation (17) is equal to

27The weighting measure may be used to increase efficiency. Identification will follow for
any such measure. In particular, it follows in the case when there is no such measure, i.e., Fw

is the uniform CDF.
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zero: ∫ qL

b

(ln fl(q | γo)− ln fl (q | γ))2 dFw = 0.

Assumption 3.b implies that ln fl(.) is continuous in this range. Note that this
integral is a norm for continuous functions. Therefore, the norm can only be
zero if ln fl(q | γo) = ln fl (q | γ) for all q ∈ (b, qL). Assumption 3.b implies
that ln fl(e(.) | γo) and ln fl

(
e(.) | γ

)
are real analytic in ln q on the interval

(ln q, ln q) ⊃ (ln b, ln qL).28 By the identity theorem of real analytic functions
ln fl(e

(ln q) | γo) = ln fl
(
e(ln q) | γ

)
for all ln q ∈ (ln q, ln q) (see Corollary 1.2.6

in Krantz and Parks, 2002). The cited results from Krantz and Parks (2002) are
summarised in Appendix F. Since the power series representation of analytic
functions is unique (Corollary 1.1.16 Krantz and Parks, 2002), it follows that
γop = γp for all p. The population criterion Q(.) uniquely identifies γo, and,
hence, the counterfactual distribution f ol (.) in the interval (q, q).

Because fk(.|ϵ, η, γ) is continuous in the interval [qH , b] and the third part of
the criterion Q(.) is a norm for continuous functions, it follows that

fk(q | ϵo, ηo, γo)− fk(q | ϵ, η, γo) = 0 ∀q ∈ (qH , b). (18)

By Proposition 1, the definition of R(., ϵ) in Section A.1.1, and Assumption 3.b

f ol (qρ
−ϵo)ρ−ϵ

o

R2(qρ
−ϵo , ϵo)η

o

= f ol (qρ
−ϵ)ρ−ϵR2(qρ

−ϵ, ϵ)η ∀q ∈ (qH , b), (19)

where the function R2(., ϵ) is defined in Equation (16) in Section A.1.1 and
f ol (.) denotes the true counterfactual. Note that both sides of this equation are
real analytic in ln q since f ol (.) and R2(.) are real analytic in ln q. Therefore, by
the identity theorem of real analytic functions

f ol (qρ
−ϵo)ρ−ϵ

o

R2(qρ
−ϵo , ϵo)η

o

= f ol (qρ
−ϵ)ρ−ϵR2(qρ

−ϵ, ϵ)η ∀q ∈ (q, qρϵ). (20)

The second part of the criterion Q(.) implies that B(ϵo, ηo, γo) = B(ϵ, η, γo).

28Since real analyticity is assumed to hold in logarithms, it is necessary to work with
ln fl

(
e(.) | γ

)
. Note that ln fl

(
e(ln q) | γ

)
= ln fl (q | γ).
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By Proposition 1, the definition of R(., ϵ) in Section A.1.1, and Assumption 3.b

∫ qK

qL

f ol (ql)dql +

∫ qKρ−ϵo

qK
RB(ql, ϵ

o)f ol (ql)dql +

∫ qH

qK
f ol (qρ

−ϵo)ρ−ϵ
o

R2(qρ
−ϵo , ϵo)η

o

dq =

=

∫ qK

qL

f ol (ql)dql +

∫ qKρ−ϵ

qK
RB(ql, ϵ)f

o
l (ql)dql +

∫ qH

qK
f ol (qρ

−ϵ)ρ−ϵR2(qρ
−ϵ, ϵ)ηdq,

(21)

where the functions RB(., ϵ) and R2(., ϵ) are defined in Equations (15) and (16)
in Section A.1.1 and f ol (.) denotes the true counterfactual. Using Equation (20)
and cancelling equal terms on both sides renders

∫ qKρ−ϵo

qK
RB(ql, ϵ

o)f ol (ql)dql =

∫ qKρ−ϵ

qK
RB(ql, ϵ)f

o
l (ql)dql. (22)

Denote by the functions η(q, ϵ) and ηB(ϵ) the η implicitly defined by the Equa-
tions (20) and (22). Formally, Condition 1 states that for all ϵ ̸= ϵo there exits
a q ∈ (q, qρϵ) such that η(q, ϵ) ̸= ηB(ϵ) (see Appendix B.4 for a discussion of
Condition 1). Therefore, the only pair (ϵ, η) that fulfils Equations (20) and (22)
for all q is (ϵo, ηo). It follows that under Condition 1, (ϵo, ηo, γo) is the globally
unique minimum of Q(.).
qed.

Consider the parameter-space

Θ = {θ s.t. 0 ≤ ϵ ≤ ϵ, and 0 ≤ η ≤ η, and |γp| ≤M(ln q − ln qK)−p}. (23)

Assume that (ln qK − ln q) = (ln q − ln qK) > 1.29 Note that by Assumption 1,
2, 3.b, and Lemma 10, θo ∈ Θ. Consider the norm

d(θ, θ̃) =| ϵ− ϵ̃ | + | η − η̃ | +sup
p

| γp − γ̃p | .

Lemma 2. Under Assumptions 1, 2, 3.b, the parameter space Θ defined in

Equation (23) is compact.

Lemma 3. Under Assumptions 1, 2, 3.b, the criterion Q(θ) is continuous at all

29This assumption is without loss of generality since it is possible to use a transformation
that rescales q such that the assumption holds. Moreover, convergence radii of power series are
symmetric.
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θ ∈ Θ.

The proofs of Lemmas 2 and 3 are in the Appendices B.5.1 and B.5.2.
By Lemma 1-3,Q(θ), θo, and Θ fulfil the Condition 3.1” for identification in

Chen (2007), which proves Propositions 2. The cited results from Chen (2007)
are summarised in Appendix F.
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Supplemental appendices for online publication

B Details model

B.1 The illustration of adopters below the kink point

Figure 11: The effect of the kinked scheme Sk on adopters below the kink point.
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Note: The black lines depict S ′
l and S ′

k, and the thin purple line illustrates civ
′. The full dot

depicts the choice under both subsidies. The coloured area depicts the variable profit under
both subsidies.

B.2 A detailed proof of Proposition 1

B.2.1 An equivalent structural formulation of Assumptions 1 and 2

Denote by qi(s) the optimal choice of adopter i under a linear subsidy with rate s. Define the
intensive margin elasticity of adopter i under a linear subsidy with rate s by

ϵi(s) =
d ln qi(s)

d ln s
. (24)

Formally, using this notation, Assumption 1 states that for all marginal subsidy rates s in the
interval [ρsl, sl] and for all adopters i such that their capacity-choice under the counterfactual
subsidy qi(sl) is in an interval [q, q] around the kink point qK , it holds that the elasticity ϵi(s) =
ϵ, where ϵ is a constant. Assumption 1 a is a reduced form assumption on an endogenous object,
i.e., a high-level assumption. However, it is equivalent to the structural assumption 4:

Assumption 4 (Structural assumption intensive margin). The cost function is locally isoelas-
tic, and the elasticity is bounded. Formally, for all adopters i such that their capacity-choice
under the linear subsidy qi(sl) is in the interval [q, q], and for all quantities q in the interval
[qi(slρ), q

i(sl)], it holds that the variable cost function civ(.) is equal to

civ(q) = θiq1+
1
ϵ , (25)

where θi is the variable cost type.
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Lemma 4 (Equivalence intensive margin). Assumption 1 is equivalent to Assumption 4.

The proof is in Appendix B.2.2.

Denote the choice of adopter i under the counterfactual subsidy Sl by qil , where l stands for
linear: qil = qi(sl). Similarly, denote the total cost of adopter i under the counterfactual subsidy
Sl by cit, where t stands for total: cit = civ(q

i
l) + cif .

Corollary 1 (Type parameters). For each adopter i, there is a one-to-one mapping from the
variable and fixed cost type (θi, cif ) to the choice and total cost under the counterfactual subsidy
(qil , c

i
t):

θi =
sl

qil
1
ϵ

ϵ

1 + ϵ
, (26)

cif = cit − qilsl
ϵ

1 + ϵ
. (27)

Therefore, locally, the total cost function is equal to

c(q, ql, ct) =
sl

ql
1
ϵ

ϵ

1 + ϵ
q1+

1
ϵ︸ ︷︷ ︸

variable cost

+ ct − qlsl
ϵ

1 + ϵ︸ ︷︷ ︸
fixed cost

. (28)

The type parameter (ql, ct) captures all relevant adopter-specific heterogeneity.

The proof is in Appendix B.2.3. Using (ql, ct) has the advantage that the type parameter
has direct economic meaning. The type is equal to the choice and cost under the counterfactual
subsidy. The mapping between (θ, cf ) and (ql, ct) depends on the counterfactual subsidy rate
sl. However, since sl is observable and fixed, this dependence poses no problem. Note that I
will drop the adopter-specific index i from now on.

The next paragraph imposes the structural isoelasticity assumption on the participation mar-
gin. Denote by ft|ql(.|ql) and Ft|ql(.|ql) the density and the CDF of the total cost ct conditional
on the type ql. Define a functional η(S, q) as

η(S, q) =
ft|ql(S(q)|q)
Ft|ql(S(q)|q)

S(q), (29)

where S(.) is a general subsidy function. The participation margin elasticity under the coun-
terfactual subsidy is η(Sl, ql).30 Formally, using this notation, Assumption 2 states that for all
subsidy functions S(q) such that Sl(q) ≥ S(q) ≥ Sk(q) and for all quantities q in an interval
[q, q] around the kink point, it holds that the functional η(S, q) = η, where η is the constant
participation margin elasticity. Again, Assumption 2 is a high-level assumption. It is equivalent
to the structural assumption 5:

Assumption 5 (Structural assumption participation margin). The conditional CDF of the total
cost is locally isoelastic, and the elasticity is bounded. Formally, for all values ct in the interval
[Sk(ql), Sl(ql)], the conditional CDF of the total cost is equal to

Ft|ql(ct|ql) =
(

ct
ct(ql)

)η
, (30)

30Note that, in general, η(S, q) is not the participation margin elasticity under subsidy S(q) because ct is
defined with respect to the counterfactual subsidy Sl.
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where η is the constant participation margin elasticity, and ct(ql) is a normalisation term.

Lemma 5 (Equivalence participation margin). Assumption 2 is equivalent to Assumption 5.

The proof is in Appendix B.2.4. Note that the normalisation term ct(ql) in Assumption
5 may depend on ql. Therefore, the assumption does not rule out a correlation between the
variable cost type ql and the total cost type ct in Corollary 1. Consequently, Assumption 1 and
2 do not rule out a correlation between fixed and variable costs.

B.2.2 Proof of Lemma 4

Assumption 1 ⇒ Assumption 4:
By Assumption 1 and the definition of the elasticity

ϵ =
qi

′
(s) s

qi(s)
, for all s in [slρ, sl]. (31)

By the first order condition of the adopters’ problem: civ
′
(qi(s)) = s, and by differentiating the

FOC

qi
′
(s) =

1

civ
′′(qi(s))

. (32)

It follows that for all q in [qi(slρ), q
i(sl)]

ϵ =
civ

′
(q)

civ
′′(q) q

. (33)

Denote the choice of adopter i under the counterfactual subsidy Sl by qil = qi(sl), where l
stands for linear. Denote the total cost of adopter i under the counterfactual subsidy Sl by cit =
civ(q

i
l)+ c

i
f , where t stands for total. By the FOC civ

′
(qil) = sl and by definition civ(q

i
l)+ c

i
f = cit.

These two equalities together with the ordinary differential equation (33) form an initial value
problem with solution

civ(q) + cif =
sl

qil
1
ϵ

ϵ

1 + ϵ
q1+

1
ϵ︸ ︷︷ ︸

variable cost

+ cit − qilsl
ϵ

1 + ϵ︸ ︷︷ ︸
fixed cost

. (34)

The result follows by defining

θi =
sl

qil
1
ϵ

ϵ

1 + ϵ
, (35)

cif = cit − qilsl
ϵ

1 + ϵ
. (36)

Assumption 4 ⇒ Assumption 1:
By the FOC

qi(s) =

(
ϵ

(1 + ϵ)θi

)ϵ
sϵ. (37)
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Using the definition of ϵi(s), it follows that ϵi(s) = ϵ.
qed.

B.2.3 Proof of Corollary 1

The cost function is equal to

civ(q) = θiq1+
1
ϵ .

By the first order condition and the definition of qil

θi =
sl

qil
1
ϵ

ϵ

1 + ϵ
.

By the definition of cit and plugging qil and θi into the cost function

cif = cit − qilsl
ϵ

1 + ϵ
.

Changing variable in Equation (25) gives the result.
qed.

B.2.4 Proof of Lemma 5

Assumption 2 ⇔ Assumption 5:
By Assumption 2, for all S(q) such that Sl(q) ≥ S(q) ≥ Sk(q), and for all q in [q, q] ,

η =
ft|ql(S(q)|q)S(q)
Ft|ql(S(q)|q)

. (38)

It is equivalent to the following statement: For all ct such that ct is in [Sk(ql), Sl(ql)]

η =
ft|ql(ct|ql)ct
Ft|ql(ct|ql)

. (39)

The solution of this partial differential equation is

Ft|ql(ct|ql) =
(

ct
ct(ql)

)η
, (40)

where ct(ql) is a normalisation term.
qed.

B.2.5 Solving the maximisation problem (1)

The variable ql is the choice of an adopter under the linear subsidy. To illustrate the dependence
of capacity on the subsidy scheme, in this section, denote qk the choice of the same adopter
under the kinked subsidy. Note that the rest of the paper simply denotes it by q to avoid an
overloaded notation.
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Lemma 6. The choice under the kinked subsidy qk as a function of the choice under the linear
subsidy ql is

qk(ql) = ql, for ql < qK ; (41)

qk(ql) = qK , for ql ∈ [qK , qKρ−ϵ]; (42)

qk(ql) = qlρ
ϵ, for ql > qKρ−ϵ. (43)

PROOF:
By Equation (28) and the first order condition of the adopters’ maximisation problem

q(s, ql) = ql

(
s

sl

)ϵ
. (44)

Below the kink point s = sl. Therefore,

qk(ql) = ql, for ql < qK . (45)

Adopters well above the kink point produce the same as under a linear subsidy with the
marginal rate s = slρ. It follows that

qk(ql) = qlρ
ϵ, for ql ≫ qK . (46)

Generally, adopters above the kink point reduce their production and produce qlρϵ. However,
for adopters in the interval ql ∈ (qK , qKρ−ϵ) it would mean to reduce the production below qK .
As soon as they reduce production to qK , they are not affected by the lower marginal price any
more, and therefore, it cannot be optimal to reduce below qK . It follows that all adopters in this
interval chose to produce exactly qK ; they "bunch" at qK .
qed.

Denote the difference in cost of an adopter ql between the kinked and the linear subsidy by
∆c(ql) = c(qk(ql), ql, ct)− ct.

Lemma 7. The difference in cost ∆c(ql) of adopter ql between the kinked and linear subsidy is

∆c(ql) = 0, for ql < qK ; (47)

∆c(ql) =
1

1 + ϵ−1

sl

q
1/ϵ
l

((qK)1+ϵ
−1 − q1+ϵ

−1

l ), for ql ∈ [qK , qKρ−ϵ]; (48)

∆c(ql) =
1

1 + ϵ−1
slql(ρ

ϵ+1 − 1), for ql > qKρ−ϵ. (49)

PROOF:
By Corollary 1

c(q, ql, ct) = ct +

[
q1+1/ϵ

q
1/ϵ
l

− ql

]
sl

1 + 1/ϵ
. (50)
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By definition and Lemma 6

∆c(ql) = c(qk(ql), ql, ct)− ct = c(ql, ql, ct)− ct for ql < qK ; (51)

= c(qK , ql, ct)− ct for ql ∈ [qK , qKρ−ϵ]; (52)

= c(qlρ
ϵ, ql, ct)− ct for ql > qKρ−ϵ. (53)

Use Equation (50) in Equation (51)-(53) to get Equation (47)-(49).
qed.

Define the function R(ql) as the net subsidy of adopter ql under the kinked scheme as a
fraction of the subsidy under the linear scheme:

R(ql) =
Sk(qk(ql))−∆c(ql)

Sl(ql)
. (54)

Lemma 8. Define

R1(ql, ϵ) = 1; (55)

RB(ql, ϵ) =
qK

ql
+

ϵ

1 + ϵ

(
1−

(
qK

ql

) 1+ϵ
ϵ

)
; (56)

R2(ql, ϵ) = (1− ρ)
qK

ql
+

ϵ

1 + ϵ

(
1 +

ρϵ+1

ϵ

)
. (57)

The function R(ql) is:

R(ql) = R1(ql, ϵ), for ql < qK ; (58)

R(ql) = RB(ql, ϵ), for ql ∈ [qK , qKρ−ϵ]; (59)

R(ql) = R2(ql, ϵ), for ql > qKρ−ϵ. (60)

PROOF:
By definition

R(ql) =
Sk(qk(ql))−∆c(ql)

Sl(ql)
, (61)

which together with Lemma 6 and 7 gives Equation (58)-(60).
qed.

Lemma 9. The mass of participating adopters under the kinked subsidy as a function of ql is

R(ql)
ηfl(ql), (62)

where fl is the measure of capacity under the linear subsidy.

PROOF:
An adopter participates if its cost is smaller than the received subsidy: c(qk(ql), ql, ct) ≤
Sk(qk(ql)). Using definitions, this is equivalent to ct ≤ Sk(qk(ql))−∆c(ql). Given a certain ql,
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the mass of adopters participating as a function of ql is

Ft|ql(Sk(qk(ql))−∆c(ql)|ql)
Ft|ql(Sl(ql)|ql)

fl(ql), (63)

where fl is the hypothetical measure of ql under the linear subsidy. By Assumption 2

Ft|ql(ct|ql) =
(

ct
ct(ql)

)η
, for all ct in [Sk(ql), Sl(ql)]. (64)

Note that by revealed preference Sk(ql) ≤ Sk(qk(ql))−∆c(ql). It follows that

Ft|ql(Sk(qk(ql))−∆c(ql)|ql)
Ft|ql(Sl(ql)|ql)

fl(ql) =

(
Sk(qk(ql))−∆c(ql)

Sl(ql)

)η
fl(ql), (65)

which, together with the definition of R, gives the result.
qed.

PROOF of Proposition 1:
Change variable in Equation (62) using Lemma 6 to derive Equation (5) and (7). Integrate
Equation (62) over [qL, qHρ

−ϵ] to derive Equation (6). Remember, to avoid an overloaded
notation, the rest of the paper denotes the choice under the kinked subsidy simply by q.
qed.

