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Abstract

This paper demonstrates that kinks or discontinuities in incentive schemes (e.g., taxes,

subsidies, or prices) simultaneously identify agents’ intensive and participation margin

responses. The proposed semi-nonparametric estimator enables the evaluation of such

schemes when existing kink and discontinuity methods are inapplicable due to the pres-

ence of both margins. The paper applies the estimator to evaluate the German subsidy for

rooftop solar panels, a cornerstone in the global efforts to transit towards a carbon-free

economy. Compared to a linear scheme, the government’s nonlinear subsidy reduces costs

by 0.14 per cent; an optimal nonlinear scheme would more than triple this gain. Ignoring

the participation margin when optimising the subsidy would increase costs substantially.

The results highlight the importance of estimating both margins for optimal policy design.
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1 Introduction

Nonlinear incentive schemes have a wide range of policy applications in subsidy programmes,

taxation, product pricing, and public transfers. A challenge in their optimal design is reliably

estimating how agents react to them at the participation and intensive margin.1 When agents

react only at the participation margin, the regression kink design (Card, Lee, Pei, and Weber,

2015) can be used to exploit kinks, i.e., discontinuities in the marginal incentive scheme. Cor-

respondingly, when there is only an intensive margin response, the bunching estimator (Saez,

2010) can be used. However, very often, agents respond at both margins simultaneously. In

such cases, it is necessary to estimate the participation and the intensive margin response

to evaluate an incentive scheme. Unfortunately, the mentioned estimators are not applicable

because each margin biases the estimate of the other margin.

This paper’s methodological contribution is to propose an estimator for agents’ responses at

both margins. The estimator exploits the effect of kinks in an incentive scheme to identify the

two margins jointly. Kinks have two effects on the observable distribution of agents’ choices.

First, they are responsible for bunching, i.e., a discrete mass of agents that choose the kink

point. Second, they cause a slope change in the choice-distribution at the kink point. Both ef-

fects are observable and depend on the magnitude of the two reaction-margins distinctly. There-

fore, the two observable effects enable the simultaneous estimation of the two margins. While

the classic bunching estimator relies on a parametric functional form assumption (Blomquist,

Newey, Kumar, and Liang, 2021), this paper demonstrates that both margins are identified un-

der a weaker assumption: the choice-distribution absent the kink is analytic (intuitively, very

smooth). In light of this identification result, the proposed semi-nonparametric estimator uses

sieve estimation (Chen, 2007).2 Moreover, the paper proposes a data-driven selection of the

nonparametric specification, which increases the robustness to specification bias. Adapting the

estimator to exploit notches, i.e., discontinuities in incentive schemes, is straightforward. Kinks

and notches are common features of economic incentive schemes. By exploiting them, the es-

timator circumvents the need for exogenous variation or instrumental and control variables; the

1The participation margin is also called the extensive margin.
2Following Chen (2007), I call a model semi-nonparametric if the model’s parametric and nonparametric parts

are of interest.
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estimation only uses the easily observable distribution of agents’ choices. These low infor-

mational and identifying requirements increase the potential applicability for the evaluation of

taxes, subsidies, transfers, and product prices.

As an applied contribution, this paper evaluates the German subsidy for rooftop solar pan-

els. It is a very prominent recent example of a large and successful deployment subsidy for a

nascent green technology. Gerarden (2022) and Nemet (2019) argue that the programme was

instrumental in driving the enormous price decreases in solar panels over the last two decades,

making them one of the cheapest sources of electricity in 2021 (IRENA, 2022). More gener-

ally, green deployment subsidies have moved to the forefront of climate action (Podesta, 2023).

They can facilitate the direct displacement of polluting activities and catalyse green innovation

(Acemoglu, Aghion, Bursztyn, and Hemous, 2012).

However, one major caveat of such subsidies is their potential burden on public finances.

To illustrate, the annual payments in the German programme constituted 0.6 per cent of total

government expenditure, mainly benefiting wealthy owners of rooftops. A strategy to mitigate

these costs is subsidies that are nonlinear in a technology’s attributes. In Germany, the govern-

ment implemented a subsidy that is nonlinear in the capacity adopted by households and firms.3

The subsidy schedule was piecewise linear with multiple kinks. The marginal subsidy rates de-

creased discontinuously at the kink points, curtailing payments for profitable large adoptions.

Two questions arise. First, are the kinks in the German subsidy schedule effective at reducing

the programme’s public costs without compromising aggregate capacity?4 Second, what is the

most cost-efficient nonlinear subsidy schedule to achieve a given aggregate capacity goal? The

answers to both questions depend on how adopters react to the subsidy at the participation and

intensive margin. The participation margin determines how many adopters participate in the

scheme, and the intensive margin determines the capacity choice of participants.

Applying the novel estimator to the early stage of the German programme reveals that re-

sponses at both margins are significant and large. The estimates enable the evaluation of public

costs under various counterfactual subsidy schemes. Assuming the government aims to im-

3The capacity of a solar panel is the amount of electricity it produces under standardised conditions. It depends
on the size and efficiency of the adopted panel.

4Aggregate capacity is the sum of the capacity of installations in a given period.
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plement the observed aggregate capacity at the lowest public cost, the counterfactual exercises

yield four main results.5 The first exercise solves for the linear subsidy that achieves the ca-

pacity goal. Compared to this benchmark, the government’s subsidy modestly reduces costs

by 0.14 per cent. The second exercise solves for the optimal nonlinear subsidy. It more than

triples cost savings to 0.45 per cent. Surprisingly, while the government’s scheme can be im-

proved, the gains from using a nonlinear scheme remain modest overall. To better understand

what limits the scope for curtailing costs, a third thought experiment assumes adopters can only

respond at the intensive margin. Compared to the linear benchmark, the optimal nonlinear sub-

sidy would reduce costs by 8.7 per cent in this case. The exercise reveals that the participation

margin is responsible for the limited scope for cost reductions when both margins are active.

A fourth counterfactual exercise assumes the policymaker wrongly ignores the participation

margin. She implements the optimal intensive schedule derived in the third thought experiment

while adopters react at both margins. As a consequence, costs increase by 3.1 per cent instead

of decreasing. The exercise highlights that considering both margins is crucial when designing

nonlinear incentive schemes. Optimising schemes based on intensive margin estimates alone

may even be counterproductive.

Related literature. Methodologically, this paper contributes to the bunching and regression

kink design literature. The bunching design estimates intensive margin responses using bunch-

ing at kink and notch points within the budget set (see Saez, 2010, Chetty, Friedman, Olsen,

and Pistaferri, 2011, Kleven and Waseem, 2013, and reviews by Kleven, 2016 and Bertanha,

Caetano, Jales, and Seegert, 2023). The classic bunching estimator does not account for par-

ticipation margin responses.6 I find that considering both margins is essential not only for the

policy evaluation but also for the estimation: ignoring the participation margin leads to a 20

5Contrary to a pure Pigouvian analysis, where the optimal marginal subsidy is equal to the marginal envi-
ronmental benefit, this objective explicitly takes into account the social cost of distributing information rents to
adopters.

6Important exceptions are Gelber, Jones, Sacks, and Song (2020) and Marx (2018), who estimate intensive
and participation margin responses exploiting their data’s panel dimension. The absence of a panel dimension in
my application renders such an approach infeasible. A benefit of the simultaneous estimation in my paper is that
it solely relies on the cross-sectional distribution of adoptions to estimate both margins. Other methodological
contributions in the bunching literature distinct from mine are Cox, Liu, and Morrison (2020), who extend the
approach to a two-dimensional intensive margin and Garbinti, Goupille-Lebret, Muñoz, Stantcheva, and Zucman
(2023), who exploit panel data.
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per cent downward bias in my intensive margin estimate. The participation margin responses

at kink points can be estimated using a regression kink design (see Nielsen, Sørensen, and

Taber, 2010 and Card et al., 2015). However, if there is a positive intensive margin, the classic

regression kink design suffers from endogeneity because agents select into treatment.7 The si-

multaneous estimation in this paper addresses these issues of the classic approaches. Blomquist

et al. (2021), Bertanha, McCallum, and Seegert (2021), Moore (2021), and Goff (2022) criti-

cise the fact that the classic bunching estimator uses a parametric functional form assumption

on the type distribution to identify the intensive margin elasticity. Therefore, like structural

estimators, it may suffer from specification bias.8 To address this critique, I assume that the

type-distribution is locally representable by a convergent power series, i.e., analytic, as in Gau-

tier and Gaillac (2021) and Iaria and Wang (2022). Moreover, I check the robustness of the

specification on untreated data.

Theoretically, my counterfactual exercises build heavily on the literature on second-degree

price discrimination with intensive and participation margin responses (see Rochet and Stole,

2002, Saez, 2002, and Jacquet, Lehmann, and Van der Linden, 2013). Using the theoretical

results in Rochet and Stole (2002), I solve for the optimal mechanism in an empirical setting.

They show that when the type distribution is uniform, the optimal allocation with only intensive

margin responses bounds the optimal allocation with both margins. I find that this result is not

robust to a more general type distribution. E.g., my type distribution is log-normal at the

bottom and Pareto at the top; the optimal allocation is close to but outside their bounds. More

worryingly, I find that the bounds provided by the optimal intensive schedule are not very

tight. Implementing the schedule is even counterproductive since, compared to a simple linear

schedule, it increases costs considerably instead of decreasing them. The results show that the

qualitative insight in Rochet and Stole (2002) provides limited guidance to the policymaker.

7Gerard, Rokkanen, and Rothe (2020), Bachas and Soto (2021), and Caetano, Caetano, and Nielsen (2020)
propose methods to correct for endogenous sorting. These papers do not consider participation margin responses.
Their methodologies are not applicable when both margins are present because each margin biases the estimate of
the other margin.

8Ganong and Jäger (2018) and Ando (2017) raise a similar concern for the regression kink design. Due to the
lack of exogenous variation in the budget set or rich covariates, the solutions to this issue proposed by Blomquist
et al. (2015) and Bertanha et al. (2021) are inapplicable in my context. See Beffy, Blundell, Bozio, Laroque, and To
(2019) and Aghion, Bergeaud, and Van Reenen (2021) for papers that use nonlinear budget sets for identification
within a structural model.
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Combining their theoretical results with estimates of the intensive and participation margin

responses is crucial for implementing the optimal schedule.

From an applied perspective, the paper contributes to the literature evaluating subsidies for

solar panels. To the best of my knowledge, it is the first paper to evaluate and optimise the

cost-effectiveness of nonlinear solar subsidies. I find that nonlinearities are modestly effective

at reducing the costs of the German programme. One strand of the solar literature focuses on

the dynamics of the adoption decision (Burr, 2016; De Groote and Verboven, 2019; Feger, Pa-

vanini, and Radulescu, 2022; Reddix, 2015; Gerarden, 2022). Methodologically, these papers

use structural models. Another strand of the solar literature uses reduced-form methods. For

example, Germeshausen (2018) uses a difference-in-difference approach to estimate the treat-

ment effect of the introduction of a new kink in Germany in 2012.9 The paper does not estimate

elasticities at the two adoption margins nor evaluate the cost-effectiveness of counterfactual

schemes.10 It relies on a parallel trend assumption, which is unnecessary in my approach. My

estimates imply a treatment effect very close to the one estimated by Germeshausen (2018),

which provides evidence for the validity of the respective identifying assumption in both stud-

ies.

The rest of the paper proceeds as follows. Section 2 provides graphical evidence for re-

sponses at the two margins; Section 3 outlines the model and demonstrates identification. Sec-

tion 4 presents the estimation method. Section 5 shows the empirical results and discusses their

robustness. Section 6 evaluates the policy, and Section 7 concludes.

2 Policy description and graphical evidence

The German subsidy for solar panels was introduced on April 1st, 2000. The subsidy is a

guaranteed feed-in tariff, paid per kWh (kilowatt-hour) of electricity produced.11 A fixed tariff
9Hughes and Podolefsky (2015) use geographical discontinuities in California to study adoption behaviour.

Such discontinuities are not available in Germany. Srivastav (2023) studies feed-in-tariffs and their effect on
the financial frictions faced by adopters. Kraft-Todd, Bollinger, Gillingham, Lamp, and Rand (2018) study peer
effects.

10Methodologically, Germeshausen (2018) follows Best and Kleven (2017). Kleven, Landais, Saez, and
Schultz (2013), Ruh and Staubli (2019), Slemrod, Weber, and Shan (2017), and Besley, Meads, and Surico (2014)
are similar. All these papers use a difference-in-difference approach, controlling for or using bunching. In the
same vein, Myhre (2021) combines bunching with a regression discontinuity design in the time dimension.

11The tariffs largely surpassed market prices for electricity in this period.
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Figure 1: The subsidy payment S as a function of capacity q

30 kWp 100 kWp

S(q)

q

Note: The figure illustrates the kinked subsidy in Germany.

rate is guaranteed for 20 years once a household or firm decides to adopt. Typically, agents

only adopt once during the sample period. Rates depend on the time point of adoption and

the adopted capacity. The capacity of a solar panel, measured in kilowatt-peak (kWp), is the

amount of electricity it produces under standardised conditions. Because produced electricity

is proportional to adopted capacity, from 2000 to 2003, the present discounted value of pay-

ments to an adopter was simply linear in the adopted capacity (see Appendix B.1 for a formal

derivation). The subsidy programme was very successful at incentivising households and firms

to adopt solar panels; numbers increased rapidly in most years (see Table A1 in Appendix A).

However, as a consequence, the programme became very costly. For example, total yearly pay-

ments in 2016 were 9 bio euros (Übertragungsnetzbetreiber, 2016), corresponding to 0.6 per

cent of total government spending.12 To curtail these costs, from 2004 the government intro-

duced two kink points in the subsidy schedule. Adopters after 2004 faced the nonlinear scheme

illustrated in Figure 1. Note that agents who adopted before are not affected by the policy-

change. The variable q on the x-axis denotes capacity, and the variable S(q) on the y-axis

denotes the present discounted value of subsidy payments. At 30 kWp, the marginal subsidy

rate decreased by 5% and at 100 kWp, it decreased by 1%. The rationale for this nonlinear

scheme was reducing payments for profitable large adoptions.