B.3 Lemma 10
Lemma 10. .

• Assumption 3.a implies Assumption 3.b.

• Assumption 3.b implies that

|γp| ≤M
1

(ln q − ln qK)p
for all p , (66)

where γp = d(p) ln fl(qK)

d ln q(p)l

/p!. Moreover, ln fl(.) is real analytic in ln ql on the interval

(q, q).

Note that Assumption 3.b is slightly weaker than Assumption 3.a because it does not imply
explicit bounds on the derivatives for all q ∈ (q, q).

PROOF:
Suppose Assumption 3.a holds. By Proposition 1.2.12 in Krantz and Parks (2002), ln fl(.) is
real analytic on the interval (q, q). The cited results from Krantz and Parks (2002) are sum-
marised in Appendix F. By Lemma 1.1.8 in Krantz and Parks (2002), and due to the bounds on
the derivatives, the power series representation at the kink point converges for all q ∈ (q, q). By
Corollary 1.2.4 in Krantz and Parks (2002), the function defined by the power series represen-
tation is real analytic on (q, q). By definition, all derivatives of the power series representation
and of ln fl(.) are equal at the kink point. Therefore, by Corollary 1.2.5 in Krantz and Parks
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(2002), the power series representation and ln fl(.) are equal on (q, q). It follows that Assump-
tion 3.b holds.

Suppose Assumption 3.b holds. By Corollary 1.2.4 in Krantz and Parks (2002), the function
defined by the power series representation is real analytic on (q, q). Since it is equal to ln fl(.),
also ln fl(.) is real analytic on (q, q). Corollary 1.1.10 in Krantz and Parks (2002) gives the
bounds of γp.
qed.

B.4 Rank conditions
This section denotes the true functions and parameters in population with superscript "o", while
functions and parameters without superscript denote the general values of these objects.

B.4.1 A formal version of Condition 1

Note that by Proposition 1, the mass exactly at the kink point qK as a function of the parameters
ϵ and η and the true counterfactual f ol (.) is∫ qKρ−ϵ

qK
RB(ql, ϵ)

ηf ol (ql)dql, (67)

where RB(., ϵ) is defined in Equation (15) in Section A.1.1.31 Note that the measure above the
kink point in Equation (7) in Proposition 1 as a function of the parameters ϵ and η and the true
counterfactual f ol (.) is

f ol (qρ
−ϵ)ρ−ϵR2(qρ

−ϵ, ϵ)η, (68)

where R2(., ϵ) is defined in Equation (16) in Section A.1.1.
Use the expressions (67) and (68) and evaluate them at the true and candidate values of ϵ

and η. For expression (68), consider its real analytic continuation. Denote by ηB(ϵ) and η(q, ϵ)
the η implicitly defined by the equations∫ qKρ−ϵo

qK
RB(ql, ϵ

o)f ol (ql)dql =

∫ qKρ−ϵ

qK
RB(ql, ϵ)f

o
l (ql)dql; (69)

f ol (qρ
−ϵo)ρ−ϵ

o

R2(qρ
−ϵo , ϵo)η

o

= f ol (qρ
−ϵ)ρ−ϵR2(qρ

−ϵ, ϵ)η ∀q ∈ (q, qρϵ). (70)

Formally, Condition 1 states that for all ϵ ̸= ϵo there exits a q ∈ (q, qρϵ) such that η(q, ϵ) ̸=
ηB(ϵ).

B.4.2 Sufficient conditions for Condition 1

Lemma 11. Each of the following properties are sufficient but not necessary for Condition 1
to hold:

31Note that this mass is part of but not equal to B in Proposition 1, which is the mass in the entire interval
[qL, qH ] and not only at the point qK .
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(a) For all ϵ ̸= ϵo, the true counterfactual f ol (.) does not solve the functional equation:

ln f ol (q) = ln f ol (qρ
−(ϵ−ϵo)) + ln ρ−(ϵ−ϵo) + ηB(ϵ) lnR2(qρ

−(ϵ−ϵo), ϵ)− ηo lnR2(q, ϵ
o) ∀q ∈ (q, qρϵ),

(71)

where R2(., ϵ) is defined in Equation (16) in Section A.1.1 and ηB(ϵ) is implicitly defined
by Equation (69). Generically, the functional equation (71) does not hold. Consequently,
Condition 1 holds generically.

(b) d ln fol (q)

d ln q
≤ −1 for all q ∈ (q, q).

(c) The participation elasticity ηo is known, which, in particular, includes the case ηo = 0.

(d) d ln fok2(q)

d ln q
≥ 0 for all q ∈ (q, qρϵ), where f ok2(.) denotes the observable measure above the

kink point and its analytic continuation to points below the kink point.32

(e) The function f ol (.) is real analytic in q on the interval (0, q) and there exits an order of
derivative P such that

lim
q↓0

dPf ol (q)

dqP
̸= 0 or ±∞. (72)

(f) The functions f ol (.) or ln f ol (.) are real analytic in q on the interval [0, q).

(g) There exists an order P such that

ln f ol (ql) =
P∑
p=0

γop

(
ln

ql
qK

)p
for all ql ∈ (q, q). (73)

B.4.3 The local rank condition and local identification

The following local version of Condition 1 allows discussing local identification.

Condition 2 (Local rank condition). There exists a q ∈ (q, qρϵ) such that

η′B(ϵ
o)− ∂η(q, ϵo)

∂ϵ
̸= 0, (74)

where ηB(ϵ) and η(q, ϵ) are implicitly defined by Equations (69) and (70).

Under Condition 2, Condition 1 holds locally at (ϵo, ηo).

Lemma 12. Each of the following properties is sufficient but not necessary for Condition 2 to
hold:

(a) Properties (b), (c), and (d) in Lemma 11.

32Since d ln fo
k2(q)

d ln q =
d ln fo

l (qρ
−ϵo )

d ln q + ηo d lnR(qρ−ϵo )
d ln q the property indirectly restricts the shape of the function

fo
l (.).

48



(b) (
d ln f ol (q̂(ϵ

o) ρ−ϵ
o
)

d ln q
+ 1

)
ln(1/ρ) + ηo

(1− ρ1+ϵ
o
)− (1 + ϵo) ln(1/ρ)

(1 + ϵo)2
̸= 0, (75)

where f ol (.) is the true counterfactual, R2(., ϵ) is defined in Equation (16) in Section
A.1.1, and q̂(ϵo) is the unique q defined by R2(q̂(ϵ

o)ρ−ϵ
o
, ϵo) = 1. This property holds

generically. Consequently, Condition 2 holds generically.

Proposition 3 (Local identification). Under Assumptions 1, 2, and 3.b, the observable measure
fk(.) identifies the counterfactual measure fl(.) for all q. Under Condition 2, the intensive
margin elasticity ϵ and the participation margin elasticity η are locally identified.

The proof is in Section B.5.3.

B.4.4 Some economic intuition why the rank conditions hold

There is an economic argument as to why Conditions 1 and its local counterpart Condition 2
defined in Section B.4.3 hold. Denote the right-hand side of Equation (69) in Section B.4.1 as a
function of its parameters by B̃(ϵ, η); denote the right-hand side of Equation (70) as a function
of its parameters by fk2(q|ϵ, η). On the one hand, the mass at the kink point B̃ depends strongly
on ϵ, as ϵ determines the mass of adopters who potentially bunch. For this reason, the upper
bound of the integral in Equation (69) is a function of ϵ. Additionally, B̃ depends only weakly
on η. The dependence is through the power of RB, and RB is close to one. This is because RB

is roughly one minus the profit loss from re-optimisation. Due to the Envelope Theorem, the
profit loss is of second order and hence relatively small. The strong dependence on ϵ and the
weak dependence on η imply that

∂B̃(ϵ,η)
∂ϵ

−∂B̃(ϵ,η)
∂η

(76)

is large. On the other hand, the measure above the kink point fk2 mainly depends on η. To see
that, consider the elasticity of the function fk2. From Equation (70) it follows that:

d ln fk2(q|ϵ, η)
d ln q

=
d ln f ol (q ρ

−ϵ)

d ln q
+ η

d lnR2(q ρ
−ϵ, ϵ)

d ln q
. (77)

Usually, d ln f
o
l

d ln q
is approximately constant. Moreover, for q close to qK , d lnR2

d ln q
is approximately

−(1− ρ). Therefore, it is approximately constant as well. It follows that
∂

d ln fk2(q
K |ϵ,η)

d ln q

∂ϵ
is close

to zero. It implies that
∂

(
d ln fk2(q

K |ϵ,η)
d ln q

)
∂ϵ

−
∂

(
d ln fk2(q

K |ϵ,η)
d ln q

)
∂η

is close to zero. These properties of B̃ and d ln fk2
d ln q

assure that Conditions 1 and 2 hold. Section
D.6.4 evaluates the conditions at the estimates of the application of this paper. It confirms the
intuition outlined above: the rank condition holds by a large amount.
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B.4.5 Proof of Lemma 11 and Lemma 12

As a first step, consider the following intermediate result:

Lemma 13. The function η′B(ϵ) > 0 and continuous. In particular, η′B(ϵo) is a strictly positive
real number.

PROOF Lemma 13:
Denote the right-hand side of Equation (69) as a function of its parameters by B̃(ϵ, η). Implic-
itly differentiate Equation (69) to derive

η′B(ϵ) =
∂B̃(ϵ,η)
∂ϵ

−∂B̃(ϵ,η)
∂η

. (78)

The numerator

−∂B̃(ϵ, η)

∂η
=

∫ qKρ−ϵ

qK
RB(ql, ϵ)

ηf ol (ql)(− lnRB(ql, ϵ))dql > 0, (79)

since 1 > RB(ql, ϵ) > 0 for qK < ql < qKρ−ϵ. Simple algebra using an appropriate software
shows that ∂RB(ql,ϵ)

∂ϵ
> 0 for all ql > qK . It follows that

∂B̃(ϵ, η)

∂ϵ
=

∫ qKρ−ϵ

qK
ηRB(ql, ϵ)

(η−1)f ol (ql)
∂RB(ql, ϵ)

∂ϵ
dql+

RB(q
Kρ−ϵ, ϵ)ηf ol (q

Kρ−ϵ)qKρ−ϵ ln(1/ρ) > 0, (80)

since 1 > RB(ql, ϵ) > 0 for qK < ql < qKρ−ϵ. Both functions are continuous in ϵ and η and
well defined at ϵo and ηo.
qed.

PROOF, Point (c), Lemma 11:
By Lemma 13, η′B(ϵ) > 0 and continuous. Moreover, ηB(ϵo) = ηo. Therefore, ηB(ϵ) intersects
with the known ηo once.
qed.

PROOF, Point (b), Lemma 12:
Denote the right-hand side of Equation (70) as a function of its parameters by fk2(q|ϵ, η).
Implicitly differentiate the logarithm of Equation (70) to derive

∂η(q, ϵ)

∂ϵ
=

∂ ln fk2(q|ϵ,η)
∂ϵ

−∂ ln fk2(q|ϵ,η)
∂η

=

(
d ln fol (q ρ

−ϵ)

d ln q
+ 1
)
ln(1/ρ) + η

∂R2(qρ
−ϵ,ϵ)

∂q
qρ−ϵ ln(1/ρ)+

∂R2(qρ
−ϵ,ϵ)

∂ϵ

R2(qρ−ϵ,ϵ)

− lnR2(qρ−ϵ, ϵ)
.

(81)

Note that R2 is strictly decreasing in its first argument. For each ϵ there exists a unique q̂(ϵ)
such that R2(q̂(ϵ)ρ

−ϵ, ϵ) = 1 and qK < q̂(ϵ)ρ−ϵ < qKρ−ϵ. Evaluate the numerator at q̂(ϵo), ϵo

and ηo, which after some algebra using an appropriate software renders(
d ln f ol (q̂(ϵ

o) ρ−ϵ
o
)

d ln q
+ 1

)
ln(1/ρ) + ηo

(1− ρ1+ϵ
o
)− (1 + ϵo) ln(1/ρ)

(1 + ϵo)2
. (82)
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Consider the case when this condition is not equal to zero, which is true generically. First,
consider the case when the condition is strictly negative. It follows that

lim
q↓q̂(ϵo)

∂η(ϵo, q)

∂ϵ
= −∞ ≠ η′B(ϵo), (83)

since − ln (R2(qρ
−ϵ, ϵ)) > 0 for all q > q̂(ϵo) and limq↓q̂(ϵo) − ln (R2(qρ

−ϵ, ϵ)) = 0. Second,
consider the case when the condition is strictly positive. It follows that

lim
q↑q̂(ϵo)

∂η(ϵo, q)

∂ϵ
= −∞ ≠ η′B(ϵo), (84)

since − ln (R2(qρ
−ϵ, ϵ)) < 0 for all q < q̂(ϵo) and limq↑q̂(ϵo) − ln (R2(qρ

−ϵ, ϵ)) = 0.
qed.

PROOF, Point (d), Lemma 11:
Note that the left-hand side of Equation (70) is equal to f ok2(q). Change variable in Equation
(70) and solve for η to derive the function

ηl(ql, ϵ) =
ln f ok2(qlρ

ϵ) + ln ρϵ − ln f ol (ql)

lnR2(ql, ϵ)
for all ql ∈ (qρ−ϵ, q). (85)

Consider functions ql(ϵ) such that R2(ql(ϵ), ϵ) = const.. Differentiate the function above and
note that the denominator is constant:

d ηl(ql(ϵ), ϵ)

dϵ
=

d ln fk2(ql(ϵ)ρ
ϵ)

d ln q

(
q′l(ϵ)

ql(ϵ)
+ ln ρ

)
+ ln ρ− d ln fol (ql(ϵ))

d ln q

(
q′l(ϵ)

ql(ϵ)

)
lnR2(ql(ϵ), ϵ)

. (86)

Denote by q̂l(ϵ) the unique ql such thatR2(q̂l(ϵ), ϵ) = 1. Note that qK ≤ q̂l(ϵ) ≤ qKρ−ϵ. Simple
algebra using appropriate software reveals that

q̂′l(ϵ)

q̂l(ϵ)
+ ln ρ < 0 and

q̂′l(ϵ)

q̂l(ϵ)
> 0. (87)

The elasticity d ln fk2(q̂l(ϵ)ρ
ϵ)

d ln q
≥ 0 by assumption. It also implies d ln fol (q̂l(ϵ))

d ln q
> 0 since d ln fol (q̂l(ϵ))

d ln q
=

d ln fk2(q̂l(ϵ)ρ
ϵo )

d ln q
− d lnR2(q̂l(ϵ),ϵ

o)
∂ ln q

and d lnR2(q̂l(ϵ),ϵ
o)

∂ ln q
< 0. It follows that

limql(ϵ)↑q̂l(ϵ)
d ηl(ql(ϵ),ϵ)

dϵ
< 0 for all ϵ since ln ρ < 0, and lnR2(ql(ϵ), ϵ) > 0 for all ql(ϵ) < q̂l(ϵ).33

Therefore, since η′B(ϵ) > 0, Conditions 2 and 1 hold.
qed.

PROOF, Point (b), Lemma 11:
Denote the left-hand side of Equation (70) by f ok2(q). Use Equation (70) and explicitly solve

33Note that q > q̂l(ϵ) > qρ−ϵ, qρϵ > q̂l(ϵ)ρ
ϵ > q, and qρϵ > q̂l(ϵ)ρ

ϵo > q. Therefore, all used relations
hold in the relevant range. The three inequalities follow since: by assumption, q

qK
> ρ−ϵ; by the property of

the convergence radius of power series q
qK

= qK

q > ρ−ϵ; by the definition of R2(.), qK ≤ q̂l(ϵ) ≤ qKρ−ϵ; by
assumption 0 ≤ ϵ ≤ ϵ, 0 ≤ ϵo ≤ ϵ; combining these inequalities renders the result.
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for η to derive

η(q, ϵ) =
ln f ok2(q)− f ol (qρ

−ϵ)− ln ρ−ϵ

lnR2(qρ−ϵ, ϵ)
for all q ∈ (q, qρϵ). (88)

Consider functions q(ϵ) such that R2(qρ
−ϵ, ϵ) = const.. Differentiate the function above to

derive that

d η(q(ϵ), ϵ)

dϵ
=

d ln fok2(q(ϵ))

d ln q
q′(ϵ)
q(ϵ)

− d ln fol (q(ϵ)ρ
−ϵ)

d ln q

(
q′(ϵ)
q(ϵ)

+ ln ρ−1
)
− ln ρ−1

lnR2(q(ϵ)ρ−ϵ, ϵ)
. (89)

Denote by q̂(ϵ) the q such that R2(q̂(ϵ)ρ
−ϵ, ϵ) = 1. Evaluate the numerator at this func-

tion. Note that by assumption d ln fol (q̂(ϵ)ρ
−ϵ)

d ln q
≤ −1. It also implies d ln fok2(q̂(ϵ))

d ln q
< −1 since

d ln fok2(q̂(ϵ))

d ln q
=

d ln fol (q̂(ϵ)ρ
−ϵo )

d ln q
+ d lnR2(q̂(ϵ)ρ−ϵo ,ϵo)

d ln q
and d lnR2(q̂(ϵ)ρ−ϵo ,ϵo)

d ln q
< 0. Using these inequali-

ties and some algebra using an appropriate software reveals that the numerator is greater than
zero for all ϵ. It follows that limq(ϵ)↓q̂(ϵ)

d η(q(ϵ),ϵ)
dϵ

< 0 for all ϵ since lnR(q(ϵ)ρ−ϵ, ϵ) < 0 for all
q(ϵ) > q̂(ϵ).34 Therefore, since η′B(ϵ) > 0, Condition 2 and 1 hold.
qed.