The kinks affected the adopters’ behaviour. Figure 2 shows the histogram of all solar panel

12The total government spending in 2016 was 1,390 billion euros (DESTATIS, 2023).
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Figure 2: The histogram of adoptions in 2004
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Note: The red line marks the kink point at 30 kWp. At the kink point, there is a visible mass
point, i.e., bunching.

adoptions in the year 2004 around the kink point at 30 kWp. The x-axis shows the capacity in

kWp. The y-axis shows the number of adopters in each column of the histogram. The red line

marks the kink point at 30 kWp. The figure shows that many adoptions bunch at the kink point.

Section 3 shows that bunching is reduced-form evidence for an intensive margin response, i.e., a

response in the capacity-choice of adopters. The lower the marginal subsidy rate, the lower the

capacity a specific adopter installs. Intuitively, adopters above the kink point reduce capacity,

shifting the distribution to the left and creating excessive mass at the kink point.

Figure 3 shows the same histogram on a logarithmic scale. The number of observations

in a bin is normalised by the bin size. There is a visible slope change in the distribution at

the kink point. Section 3 shows that the slope change is evidence for a participation/extensive

margin response. Participation depends on the total subsidy payment. The lower the payment,

the fewer households and firms adopt solar panels. Intuitively, the kink in the subsidy reduces

profit for adopters above the kink point, which reduces their participation.
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Figure 3: Histogram of adoptions in 2004 (logarithmic scales)
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Note: The red line marks the kink point at 30 kWp. At the kink point, there is a visible mass
point and slope change in the distribution. The number of observations in a bin is normalised
by the bin size.

Figure 4 additionally shows the distribution of adopters who adopted in 2003 when the sub-

sidy was linear. The distribution is smooth around the future kink point. There is no significant

bunching mass or visible slope change as in 2004. It suggests that the slope change and bunch-

ing are indeed caused by the kink, hence evidence for responses at the two margins. On a side

note, the subsidy rate in 2003 was lower than in 2004. While it is not directly relevant to the

shape of the distributions, it explains why the number of adopters in 2004 was higher than in

2003.

One could suspect that the slope change in the distribution in 2004 is caused by a trend that

adds concavity to the distribution over time. Figure 5 shows the histogram of adoptions from

2000 to 2002. It pools these years to have a sufficiently large sample size. The figure shows

no graphical evidence for a time trend in the concavity of the distribution. Moreover, Figure

6 shows that the histogram in 2005 has the same pattern as the histogram in 2004. Therefore,

the pattern in 2004 is not a particularity of that year. See Appendix A for a more detailed

description of the data.

Since this paper focuses on deployment subsidies for early-stage technologies, it studies
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Figure 4: Histogram of adoptions in 2003 and 2004
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Note: The red line marks the kink point. Scales are logarithmic. Under the linear subsidy in
2003, there is no significant mass point or visible slope change in the distribution.

Figure 5: Histogram of adoptions in the years 2000 to 2002

 

Capacity of the solar panel [kWp]

N
um

be
r 

of
 a

do
pt

io
ns

12 16 22 30 40 54 74

1
10

10
0

10
00

Note: The red line marks the kink point. Scales are logarithmic. As in 2003, there is no
significant mass point or visible slope change in the distribution.
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Figure 6: Histogram of adoptions in 2005
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Note: The red line marks the kink point. Scales are logarithmic. As in 2004, there is a visible
mass point and slope change in the distribution.

the first years of the German programme from 2000 to 2008. Over this period, households and

firms sell all the produced electricity to the government at the subsidised rate. Therefore, the

problem is equivalent to a procurement problem: the principal (i.e., the government) procures

the installation of capacity to agents (i.e., households and firms). To evaluate and optimise the

subsidy’s cost-effectiveness, it is necessary to know how agents react to it at the participation

and intensive margin. Subsidy rates and prices for solar panels vary over time. However, in a

large market like Germany, this variation is endogenous to demand, making it unsuitable for

identifying the two margins. Therefore, the following section exploits the effect of kinks in the

subsidy schedule on the cross-sectional distribution of adopters’ behaviour. It shows that when

economic agents react to incentives at the intensive and the participation margin, a kink in the

incentive scheme causes a mass point and a slope change in the distribution of agents’ choices.

Quantitatively, the magnitude of the two responses is related to the size of the mass point and

the slope change, which enables their identification.
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3 The model

Assume there is a mass of heterogeneous adopters indexed by i. They produce capacity q ∈ R+

for which they receive subsidy payments. The expected present discounted value of subsidy

payments S(q) is a function of the adopted capacity q. Adopters solve a standard maximisation

problem:

πiv = max
q
S(q)− civ(q), (1)

and participate if and only if πiv ≥ cif . The function civ(q) denotes the variable cost of adopter

i to adopt capacity q, the variable πiv denotes the optimal variable profit of adopter i, and the

variable cif denotes the fixed cost of adopter i. The fixed and variable costs are heterogeneous

among adopters and contain all monetary and non-monetary costs net of unobservable benefits.

In practice, the German subsidy for solar panels is paid as a feed-in tariff. Appendix B.1 shows

that Problem (1) implicitly accounts for subsidy payments via a feed-in tariff. In particular,

the cost function accounts for all adopter-specific heterogeneity due to climate conditions and

discounting of future payments.

The variable and fixed costs fully determine the adopters’ behaviour. Therefore, this paper

follows a sufficient statistics approach. It suffices to study the properties of the variable and

fixed costs instead of their components’ properties. For example, these components are: the

monetary costs of the installation, warm-glow preferences for solar panels, the opportunity and

aesthetic costs of using space on the roof, opportunity costs of time and money, the opportunity

cost of adopting in the future, and direct benefits from consuming electricity produced by the

solar panel.13 An adopter can increase capacity by using more area on the roof or by adopting

panels of higher efficiency (i.e., higher capacity per area). The variable cost function civ(.) is

continuous and increasing. I do not assume the function is convex everywhere. There can be

ranges of increasing returns to scale. However, adopters face space constraints. Moreover, the

13For an example of heterogeneous fixed costs, consider two firms with the same roof size. Firm one, e.g., an
innovative start-up, is very productive and has high opportunity costs of time. Firm two, e.g., a traditional farm, is
not very productive. The opportunity costs of time are low, and the firm is already familiar with the administrative
process of receiving subsidy payments. Arguably, firm one has a higher fixed cost than firm two.

12



Figure 7: The kinked subsidy Sk and the counterfactual subsidy Sl

qK

S(q)

q

sl

ρ sl

Note: The thick solid line shows the kinked subsidy Sk. The dashed line shows the counter-
factual subsidy Sl. The variable sl denotes the marginal subsidy rate below the kink point; qK

denotes the kink point, and ρ denotes the relative change in the marginal subsidy rate at the
kink point.

cost of increasing capacity through more efficient panels is convex.14 Therefore, the function

civ(q) is convex for q large enough. Note that the optimal choice of q is always in the convex

range of civ(q).

The subsidy S(.) can take two forms: the observed kinked subsidy Sk(.) and the counter-

factual linear subsidy Sl(.). The kinked subsidy Sk(q) is:

Sk(q) = slq, for q ≤ qK ; (2)

Sk(q) = slq
K + (q − qK)ρsl, for q > qK . (3)

The kink point is denoted by qK ; sl is the marginal subsidy rate below the kink point, and ρ sl

is the marginal subsidy rate above the kink point, where ρ ∈ (0, 1) is the relative change in

subsidy rates. The counterfactual linear subsidy Sl(q) is:

Sl(q) = slq, for all q. (4)

Figure 7 illustrates both subsidies.