PROOF, Point (e), Lemma 11:
Suppose Condition 1 does not hold. It follows that there exists an ϵ ̸= ϵo and a η such that

f ol (qρ
−ϵo)ρ−ϵ

o

R2(qρ
−ϵo , ϵo)η

o

= f ol (qρ
−ϵ)ρ−ϵR2(qρ

−ϵ, ϵ)η for all q ∈ (q, qρϵ). (90)

Since all functions on both sides are real analytic on (0, q), by the identity theorem of real
analytic functions (see Corollary 1.2.6 in Krantz and Parks, 2002), this equation holds for all
q ∈ (0, q). The cited results from Krantz and Parks (2002) are summarised in Appendix F.
Rearranging and taking the limit of q going to zero, it follows that

lim
q↓0

f ol (qρ
−ϵo)ρ−ϵ

o

f ol (qρ
−ϵ)ρ−ϵ

= lim
q↓0

R2(qρ
−ϵ, ϵ)η

R2(qρ−ϵ
o , ϵo)ηo

for all q. (91)

By assumption, there exists an order of derivative P such that

lim
q↓0

dPf ol (q)

dqP
̸= 0 or ±∞. (92)

Using l’Hopital’s rule, it follows that the left-hand side is a strictly positive real number. Next,

34Note that q < q̂(ϵ) < qρϵ, q < q̂(ϵ)ρ−ϵ < q, and q < q̂(ϵ)ρ−ϵo < q. Therefore, all used relations hold
in the relevant range. The three inequalities follows since: by assumption, q

qK
> ρ−ϵ; by the property of the

convergence radius of power series q
qK

= qK

q > ρ−ϵ; by the definition of R2(.), qK ≤ q̂(ϵ)ρ−ϵ ≤ qKρ−ϵ; by
assumption 0 ≤ ϵ ≤ ϵ, 0 ≤ ϵo ≤ ϵ; combining these inequalities renders the result.
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consider the right-hand side

lim
q↓0

R2(qρ
−ϵ, ϵ)η

R2(qρ−ϵ
o , ϵo)ηo

= lim
q↓0

(
(1− ρ) qK

qρ−ϵ +
ϵ

1+ϵ

(
1 + ρϵ+1

ϵ

))η
(
(1− ρ) qK

qρ−ϵo + ϵo

1+ϵo

(
1 + ρϵo+1

ϵo

))ηo = (93)

=

(
(1− ρ) q

K

ρ−ϵ + limq↓0 q
ϵ

1+ϵ

(
1 + ρϵ+1

ϵ

))η
(
(1− ρ) qK

ρ−ϵo + limq↓0 q
ϵo

1+ϵo

(
1 + ρϵo+1

ϵo

))ηo lim
q↓0

qη
o−η. (94)

The first factor is a constant. Since by Lemma 13 η ̸= ηo, the second factor is ∞ or 0. There-
fore, the right-hand side in Equation (91) is ∞ or 0, which gives a contradiction. It follows that
Condition 1 holds.
qed.

PROOF, Point (f), Lemma 11:
Since the composition of real analytic functions is real analytic, ln f ol (q) real analytic implies
f ol (q) real analytic since the exponential is real analytic everywhere. As f ol (q) is real analytic
on [0, q), dP fol (0)

dqP
∈ R for all P . Moreover, there exists a P such that dP fol (0)

dqP
̸= 0; otherwise,

by the identity theorem of real analytic functions, f ol (q) = 0 for all q. Therefore, the sufficient
condition in point (b) is satisfied.
qed.

PROOF, Point (g), Lemma 11:
Suppose Condition 1 does not hold. It follows that there exists an ϵ ̸= ϵo and a η such that

f ol (qρ
−ϵo)ρ−ϵ

o

R2(qρ
−ϵo , ϵo)η

o

= fl(qρ
−ϵ)ρ−ϵR2(qρ

−ϵ, ϵ)η for all q ∈ (q, qρϵ). (95)

Using logarithms, it follows that

ln f ol (qρ
−ϵo) + ln ρ−ϵ

o

+ ηo lnR2(qρ
−ϵo , ϵo) = ln f ol (qρ

−ϵ) + ln ρ−ϵ + η lnR2(qρ
−ϵ, ϵ) for all q ∈ (q, qρϵ).

(96)

Changing variable, rearranging, and defining ρ−(ϵ−ϵo) = a renders

0 = ln f ol (qa)− ln f ol (q) + ln a+ η lnR2(qa, ϵ)− ηo lnR2(q, ϵ
o) for all q ∈ (qρ−ϵ, qρϵ).

(97)

Rewrite η lnR2(qa, ϵ) defining q̃ = ln q − ln qK and ã = ln a as

η lnR2(qa, ϵ) = η ln

(
(1− ρ)

qK

qa
+

ϵ

1 + ϵ

(
1 +

ρϵ+1

ϵ

))
=

= −η(q̃ + ã− ln(1− ρ)) + η ln
(
1 + eq̃+ã−ln(1−ρ)g(ϵ)

)
, (98)

where to shorten the notation g(ϵ) = ϵ
1+ϵ

(
1 + ρϵ+1

ϵ

)
. Use Equations (98) and (73) in Equation

(97) to get that
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0 =
P∑
p=0

γop [(q̃ + ã)p − q̃p] + ã− η(q̃ + ã− ln(1− ρ)) + η ln
(
1 + eq̃+ã−ln(1−ρ)g(ϵ)

)
+

+ ηo(q̃ − ln(1− ρ))− ηo ln
(
1 + eq̃−ln(1−ρ)g(ϵo)

)
(99)

Both sides of the equation are real analytic for all q̃. Therefore, by the identity theorem of real
analytic functions, the equation holds for all q̃. Differentiate with respect to q̃:

η − ηo =
P∑
p=1

γopp
[
(q̃ + ã)p−1 − q̃p−1

]
+ η

eq̃+ã−ln(1−ρ)g(ϵ)

1 + eq̃+ã−ln(1−ρ)g(ϵ)
− ηo

eq̃−ln(1−ρ)g(ϵo)

1 + eq̃−ln(1−ρ)g(ϵo)

(100)

Take the limit of q̃ going to −∞:

η − ηo = lim
q̃→−∞

P∑
p=1

γopp
[
(q̃ + ã)p−1 − q̃p−1

]
(101)

As a first case, consider P = 1. The right-hand side is zero, while, by Lemma 13 η ̸= ηo,
which gives a contradiction. As a second case, consider P > 2. Using the Binomial Theorem
and focusing on the terms with the highest and second highest order, it follows that

η − ηo = lim
q̃→−∞

P∑
p=2

γopp
[
(q̃ + ã)p−1 − q̃p−1

]
=

lim
q̃→−∞

(
γoPP q̃

P−1 + γoPP (P − 1)q̃P−2ã+ γP−1(P − 1)q̃P−2 − γoPP q̃
P−1 − γoP−1(P − 1)q̃P−2

)
=

lim
q̃→−∞

γoPP (P − 1)q̃P−2ã = ±∞, (102)

since ã ̸= 0, which gives a contradiction. As a last case, consider P = 2. Rearrange Equation
(100) to

0 = γo22ã− η
1

1 + eq̃+ã−ln(1−ρ)g(ϵ)
+ ηo

1

1 + eq̃−ln(1−ρ)g(ϵo)
. (103)

Taking q̃ to ∞ gives a contradiction.
qed.

PROOF, Point (a), Lemma 11:
Rearrange Equation (96) to

ln f ol (q) = ln f ol (qa) + ln a+ η lnR2(qa, ϵ)− ηo lnR2(q, ϵ
o) for all q ∈ (qρ−ϵ, qρϵ). (104)

Remember, a = ρ−(ϵ−ϵo) ̸= 1. This is a functional equation that, generically, does not hold.
Therefore, Condition 1 holds generically.

To see that, consider the point q̂ such that lnR2(q̂, ϵ
o) = 0. Without loss of generality,
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normalise f ol (q̂) to one. It follows that the only compatible η is

η =
− ln f ol (q̂a)− ln a

lnR2(q̂a, ϵ)
. (105)

Next, consider the points q̂aJ , where J is an integer larger than 1. Assume that (q, q) is large
enough such that at least two such points exist. It follows that, if Equation (96) holds, the value
of f ol (.) at these points needs to be

ln f̃ ol (q̂a
J) =

J∑
j=1

(
− ln a− − ln f ol (q̂a)− ln a

lnR2(q̂a, ϵ)
lnR2(q̂a

j, ϵ) + ηo lnR2(q̂a
j−1, ϵo)

)
. (106)

Take two such points. These hypothetical values f̃ ol are functions of the true parameter values
ϵo, ηo, and f ol (q̂a) and ϵ. Denote the hypothetical values at these points as functions of ϵ by
f̃ 1(ϵ) and f̃ 2(ϵ). The triple (ϵ, f̃ 1(ϵ), f̃ 2(ϵ)) describes a one dimensional line in R3. The true
values at these points f 1(ϵ), f 2(ϵ) are also functions of ϵ and the triple (ϵ, f 1(ϵ), f 2(ϵ)) also
describes a line. By construction, since a = 1 when ϵ = ϵo, these lines cross at ϵ = ϵo. Gener-
ically, the lines do not cross again in R3. Note that the argument can be strengthened using
J > 2 points. In this case, the true and implied values describe one-dimensional lines in RJ ;
generically, lines do not cross twice in such high-dimensional spaces.
qed.

PROOF, Point (a), Lemma 12:
See proofs of the respective points of Lemma 11.

B.5 Details identification
Denote the true functions and parameters in the population with superscript "o", while functions
and parameters without superscript denote the general values of these objects.

B.5.1 Proof of Lemma 2

The parametric part of Θ is compact because it is closed and bounded. By Lemma 10 and since
(ln q − ln qK) > 1, the series γ converges. Therefore, it is an element of the complete space
l∞. Since |γp| ≤ M(ln q − ln qK)−p for all p and limp→∞M(ln q − ln qK)−p = 0, the space is
a closed and totally bounded subspace of l∞. Therefore, it is complete and totally bounded. It
follows that Θ is compact.
qed.

B.5.2 Proof of Lemma 3

Consider a sequence θn ∈ Θ such that limn→∞ d(θ, θn) = 0. It follows that limn→∞ ϵn = ϵ,
limn→∞ ηn = η, and limn→∞ γnp = γp for all p.

The next step shows that ln fl(q | γn) converges uniformly to ln fl(q | γ) for all q ∈
[b, bρ−ϵ]. Consider a q̃ such that(

ln q − ln qK
)
>
(
ln q̃ − ln qK

)
> max

{
1, (ln qK − ln b), (ln bρ−ϵ − ln qK)

}
.
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It follows that

lim
n→∞

sup
q

|fl(q | γn)− fl(q | γ)| = lim
n→∞

sup
q

∣∣∣∣∣
∞∑
p=0

(γnp − γp)

(
ln

q

qK

)p∣∣∣∣∣ ≤
≤ lim

n→∞

∞∑
p=0

∣∣γnp − γp
∣∣ (ln q̃

qK

)p
= 0, (107)

where the last step follows from Tannery’s Theorem. Tannery’s Theorem applies since:

lim
n→∞

∣∣γnp − γp
∣∣ (ln q̃

qK

)p
= 0 ∀ p; (108)

∣∣γnp − γp
∣∣ (ln q̃

qK

)p
≤ 2M

(
ln q̃ − ln qK

ln q − ln qK

)p
; (109)

∞∑
p=0

2M

(
ln q̃ − ln qK

ln q − ln qK

)p
= 2M

1

1− ln q̃−ln qK

ln q−ln qK

. (110)

Q(.) is continuous in ϵ and η. Moreover, ln fl(q | γn) converges uniformly to ln fl(q | γ).
Therefore, limn→∞Q(θn) = Q(θ). By the continuous mapping theorem Q(θ) is continuous.
qed.

B.5.3 Proof of Proposition 3:

Denote the right-hand sides of Equations (20) and (22) in Section A.2 as a function of their
parameters by B̃(ϵ, η) and fk2(q|ϵ, η). Taylor expand the right hand side of Equations (20) and
(22) around ϵo, ηo and cancel equal terms to derive

∂B̃(ϵo, ηo)

∂ϵ
(ϵ− ϵo) +

∂B̃(ϵo, ηo)

∂η
(η − ηo) + h1(ϵ, η) (| ϵ− ϵo | + | η − ηo |) = 0,

(111)
∂fk2(q | ϵo, ηo)

∂ϵ
(ϵ− ϵo) +

∂fk2(q | ϵo, ηo)
∂η

(η − ηo) + h2(ϵ, η, q) (| ϵ− ϵo | + | η − ηo |) = 0;

(112)

where lim(ϵ,η)→(ϵo,ηo) h1(ϵ, η) = 0 and lim(ϵ,η)→(ϵo,ηo) h2(ϵ, η, q) = 0. W.l.o.g. assume ϵ ≥ ϵo

and η ≥ ηo. Rearrange the equations above to

∂B̃(ϵo,ηo)
∂ϵ

+ h1(ϵ, η)

−∂B̃(ϵo,ηo)
∂η

− h1(ϵ, η)
(ϵ− ϵo) = (η − ηo), (113)

∂fk2(q|ϵo,ηo)
∂ϵ

+ h2(ϵ, η, q)

−∂fk2(q|ϵo,ηo)
∂η

− h2(ϵ, η, q)
(ϵ− ϵo) = (η − ηo). (114)

By Condition 2, there exists a q such that for all (ϵ, η) sufficiently close to (ϵo, ηo), the coef-
ficients of this linear system of equations are not collinear, which renders a contradiction (see
Appendix B.4 for a discussion of Condition 2). Therefore, (ϵ, η) = (ϵo, ηo). It follows that
(ϵo, ηo, γo) is the locally unique minimum of Q(.). By this result together with Lemmas 2 and
3, Q(θ), θo, and Θ fulfil the Condition 3.1” for identification in Chen (2007), which proves
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Propositions 3. The cited results from Chen (2007) are summarised in Appendix F.
qed.

B.6 A comparison of Proposition 2 to the results in Blomquist and Newey
(2017), Blomquist et al. (2021), Bertanha, McCallum and Seegert
(2023), Chetty et al. (2011), and Goff (2022)

Because the properties of the counterfactual distribution fl(.) necessary for identification are
not specific to the presence of participation margin responses, I only consider intensive mar-
gin responses in this section. Similarly, because the identification result does not depend on
whether bunching is sharp or scattered, I consider only sharp bunching in this section.

Figure 4 illustrates that bunching depends on the intensive margin response of the marginal
buncher ∆q. But why is the observable measure fk(.), illustrated in the left panel of Figure 12,
useful to infer ∆q? Intuitively, one can use the observable massB and fill it into the distribution
to the right of the kink point, i.e., one can transfer the mass back to where it would be located
in the counterfactual. The right panel of Figure 12 illustrates the transfer of the mass. In this
way, one can infer the ∆q necessary to reconstruct a "smooth" counterfactual.

Figure 12: The identification of intensive margin responses.

qK

fk(q)

q

B

Observable Distribution

∆f ⇐ ∆π

qK

fk(q)

q

Identification ∆q

B

∆q

Note: The left panel illustrates the observable measure fk(.). The right panel illustrates how
the bunching massB is related to the intensive margin response ∆q. The dashed line illustrates
the segment of the counterfactual distribution fl(.) that is not observable.

However, to carry out this procedure, one needs to take a stand on the values of the counter-
factual in the interval [qK , qK +∆q]. The counterfactual fl(.) is neither directly nor indirectly
observable in this interval. A different shape of fl(.) in this interval implies a different value
of ∆q; i.e., if fl(.) is relatively large in this range, the implied ∆q is small, if fl(.) is small, the
implied ∆q is large.

The classic bunching estimator (e.g., see Saez, 2010, Chetty et al., 2011, and Kleven, 2016)
assumes the counterfactual is constant or linear over this range. Under this assumption, the
value of fl(.) can be inferred from points just to the left and the right of the kink point, and
∆q is identified. However, this distributional assumption can lead to a substantial asymptotic
bias in the estimator (see Section 2.2.2 in Bertanha et al., 2023 for a detailed discussion).
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Alternatively, Bertanha et al. (2023) and Goff (2022) show that restricting fl(.) to a parametric
function allows identifying the intensive margin elasticity. Intuitively, points to the left of the
kink point identify the parameters of fl(.), which, together with the bunching mass, identifies
∆q. However, again, whenever the true counterfactual does not have the assumed parametric
form, the estimator is asymptotically biased. The size of the bias depends on the accuracy of
the parametric assumption.

Is it possible to relax the parametric assumption on fl(.), and, if yes, under which condi-
tions? Theorem 1 in Blomquist and Newey (2017) shows that, when fl(.) is continuously differ-
entiable of order D but otherwise unrestricted, the intensive margin elasticity is not identified.
Intuitively, since fl(.) is unobserved in a strictly positive interval [qK , qK + ∆q], observing D
derivatives of fl(.) outside of this interval is insufficient to infer the value of the function in the
strict interior of the interval. Any value of the function in the strict interior of the interval is
compatible with the values of the D derivatives of the function outside the interval; it suffices
that the derivatives of order higher than D are sufficiently extreme. This result implies that a
stronger restriction than the differentiability of order D is necessary.

Proposition 2 in this paper shows that intensive and participation margin responses are iden-
tified if the counterfactual fl(.) is nonparamteric, but fulfils Assumption 3.a or 3.b. Note that
this result does not contradict Theorem 1 in Blomquist and Newey (2017), because Assump-
tion 3.a or 3.b are stronger than assuming differentiability of order D. Under Assumption 3.a
or 3.b, the counterfactual fl(.) is uniquely determined by the sequence of its derivatives at the
kink point; this sequence is identified from points outside the bunching interval. Intuitively, the
function is sufficiently smooth such that it can be interpolated from points outside the interval
[qK , qK +∆q].

Blomquist et al. (2021), Bertanha, McCallum and Seegert (2023), and Goff (2022), show
that the intensive margin elasticity can be partially identified if the econometrician knows
bounds of the slope of fl(.) or other restrictions on the shape of fl(.). Proposition 2 shows
that under Assumption 3.a or 3.b, both elasticities are point-identified.35 Point-estimates are
necessary to conduct the counterfactual exercises in Section 4. Moreover, no ex-ante knowl-
edge about the bounds of the slope of fl(.) or its shape is necessary. Bertanha, McCallum and
Seegert (2023) show that the intensive margin elasticity can be point-identified without restrict-
ing fl(.) to a parametric functional form when a rich set of covariates is available; Proposition
2 does not rely on the availability of covariates. In my application, no rich set of covariates is
available.

B.7 An illustration of Proposition 2 using simulations
This section illustrates the identification in Proposition 2 using simulations. The section uses
superscript "o" for the true values of the parameters or measures, while objects without su-
perscript denote the corresponding general values of these objects. I simulate the observable
measure f ok (.) using three different functions for the underlying counterfactual measure f ol (.)
of the data-generating process. Then, I show that the minimum of the population criterion

θP = arg min
θ∈ΘP

Q(θ) (115)

converges to the true parameter θo as the order of the series P increases. The population cri-
terion Q(θ) is defined in Equation (17) in Section A.2. Intuitively, it is the square distance be-
tween the logarithm of the observed measure f ok (.) and the corresponding object in the model.

35Note that when the interval (q, q) in Assumption 3.b is not large enough, point-identification is not possible.
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Remember, θ = (ϵ, η, γ0, γ1, ...), where (γ0, γ1, ...) is the sequence of coefficients of the power
series in Equation (9). The minimisation (115) restricts γ to dimension P , i.e., it is an element
of the P dimensional sieve-space ΘP . For a formal definition of the sieve-space ΘP see Section
C.2.

Figures 7 and 1 suggest that the counterfactual measure in the empirical application is very
close to linear in the log-log scale. Accordingly, in the first example, I assume the counterfac-
tual distribution of the data-generating process is linear in logarithmic scales:

ln f ol (q) = λ0 + λ1 ln

(
q

qK

)
.

It corresponds to a Pareto distribution. In the model, I use

ln fl(ql) =
P∑
p=0

γp

(
ln

ql
qK

)p
, (116)

where P converges to infinity. In this first example, the functional form of the true counter-
factual is a special case of the finite series expansion of ln fl(.) as long as P ≥ 1. Figure 13
depicts the observable measure ln f ok (.) as the thick grey line and the underlying counterfactual
measure ln f ol (.) as the dashed purple line. The grey bar at zero depicts the normalised mass
in the bunching interval [qL, qH ], i.e., it depicts lnBo. Table 6 summarises the parameters of
the simulation. Unsurprisingly, Table 3 shows that (ϵP , ηP ) = (ϵo, ηo) for P ≥ 1. Figure 14
shows the theoretical and inferred counterfactual distribution for points in and to the right of
the bunching interval. For P ≥ 1, the two functions are equal even though, at this range, the
distribution is not directly observable. Again, this is no surprise since the functional form of
ln f ol (.) is a special case of the functional form of ln fl(.) if P ≥ 1. The example shows that
the elasticities η and ϵ are identified when the functional form of f ol (.) is a special case of fl(.).

Figure 13: Simulation; example 1, linear ln f ol (.).
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Note: The dashed purple line shows the true counterfactual measure ln f ol (.) of the data-
generating process. The thick grey line shows the implied observable measure ln f ok (.).

59



Table 3: Inferred parameters; example 1, linear ln f ol (.).

Epsilon Bias Epsilon [%] Eta Bias Eta [%]

True Value 0.30000 0.000 3.0000 0.000
P=0 0.11691 -61.029 6.5562 118.540
P=1 0.30000 0.000 3.0000 0.000
P=2 0.30000 0.000 3.0000 0.000

Note: Columns 2 and 4 show the elasticities ϵ and η. The first row shows their true value, while rows
two to four show the inferred values using different polynomial orders P . Columns 3 and 5 show the
relative difference to the true value in percent. For P ≥ 1, the inferred values are equal to the true
values.

Figure 14: The true and inferred counterfactual; example 1, linear ln f ol (.).
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Note: The thick grey line shows the true counterfactual measure ln f ol (.) in the range where it is
not directly observable. The dotted line shows the bunching interval, while the solid line shows
points to the right of the bunching interval. The blue lines show the inferred counterfactual
measure using different polynomial orders P . For P = 1 the functions coincide.

Bertanha, McCallum and Seegert (2023) point out that the intensive margin elasticity ϵ is
identified when the parametric functional form of f ol (.) is known. The first example illustrates
that this result is also true when the participation margin is present. However, they also point
out that, without restrictions on f ol (.), the intensive elasticity is not identified. The next two ex-
amples illustrate that the real analyticity of ln f ol (.) is sufficient to identify the two elasticities.

In the second example, I assume the true counterfactual distribution is an exponential func-
tion in logarithmic scales:

ln f ol (q) = λ0 + e−λ1 ln(q/q
K).

Importantly, in this case, the true counterfactual measure is not a special case of the series ex-
pansion used in the model, i.e., ln f ol (.) ̸= ln fl(.) for all P . However, the exponential function
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is real analytic over the entire real line, i.e., its power series expansion at the kink point con-
verges on the entire real line. Figure 15 shows the observable in grey and the true counterfactual
in purple; the grey bar at zero illustrates the mass in the bunching interval. Table 4 shows that
for all P , ηP and ϵP are not equal to the true values. The reason is that a finite polynomial
cannot represent the exponential function. However, as P increases, ηP and ϵP converge to
their true values. Already at P = 4, the small sample bias in both elasticities is smaller than 1
%. Figure 16 shows that the model infers ln f o(.) in intervals where it is not observable - the
bunching interval - or only indirectly observable - to the right of the bunching interval. The
inferred function converges to the true function as P increases; already at P = 4 the two func-
tions are visually indistinguishable. The example illustrates that, if ln f ol (.) is analytic, ϵo and
ηo are identified since ln fl(.) converges to ln f ol (.) as P increases.

Figure 15: Simulation; example 2, exponential ln f ol (.).
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Note: The dashed purple line shows the true counterfactual measure ln f ol (.) of the data-
generating process. The thick grey line shows the implied observable measure ln f ok (.). The
grey bar at zero depicts the bunching mass lnBo.

Table 4: Inferred parameters; example 2, exponential ln f ol (.).

Epsilon Bias Epsilon [%] Eta Bias Eta [%]

True Value 0.30000 0.000 3.0000 0.000
P=1 0.36239 20.795 0.3976 -86.747
P=2 0.32369 7.895 2.1423 -28.591
P=3 0.29792 -0.694 3.1557 5.190
P=4 0.30000 0.000 2.9996 -0.012

Note: Columns 2 and 4 show the elasticities ϵ and η. The first row shows their true values, while rows
two to five show the inferred values using different polynomial orders P . Columns 3 and 5 show the
relative difference to the true value in percent. The inferred values converge to the true values as P
increases.
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Figure 16: The true and inferred counterfactual; example 2, exponential ln fl(.).
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Note: The thick grey line shows the true counterfactual measure ln f ol (.) in the range where
it is not directly observable. The dotted line shows the bunching interval, while the solid line
shows points to the right of the bunching interval. The blue lines show the inferred counterfac-
tual measure using different polynomial orders P . The inferred function converges to the true
function as P increases.

One may argue that the exponential function has a benign shape since it is monotonically
decreasing. Moreover, the bunching interval in example two is relatively narrow; hence, it
is easier to infer the function. Are the two elasticities identified when bunching coincides
with a peak in ln f ol (.), or when using a very large bunching interval is necessary because the
bunching mass is very scattered? The following example illustrates that the answer is yes. I
assume ln f ol (.) has the shape of a normal distribution with a maximum at the kink point:

ln f ol (q) = λ0 +
1√
2πλ1

e
− 1

2

(
ln(q/qK)

λ1

)2

.

Moreover, I choose a sizeable bunching interval. As in example two, no finite polynomial can
represent the pdf of the normal distribution, but the function is analytic. Figure 17 shows the
observable, the counterfactual, and the bunching mass. Table 5 shows the true and inferred
values of the elasticities. As in example two, ηP and ϵP converge to their true values as P
increases; at P = 10, the biases are below 1 percent.36 The convergence in this example is
slower than in example two since ln f ol (.) is less regular, and the bunching window is larger.
Figure 18 shows how the inferred counterfactual converges to the true counterfactual. The
figure only shows the bunching interval and not the points to the left since, for these points, the
convergence is too fast to distinguish the functions visually.

Note that if one were to pick an example where ln f ol (.) is even less regular or the bunching
window is even larger, P would need to be even larger to reduce the bias below one percent.
However, as long as Assumption 3.b holds, there always exists an order P such that the biases
are smaller than some arbitrary small number δ > 0. In the estimation, increasing P is costly

36The table only shows values for even P because, for the normal distribution, the true parameters at uneven
powers in the series expansion are equal to zero. Therefore, values for uneven P are similar to values for P − 1.
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since it increases the estimates’ variance, giving rise to a standard bias-variance trade-off in
nonparametric estimations. However, this is a problem of estimation and not of identification.
Section 2 discusses the optimal choice of P in further detail.

Figure 17: Simulation; example 3, normal ln fl.
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Note: The dashed purple line shows the true counterfactual measure ln f ol (.) of the data-
generating process. The thick grey line shows the implied observable measure ln f ok (.). The
grey bar at zero depicts the bunching mass lnBo.

Table 5: Inferred parameters; example 3, normal ln fl.

Epsilon Bias Epsilon [%] Eta Bias Eta [%]

True Value 0.30000 0.000 3.0000 0.000
P=4 0.19170 -36.101 9.1228 204.093
P=6 0.31168 3.893 2.9096 -3.013
P=8 0.29439 -1.869 2.9933 -0.223
P=10 0.30248 0.827 3.0015 0.050

Note: Columns 2 and 4 show the elasticities ϵ and η. The first row shows their true values, while rows
two to five show the inferred values using different polynomial orders P . Columns 3 and 5 show the
relative difference to the true value in percent. The inferred values converge to the true values as P
increases.
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Figure 18: The true and inferred counterfactual; example 3, normal ln fl.
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Note: The dotted grey line shows the true counterfactual measure ln f ol (.) in the bunching
interval, where it is not observable. The blue lines show the inferred counterfactual measure
using different polynomial orders P . The inferred function converges to the true function as P
increases.

Table 6: Parameters simulations

λ0 λ1 Bandwidth Bunching Interval

Example one - 0.3 -0.8 [-1,1] [-0.1,0.1]
Example two -0.4 0.8 [-1,1] [-0.1,0.1]
Example three -0.4 0.5 [-1,1] [-0.3,0.3]

Note: Columns 1 and 2 show the parameters of the counterfactual distribution fol (.). Column 3 shows
the bandwidth, i.e., the points around the kink point used for the estimation. Column 4 shows the
bunching interval. Bandwidth and bunching interval are expressed as normalised logarithmic capacities
(i.e., [ln(b/qK), ln(b/qK)].) The parameters of the incentive scheme Sk(.) are qK = 30 and ρ = 0.5.
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B.8 The identification in a discontinuous (i.e., notched) incentive scheme
This section generalizes the result in Proposition 2 for the case when there is a discontinuity
(i.e., a notch) in the incentive scheme. For simplicity, I focus on the case where bunching is
sharp.

Consider the discontinuous subsidy schedule Sd(.):

Sd(q) = slq, for q ≤ qD; (117)
Sd(q) = slq −∆S sl, for q > qD; (118)

where qD denotes the notch point and ∆S denotes the size of the notch relative to sl.

Proposition 4 (The observed density in the case of a notch). Close to the notch point, the
observable measure fd(.) under the notched subsidy Sd(.) is a function of three unknowns:
the intensive margin elasticity ϵ, the participation margin elasticity η, and the counterfactual
measure fl(.). At the notch point qD, there is a mass point with bunching mass B. Four parts
of the observable measure fd(.) depend distinctly on the three unknowns:

fd(q) = fl(q), for q < qD; (119)

B =

∫ qB(ϵ,∆S)

qD

RB(ql, ϵ)
ηfl(ql)dql, for q = qD; (120)

fd(q) = 0, for qD < q < qB; (121)

fd(q) =

(
1− ∆S

q

)η
fl(q), for q > qB. (122)

Note: The variable qD denotes the notch point; ∆S denotes the size of the notch relative to sl;
R(., ϵ) defined in Equation (15) is the net subsidy payment to an adopter under the notched scheme
relative to the subsidy payment under the counterfactual scheme. The variable qB(ϵ,∆S) defined in
Equation (126) denotes the quantity-choice of the marginal buncher. It is a function of the intensive
margin elasticity ϵ and the size of the notch ∆S.

PROOF:
As in Section A.1. Use the cost function and the FOC of adopters to derive that

q = ql, for ql < qD; (123)
q = qD, for qD ≤ ql ≤ qB; (124)
q = ql, for ql > qB. (125)

The variable qB(ϵ,∆S) denotes the quantity-choice of the marginal buncher. It is implicitly
defined by the indifference condition of that agent:

qD − ϵ

1 + ϵ

1

q
1
ϵ
B

qD
1+ 1

ϵ = qB
1

1 + ϵ
−∆S (126)

The rest of the proof follows the steps in Section B.2.5.
qed.
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Proposition 5 (The identification in the case of a notch). The observable measure fd(.) iden-
tifies the counterfactual measure fl(.), the intensive margin elasticity ϵ, and the participation
margin elasticity η.

PROOF:
As in Section A.2. Three parts of the measure (119), (120), and (122) are sufficient to identify
the three unknowns.
qed.

C Details estimation

This section denotes the true functions and parameters in the population with superscript "o",
while functions and parameters without superscript denote the general values of these objects.

C.1 The estimation of ln f̂(qj) and ln B̂.

As a first step, construct the empirical histogram f̂(qj) by choosing bins and counting the
number of adopters in each bin. The normalisation by the bin size hj and the total number
of adopters n gives the observed density f̂(qj) at point qj , where qj is the location of the bin.
The index j in {−N−, ...,−1, 0, 1, ..., N+} is the index of the bin and N = N− + N+ is the
total number of bins. Each bin size hj is a function of the sample size n and goes to zero
as n goes to infinity; moreover, nhj

lnn
goes to infinity as n goes to infinity. As a second step,

take the logarithm of the histogram ln f̂(qj). The location and the size of the bins qj and hj
may be chosen equidistantly or otherwise. In general, the estimator is more efficient if the
bins are chosen such that the variance of the histogram is approximately constant. Section
C.1.2 and C.1.3 discuss binning and bias correction procedures that improve the small sample
properties and efficiency. Note that the steps proposed in these sections are not necessary for
the consistency and asymptotic normality of the estimator.

The estimate B̂ is simply the number of observations in the bunching interval [qL, qH ]. The
next section shows that ln f̂(qj) and ln B̂ are consistent estimates of ln f ok (qj) and lnBo, where
Bo is the mass in the bunching interval in population and f ok (qj) is the measure at point qj in
population.

C.1.1 The consistency of ln f̂(qj) and ln B̂

Denote by Qι the value of the observation number ι. Denote by N̂j the number of observations
in a bin. The constructed dependent variable is

f̂(qj) =
N̂j

nhj
. (127)

Lemma 14. f̂(qj) converges to f ok (qj) almost surely, which is also true in logarithms:

f̂(qj)
a.s.→ f ok (qj); (128)

ln f̂(qj)
a.s.→ ln f ok (qj). (129)
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The corresponding result holds for B̂.

PROOF:
The result f̂(qj)

a.s.→ f ok (qj) is standard (e.g., see Einmahl and Mason, 2005). Write B̂ as

B̂ =
1

n

n∑
ι=1

1[qL ≤ Qι < qH ]

qH − qL
. (130)

Using the strong law of large numbers, it follows that

1

n

n∑
ι=1

1[qL ≤ Qι < qH ]

qH − qL

a.s.→

(∫ qHρ
−ϵo

qL

R(ql, ϵ
o)η

o

f ol (ql)dql

)
/ (qH − qL) = Bo, (131)

as n and goes to infinity. By the continuous mapping theorem, it follows that

ln f̂(qj)
a.s.→ ln f ok (qj). (132)

The same argument holds for ln B̂.
qed.

C.1.2 The bias and bias-correction of ln f̂(qj)

The empirical model in Section 2 uses the logarithm of f̂(qj) as the dependent variable. Using
the logarithm does not affect consistency (see Appendix C.1.1). However, it introduces a small
sample bias: E

[
ln f̂(qj)

]
is not equal to ln f ok (qj). To counteract this effect, model (11) in

Section 2 uses the bias-corrected dependent variable

̂ln f(qj) = ln f̂(qj) +
1

2N̂j

, (133)

where N̂j denotes the number of observations in a bin. Note that ̂ln f(qj) denotes the bias-
corrected dependent variable, while ln f̂(qj) denotes the logarithm of the histogram. Using
(133) reduces bias since

E
[
̂ln f(qj)

]
= ln f ok (qj) +O

(
1

N2
j

)
, (134)

where Nj is the expected value of N̂j .
PROOF:

Taylor approximate all functions of random variables in Equation (133) around their expected
values and use f ok (qj) n hj = Nj:

̂ln f(qj) ≈ ln f ok (qj) +
1

Nj

(N̂j −Nj)−
1

2N2
j

(N̂j −Nj)
2 +

1

3N3
j

(N̂j −Nj)
3+

+
1

2Nj

− 1

2N2
j

(N̂j −Nj) +
1

2N3
j

(N̂j −Nj)
2. (135)

Take the expectation on both sides above. Note that, because N̂j follows a Binomial distribu-
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tion, E(N̂j −Nj) = 0, E(N̂j −Nj)
2 = Nj , and E(N̂j −Nj)

3 = Nj .
qed.

C.1.3 Binning

The logarithm makes it necessary to have at least one observation in each bin because the log-
arithm of zero is not defined. Additionally, even after bias correction, the small sample bias
caused by the logarithm decreases in each bin’s number of observations. Therefore, it is prefer-
able to avoid bins with a small number of observations. The observed density in this paper’s
application is decreasing in capacity q. Consequently, the expected number of observations
in an interval decreases in capacity. To counteract this effect, I use bins with a bin size that
increases in capacity. Such a binning procedure does not affect consistency because f̂(qj) is
normalised by the bin size. Moreover, the variance of the log-histogram depends on the number
of observations in each bin. The log-histogram has constant variance if the number of observa-
tions in each bin is approximately constant. Therefore, an additional advantage of a well-chosen
binning procedure is that it equalises the variance of the dependent variable ̂ln f(qj). Hence, it
increases efficiency and avoids the need for a weighting matrix in the estimation.

Concretely, use the function

qj = qK(1− jc0(n))
− 1

ω , (136)

where qj is the right border of a bin. The bin size hj = qj − qj−1. The specification parameter
c0(n) goes to zero as the sample size n goes to infinity at a rate such that hjn

lnn
goes to infinity

for all j. The variable ω is another specification parameter. It determines how fast the bin sizes
increase in capacity. In the application of this paper, the distribution of observations is close to
a Pareto distribution. In this case, the function (136) keeps the number of observations in a bin
approximately constant if ω is chosen appropriately. Section D.5.1 discusses the choice of c0
and ω.

C.2 The consistency of ϵ̂ and η̂
The estimates ϵ̂ and η̂ are consistent because Conditions 3.1”, 3.2, 3.4, and 3.5 i) in Chen (2007)
hold. The cited results from Chen (2007) are summarised in Appendix F. The paragraphs be-
low verify these conditions.