14The more efficient a panel, the higher the resource costs to increase its efficiency further. Therefore, the price
of panels is convex in efficiency.
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Figure 8: The counterfactual measure fl(q)

qK

fl(q)

q

Note: The counterfactual measure fl(.) is the distribution of adoptions under the counterfactual
linear subsidy Sl(.). Its key property is its smoothness around the hypothetical kink point.

3.1 The graphical intuition behind identification

This section gives graphical intuition on how the distribution of adoptions depends on the in-

tensive and the participation margin. Denote by fk(.) the observable distribution of adopters’

choices under the kinked subsidy Sk and by fl(.) the counterfactual distribution of adopters’

choices under the linear counterfactual subsidy Sl. Technically, fl(.) and fk(.) are measures.

For example, for any interval of capacity [q1, q2],
∫ q2
q1
fk(q)dq is the mass of adopters in the

interval under the subsidy Sk(.). Intuitively, one can think of fl(.) and fk(.) as densities that do

not integrate to one.

Suppose the counterfactual linear subsidy Sl is in place. Figure 8 illustrates a possible

measure of adoptions fl. Without loss of generality, it depicts a decreasing measure. The exact

shape is not essential. The only important property for the results presented later in this section

is the smoothness of the counterfactual measure around the hypothetical kink point. Section

3.3 below states the precise mathematical smoothness assumption (i.e., Assumption 3).

In comparison, suppose the kinked subsidy Sk, illustrated in Figure 7, is in place. I explain

its effect on the distribution of adoptions using a hypothetical change in the subsidy schedule

from Sl to Sk. Note that this is a thought experiment to illustrate the effect of the kink. To

estimate the two response margins, I do not exploit a change in the subsidy schedule over time

14



Figure 9: The effect of the kinked scheme Sk on adopters well above the kink point

qK

sl

S ′(q)

civ
′
(q)

q

∆π

πk

Note: The thick black line depicts the kinked marginal subsidy S ′
k, and the dashed line depicts

the linear marginal subsidy S ′
l . The thin purple line illustrates the marginal cost curve civ

′ of an
adopter. The capacity-choice under the kinked scheme, depicted by the full dot, is lower than
the choice under the linear scheme, depicted by the empty dot. The two coloured areas depict
the variable profit under the linear subsidy. The light green area πk depicts the variable profit
under the kinked subsidy, and the dark green area ∆π depicts the change in profit.

because these changes are endogenous to adoption behaviour. Instead, I exploit the effect of

the kinked scheme on the cross-section of adopters in a given period.

Depending on their production choice under the linear subsidy, the kink affects adopters

differently. There are three groups of adopters. The first group of adopters produces more

than the kink point under both subsidy schemes. The thin purple line in Figure 9 illustrates

the marginal cost curve of such an adopter locally around the kink point. Additionally, the

figure depicts the kinked marginal subsidy as a solid black line and the linear marginal subsidy

as a dashed line. The change in subsidy has two effects on the adopter. First, they face a

lower marginal subsidy under the kinked scheme than under the linear scheme. Therefore, they

adopt less capacity. Note that the optimal choice under each scheme is where the marginal

cost curve crosses the marginal subsidy curve. The empty dot depicts the optimal choice under

the counterfactual; the full dot depicts the optimal choice under the kinked scheme. The figure

shows that the optimal capacity is lower under the kinked scheme than under the linear scheme.

Second, the total subsidy payment under the kinked scheme is lower than under the linear

scheme. Therefore, adopters earn less variable profit. Fixed costs are heterogeneous, and
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Figure 10: The effect of the kinked scheme Sk on adopters just above the kink point
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sl

S ′(q)

civ
′
(q)

q

∆π

πk

Note: The black lines depict S ′
l and S ′

k and purple line illustrates civ
′. The capacity-choice

under the kinked scheme, depicted by the full dot, is exactly at the kink point. It is lower than
the choice under the linear scheme, depicted by the empty dot. The dark green area ∆π depicts
the change in profit.

therefore, some adopters stop participating. Note that the variable profit is the area between

the marginal cost and the marginal subsidy curve. Figure 9 depicts the variable profit under the

linear scheme as the total coloured area. The light green area πk is the variable profit under the

kinked scheme. The dark green area ∆π is the reduction in profit under the kinked subsidy.

The second group of adopters produces above but close to the kink point under the linear

scheme. The thin purple line in Figure 10 illustrates the marginal cost curve of such an adopter

locally around the kink point. Their marginal cost curves cross the kinked marginal subsidy

precisely between the two marginal subsidy rates. Again, the change in subsidy has two effects

on them. First, they reduce production precisely to the kink point, i.e., they bunch at the kink

point. Second, they lose profit ∆π, depicted as the dark green area in Figure 10. Again, due to

heterogeneous fixed costs, some stop participating under the kinked scheme.

The third group of adopters produces less than the kink point under both subsidy schemes.

The thin purple line in Figure 11 illustrates the marginal cost curve of such an adopter locally

around the kink point. Their marginal cost curves cross both marginal subsidy schemes below

the kink point. Therefore, they are not affected by a change in the scheme. They produce the

same amount and earn the same profit under both schemes. Their participation does not change.
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Figure 11: The effect of the kinked scheme Sk on adopters below the kink point
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S ′(q)

civ
′
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q

πv

Note: The black lines depict S ′
l and S ′

k, and purple line illustrates civ
′. The full dot depicts the

choice under both subsidies. The coloured area depicts the variable profit under both subsidies.

Figure 12: The observable measure fk when there is only an intensive margin response

qK

fk(q)

q

B

Note: The part of the measure above the kink point shifts to the left. It consists of adopters
illustrated in Figure 9. At the kink point, there is a mass point B, i.e., the bunching mass. It
consists of adopters illustrated in Figure 10. The part of the measure below the kink point is
unaffected by the kink. It consists of adopters illustrated in Figure 11.
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Figure 13: Identification when there is only an intensive margin response
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Note: The left part of the figure shows the marginal buncher. Her marginal cost curve crosses
the lower marginal subsidy rate exactly at the kink point. She reduces capacity by ∆q. The
right part of the figure shows the marginal buncher in the measure of adoptions. Adopters to
her left bunch at the kink point. The bunching mass B is approximately proportional to the
response of the marginal buncher ∆q.

The distinct effect of the kinked subsidy on these three groups of adopters affects the distri-

bution of adoptions. In a first step, to better understand the effect on the distribution, consider

the case where fixed costs are homogeneous and equal to zero. As a consequence, there are no

participation responses. This case is considered by Saez (2010). Figure 12 depicts the observ-

able measure of adoptions under the kinked subsidy fk. Above the kink point, the change in

schemes has two effects on the measure. First, the measure shifts to the left because adopters re-

duce production; second, the measure changes shape because the distribution of adopters’ mass

changes. Depending on the exact response, the mass in each interval increases or decreases be-

cause mass needs to be conserved. These are the standard effects of a change-in-variable on a

measure.15 At the kink point, there is a mass point B, i.e., the bunching mass. It consists of

adopters from the second group. These adopters reduce production; however, they hit the kink

point qK when doing so. By reaching the kink point, they are no longer affected by the subsidy

change. Therefore, they "bunch" precisely at the kink point. Below the kink point the measure

under the kinked and linear scheme is the same; adopters in this range are not affected by the

change in schemes.