By Proposition 2 and its proof in Section A.2, Condition 3.1” is fulfilled. This paragraph
shows that Conditions 3.2, 3.3 i), and 3.4 in Chen (2007) are fulfilled. Consider the sieve spaces
ΘP = {θ such that 0 ≤ ϵ ≤ ϵ, and 0 ≤ η ≤ η, and |γp| ≤ M(ln q − ln qK)−p for all p ≤
P, where ϵ, η,M > 0; γp = 0 for all p > P.}. Consider the norm

d(θ, θ̃) =| ϵ− ϵ̃ | + | η − η̃ | +sup
p

| γp − γ̃p | .

The sieve spaces ΘP are compact because they are closed and bounded; ΘP ⊆ ΘP+1 ⊆ Θ;
the sequence πP θo = (ϵo, ηo, γo0 , ..., γ

o
P , 0, ...) ∈ ΘP and limP→∞ d(θo, πP θ

o) = 0, where
superscript "o" denotes the true parameters. Moreover, Q(θ) is continuous on ΘP because it is
a continuous function of its parameters.

This paragraph shows that Condition 3.5 i) in Chen (2007) is fulfilled. Consider a θ ∈ ΘP
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and rewrite the sample criterion Q̂n(θ) (11) as:

Q̂n(θ) =
1

N

∑
qj∈[b,qL]∪[qH ,b]

(
̂ln f(qj)− ln fk(qj | θ)

)2
+
(
l̂nB − lnB(θ)

)2
. (137)

The interval [b, qL]∪[qH , b] is partitioned intoN bins of potentially unequal widths hj(n); qj(n)
denotes the location of these bins; assume that hj(n) goes to zero and hj(n)n

lnn
goes to infinity

for all j as the sample size n goes to infinity. Note that the number of bins N goes to infinity
as n goes to infinity. The log-histogram ̂ln f(qj) may be constructed following Section C.1.3;
alternatively, one could also use a different binning function as long as the bin sizes converge
to zero at the appropriate rates. Consider

|Q̂n(θ)−Q(θ)| = | 1
N

∑
qj∈[b,qL]∪[qH ,b]

(
̂ln f(qj)− ln fk(qj | θ)

)2
−

−
∫
[b,qL]∪[qH ,b]

(ln f ok (q)− ln fk(q | θ))2 dFw +
(
l̂nB − lnB(θ)

)2
− (lnBo − lnB(θ))2|.

(138)

Subtract and add 1
N

∑
qj∈[b,qL]∪[qH ,b] (ln f

o
k (qj)− ln fk(qj | θ))2 within this absolute value, use

the triangle inequality, and take the limit:

lim
n→∞

|Q̂n(θ)−Q(θ)| ≤

≤ lim
n→∞

| 1
N

∑
qj∈[b,qL]∪[qH ,b]

[(
̂ln f(qj)− ln fk(qj | θ)

)2
− (ln f ok (qj)− ln fk(qj | θ))2

]
|+

+ lim
n→∞

|
∫
[b,qL]∪[qH ,b]

(ln f ok (q)− ln fk(q | θ))2 dFw
N −

∫
[b,qL]∪[qH ,b]

(ln f ok (q)− ln fk(q | θ))2 dFw|

+ lim
n→∞

|
(
l̂nB − lnB(θ)

)2
− (lnBo − lnB(θ))2|. (139)

The third line uses
1
N

∑
qj∈[b,qL]∪[qH ,b] (ln f

o
k (qj)− ln fk(qj | θ))2 =

∫
[b,qL]∪[qH ,b]

(ln f ok (q)− ln fk(q | θ))2 dFw
N ,where

Fw
N is a CDF with steps of size 1/N at each qj and constant anywhere else. Define Fw as the

limit of this CDF when N goes to infinity. It follows that the expression in line 3 in (139)
converges to zero by definition. Note that this line is not a random variable. The expression
in line 2 converges to zero almost surely (see Einmahl and Mason, 2005).37 The expression in
line 4 converges to zero almost surely (see Lemma 14). It follows that Q̂n(θ)

a.s.→ Q(θ) for all
θ ∈ ΘP . Therefore, Condition 3.5 i) in Chen (2007) is fulfilled (see footnote 29, Chen, 2007.)

C.3 The estimation of the mean squared error
It is standard in nonparametric estimations to choose a specification that minimises an estimate
of the mean squared error. As the estimate of the participation margin η̂ is more sensitive to
the specification than the intensive margin ϵ̂ (see the simulation in Table 4 in Section B.7), I
use an estimate of its mean squared error to choose the specification. The estimate η̂(P, n) is

37Note that by Assumption 3.a or 3.b, | ln fo
k (qj) | is bounded uniformly.
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a function of the specification parameter and the sample size n. The mean squared error is
defined as

MSE = E
[
(η̂(P, n)− ηo)2

]
, (140)

where ηo denotes the true value of the parameter. A standard bias-variance decomposition
renders

MSE = E
[
(η̂(P, n)− E [η̂(P, n)])2

]︸ ︷︷ ︸
variance

+(E [η̂(P, n)]− ηo)2︸ ︷︷ ︸
bias2

. (141)

Define

η̃(P ) := lim
n→∞

η̂(P, n), (142)

where P is kept constant.38 Intuitively, η̃(P ) is the biased value of the parameter under the
parametric specification P . Therefore, η̃(P )−ηo is the estimator’s specification bias. Note that
in large enough samples E [η̂(P, n)] ≈ η̃(P ). Therefore, the mean squared error is the sum of
the variance and the estimator’s squared specification bias. All parts of the MSE are unknown
and need to be estimated. Following Chetty et al. (2011), the variance can be estimated by
the nonparametric bootstrap. Estimating the bias is more challenging since it depends on η̃(P )
and the true value ηo. A consistent estimator of η̃(P ) is η̂(P, n) itself. However, a consistent
estimator of ηo, which converges fast, is challenging to find. The next section discusses the
estimator of the bias.

C.3.1 The estimator of the bias

The first part of this section derives an approximate analytical expression of the bias. The
second part discusses the estimation of the bias. In this section, I assume bunching is sharp.
Note that in the application of this paper, bunching is relatively sharp, and the bunching interval
is narrow (see Footnote 13 and Appendix D.6.3.) I leave a generalisation to non-sharp bunching
for future research. Denote by (ϵ̃, η̃, γ̃P ) the estimate of (ϵ, η, γP ) under specification P and
when sample sizes goes to infinity, e.g., η̃ := limn→∞ η̂(P, n), where P is kept constant. The
parameter vector γoP denotes the true (γo0 , ..., γ

o
P ). The parameter γ̃P is identified from the

derivatives of the observed distribution to the left of the kink point. It is estimated without
bias if the bandwidth [b, b] converges to qK as n goes to infinity. Assume the bandwidth is
sufficiently narrow such that γ̃oP ≈ γP . The simulation in Table 4 shows that the parameter ϵ
is less sensitive to the specification than the parameter η. Assume that P is large enough such
that ϵ̃ ≈ ϵo. Given ϵo and γoP , the parameter η̃ is identified from points just to the right of the
kink point. Again, assume the bandwidth is sufficiently narrow such that η̃ is estimated from
the moment

lim
q↓qK

ln fk(q|ϵo, ηo, γo) ≈ lim
q↓qK

ln fk(q|ϵ̃, η̃, γ̃P ). (143)

38Note that if P changes accordingly with sample size, η̃(P ) converges to the true value ηo. However, that is
not true if the specification is kept constant.
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Using Equation (7) renders

∞∑
p=0

γop
1

p!

(
ln

(
qKρ−ϵ

o

qK

))p
+ ηo lnR(qKρ−ϵ

o

, ϵo) + ln
(
ρ−ϵ

o)
(144)

≈
P∑
p=0

γ̃p
1

p!

(
ln

(
qKρ−ϵ̃

qK

))p
+ η̃ lnR(qKρ−ϵ̃, ϵ̃) + ln

(
ρ−ϵ̃
)
. (145)

Use γoP ≈ γ̃P , ϵo ≈ ϵ̃, and rearrange to derive that

η̃ − ηo ≈
∑∞

p=P+1 γ
o
p
1
p!

(
ln
(
ρ−ϵ

o))p
lnR(qKρ−ϵo , ϵo)

(146)

The bias in η̂ depends mainly on ϵ and on the un-estimated rest of the parameter γ, i.e.,
(γP+1, γP+2, ...). The formula motivates the estimation of the bias using out-of-sample data,
which I discuss in the next paragraph.

Suppose the econometrician observes untreated data, i.e., there is no kink in the incentive
scheme; otherwise, the untreated data is similar to the treated data. This section derives an
estimate of the bias using such data. Denote by subscript ut and tr variables in the untreated
and treated data respectively. In the untreated data, the true value ηout is known: it is equal to
zero because there is no treatment. Running the estimation on such data, therefore, estimates
the specification bias. The estimate of the bias is

̂bias(η̂(P, n)) = η̂ut(P, n)− ηout = η̂ut(P, n), (147)

where η̂ut is the estimate of the participation margin in the untreated data.39 This estimate of
the bias has the advantage that it converges at a parametric rate. What are the requirements on
the untreated data such that η̂ut is indeed an estimate of the bias η̃tr−ηotr? Equation (160) above
provides the answer. First, estimating the bias on untreated data is possible if the counterfactual
distributions in the treated and untreated data are similar. More specifically, assume that there
exists a certain order of the series expansion of the two distributions, such that all coefficients
above that order are equal. Mathematically,

ln(f ol,ut(q)) =
∞∑
p=0

γop,ut
1

p!

(
ln

(
q

qK

))p
, (148)

ln(f ol,tr(q)) =
∞∑
p=0

γop,tr
1

p!

(
ln

(
q

qK

))p
, (149)

where f ol,ut and f ol,tr denotes the true counterfactual measure in the treated and untreated data
respectively; γop,ut and γop,tr denotes the respective parameters γ. Assume there exists an order
p∗ such that for all p ≥ p∗ the coefficients of these two distributions are equal: i.e., γop,tr =
γop,ut, ∀p ≥ p∗. Furthermore, assume that P ≥ p∗.

Second, Equation (160) shows that the bias depends on the intensive margin response ϵ. To
consider this dependence, first estimate ϵ̃ on the treated data using an auxiliary specification.
Second, simulate the intensive margin response in the untreated data by shifting observations

39It is important to not constrain η̂ut to positive values.

71



by the intensive margin response using the auxiliary estimate ϵ̃. Third, estimate ηut(P ) in the
untreated data with the simulated intensive margin response. A discussion of the choice of the
untreated data is in Section D.5.2. A discussion of the selected specification is in Section D.5.3.

C.4 A summary of the empirical approach
This section gives a step-by-step guide of the estimation.

1. Choose a bunching interval [qL, qH ] by visually inspecting the histogram, count the num-
ber of choices in the bunching interval, and take the logarithm to estimate l̂nB.

2. Estimate the log-histogram ̂ln(f(qj)) by partitioning the data into bins, counting the
choices in each bin, and applying the logarithm. To improve the small-sample prop-
erties of the estimator, it is possible to apply the bias-correction described in Section
C.1.2. Moreover, it is advantageous to bin the data such that the variance of ̂ln(f(qj)) is
approximately constant (e.g., see Section C.1.3).

3. Estimate ϵ̂, η̂, γ̂P by minimising the square distance between ̂ln(f(qj)) and l̂nB and the
respective objects in the model.

4. Choose the bandwidth [b, b], i.e., the range of the data used for the estimation, and the or-
der of the series P , such that the estimate of the mean-squared error described in Section
C.3 is at its minimum.

5. Check the robustness to the choice of the bunching interval (see Section D.6.3). More-
over, check if the rank condition holds (see Section D.6.4).

D Details empirical application

D.1 Data description
The data used in this paper are administrative and contain all solar panels connected to the
grid and receiving subsidy payments. An adopter may be a household or a firm. The unit of
observation is the aggregated capacity installed by an adopter at a specific location. Therefore,
it is not possible to exploit the nonlinearities in the subsidy by splitting a large system into
smaller ones and asking for separate payments for each. Additionally, when an adopter adds
capacity to a preexisting system, the policymaker takes the preexisting capacity into account.
Therefore, it is not possible to exploit the nonlinearities by splitting up a large adoption into
smaller ones over time. The data provides information on the time point of adoption, the
location, the electricity production, the applied subsidy rates, and the system’s capacity. Table
7 shows the yearly number of adoptions. It is increasing in most years. Table 8 shows the
subsidy schedule in Euro cents per kWh per capacity range and over time. Figure 19 shows
additional evidence for responses at the two margins. The patterns are the same as in Figures 7
and 1.
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Table 7: The number of adoptions per year.

Year Number of adoptions Relative proportion in %

Until 2001 23498 10
2002 10999 5
2003 11928 5
2004 26070 11
2005 36448 15
2006 32730 13
2007 39883 16
2008 61220 25

All years 242776 100

Table 8: The subsidy schedule in Euro cents per kWh.

Year < 30 kWp 30-100 kWp >100 kWp

Until 2001 50.62 50.62 50.62
2002 48.10 48.10 48.10
2003 45.70 45.70 45.70
2004 57.40 54.60 54.00
2005 54.53 51.87 51.30
2006 51.80 49.28 48.74
2007 49.21 46.82 46.30
2008 46.75 44.48 43.99

Note: Source Übertragungsnetzbetreiber (2018)
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Figure 19: The histogram of adoptions in the years 2000 to 2002 (left panel) and 2005 (right
panel).
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Note: The red line marks the kink point. Scales are logarithmic. The left panel shows the
histogram of adoptions in 2000 to 2002, when the subsidy was linear. As in 2003, there is no
significant mass point or slope change in the distribution. The left panel pools years to have a
sufficiently large sample size. The right panel shows the histogram in 2005, when there was a
kink in the schedule. As in 2004, it shows a visible mass point and slope change.

D.2 Generalisations of the model

D.2.1 Heterogeneous discounting and radiation exposure

The German subsidy for solar panels is paid as a feed-in tariff. A feed-in tariff is a guaranteed
fixed price for produced electricity. The subsidy payment depends on the installed capacity and
the produced electricity. Electricity production is a function of the adopter-specific location
and capacity. The location matters since climate conditions vary across locations. Moreover,
adopters may have heterogeneous discount rates when evaluating future income streams. Dis-
counting matters because adopters take the adoption decision based on the present discounted
value of the income stream produced by the solar panel.

A household installing capacity qi produces electricity eit in a given year: eit = witq
i,where

wit is the productivity of the solar panel in year t, which depends on weather conditions and
the location. Suppose electricity eit is remunerated according to the following kinked subsidy
scheme, which depends on the installed capacity:

Sk(q, eit) = sl eit, for q ≤ qK ; (150)

Sk(q, eit) = sl eit
qK

q
+ slρeit

q − qK

q
, for q > qK . (151)

It follows that the subsidy payment in a certain year as a function of q is:

Sk(q, wit) = sl wit q, for q ≤ qK ; (152)

Sk(q, wit) = slwitq
K + slρwit(q − qK), for q > qK . (153)

It follows that Sk(q, eit) = witSk(q). An agent evaluates the present discounting value of all
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future subsidy payments when taking the adoption decision. The expected present discounted
value of all payments is

Ei

[
20∑
t=0

βtiwitSk(q)

]
= Sk(q)Ei

[
20∑
t=0

βtiwit

]
= Sk(q)ζ

i. (154)

The subsidy is paid for 20 years; assume that solar panels break down afterwards. Setting ρ = 1
shows that the equivalent is true for a linear scheme Sl.

The decision problem of an adopter is

π̃iv = max
q

{ζ iS(q)− c̃iv(q)}, (155)

and participate if and only if

π̃iv ≥ c̃if , (156)

where ζ i captures the individual-specific discounting and location. Normalisation by ζ i shows
the equivalence of Problem (155) and Problem (1). Therefore, the model outlined in Section
1 implicitly accounts for subsidy payments via a feed-in tariff. In particular, it accounts for
individual-specific discounting and location.

D.2.2 The convexity of the variable cost function

There are at least two reasons why the cost function civ(.) in Section 1 is convex. First, for
a given adopter i, an important margin of adjustment for increasing the capacity of her solar
system is covering a larger area of her roof with solar panels. Typically, the opportunity cost of
using space on the roof is convex. It is for two reasons: i) the larger the area already covered
with solar panels, the more valuable the remaining space for alternative uses (e.g., windows,
chimneys, solar heating systems, etc.); ii) the larger the area covered, the less aesthetic is the
roof.

A second margin of adjustment is the average efficiency of the solar system. For any fixed
area of the roof dedicated to solar panels, adopters can increase the total capacity of their system
by using solar panels with a higher efficiency, i.e., solar panels with a higher peak capacity per
area. More efficient solar panels are more expensive, and the higher the efficiency, the larger
the price differences. Therefore, increasing the capacity of a system using the efficiency margin
has a convex cost. Denote byA a dedicated area on the roof in square meters, by ef the system’s
efficiency in kWp per square meter, and by p the price in euros per square meter. The price is
a function of efficiency, where p(.) > 0, p′(.) > 0, and p′′(.) > 0. It follows that the monetary
cost of the system is p(ef )A = p(q/A)A. It is easy to see that the cost of increasing capacity
via efficiency is convex for any fixed area.

Moreover, I do not assume the cost function is convex everywhere. There can be ranges of
increasing returns to scale. However, due to the constraints outlined above, the function civ(q)
of a specific adopter i is convex for q large enough. Note that the optimal choice of q is always
in the convex range of civ(q).

75



D.2.3 Dynamic decisions

Suppose there are two time periods. For simplicity, assume there is no discounting. Denote the
decision problem in the current period by

π = maxS(q)− cv(q, θ)︸ ︷︷ ︸
πv

−c̃f (157)

Denote with superscript −t these variables in the other time period. Note that −tmay be before
or after the current period:

π−t = maxS−t(q)− c−tv (q, θ)− c̃−tf (158)

An adopter participates in the current period if π ≥ max (0,Eπ−t). It is equivalent to πv ≥
c̃f + max (0,Eπ−t). Denote cf = c̃f + max (0,Eπ−t). The problem is equivalent to Problem
(1). The participation margin is the participation of adopters in the period under consideration.

D.3 A discussion of the empirical results
The results in Table 1 suggest that the intensive margin elasticity is the same for adopters
of different capacities, while the participation margin semi-elasticity decreases with capacity.
This pattern is not surprising. An important intensive adjustment margin is the quality of the
solar panel. Low-capacity adopters have access to the same quality choices as high-capacity
adopters. Therefore, their responses have the same elasticity at the intensive margin. It is useful
to consider the underlying distribution of fixed costs to interpret the participation responses. A
participation semi-elasticity that decreases in capacity is consistent with a simple normal dis-
tribution of fixed costs. The two semi-elasticities observed at the two capacity levels in Table
1 are sufficient to calibrate the distribution. Figure 20 shows the calibrated distribution and the
implied semi-elasticities. The figure shows the calibrated density of fixed costs ff (πv(ql)) and
the semi-elasticity of participation κ(πv(ql)) =

ff
Ff
(πv(ql)) as a function of the counterfactual

variable profit πv(ql) at capacity ql.40 Therefore, the function shows the mass of agents indif-
ferent to participation and the semi-elasticity of participation at a certain capacity level under
the counterfactual subsidy. The two red lines show the counterfactual capacity corresponding
to the variable profit at the two kink points under the kinked subsidy. Appendix E.1.2 discusses
the calibration in detail.

Figure 20 illustrates why the participation semi-elasticity in Table 1 decreases with capacity.
The semi-elasticity depends on the variable profit πv. The higher the profit, the lower the semi-
elasticity. Large capacity systems have large variable profits.41 Therefore, the fixed cost plays
only a small role in the adoption decision, i.e., only a few adopters have such high fixed costs
to make adopting a large capacity unprofitable. In contrast, adopting low-capacity systems
depends crucially on fixed costs. In relative terms, many adopters have a fixed cost equal to the
variable profit. It follows that relatively many adopters are close to indifferent to participating.
Consequently, a small increase in the subsidy payment causes a large relative response. While
the magnitude of the participation margin response at low capacities is surprising, there is an
intuitive explanation. During the observation period, solar panels were a nascent product. They
had high market potential compared to market coverage, reflected by the fact that 30 kWp is to

40I.e., πv(ql) = slql − cv(ql, ql) = slql/(1 + ϵ); it increases in ql. See Equation (13) in Appendix A.1 for the
definition of cv(., .).

41See Figure 3 in Section 1.1 for an graphical illustration or footnote 40 for a mathematical derivation.
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Figure 20: The calibrated density of fixed costs and the implied semi-elasticity.
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Note: The figure on the left shows the density of fixed costs ff (πv(ql)) as a function of the
counterfactual variable profit πv at capacity ql. Therefore, the function shows the mass of
agents indifferent to participation at a certain capacity level under the counterfactual subsidy.
The figure on the right shows the implied participation semi-elasticity at capacity ql under the
counterfactual subsidy. The red lines illustrate the two kink points.

the left of the bell curve in Figure 20. This feature explains why, compared to mature products,
the participation semi-elasticities are high. Table 9 shows the yearly estimates at 30 kWp.
Indeed, estimated participation semi-elasticities decrease over time as the market saturates.
This explanation suggests that one can expect similar response patterns to other deployment
subsidies for early-stage technologies.

Table 9: Yearly estimates at the kink point at 30 kWp.

Year ϵ̂ (SD) κ̂ (SD)

2004 1.92 (0.23) 3.21 (0.14)
2005 3.43 (0.26) 2.49 (0.13)
2006 3.92 (0.31) 1.88 (0.14)
2007 5.08 (0.29) 2.00 (0.12)
2008 5.33 (0.24) 1.76 (0.09)

Note: The table reports the estimated intensive margin elasticity ϵ̂ and participation margin semi-
elasticity κ̂ at the kink point at 30 kWp from 2004 to 2008. The standard errors are in brackets.

D.4 The selected specification and figures for the estimates in Section 3.2

The optimal bandwidth for the estimates at 30 kWp in Table 1 is [b, b] = [10.6, 85]; the optimal
order of the series is P = 1; the bunching interval is [qL, qH ] = [26.5, 31.75]. The optimal
bandwidth for the estimates at 100 kWp is [b, b] = [42, 400]; the optimal order of the series
is P = 1; the bunching interval is [qL, qH ] = [95, 102.5]. For the detailed procedure to select
this specification, see Sections D.5 and D.6.3. At both kink points, the optimal bandwidth is
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relatively large, and the series’ optimal order is low. This is not surprising; the graphical ev-
idence in Figures 7 and 1 shows that the counterfactual distribution is very close to a Pareto
distribution. The estimation of the standard errors uses the nonparametric bootstrap with 200
repetitions at 30kWp and 1000 repetitions at 100kWp and 250 kWp. An exponential transfor-
mation constrains ϵ̂ and η̂ to positive values.

Figures 21 and 22 show the histogram with the estimated model and the counterfactual.

Figure 21: The distribution of adoptions from 2004 to 2008 at 30 kWp with the estimated
model and counterfactual.

−1.0 −0.5 0.0 0.5 1.0

−
8

−
7

−
6

−
5

−
4

−
3

−
2

Log capacity ln(q/qK)

Lo
g 

de
ns

ity
 ln

(f
)

Histogram
Bunching Mass
Model
Counterfactual

Note: The x-axis shows the normalised logarithm of capacity. The y-axis shows the logarithm
of the density. The red line marks the kink point. The estimation minimises the distance between
the data in black and the model in blue.

Figure 22: The distribution of adoptions from 2004 to 2008 at 100 kWp with the estimated
model and counterfactual.
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Note: The x-axis shows the normalised logarithm of capacity. The y-axis shows the logarithm
of the density. The red line marks the kink point. The estimation minimises the distance between
the data in black and the model in blue.
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D.5 The selection of the specification

D.5.1 The parameters of the binning function

The binning function in Equation (136) in Section C.1.3 should guarantee a constant variance of
the log-histogram and sufficiently many observations in each bin. To select its parameters, I pre-
select initial maximal bandwidths. For the estimation at 30 kWp, I use a maximal bandwidth
of [9.5, 95].42 For the estimation at 100 kWp, I use the interval [42, 1600].43 Note that these are
the bandwidths for selecting the parameters of the binning function. The bandwidths for the
main estimates are selected in Section D.5.3 below.

In the next step, I choose the size of the bin at the kink point h0 and the scaling parameter
ω. Note that there is a one-to-one mapping between the parameter c0 in function (136) and
h0.44 I choose the two parameters such that there are at least four observations in each bin,
and the variance of the log-histogram in an auxiliary estimation is approximately constant. By
Equation (134), four observations guarantee that the bias introduced by the logarithm is of the
order 1

16
. The procedure gives the following specification:

Table 10: The selected bin sizes h0 and scaling parameters ω.

Years Interval Bin Size Scaling Parameter

2004-08 pooled [9.5, 95] 0.18 -0.35
2004-08 pooled [42, 1600] 1.7 1.2
2004-08 pooled [105, 4000] 10 1.5
2000-03 pooled [9.5, 95] 1.5 0.6
2004-11 yearly [9.5, 95] 0.8 0.1

Note: The table shows the selected bin size h0 and scale parameter ω of the binning function
in Equation (136). The parameters guarantee a minimum of 4 observations in each bin and an
approximately constant variance.

D.5.2 The untreated data for estimating the bias

As discussed in Section C.3.1, for each kink point, it is necessary to choose a range of untreated
data to estimate the bias. A natural choice is observations in the years 2000 to 2003. In these
years, the subsidy was linear. I use it to estimate the bias at 30kWp.

For the kink point at 100 kWp, the pre-treatment data is not a satisfactory choice to estimate
the bias. It is for two reasons. First, the number of observations around 100 kWp is very low in
these years. Second, in 2000-2003, the data do not specify whether a solar panel was installed
on a rooftop or the ground. From 2004 onwards, the data specifies where a solar system is
installed. This paper only considers rooftop solar panels. Overall, ground panels are only a
very small share of installations. Also, the subsidy for ground panels is linear in all years.

42I use this interval because it is symmetric around 30 in the logarithmic scale, and the upper limit is such that
the sample does not contain observations from the second kink point at 100.

43I use this interval for the following reasons. The proportional interval around 250 kWp, which I use to
estimate the bias, is [105, 4000] (42 250

100 = 105 and 1600 250
100 = 4000). The lower limit for the interval around 250

is 105 - and therefore, in proportion, 42 around 100 - to keep a distance from the next kink point at 100. The upper
limit is 4,000 - and therefore, in proportion, 1,600 - because there are only very few observations above 4,000
kWp. The interval is asymmetric to increase the sample size.

44h0 = qK(1− c0)
− 1

ω − qK .
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After 2004 and close to capacity 30kWp, only very few panels are ground panels. Therefore,
the fact that the sample from 2000-2003 contains ground panels does not pose a concern for
using these years to estimate the bias at 30 kWp. However, this is not true for capacities close
to 100 kWp. There is a significant number of ground panel installations exactly at 100 kWp in
the years after 2004. For these reasons, I cannot use observations around 100 kWp in the years
2000-2003 to estimate the bias at 100 kWp. To be conservative, I remove the observations at
and around 100kWp when using the data to estimate the bias of the parameter at 30 kWp.

Therefore, to estimate the bias at 100 kWp, I use observations around a point similar to
100 kWp in 2004-2008. On the one hand, for the counterfactual distribution to be similar, the
point should be close to 100 kWp. On the other hand, it should be far enough from 100 not to
include observations affected by the kink. I choose the point 250 kWp because it satisfies these
requirements. Like the point 100 kWp, the point 250 kWp is a focal point (i.e., it is a quarter
of 1,000 kWp).

Section D.5.3 discusses the selected specification.

D.5.3 The order of the series and the bandwidth

As discussed in Section C.3, this section estimates the mean squared error using the variance
estimate from the treated sample and the bias estimate from the untreated sample. To estimate
the variance, it uses the nonparametric bootstrap. I estimate the MSE for P={1,2,3} and the
bandwidths {[16.4, 55], [15.0, 60], [13.8, 65], [12.9, 70], [12.0, 75], [11.2, 80], [10.6, 85],
[10.0, 90], [9.5, 95]}. At 100 kWp I use the bandwidths {[67, 150], [50, 200], [42, 400], [42,
700], [42, 1000], [42, 1300], [42, 1600]}. The optimal bandwidth and order are: [10.6, 85] and
P = 1 at 30 kWp, [42, 400] and P = 1 at 100 kWp.

D.6 Robustness checks

D.6.1 The robustness check at 100 kWp

I run the robustness check for the estimation at 100 kWp on the data around 250 kWp pooling
observations from 2004 to 2008. For a discussion of this choice of data, see Section D.5.2.
Both estimates are insignificant.

Table 11: The results for the untreated data at 250 kWp.

Capacity ϵ̂ (SD) κ̂ (SD)

250 kWp 0.00 (1.04) 0.00 (0.18)

Note: The table shows the results of the robustness check. The standard errors are in brackets. The
estimates are not significant.
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Figure 23: The distribution of adoptions at 250 kWp with the estimated model.
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Note: The figure shows the robustness check. The x-axis shows the normalised logarithm of
capacity. The y-axis shows the logarithm of the density. The red line marks the kink point. The
estimated model in blue is equal to the estimated counterfactual in purple. The estimates are
not significant.

D.6.2 An estimator of the specification bias

This section proposes an estimator of the specification bias caused by an eventual violation of
Assumption 3.b. To this end, consider an estimator as in Section 2, but with fixed polynomial
order P and a bandwidth [b, b] that converges to qK as n goes to infinity. Denote by (ϵ̃, η̃, γ̃P ) =
limn→∞(ϵ̂, η̂, γ̂P )n the asymptotic values of the estimates as the sample size n goes to infinity.
By a slight abuse of notation, the vector γP denotes the parameters (γ0, ..., γP ). The superscript
"o" denotes the true values in population. Note that η̃ may be asymptotically biased, i.e., not
equal to ηo. However, under some assumptions, it is possible to characterise and estimate this
bias:

Proposition 6. Assume bunching is sharp, ln f ol (ql) is P times differentiable in ln ql at point
ln qK , and ϵ̃ = ϵo. 45 It follows that the bias

|η̃ − ηo| = |
h(qKρ−ϵ

o
)
(
ln
(
qKρ−ϵo

qK

))P
lnR(qKρ−ϵo , ϵo)

|, (159)

where the numerator is the rest of the P-th order Taylor approximation of ln f ol (.) at ln qK .

The proof is in Section D.6.5. The specification bias of η̂ depends on ϵ and on the rest of
the Taylor series. The formula motivates the estimation of the bias using untreated data, which
I discuss in the next paragraph.

45Note that in the application of this paper, bunching is relatively sharp, and the bunching interval is narrow
(see Footnote 13 and Appendix D.6.3). I leave a generalisation to non-sharp bunching for future research. Also
note that the simulation in Table 4 in Section B.7 shows that the parameter ϵ is less sensitive to the specification
than the parameter η, which motivates assuming ϵ̃ = ϵo.
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Suppose the econometrician observes untreated data, i.e., there is no kink in the incentive
scheme. Otherwise, the untreated data is similar to the treated data. Denote by subscripts
ut and tr variables for the untreated and treated data respectively. Equation (160) shows that
the bias depends on the intensive margin response ϵ. To consider this dependence, simulate the
intensive margin response in the untreated data by shifting observations by the intensive margin
response using the estimate ϵ̂tr from the treated data. Then estimate η̂ut in the untreated data
using the same specification as in the treated data.46 In the untreated data, the true value ηout is
known: it is equal to zero because there is no treatment. Therefore, by Proposition 6

|η̃ut − ηout| = |η̃ut| = |
hut(q

Kρ−ϵ
o
)
(
ln
(
qKρ−ϵo

qK

))P
lnR(qKρ−ϵo , ϵo)

|, (160)

where the numerator is the rest of the P-th order Taylor approximation of the true counterfactual
distribution in the untreated data. Under the assumption that the treated and untreated counter-
factual distributions are similar in the sense that hut(qKρ−ϵ

o
) = htr(q

Kρ−ϵ
o
), it follows from

Proposition 6 that |η̃ut| = |η̃tr − ηotr|. Therefore, |η̂ut| is an estimate of the specification bias of
η̂tr.

A discussion of the choice of the untreated data is in Section D.5.2. The estimates of the
bias are in Table 12. The estimated biases are small and statistically insignificant.

Table 12: The estimates of the specification bias.

Capacity | Bias(κ̂) | (SD)

30 kWp 0.03 (0.32)
100 kWp 0.06 (0.49)

Note: The table shows the estimates of the specification bias of the participation semi-elasticity κ. The
bias is small and statistically insignificant.

D.6.3 Robustness bunching interval

After the histogram’s visual inspection, I choose the two bunching intervals [26.5, 31.5] and
[95, 102.5]. The intervals are asymmetric because there is more non-sharp bunching before the
kink point than after. As discussed in Footnote 13, non-sharp bunching can be explained by the
unavailability of the exact optimal system size at the purchase date. This section reports the
robustness of the estimates to changes in the bunching interval.

46It is important to not constrain η̂ut to positive values.
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Table 13: The estimates at 30 kWp for various bunching intervals.

Interval κ̂ (SD) ϵ̂ (SD)

[25.50, 32.250] 2.34 (0.06) 4.18 (0.14)
[25.75, 32.125] 2.31 (0.06) 4.34 (0.14)
[26.00, 32.000] 2.31 (0.06) 4.34 (0.14)
[26.25, 31.875] 2.30 (0.06) 4.38 (0.14)
[26.50, 31.750] 2.31 (0.06) 4.37 (0.13)

[26.75, 31.625] 2.33 (0.06) 4.23 (0.12)
[27.00, 31.500] 2.31 (0.06) 4.34 (0.12)
[27.25, 31.375] 2.36 (0.05) 4.00 (0.10)
[27.50, 31.250] 2.38 (0.05) 3.89 (0.10)

Note: The table shows the estimates for different bunching intervals. The estimates are robust to changes
in the bunching interval.

The estimates at 30 kWp are robust to changes in the bunching interval.

Table 14: The estimates at 100 kWp for various bunching intervals.

Interval κ̂ (SD) ϵ̂ (SD)

[92.00, 104.00] 0.00 (0.01) 5.12 (0.99)
[93.50, 103.25] 0.00 (0.02) 5.05 (0.89)
[95.00, 102.50] 0.00 (0.02) 4.63 (0.84)
[96.50, 101.75] 0.00 (0.03) 4.51 (0.80)
[98.00, 101.00] 0.00 (0.03) 4.67 (0.68)

Note: The table shows the estimates for different bunching intervals. The estimates are robust to changes
in the bunching interval.

The estimates at 100 kWp are robust to changes in the bunching interval.

D.6.4 The empirical verification of the rank conditions

Consider Condition 1 and its local counterpart Condition 2 in Section B.4.3. By Lemma 11
and 12, both conditions hold generically. However, identification could be weak. For example,
Condition 2 could be almost equal to zero. This section verifies the two conditions empirically
at the estimated values and shows that they hold by a large amount. First, consider Condition
2. Table 15 shows the result; the standard errors are in brackets:

Condition 1 holds in the application of this paper since property (b) in Lemma 11 holds.
Table 16 shows the result; the standard errors are in brackets:
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Table 15: The rank condition evaluated at the estimated values and q = qK .

Capacity Rank Condition (SD)

30 kWp 148 (9)
100 kWp 2866 (1164)

Note: The table shows Condition 2 evaluated at the estimated values and q = qK . The standard errors
are in brackets. The condition holds by a large amount.

Table 16: Property (b) in Lemma 11.

Capacity γ̂1 (SD)

30 kWp -1.37 (0.02)
100 kWp -2.68 (0.03)

Note: The table shows γ1 = d ln fl(d)/d ln q at the two capacity levels. The condition in Lemma 11
holds by a large amount.

D.6.5 Proof of Proposition 6

By Taylor’s Theorem

ln f ol (ql) =
P∑
p=0

γop

(
ln

ql
qK

)p
+ h(ql)

(
ln

ql
qK

)P
, where lim

ql→qK
h(ql) = 0. (161)

Following the corresponding steps of the proof in Section C.2, the first part of the sample
criterion (11) converges to the population criterion

minη̃,γ̃P lim
n→∞

∫ qK

b(n)

(ln f ok (q)− ln fk (q | ϵ̃, η̃, γ̃P ))2 dFw +

∫ b̄(n)

qK
(ln f ok (q)− ln fk (q | ϵ̃, η̃, γ̃P ))2 dFw.

(162)

The function f ok (.) denotes the observable measure of agents in the population. The function
fk (q | ϵ̃, η̃, γ̃P ) denotes the respective function in Proposition 1, where the function fl(.) is ap-
proximated by the finite power series of order P in Equation (10). The function Fw denotes a
known weighting measure.