15The second effect is the effect of the Jacobian.
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Figure 14: The observable measure fk when there are responses at both margins
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fk(q)
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∆f ⇐ ∆π

Counterfactual
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Note: The change in profit ∆π causes a change in participation ∆f . Above the kink point,
the change in profit increases in capacity. Therefore, the change in participation increases in
capacity, causing a slope change in the measure. Adopters at the kink point also react at the
participation margin. Therefore, there is less bunching.

How is the measure of adoptions, as illustrated in Figure 12, useful to identify the intensive

margin response? Consider the adopter depicted by the thin purple marginal cost curve in the

left part of Figure 13. Her marginal cost crosses the lower marginal subsidy rate exactly at the

kink point. The literature calls this adopter the "marginal buncher" (see Saez, 2010). In re-

sponse to the change in marginal subsidy, the adopter reduces production by ∆q. The right part

of Figure 13 shows the marginal buncher in the measure of adoptions. All adopters to her left

"bunch" at the kink point. Therefore, the bunching mass is approximately proportional to the

reduction in the marginal buncher’s production ∆q. The bunching mass identifies the response

∆q, which, under an additional assumption on the cost function, identifies the intensive margin

elasticity.

Next, consider the case when fixed costs are present and heterogeneous. Figure 14 illus-

trates the consequent participation effects on the measure of adoptions. The blue line illustrates

the measure when there are responses at both margins. In comparison, the red dash-dotted

line illustrates the measure when there is a response only at the intensive margin; the black

dashed line illustrates the counterfactual. Again, the range below the kink point is unaffected

by the subsidy change. At the kink point, adopters from the second group suffer from a loss in
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profit. Due to heterogeneous fixed costs, some of them stop participating. The bunching mass

B decreases from the empty red dot to the full blue dot. Appendix D.4 shows that this effect

biases the classic bunching estimates. Above the kink point, adopters from the first group also

suffer from a profit loss. The loss ∆π causes a drop in the participating mass ∆f . The larger

is capacity q, the larger is the loss in profit ∆π. Therefore, the larger is capacity q, the larger

is the drop in participation ∆f . This effect is responsible for the slope change in the measure.

The theoretical prediction, illustrated in Figure 14, is perfectly consistent with the observed

adoption behaviour, depicted in Figure 3 and Figure 6.

Contrary to the counterfactual, the measure under the kinked subsidy is observable. The

observable bunching mass and the slope change distinctly depend on the magnitudes of both

margins. Under some assumptions, it is possible to formalise the dependence of each part of the

distribution on the magnitude of the two margins. Two observable features of the distribution,

bunching and the slope change, are then sufficient to identify the unknown magnitudes of the

two margins. The following section carries out this exercise.

3.2 The distribution of adoptions

This section derives how the observed distribution of adoptions under the kinked subsidy de-

pends on the three unknowns: the intensive margin elasticity, the participation margin elasticity,

and the counterfactual distribution. The counterfactual distribution is the capacity-distribution

under a counterfactual linear subsidy without a kink. Following the non-structural econometric

literature, I use the three unknowns as the primitives of my model. However, a structural formu-

lation, explicitly specifying a cost function and a type distribution as primitives, is equivalent.

It is the distinct dependence of different parts of the distribution on each of the three unknowns,

which I exploit for joint identification.

Assumption 1 (Intensive margin). For small variations in the subsidy and adopters close to

the kink point, the intensive margin response is iso-elastic.16

16Formally, small variations in the subsidy means for marginal subsidy rates s ∈ [ρsl, sl] and total payment
S(q) ∈ [Sk(q), Sl(q)]. Close to the kink points means for counterfactual capacity in a closed and small interval
[q, q] around the kink point.
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Assumption 2 (Participation margin). For small variations in the subsidy and capacities close

to the kink point, the participation margin response is iso-elastic.

Denote the intensive margin elasticity by ϵ and the participation margin elasticity by η. As-

sumption 1 is standard in the bunching literature. It is a local parametric approximation to the

nonparametric variable cost function. Assumption 2 is the corresponding assumption for the

participation margin. It is a local parametric approximation to the nonparametric distribution

of total costs. As noted by Kleven (2016), if ρ is close to 1, and q is close to the kink point,

Assumption 1 is approximately true. To illustrate, suppose Assumption 1 does not hold. The

closer ρ is to one, the smaller the misspecification introduced by Assumption 1. In my appli-

cation, ρ is greater or equal to 0.95, hence very close to one. The same argument applies to

Assumption 2.

Assumptions 1 and 2 are reduced form assumptions on endogenous objects, i.e., high-level

assumptions. Appendix B.1 shows that they are equivalent to the structural Assumptions B1

and B2: the variable cost function and the distribution of total costs are locally iso-elastic. As

a consequence, locally, the elasticities ϵ and η are structural parameters of the problem. Denote

the capacity-choice of an adopter under the counterfactual subsidy Sl by ql, where l stands for

linear. Remember, fl(.) denotes the counterfactual distribution of adoptions, i.e., the distribu-

tion of ql. Assumptions 1 and 2 imply that, locally, ql describes all relevant adopter-specific

heterogeneity. Therefore, ql is equivalent to the adopters’ type-parameter and fl(.) is equiv-

alent to the type-distribution. As a consequence, locally, the nonparametric distribution fl(.)

is a structural pseudo-parameter of the problem. See Appendix B.1 for a formal derivation of

this statement. Using ql as type-parameter has the advantage that the type has direct economic

meaning: it is equal to the choice under the counterfactual subsidy.

Proposition 1 (The observed density). Close to the kink point, the observable measure fk(.)

under the kinked subsidy Sk(.) is a function of three unknowns: the intensive margin elasticity

ϵ, the participation margin elasticity η, and the counterfactual measure fl(.). At the kink point

qK , there is a mass point with bunching mass B. Three parts of the observable measure fk(.)
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depend distinctly on the three unknowns:

fk(q) = fl(q), for q < qK ; (5)

B =

∫ qKρ−ϵ

qK
R(ql, ϵ)

ηfl(ql)dql, for q = qK ; (6)

fk(q) = R(q ρ−ϵ, ϵ)ηfl(q ρ
−ϵ)ρ−ϵ, for q > qK . (7)

Note: The variable qK denotes the kink point; ρ denotes the relative change in marginal subsidy

rates, and the function R(., ϵ) is the net subsidy payment to an adopter under the kinked scheme relative

to the subsidy payment under the counterfactual scheme. The exact definition and derivation of R(., ϵ)

is in Lemma B5 in Appendix B.3.

The proof of Proposition 1 is in Appendix B.3. Below the kink point, the observable mea-

sure fk(.) depends only on the counterfactual measure fl(.). At the kink point is an observable

mass point with mass B. The mass depends on all three unknowns. The measure above the

kink point depends on all three unknowns as well. However, all observables depend on the

three unknowns distinctly, a property crucial for identification.