Step 1: γ̃0 = γ0.
Differentiate Equation (162) with respect to γ̃0 and assume b converges sufficiently faster to qK

than b. It follows that

0 = lim
n→∞

∫ qK

b(n)

(ln f ok (q)− ln fk (q | ϵ̃, η̃, γ̃P ))
∂fk(q|ϵ̃,η̃,γ̃P )

∂γ̃0

fk (q | ϵ̃, η̃, γ̃P )
dFw. (163)
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Use Equation (161), Proposition 1, and Equation (10):

0 = lim
n→∞

∫ qK

b(n)

[
P∑
p=0

(
γop − γ̃p

) 1

p!

(
ln

(
q

qK

))p
+ h(q)

(
ln

(
q

qK

))P]
1

0!

(
ln

(
q

qK

))0

dFw

(164)

Solve for (γ̃0 − γo0):

γ̃0 − γo0 =

limn→∞
∫ qK
b(n)

[∑P
p=1

(
γop − γ̃p

)
1
p!

(
ln
(

q
qK

))p
+ h(q)

(
ln
(

q
qK

))P]
1
0!

(
ln
(

q
qK

))0
dFw

limn→∞
∫ qK
b(n)

1
0!0!

(
ln
(

q
qK

))2∗0
dFw

(165)

Take the limit using l’Hopital:

γ̃0 − γo0 =

∑P
p=1

(
γop − γ̃p

)
1
p!

(
ln
(
qK

qK

))p
+ h(qK)

(
ln
(
qK

qK

))P
1

= 0 (166)

Step 2: γ̃p = γop for all p ≤ P .
Suppose γop = γ̃p for all p < π. Show that γoπ = γ̃π. To this end, proceed as in step 1. First,
differentiate Equation (162) with respect to γ̃π and assume b converges sufficiently faster to qK

than b. It follows that

0 = lim
n→∞

∫ qK

b(n)

(ln f ok (q)− ln fk (q | ϵ̃, η̃, γ̃P ))
∂fk(q|ϵ̃,η̃,γ̃P )

∂γ̃π

fk (q | ϵ̃, η̃, γ̃P )
dFw (167)

Use Equation (161), Proposition 1, Equation (10), γop = γ̃p for all p < π, rearrange and use
l’Hopital to derive that

γ̃π − γoπ = lim
q→qK

∑P
p=π+1

(
γop − γ̃p

)
1
p!

(
ln
(

q
qK

))p
+ h(q)

(
ln
(

q
qK

))P
1
π!

(
ln
(

q
qK

))π = 0. (168)

By induction, γ̃p = γop for all p ≤ P .

Step 3: η̃ − ηo.
Differentiate Equation (162) with respect to η̃:

0 = lim
n→∞

∫ b̄(n)

qK
(ln f ok (q)− ln fk (q | ϵ̃, η̃, γ̃P ))

∂fk(q|ϵ̃,η̃,γ̃P )
∂η̃

fk (q | ϵ̃, η̃, γ̃P )
dFw (169)
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Assume ϵ̃ = ϵo, use γop = γ̃p, Equation (161), Proposition 1, and Equation (10):

0 = lim
n→∞

∫ b̄(n)

qK

[
h(qρ−ϵ

o

)

(
ln

(
qρ−ϵ

o

qK

))P
+ (ηo − η̃) lnR

(
qρ−ϵ

o)]
lnR

(
qρ−ϵ

o)
dFw

(170)

Solve for (η̃ − ηo) and take the limit using l’Hopital:

η̃ − ηo =
h(qKρ−ϵ

o
)
(
ln
(
qKρ−ϵo

qK

))P
lnR(qKρ−ϵo , ϵo)

(171)

qed.

D.7 A comparison to the classic estimators
The classic bunching estimator uses a parametric functional form assumption on the counter-
factual distribution over the bunching range [qK , qKρ−ϵ] to estimate the intensive margin elas-
ticity (e.g., see Chetty et al., 2011). The bunching range [qK , qKρ−ϵ] is the theoretical range of
agents who bunch. Note that it is not equal to the bunching interval [qL, qHρ−ϵ] in Equation (6).
Depending on the true shape of the counterfactual, this parametric assumption may introduce
substantial specification bias. See Blomquist and Newey (2017), Bertanha, McCallum and
Seegert (2023), and Bertanha et al. (2023), for a detailed discussion of this bias. To alleviate
the concerns of specification bias, Section 2 estimates the counterfactual distribution nonpara-
metrically. Moreover, the classic bunching estimator ignores participation margin responses.
Given a certain amount of bunching, ignoring the participation margin downward biases the
estimate of the intensive margin elasticity. Intuitively, relatively little bunching is wrongly at-
tributed to a small intensive margin response instead of the participation margin response. The
estimator in Section 2 specifically accounts for the participation margin.

I evaluate these biases in my application in two steps, using the pooled data from 2004 to
2008 at 30 kWp. First, I estimate an intensive margin elasticity ϵC assuming the counterfactual
is constant in the bunching region as in Chetty et al. (2011). I use the rest of the parameters from
the correctly specified estimation (11), and I specify the model correctly outside the bunching
range:

ϵC = argmin
ϵ

(
l̂nB − lnBC(ϵ, η = η̂, γ = γ̂)

)2
, (172)

where

BC(ϵ, η, γ) =

∫ qK

qL

fl(ql|γ)dql +
∫ qKρ−ϵ

qK
fl(q

K |γ)dql +
∫ qHρ

−ϵ

qKρ−ϵ

fl(ql|γ)R(ql, ϵ)ηdql, (173)

and γ̂ and η̂ are the unbiased estimates from (11). As a comparison, in the correct specification,
the second integral in Equation (173) is∫ qKρ−ϵ

qK
fl(ql|γ)R(ql, ϵ)ηdql. (174)

Row 1 in Table 17 shows the result. The intensive margin elasticity has a downward bias of 23
%.
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Second, to distinguish the bias from the misspecified counterfactual from the bias of ignor-
ing participation, I estimate an intensive margin elasticity ϵ̃C using the right specification of
the counterfactual but ignoring the participation margin in the bunching region. Again, I use
the rest of the parameters from the correctly specified estimation (11), and I specify the model
correctly outside the bunching range:

ϵ̃C = argmin
ϵ

(
l̂nB − ln B̃C(ϵ, η = η̂, γ = γ̂)

)2
, (175)

where

B̃C(ϵ, η, γ) =

∫ qK

qL

fl(ql|γ)dql +
∫ qKρ−ϵ

qK
fl(ql|γ)dql +

∫ qHρ
−ϵ

qKρ−ϵ

fl(ql|γ)R(ql, ϵ)ηdql, (176)

and γ̂ and η̂ are the unbiased estimates from (11). Again, in the correct specification, the second
integral in Equation (176) is Equation (174). Row 2 in Table 17 shows the result. The intensive
margin elasticity has a downward bias of 12 %. It reveals that around half of the bias in ϵC can
be attributed to ignoring the participation margin.47

Correspondingly, ignoring intensive margin responses biases the estimate of the participa-
tion margin elasticity. To evaluate the bias, I proceed correspondingly to the above:

η̃ = argmin
η

∑
qj /∈[qL,qH ]

(
̂ln f(qj)− ln fk(qj | η, γ = γ̂, ϵ = 0)

)2
. (177)

Row 3 in Table 17 shows the result. Ignoring the intensive margin introduces an upward bias
of 5% in the estimate of the participation semi-elasticity. The exercises illustrate that simulta-
neously estimating the two margins is necessary to obtain unbiased estimates.

Table 17: A comparison of the biased and unbiased estimates.

Parameter Unbiased Estimate Biased Estimate Relative Difference in %

ϵC 4.37 3.39 -23
ϵ̃C 4.37 3.87 -12
κ 2.31 2.43 5

Note: The table shows the unbiased estimates in the second column. The third column shows the biased
estimates of the misspecified model. The fourth column shows the relative magnitude of the bias.

To estimate the bunching mass, Chetty et al. (2011) estimate the counterfactual distribu-
tion using observations outside the bunching interval. To this end, they fit a polynomial of
order seven to points outside the bunching interval. While their procedure differs in several
dimensions from the theoretically consistent estimation of the counterfactual in Section 2, one
similarity is the need to choose the order of the series P . They show that, qualitatively, their
results do not change if one changes the order of the polynomial; however, they change quan-
titatively. An advantage of the nonparametric estimator in Section 2 is that the series order is
chosen optimally. The optimal order is low, i.e., P = 1. See Section D.4 for a discussion. To
illustrate the importance of the choice of P , Table 18 compares the optimal estimates to the

47Note that, for both exercises, I specify the model correctly outside the bunching range and inside the bunching
interval, i.e., for ql ∈ [qL, q

K ] ∪ [qKρ−ϵ, qHρ−ϵ]. If one uses the misspecified models for all q in [qL, qH ], the
biases become more severe.
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estimates using P = 7 like in Chetty et al. (2011). As in Chetty et al. (2011), the estimates do
not differ qualitatively. Statistically, they are not significantly different from each other because
the estimates using P = 7 have very large standard errors. However, the point estimates show
large quantitative differences, and the estimates using P = 7 have much larger standard errors.
The comparison underlines the importance of choosing the polynomial order optimally to avoid
unnecessarily imprecise estimates.

Table 18: A comparison of the optimal polynomial order and order P = 7.

Parameter Optimal Estimate P=7

ϵ 4.37 (0.13) 3.78 (0.39)
κ 2.31 (0.06) 3.25 (1.02)

Note: The table shows the estimates using the optimal order of the series in the second column. The
third column shows the estimates using order P = 7.

E Details policy evaluation

E.1 Additional assumptions and calibration
Like other kink and discontinuity estimators in the literature, Section 3 estimates the responses
locally at each kink point. It is necessary to make global assumptions to use them for coun-
terfactual exercises. In line with the empirical evidence in Table 1, assume an isoelastic cost
function:

Assumption 6 (Isoelastic cost function). The cost function is isoelastic with a constant inten-
sive margin elasticity ϵ:

c(q, ql, cf ) =
sl

q
1
ϵ
l

ϵ

1 + ϵ
q1+

1
ϵ + cf , (178)

where (ql, cf ) is the two-dimensional type-parameter.

As discussed in Section D.3, the estimated participation margin responses in Table 1 are in
line with a normally distributed fixed cost:

Assumption 7 (Normally distributed fixed costs). The distribution of the fixed costs cf is nor-
mal: cf ∼ N(µf , σf ), with CDF Ff (cf ) and density ff (cf ).

Assumption 7 implies cf and ql are independent, as in Rochet and Stole (2002). Appendix
E.1.1 generalises the assumption to allow for correlation between cf and ql.

Set ϵ equal to the estimated intensive margin elasticity in Table 1 and calibrate (µf , σf )
using the estimated participation semi-elasticities (see Figure 20 and Appendix E.1.2 for de-
tails). Appendix E.1.2 describes the estimation of the type-distribution fl(.). It is a log-normal
distribution for low capacities and a Pareto distribution for large capacities. The model can be
solved for any counterfactual subsidy scheme using these assumptions.
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E.1.1 Extension Assumption 7

Assumption 7 implies that ql and cf are independent. However, the assumption can be easily
extended to allow for a correlation between ql and cf . Assume cf follows a truncated normal
distribution: cf ∼ N(µf , σf , cf (ql), cf (ql)), where cf (ql), cf (ql) are the truncation bounds
which can vary with ql. Denote by Ff (.) the CDF of the normal distribution. It follows that
the CDF of cf is F (cf )

F (cf (ql))−F (cf (ql))
; hence, cf and ql may be correlated. Assume that the bounds

cf (ql), cf (ql) are large enough such that the variable profit of an agent implied by any of the
counterfactual exercises lies within the bounds. As a consequence, all results in Section 4
remain unchanged.

E.1.2 The calibration and estimation of the type distributions

The observed subsidy Sk(.) has two kink points: qK1 = 30 and qK2 = 100. The relative slope
change at the kink points is ρ1 = 0.95 and ρ2 = 0.99.

Sk(q) = q, for q ≤ qK1 ; (179)

Sk(q) = qK1 (1− ρ1) + qρ1, for q ∈ (qK1 , q
K
2 ]; (180)

Sk(q) = qK1 (1− ρ1) + qK2 ρ1(1− ρ2) + qρ1ρ2, for q > qK2 . (181)

Using Assumption 6 , the choice q as a function of type ql is:

q(ql) = ql, for ql ∈ [qminl , qK1 ]; (182)

q(ql) = qK1 , for ql ∈ [qK1 , q
K
1 ρ

−ϵ
1 ]; (183)

q(ql) = qlρ
ϵ
1, for ql ∈ [qK1 ρ

−ϵ
1 , qK2 ρ

−ϵ
1 ]; (184)

q(ql) = qK2 , for ql ∈ [qK2 ρ
−ϵ
1 , qK2 (ρ1ρ2)

−ϵ]; (185)

q(ql) = ql(ρ1ρ2)
ϵ, for ql ∈ [qK2 (ρ1ρ2)

−ϵ, qmaxl ], (186)

where qminl and qmaxl denote the highest and lowest type respectively.
The semi-elasticity of participation at the observed capacity q is

ff
Ff

(Sk(q)− cv(q, ql(q))|µf , σf ) = κ(q), (187)

where ql(q) denotes the inverse of q(ql) and cv(q, ql) denotes the variable part of the cost func-
tion in Assumption 6.

Using Assumptions 6, 7, the results in Table 1, and inverting this equation at the two kink
points gives (µf , σf ) in Table 19.48 Figure 20 shows the calibrated density of fixed costs and
the implied semi-elasticities of participation at counterfactual capacities ql. Note that the two
red lines illustrate the counterfactual capacity with corresponding variable profit as under the
observed subsidy, i.e., ql solves ql − cv(ql, ql) = S(qK) − cv(q

K , ql(q
K)). Because at the first

kink point q = ql, the first red line is at qK1 = 30, while the second red line is slightly above
qK2 = 100.

As suggested by the empirical evidence, assume the distribution fl(.) of the variable cost

48The unrounded point estimate of the participation semi-elasticity at 100 kWp is 2.1× 10−7.
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Table 19: The parameters of the distribution of the fixed and variable cost types.

Parameter Value

µf 10.88
σf 1.57
γ0l 7.70
γ1l 3.12
γ2l -1.01

γ0u 17.15
γ1u -3.07
qlb 21.24

Note: The table shows the parameters of the distribution of fixed costs and of the type distribution fl(.).

type ql is log-normal in its lower part and Pareto in its upper part:

fl(ql) = exp
(
γ0l + γ1l ln(ql) + γ2l ln(ql)

2
)

for ql ∈ [qminl , qlb] (188)
fl(ql) = exp (γ0u + γ1u ln(ql)) for ql ∈ (qlb, q

max
l ]. (189)

The parameters are such that fl(.) has a continuous first derivative. I use [qminl , qmaxl ] such that
q ∈ [0.5, 4000], which covers 99.9991% of observed aggregate capacity. The observed capacity
distribution fk(.) is

fk(q) = fl(ql(q))
Ff (Sk(q)− cv(q, ql(q))

Ff (ql(q)− cv(ql(q), ql(q)))

dql
dq
. (190)

I estimate the parameters γ1l and γ2l using the observed capacity range [0.5, 21] and γ1u using
the observed range [105, 400]. I follow the same estimation procedure as in Section 2. I cali-
brate γ0l so that total capacity equals the observed QT = 2.7GWp. The parameters γ0u and qlb
are determined by the smoothness of fl(.). Table 19 summarises the parameter values.

E.2 A discussion and extension of Objective (12)
Objective (12) implicitly assumes that the government does not want to distribute information
rents to adopters of solar panels, which is justifiable by the fact that, typically, only households
in the upper part of the income distribution own roofs and can adopt solar panels. Moreover, the
German government already uses a nonlinear subsidy scheme, showing that it is indeed trying
to curtail these rents. Section E.2.1 generalises the objective to include general redistributive
preferences, a preference for aggregate solar capacity, and possibly optimal taxes on other
sources of income. Note that a Pigouvian subsidy, where the optimal marginal subsidy is equal
to the marginal environmental benefit, is not the optimal solution to Objective (12). Section
E.2.2 discusses when a Pigouvian subsidy is optimal in the general objective of Section E.2.1.
Generally, it is not the case (see Kaplow, 1996, Cremer, Gahvari and Ladoux, 1998, Kaplow,
2008, and Kaplow, 2012). Section E.2.3 shows under which conditions the simple Objective
(12) in Section 4 follows from the general objective in Section E.2.1. For example, it is the
case if the redistributive preferences are Rawlsian, the lowest income households cannot adopt
solar panels because they do not own roofs, and the government only values capacity up to an
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aggregate capacity goal QT .
Moreover, this paper focuses on the evaluation and optimisation of nonlinearities in the sub-

sidy schedule. Therefore, it uses the static Objective (12) and the long-run elasticities in Table
1 to calibrate the model. For an analysis of the optimal time path of subsidies, see Langer and
Lemoine (2022). Additionally, this paper focuses on second-degree price discrimination. The
analysis of third-degree price discrimination by considering, for example, adopters’ location or
electricity consumption is beyond the scope of this paper.

E.2.1 The general welfare function and the optimal subsidy

Assume the utility of an adopter is equal to

u ((S(q)− cv(q, ql)− cf )1 (S(q)− cv(q, ql) ≥ cf ) + y − T (y)− cl(y, a)) , (191)

where the utility function u(.) is increasing and concave, S(.) is the subsidy function, cv(q, ql)
is the variable cost of type ql to adopt capacity q, and cf is the fixed cost. The symbol 1(.)
denotes the indicator function. Agents only adopt if they make positive profit. The first part
of the expression within the utility function is the net income from participating in the subsidy
scheme. The variable y denotes other income, such as labour income. The function T (.) is
an income tax, and cl(y, a) is the effort-cost of producing income y for an agent with ability
a. The second part of the expression within the utility function is the net labour income. The
type θ of an adopter is three dimensional: θ = (ql, cf , a) with density fθ(θ). Note that q is a
function of adopter type ql. I will not explicitly denote this dependence to avoid an overloaded
notation. The adopter type ql contains all characteristics determining the intensive margin
decision. In particular, it is determined by the characteristics of the adopter’s roof and the
adopter’s preference for using her roof. Income y is a function of ability a. Again, I will not
explicitly denote this dependence. For simplicity, I use a quasi-linear utility function. It rules
out income effects and complementaries between income and solar adoption.

Consider the following objective function of the government:

max
S(.)