3.3 Identification

This section shows under which conditions the observed measure fk(.) identifies the three

unknowns. The pseudo-parameter fl(.) in Proposition 1 is infinite-dimensional. Equation (5)

shows that below the kink point, the observable measure fk(.) is equal to fl(.). Therefore, fl(.)

is identified for values smaller than qK . However, fl(.) is part of Equation (6) and (7) evaluated

at values larger than qK . The function is unobservable at these points. Identification is only

possible if fl(.) is smooth enough such that the observations below the kink point identify

the function also for values larger than the kink point. Therefore, an additional assumption is

necessary.

Assumption 3 (Smoothness). For all quantities ql in a large enough interval [q, q] around

the kink point, there exists a transformation of the counterfactual measure fl(.) that has a

convergent power series representation (i.e., is analytic).
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For example,

ln fl(ql) =
∞∑
p=0

γp
1

p!

(
ln

ql
qK

)p
for all ql ∈ [q, q]. (8)

Assumption 3 is a smoothness assumption. See Gautier and Gaillac (2021) and Iaria and Wang

(2022) for a use of this assumption in a different context. A set of functions satisfying Assump-

tion 3 are functions which are complex differentiable on [q, q].

Condition 1 (Rank condition). Equations (6) and (7) are not colinear.

Equations (5) to (7) form a simultaneous, nonlinear system of equations. The system must

not be colinear to identify the parameters of interest. Condition 1 is a rank condition that holds

generically. Moreover, it can be verified ex-post estimation (see Appendix D.5 for the estimates

and a detailed discussion).

Proposition 2 (Identification). Under Assumption 3 and Condition 1, the observable measure

fk(.) identifies the counterfactual measure fl(.), the intensive margin elasticity ϵ, and the par-

ticipation margin elasticity η.

The proof is in Appendix B.4. Observations below the kink point identify the nonparametric

counterfactual distribution. Observations at the kink point and observations above the kink

point jointly identify the two response margins. Note that Proposition 2 uses no assumptions

on qK , sl, and ρ, except for their observability. They can be random or endogenous. Without

loss of generality, normalise the rate sl to one; it corresponds to choosing a monetary unit.

Consequently, the monetary unit of all monetary variables is the present discounted value of

payments to one kWp of capacity.

Blomquist et al. (2021) criticise the fact that the bunching literature uses parametric func-

tional form assumptions on fl to identify the intensive margin elasticity. Proposition 2 proofs

identification without assuming a parametric form of fl.

Appendix B.5 generalizes the result in Proposition 2 for the case when there is a disconti-

nuity (i.e., a notch) in the incentive scheme.
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4 Estimation

Intuitively, the estimation minimises the distance between the observed log-histogram in Figure

2 and the model in Proposition 1. Formally, the empirical model is

̂ln f(qj) = ln fk(qj | ϵ, η, fl) + uj, (9)

where the variable uj denotes the noise term. The variable ̂ln f(qj) is a bias-corrected estimate

of the log-histogram at capacity qj . Appendix C.1 discusses the choice of the logarithmic model

and the estimation of ̂ln f(qj).

The pseudo-parameter fl(.) in Proposition 1 is infinitely dimensional. Therefore, I use a

semi-nonparametric sieve estimator (Chen, 2007):

ln fl(q) =

P (n)∑
p=0

γp
1

p!

(
ln

q

qK

)p
. (10)

The vector (γ0, ...γP ) denotes the parameters of the series, and P (n) denotes its order. The

order converges slowly to infinity as the sample size n converges to infinity. Using this log-

arithmic series expansion is natural because it contains the uniform distribution, the Pareto

distribution, and the log-normal distribution as special cases. These are common distributions

for variables on a positive domain. Moreover, Figure 4 shows that the observed distributions

are very close to linear on a logarithmic scale. This shape is evidence for a counterfactual

distribution close to a Pareto distribution. Therefore, one can expect that a series expansion

containing the Pareto distribution as a special case converges quickly. Appendix D.8 discusses

the choice of the logarithmic expansions in further detail and shows robustness checks to this

choice.

As an additional contribution to the bunching literature, I propose a data-driven method to

select the nonparametric specification. As standard in nonparametric estimations, the estimates’

bias and variance depend on the specification. There are two main specification-parameters.

The first parameter is the order of the polynomial P . The higher the order P , the lower the

bias and the larger the variance. The second parameter is the bandwidth b = [q, q]. It is the
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interval of values around the kink point used for estimation, i.e., the range of qj . The smaller

b, the lower the bias and the larger the variance. Note that for the estimates to be consistent, it

suffices that P goes to infinity as the sample size goes to infinity. A smaller b reduces the bias

for any given P ; however, b does not have to go to zero for the estimates to be consistent. Note

that the bandwidth b is not to be confused with the bin size of the log-histogram. As is standard

in nonparametric estimations, I choose the specification that minimises an estimate of the mean

squared error. It is the sum of the variance and the square bias of an estimate. The estimate of

the participation margin η̂ is more sensitive to the specification than the estimate of the intensive

margin ϵ̂. Therefore, I use an estimate of the mean squared error of η̂ as a selection criterion for

the specification. To estimate the variance, I use the nonparametric bootstrap. Appendix C.3.1

derives an analytical expression of the bias. It depends on the intensive margin response and

the unestimated rest of the series expansion (i.e., γP+1, γP+2, ...). I propose an out-of-sample

estimator of the bias that converges at a parametric rate. Appendix C.3 discusses the estimator

of the mean squared error in detail. Appendix C.4.3 shows the estimates.

Theory predicts that the bunching mass is located precisely at the kink point. However,

in practice, the excess mass scatters around the kink point due to optimisation errors. The

literature calls this phenomenon non-sharp bunching. To account for non-sharp bunching, it is

standard in the bunching literature to choose a bunching interval [qL, qH ] around the kink point

after visual inspection of the histogram (see Kleven, 2016). Note that the bunching interval

lies within the bandwidth: [qL, qH ] ∈ b. The observed logarithmic bunching mass l̂nB denotes

the logarithm of the normalised number of adopters in the bunching interval. Appendix D.6

discusses the choice of the bunching interval and reports robustness checks.17

The estimation follows the two-step least square procedure in Chetty et al. (2011). I it-

eratively minimise the square distance between the model and the log-histogram outside and

17Anagol et al. (2022) and McCallum and Navarrete (2022) explicitly model the optimization frictions leading
to non-sharp bunching. Since bunching is relatively sharp in my application, I follow the standard approach.
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inside the bunching interval until the estimates converge:

(η̂, γ̂P ) = argmin
η,γP

∑
qj /∈[qL,qH ]

(
̂ln f(qj)− ln fk(qj | ϵ̂, η, γP )

)2
, (11)

and

ϵ̂ = argmin
ϵ

(
l̂nB − ln

∫ qH

qL

fk(q | ϵ, η̂, γ̂P )dq
)2

. (12)

An exponential transformation constrains ϵ̂ and η̂ to positive values. Appendix C.2 shows

that the estimates are consistent and asymptotically normal. Following Chetty et al. (2011), I

estimate the standard errors using nonparametric bootstrap. Appendix C.4 discusses the choice

of the optimal specification.

5 Empirical results

Figure 15 shows the normalised histogram at 30 kWp for 2004. The blue line depicts the

estimated model. The purple dashed line depicts the counterfactual distribution. The red line

marks the kink point normalised to zero; scales are logarithmic. The black bar depicts the

bunching mass in the bunching interval.

Since the bunching literature estimates behavioural responses as elasticities, the empirical

model estimates the participation margin response as the elasticity η. However, in the theoreti-

cal literature on nonlinear pricing, it is more common to use participation semi-elasticities (see

Rochet and Chone, 1998 and Jacquet et al., 2013). Therefore, this section reports the results

at the participation margin as semi-elasticities κ̂. The interpretation is as follows: a lump sum

payment equivalent to the present discounted value of one kWp increases participation by a

factor κ. The relation between the two variables is η = κ×S, where S is the subsidy payment.

Appendix D.1 reports the estimates of the participation elasticity η̂.

Table 1 shows the yearly estimates at 30 kWp for 2004 to 2008. Since they overlap with

other policy changes, I cannot exploit kinks after 2008. The intensive margin response in-

creases over time, while the participation margin response decreases over time. Overall, the

participation margin response is substantial. To increase the sample size, I estimate the re-

26



Figure 15: Histogram in 2004 at 30 kWp with estimated model and counterfactual
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Note: The x-axis shows the normalised logarithm of capacity. The y-axis shows the logarithm
of the density. The red line marks the kink point. The estimation minimises the distance between
the data in black and the model in blue.

Table 1: Yearly estimates at the kink point at 30 kWp

Year ϵ̂ (SD) κ̂ (SD)

2004 1.92 (0.23) 3.21 (0.14)
2005 3.43 (0.26) 2.49 (0.13)
2006 3.92 (0.31) 1.88 (0.14)
2007 5.08 (0.29) 2.00 (0.12)
2008 5.33 (0.24) 1.76 (0.09)

Note: The table reports the estimated elasticity and semi-elasticity with standard errors in
brackets.
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Table 2: Estimates at 30 and 100 kWp pooling observations from 2004 to 2008

Capacity ϵ̂ (SD) κ̂ (SD)

30 kWp 4.37 (0.13) 2.31 (0.06)
100 kWp 4.63 (0.84) 0.00 (0.02)

Note: The table reports the estimated elasticities with standard errors in brackets. The estima-
tion pools observations from 2004 to 2008.

sponse at 100 kWp pooling observations from 2004 to 2008. Table 2 shows the main empirical

results: the estimates at 30 and 100 kWp in the pooled data. The results suggest that the in-

tensive margin elasticity is the same for adopters of different capacities, while the participation

margin semi-elasticity decreases with capacity.

The evidence in Table 2 is not surprising. An important intensive adjustment margin is the

quality of the solar panel. Low-capacity adopters have access to the same quality choices as

high-capacity adopters. Therefore, their responses have the same elasticity.

It is useful to consider the underlying distribution of fixed costs to interpret the participation

responses. A participation semi-elasticity that decreases in capacity is consistent with a simple

normal distribution of fixed costs. The two semi-elasticities observed at the two capacity levels

in Table 2 are sufficient to calibrate the distribution. Figure 16 shows the calibrated distribu-

tion and the implied semi-elasticities. The figure shows the calibrated density of fixed costs

ff (πv(ql)) and the semi-elasticity of participation κ(πv(ql)) =
ff
Ff
(πv(ql)) as a function of the

counterfactual variable profit πv(ql) at capacity ql. Therefore, the function shows the mass of

agents indifferent to participation and the semi-elasticity of participation at a certain capacity

level under the counterfactual subsidy. The two red lines show the counterfactual capacity cor-

responding to the variable profit at the two kink points under the kinked subsidy. Appendix E.2

discusses the calibration in detail.

Figure 16 illustrates why the participation semi-elasticity in Table 2 decreases with capac-

ity. The semi-elasticity depends on the variable profit πv. The higher the profit, the lower the

semi-elasticity. Large capacity systems are very profitable. Therefore, the fixed cost plays only

a small role in the adoption decision, i.e., only a few adopters have such high fixed costs to

make adopting a large capacity unprofitable. In contrast, adopting low-capacity systems de-
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Figure 16: The calibrated density of fixed costs and the implied semi-elasticity
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Note: The figure on the left shows the density of fixed costs ff (πv(ql)) as a function of the
counterfactual variable profit πv at capacity ql.18 Therefore, the function shows the mass of
agents indifferent to participation at a certain capacity level under the counterfactual subsidy.
The figure on the right shows the implied participation semi-elasticity at capacity ql under the
counterfactual subsidy. The red lines illustrate the two kink points.

pends crucially on fixed costs. In relative terms, many adopters have a fixed cost equal to the

variable profit. It follows that relatively many adopters are close to indifferent to participat-

ing. Consequently, a small increase in the subsidy payment causes a large relative response.

While the magnitude of the participation margin response at low capacities is surprising, there

is an intuitive explanation. During the observation period, solar panels were a nascent prod-

uct. They had high market potential compared to market coverage, reflected by the fact that

30 kWp is to the left of the bell curve in Figure 16. This feature explains why, compared to

mature products, the participation semi-elasticities are high. Indeed, estimated participation

semi-elasticities decrease over time as the market saturates. This explanation suggests that one

can expect similar response patterns to other deployment subsidies for early-stage technologies.

The classic bunching estimator does not consider participation margin responses. Appendix

D.4 shows that ignoring participation introduces a downward bias of 20% in the estimate of the

intensive margin elasticity. The bias comes from the fact that, instead of bunching, some agents

stop participating in the programme. It decreases the bunching mass. Wrongly ignoring this

effect attributes the smaller bunching mass to a smaller intensive margin response. Similarly,

the appendix shows that ignoring the intensive margin introduces an upward bias of 5% in the
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estimate of the participation margin. These results show that it is essential to estimate both

margins simultaneously.

5.1 Robustness

One concern for the estimation is the violation of Assumption 2 because of irregularities in the

counterfactual. On the one hand, there might be an excessive mass of adopters at the kink point

for reasons other than the subsidy’s kink. The irregularity may be a mass point or a continuous

bump, which is not or only hardly predictable from observations to the left of the kink point.

This is a general concern in the bunching literature and was raised by Blomquist et al. (2021).

It leads to an upward bias in the intensive margin estimate. Additionally, even if Assumption 2

holds, choosing an inefficient series approximation may considerably bias the results in small

samples.

On the other hand, there might be a slope change at the kink point for reasons other than the

subsidy’s kink, introducing a bias in the participation margin estimate. This effect is a general

concern in the regression kink design literature. Additionally, it is easy to mistakenly estimate

a concavity in the distribution as a change in slope, which would again bias the results. It is

important to evaluate if the chosen specification is picking up one of these biasing effects. To

address these issues, I estimate the model pooling observations from 2000 to 2003. From 2000

until 2003, there was no kink in the subsidy. If the concerns raised are an issue, the estimates

in 2000-2003 should be significant. Figure 17 shows the histogram in 2000-2003, with the

estimated model and the linear counterfactual. I use the same bunching interval as in 2004-

2008. The selected specification does not estimate significant parameters in the untreated data.

Appendix D.3 reports the same robustness check for the estimates at 100 kWp. Again, the

selected specification does not estimate significant effects.