∫
G
(
(S(q)− cv(q, ql)− cf )1 (S(q)− cv(q, ql) ≥ cf )+

+ y − T (y)− cl(y, a)
)
fθ(θ)dθ + V (Q), (192)

such that∫
q 1 (S(q)− cv(q, ql) ≥ cf ) fθ(θ)dθ = Q, (193)

and∫
T (y)− S(q)1 (S(q)− cv(q, ql) ≥ cf ) fθ(θ)dθ − E = 0. (194)

The variable Q denotes the aggregate capacity; V (.) is the government’s value of aggregate ca-
pacity. The function G(.) weights agents’ utilities and represents the redistributive preferences
of the government. It is increasing and concave. Its argument is the same as the argument
of the agents’ utility function. In the special case where G(.) = u(.), the government is util-
itarian. Equation (194) is the government’s budget constraint. The variable E denotes other
government spending.

Objective (192) assumes that the government sets the subsidy S(q) independently of in-
come y. This assumption is not without loss of generality. Generally, a subsidy S(q, y) that
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depends on adopted capacity and income may achieve higher social welfare than a subsidy that
only depends on capacity. However, I follow this approach for three reasons. First, I do not
observe the income of adopters. Joint information about adoption decisions q and income y is
necessary to solve for the optimal joint subsidy S(q, y). Due to this data limitation, I will focus
on the optimal separable problem, where subsidy payments are only a function of capacity q.
Second, the observed subsidy is independent of income. Arguably, a subsidy that depends on
income is complicated to implement. Therefore, the government chose a subsidy that only de-
pends on capacity q. Third, Problem (192) is a multidimensional screening problem. The type
parameter determining the choice of capacity q and income y is two-dimensional. Theoreti-
cally, these problems are challenging to solve because local incentive-compatibility constraints
are generally insufficient to determine the optimal schedule (see Rochet and Chone, 1998 for
a detailed discussion). Treatment of the multidimensional screening problem is an interesting
direction for future research beyond the scope of this paper. I do not make any assumption on
the income tax T (y) except for the requirement that the government’s budget is balanced. In
particular, the income tax may be optimal.

The derivation of the optimality condition:
I use a mechanism design approach to solve for the optimal subsidy. Denote by q(ql) the
capacity q produced by type ql. Define the variable profit πv(ql) of type ql as

πv(ql) = S(q(ql))− cv(q(ql), ql). (195)

The government chooses functions q(.) and πv(.) instead of choosing S(.) directly. The inter-
pretation is as follows. Imagine the government asks an agent to reveal her type ql. The agent
reports the type; the government asks the agent to produce q(ql) and pays variable profit πv(ql)
as compensation. An incentive-compatible mechanism is two functions q(.), πv(.), under which
each agent is incentivised to report her type truthfully. Therefore, the government’s objective
is to find such functions that give the highest welfare. Using standard mechanism design, it
follows that a mechanism is incentive-compatible if and only if

π′
v(ql) = −∂cv(q(ql), ql)

∂ql
, (196)

and q(.) non-decreasing. As standard in the literature, I neglect the monotonicity constraint
on q(.). It can be verified ex-post. Equation (196) defines a function q(π′

v). Therefore, the
government’s problem reduces to choosing a function πv(.):

max
πv(.)

∫
G ((πv − cf )1 (πv ≥ cf ) + y − T (y)− cl(y, a)) fθ(θ)dθ + V (Q), (197)

s.t.∫
q 1 (πv ≥ cf ) fθ(θ)dθ = Q, (198)

and∫
T (y)− (πv + cv(q, ql))1 (πv ≥ cf ) fθ(θ)dθ −R = 0. (199)

For better readability, I suppress the arguments of the functions πv(.), π′
v(.), and q(.). I solve

Problem (197) using calculus of variation.

92



The general optimality condition:
It follows that in the optimum∫ qmax

l

ql

[ ∫ πv

−∞

(∫ ∞

0

G′(πv − cf + y − T (y)− cl(y, a))

λ
fa(a|cf , q̃l)da− 1

)
ff (cf |q̃l) dcf+

+

(
V ′(Q)

λ
q − πv − cv(q(π

′
v), ql)

)
ff (πv|ql)

]
fl(q̃l)dq̃l+

+

(
V ′(Q)

λ
− ∂cv(q, ql)

∂q

)
dq

dπ′
v

Ff (πv|ql)f(ql) = 0 (200)

and(
V ′(Q)

λ
− ∂cv(q, ql)

∂q

)
dq

dπ′
v

Ff (πv|ql)fl(ql) = 0 for ql = qminl and ql = qmaxl . (201)

The variable λ is the marginal cost of public funds. Equation (200) is a second-order differential
equation in the function πv(.) with two boundary conditions (201). The optimal rent πv(.) is
the solution to this system.

E.2.2 The Pigouvian subsidy (i.e., the Samuelson rule)

The Pigouvian subsidy is a linear subsidy where the marginal subsidy rate is equal to the
marginal social benefit of the public good, i.e., S ′(q) = V ′(Q)

λ
for all q. This solution is also

known as the Samuelson rule (Samuelson, 1954). Knowing how adopters react to the subsidy
is not necessary to implement the Pigouvian subsidy. It suffices to know V ′(Q). However,
the Pigouvian subsidy is only optimal if the government is indifferent in distributing rents to
adopters. Even if an optimal income tax is available, Kaplow (1996) and Kaplow (2012) show
that the Pigouvian subsidy is optimal only if preferences are separable, and the only relevant
heterogeneity is earnings ability. Intuitively, in this case, the income tax is sufficient to redis-
tribute optimally, and the choice of the public good is, therefore, not distorted. Kaplow (2008)
shows that this result breaks down when agents’ heterogeneity is more than one-dimensional.
Importantly, in my application, the heterogeneity determining the capacity choices of adopters
and income from other sources is two-dimensional. Therefore, the Pigouvian subsidy is not
optimal even if income is taxed optimally. Intuitively, if the heterogeneity determining income
and capacity choices correlate positively, agents in the upper part of the income distribution
profit more from the subsidy programme. Because they have a low marginal social welfare
weight, limiting their rents through a nonlinear subsidy is optimal.

To see this point formally, note that the Pigouvian subsidy is optimal only if∫ πv

−∞

(∫ ∞

0

G′(πv − cf + y − T (y)− cl(y, a))

λ
fa(a|cf , q̃l)da− 1

)
ff (cf |q̃l) dcf = 0, (202)

for all capacity types ql. To see this result, guess and verify the solution in Equation (200), using
the first order condition of adopters ∂cv(q,ql)

∂q
= V ′(Q)

λ
. However, in general, Condition (202)

does not hold. Particularly, the condition depends on the marginal social weight of adopters
G′(.) relative to the marginal cost of public funds λ. If the possibility to adopt solar panels is
positively correlated with ability a, and the tax T (y) does not fully equalise marginal social
welfare weights, then Condition (202) does not hold. The term to the left of the condition is
smaller than zero in this case. Importantly, in general, even an optimal income tax does not
equalise marginal social welfare weights. Consider the optimality condition for the optimal
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income tax. Following Saez (2001), I solve for the optimal tax using the variational approach:∫ ∞

y

(
1−

∫
G′ ((πv − cf )1 (πv ≥ cf ) + ỹ − T (ỹ)− cl(ỹ, a

−1(ỹ)))

λ
×

× f(cf , ql|ỹ)dcfdql
)
fy(ỹ)dỹ + T ′(y)

dy

dT ′ f(y) = 0 (203)

As long as there are behavioural responses to taxation, the government does not equalise
marginal welfare weights G′(.).

E.2.3 The relation to the simple Objective (12)

This section shows under which conditions the simple Objective (12) follows from the general
Objective (192). Consider redistributive preferencesG(.) such that the marginal welfare weight
for income above a certain level y is zero. Additionally, assume only agents with income higher
than y can adopt solar panels. For instance, this could be the case since only agents with income
higher than y own buildings. It follows that Condition (202) is equal to −1. Importantly,
only high-income agents adopt solar panels because of the correlation of earning ability a and
capacity type ql, not because of an income effect. There are no income effects since I use quasi-
linear preferences. These preferences and correlation patterns, together with the assumption
that the government values aggregate capacity only up to the capacity goalQT , reduce Problem
(192) to Problem (12). For example, it is the case if the redistributive preferences are Rawlsian,
and households with the lowest incomes cannot adopt solar panels.

E.3 Counterfactual experiments

E.3.1 The optimal linear subsidy

A first experiment solves for the optimal linear subsidy. The exercise solves for a linear subsidy
rate ρl that incentivises the adoption of the same aggregate capacity as the observed kinked
subsidy.49 By the first order condition of the agents’ problem, the choice q of type ql under
subsidy ρl is q(ql, ρl) = qlρ

ϵ
l .Denote by cv(q, ql) the variable part of the cost function cv(q, ql) =

c(q, ql, cf ) − cf . Denote the variable profit of type ql under subsidy rate ρl as πv(ql, ρl) =
ρlq(ql, ρl) − cv(q(ql, ρl), ql). Given the estimate of fl(ql), the unconditional type distribution
fu(ql) is

fu(ql) =
fl(ql)

Ff (ql − cv(ql, ql))
. (204)

It follows that ρl is the solution to∫
q(ql, ρl)Ff (πv(ql, ρl))fu(ql)dql = QT , (205)

where QT is the observed aggregate capacity. I find that ρl = 0.998. The public cost of the
linear policy is QTρl. The policy is 0.14 percent more expensive than the actual subsidy.

49Note that sl is normalised to one; ρl’s interpretation is relative to sl.
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E.3.2 The optimal nonlinear subsidies

The second counterfactual experiment solves for the optimal nonlinear policy using mechanism
design. The analysis follows the screening problem in Rochet and Stole (2002). Rewrite the
government’s objective (12) as a Lagrangian and a mechanism design problem. The govern-
ment maximises

max
ψ,q(.),πv(.)

∫
(ψq(ql)− πv(ql)− cv(q(ql), ql))Ff (πv(ql))fu(ql)dql − ψQT , (206)

such that for all ql

π′
v(ql) = −∂cv(q(ql), ql)

∂ql
and q(.) is not decreasing. (207)

Condition (207) is the incentive-compatibility constraint. The variable ψ denotes the La-
grange multiplier. Substitute the subsidy paid to type ql using the definition: S(q(ql)) =
πv(ql) + cv(q(ql), ql). Problem (206) is equivalent to Problem (12). The government chooses
functions q(ql) and πv(ql) instead of a subsidy S(q). The interpretation is as follows. Imagine
the government asks an agent to reveal her type ql. The agent reports the type; the government
asks the agent to produce q(ql) and pays variable profit πv(ql) as compensation. An incentive-
compatible mechanism is two functions q(.), πv(.), under which each agent is incentivised to
report her type truthfully. Therefore, the government’s objective is to find two such functions
which maximise its objective. The incentive-compatibility constraint (207) follows from the
standard revealed preference argument in mechanism design. As standard in the literature,
neglect the monotonicity constraint on q(.) and verify it ex-post. Define

L(πv, π
′
v, ql) =

(
qlψ(π

′
v(1 + ϵ))

ϵ
1+ϵ − πv − qlϵπ

′
v

)
Ff (πv)fu(ql), (208)

which is the integrand of Problem (206). Use Equation (207) to substitute for the function q(.).
The problem simplifies to finding an optimal function πv(.). Suppress the arguments of the
functions πv(.), π′

v(.) for better readability. By calculus of variation, it follows that the optimal
function πv satisfies

∂L(πv, π
′
v, ql)

∂πv
=

d

dql

∂L(πv, π
′
v, ql)

∂π′
v

for all ql, (209)

and
∂L(πv, π

′
v, ql)

∂π′
v

= 0 for ql = qminl and ql = qmaxl . (210)

The values qminl and qmaxl denote the boundaries of the type distribution fl(.). For each ψ, the
Equations (209) and (210) define a nonlinear second-order differential equation with boundary
values. Fix ψ, solve the differential equation numerically, and evaluate the capacity constraint
Q = QT . Iterate over ψ until the constraint holds. Using the first order condition and the
solution π′

v(ql), solve for the optimal nonlinear marginal subsidy S ′(q(ql)) in Figure 9. Using
the definition of the variable profit, it follows that the total public costs are∫

(πv(ql) + cv(q(ql), ql))Ff (πv(ql))fu(ql)dql. (211)

The optimal subsidy is 0.45 percent less costly than the linear benchmark.

95



The third counterfactual experiment assumes there is no participation margin response. It
solves the problem using the same methodology as above, but assuming Ff (πv) = 1 for all πv.
The fourth counterfactual experiment implements the optimal intensive schedule from the third
experiment but lets agents react at both margins. Both experiments keep aggregate capacity
constant by adjusting the Lagrange multiplier.

E.3.3 A comparison to Rochet and Stole (2002)

Figure 24 compares the optimal allocation to the bounds derived in Proposition 4 in Rochet and
Stole (2002). They show that when the type distribution fl(.) is uniform, the optimal allocation
q(ql) is bounded from above by the undistorted allocation qfb(ql) = ψϵql and from below by
the optimal intensive allocation qit(ql) derived in the third counterfactual experiment. Note
that Rochet and Stole (2002) also assume the distribution of fixed costs is log-concave, which
is the case in my application. Contrary to the third counterfactual experiment and consistent
with the result in Rochet and Stole (2002), I do not adjust the Lagrange multiplier to fulfil the
capacity constraint, but I use the multiplier from the second counterfactual experiment. The
figure shows that there exist regions where the optimal allocation lies outside the bounds. It
shows that the result in Rochet and Stole (2002) is not robust to a more general form of the type
distribution fl(.). E.g., the type distribution in my application is log-normal at the bottom and
Pareto at the top.

Figure 24: The optimal allocation q(ql) and the bounds derived by Rochet and Stole (2002).
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Note: The figure shows the optimal allocation and the bounds derived by Rochet and Stole
(2002). In some regions, the optimal allocation lies outside the bounds.

E.3.4 A comparison to Germeshausen (2018)

Germeshausen (2018) uses a difference-in-difference approach to estimate the treatment effect
of introducing a new kink of 5% at 10 kWp in Germany in 2012. Methodologically, Germe-
shausen (2018) follows Best and Kleven (2017) and controls for self-selection due to bunching
in the dif-in-dif. He estimates the treatment effect of introducing the new kink; he finds it
reduces capacity installed in the interval of 10-20 kWp by 43%. I cannot use his methodol-
ogy because my data suggest that the parallel trend assumption necessary for a difference-in-
difference approach is not satisfied.

Germeshausen does not estimate intensive and participation margin elasticities. To compare
the results in the two studies, I use my estimates to calculate the implied treatment effect of
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introducing a new kink of 5% at 10 kWp in my data, i.e., I calculate:∫ qmaxρ−ϵ
1

qK1
q(ql)Ff (Sk(q(ql))− cv(q(ql), ql)) fu(ql)dql∫ qmax

qK1
qlfl(ql)dql

, (212)

where q(.) and Sk(.) are defined in Section E.1.2, fu(.) is defined in Section E.3.1, qK1 =10 kWp,
ρ1 = 0.95, ρ2 = 1, and qmax= 20 kWp.

I find introducing the kink would reduce capacity in the range 10-20 kWp range by 40%.
The similarity of the two treatment effects provides evidence for the validity of the respective
identifying assumptions in both studies.

E.3.5 A summary of the results of the policy evaluation

Tables 20 and 21 summarise the results of the counterfactual exercises.

Table 20: The cost of the counterfactual scenarios compared to the optimal linear subsidy.

Subsidy Relative Cost Compared to Optimal Linear in %

Optimal Linear 0
Observed -0.14
Optimal Nonlinear -0.45
Only Intensive Margin Hypothetical -8.71
Only Intensive Margin Real +3.08

Note: The table shows the cost of the counterfactual scenarios relative to the cost of the optimal linear
subsidy in percent.

Table 21: The subsidy payment to the lowest type (0.5 kWp) under the counterfactual scenar-
ios.

Subsidy Subsidy Payment to Lowest Type (0.5 kWp)

Optimal Linear 0.499
Observed 0.5
Optimal Nonlinear 0.323
Only Intensive Margin Hypothetical 0.323
Only Intensive Margin Real 0.323

Note: The table shows the subsidy payment to the lowest type at 0.5 kWp under the counterfactual
subsidies.
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F The cited results from Krantz and Parks (2002) and Chen
(2007)

F.1 Krantz and Parks (2002)
Proposition 1.2.12 Let f be an infinitely differentiable function for some interval I . The func-
tion is in fact real analytic on I if and only if, for each x ∈ I , there are an open interval J , with
x ∈ J ⊆ I , and constant M > 0 and R > 0 such that the derivatives of f satisfy

|f (p)(x)| ≤M
p!

Rp
, ∀x ∈ J. (213)

Lemma 1.1.8 For the power series

∞∑
p=0

γp(x− x0)p (214)

define A and ρ by A = limp→∞ sup |γp|1/p and ρ = 1/A. Then ρ is the radius of convergence
of the power series about x0.

Corollary 1.2.4 Let (214) be a power series with open interval of convergence I . Let f(x)
be the function defined by the series on I . Then f is real analytic at every point of I .

Corollary 1.2.5 If f and g are real analytic functions on I and if there is a point in I where
all their derivatives are equal, then f(x) = g(x) for all x ∈ I .

Corollary 1.1.10 The power series (214) has radius of convergence ρ if and only if, for
each 0 < R < ρ, there exists a constant 0 < MR such that

γp ≤
MR

Rp
. (215)

Corollary 1.2.6 If f and g are real analytic functions on I and there is an open set J ⊆ I
such that f(x) = g(x) for all x ∈ J , then f(x) = g(x) for all x ∈ I .

Corollary 1.1.16 The power series representation of a real analytic function at a point x0 is
unique.

F.2 Chen (2007)
Condition 3.1”.
i) Θ is compact under d(., .), and Q(θ) is upper semicontinuous on Θ under d(., .);
ii) Q(θ) is uniquely maximised at θo in Θ, Q(θo) > −∞. Condition 3.2. ΘP ⊆ ΘP+1 ⊆ Θ for
all P ≥ 1; and there exists a sequence πP θo ∈ ΘP such that d(πP θo, θo) → 0 as P → ∞.
Condition 3.3 i). For each P ≥ 1, Q(θ) is upper semicontinuous on ΘP under the metric
d(., .).
Condition 3.4. The sieve spaces, ΘP , are compact under d(., .).
Condition 3.5 i). For all P ≥ 1, p limn→∞ supθ∈ΘP

|Q̂n(θ)−Q(θ)| = 0.
Footnote 29 Condition 3.3 i) and 3.4 and the pointwise convergence over ΘP imply Condition
3.5 i).
Statement Page 5591 We obtain d(θ̂n, θo) = oP (1) under Condition 3.1”, 3.2, 3.4, and 3.5 i).
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