Germeshausen (2018) uses a difference-in-difference approach to estimate the treatment

effect of introducing a new kink in Germany in 2012. For a comparison between his results and

the results of this paper, Appendix E.4.4 uses the estimates to retrieve the implied treatment

effect. The two effects are very similar: introducing the new kink reduces capacity in the 10-20

kWp range by 43% and 40%, respectively. The finding provides evidence for the validity of the
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Figure 17: Histogram in 2000-2003 with estimated model
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Note: The figure shows the robustness check. The x-axis shows the normalised logarithm of
capacity. The y-axis shows the logarithm of the density. The red line marks the kink point.
The estimated model in blue is equal to the counterfactual in purple. The estimates are not
significant.

Table 3: Results for the untreated data in 2000-2003 (placebo)

Capacity ϵ̂ (SD) κ̂ (SD)

30 kWp 0.51 (0.36) 0.00 (0.15)

Note: The table shows the results of the robustness check. The standard errors are in brackets.
The estimates are not significant.

31



respective identifying assumption in both studies.

6 Policy evaluation

This section uses the estimates to evaluate and optimise the subsidy. It builds heavily on the

results in Rochet and Stole (2002), who provide a theoretical solution to the nonlinear pricing

problem of a monopoly when there are intensive and participation margin responses.

Like other kink and discontinuity estimators in the literature, Section 5 estimates the re-

sponses locally at each kink point. It is necessary to make global assumptions to use them

for policy evaluation. In line with the empirical evidence in Table 2, assume an isoelastic cost

function and a normally distributed fixed cost.

Assumption 4 (Isoelastic cost function). The cost function is isoelastic with intensive margin

elasticity ϵ:

c(q, ql, cf ) =
sl

q
1
ϵ
l

ϵ

1 + ϵ
q1+

1
ϵ + cf , (13)

where (ql, cf ) is the two-dimensional type-parameter.

Assumption 5 (Normally distributed fixed costs). The distribution of the fixed costs cf is nor-

mal: cf ∼ N(µf , σf ), with CDF Ff (cf ) and density ff (cf ).19

Set ϵ equal to the estimated intensive margin elasticity in Table 2 and calibrate (µf , σf )

using the estimated participation semi-elasticities (see Figure 16 and Appendix E.2 for details).

Appendix E.2 describes the estimation of the type-distribution fl(.). It is a log-normal dis-

tribution for low capacities and a Pareto distribution for large capacities. The model can be

solved for any counterfactual subsidy scheme using these assumptions. Note that, in line with

the bunching literature, so far, the term counterfactual referred to the linear subsidy without a

kink. This section calls any subsidy different from the observed kinked subsidy a counterfactual

subsidy.
19The assumption implies cf and ql are independent, as in Rochet and Stole (2002). Appendix E.1 generalizes

the assumption to allow for correlation between cf and ql.
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6.1 The government’s objective

Assume the government’s objective is to incentivise the adoption of the observed aggregate

capacity QT at a minimal public cost:

min
S(.)

∫
S(q)dFS(q), (14)

such that∫
q dFS(q) ≥ QT , (15)

where FS(q) is the distribution of capacity under subsidy S(.).

While Objective (14) is appealing for its simplicity, it is a simplification of actual govern-

mental preferences. Appendix E.3 discusses a general objective with redistributive preferences,

a preference for aggregate solar capacity, and a possibly optimal taxes on other sources of in-

come. The appendix derives the optimal nonlinear subsidy as a function of agents’ responses at

the two margins, the government’s preferences for solar capacity, and the government’s prefer-

ences for redistribution. A government can use its actual preferences together with the estimates

in Section 5 and the general solution in Appendix E.3.2 to implement the optimal subsidy.

This section uses the simple objective (14), which avoids taking a detailed stand on gov-

ernmental preferences. It implicitly assumes that the government does not want to distribute

rents to adopters of solar panels, which is justifiable by the fact that typically only households

in the upper part of the income distribution own roofs and can adopt solar panels. Moreover,

the German government already uses a nonlinear subsidy scheme, showing that it is trying to

curtail rents. Appendix E.3.4 shows under which conditions Objective (14) follows from the

general objective. For example, it is the case if the redistributive preferences are Rawlsian, the

lowest income households cannot adopt solar panels because they do not own roofs, and the

government only values capacity up to an aggregate capacity goal QT . Note that a Pigouvian

subsidy, where the optimal marginal subsidy is equal to the marginal environmental benefit, is

not the optimal solution to Objective (14). Appendix E.3.3 discusses when a Pigouvian sub-

sidy is optimal in the general objective of Appendix E.3, which, generally, is not the case (see

Kaplow, 1996, Cremer, Gahvari, and Ladoux, 1998, Kaplow, 2008, and Kaplow, 2012).
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Figure 18: The observed and the optimal marginal subsidies S ′(q(ql))
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Note: The figure compares the observed marginal subsidy with the optimal linear and the
optimal nonlinear marginal subsidies. Note that the first marginal subsidy rate of the observed
subsidy is normalised to one.

6.2 Results counterfactual exercises

This section discusses four counterfactual exercises. The first exercise solves for the optimal

linear subsidy, which serves as a benchmark. Appendix E.4.1 describes the procedure. Com-

pared to this benchmark, the government’s subsidy achieves a modest cost reduction of 0.14

per cent. The second exercise solves for the optimal nonlinear subsidy using mechanism de-

sign. The analysis follows the screening problem in Rochet and Stole (2002) and is outlined

in Appendix E.4.2. The optimal nonlinear subsidy is 0.45 per cent less costly than the linear

benchmark. Cost savings are by a factor 3.14 larger than the cost savings of the government’s

subsidy. Figure 18 compares the optimal marginal subsidy schedule S ′(q(ql)) to the linear

benchmark and the observed marginal subsidy. Qualitatively, the optimal marginal subsidy is

mostly downward sloping; hence it is similar to the subsidy used by the government. How-

ever, quantitatively, the range of optimal marginal subsidy rates is larger than the range used by

the government. The optimal scheme reduces rents more than the observed scheme by paying

higher rates to small adopters and lower rates to large adopters. While the result shows that

there is room for improving the government’s scheme, the overall benefits of using a nonlinear

subsidy scheme remain modest.

To better understand what limits the scope for curtailing costs, a third thought experiment
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Figure 19: The optimal marginal subsidy S ′(q(ql)) with and without participation
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Note: The figure compares the optimal marginal subsidy without participation with the optimal
marginal subsidy with participation.

assumes adopters can only respond at the intensive margin. It follows the methodology in Ap-

pendix E.4.2, assuming the participation response equals zero. Without participation margin,

the optimal nonlinear subsidy would be 8.6 per cent less costly than the linear benchmark. This

result shows that the participation margin limits the scope for cost reduction via a nonlinear

subsidy. Figure 19 compares the optimal marginal subsidy without participation to the optimal

marginal subsidy with participation. The marginal subsidy schedule is increasing, and the dis-

tance to the linear benchmark is much more significant than when the participation margin is

present. The shape of the scheme follows from simple intuition. On the one hand, it is optimal

to pay a high marginal rate to large adopters. Reacting only to marginal rates, large adopters

install larger capacities than under the linear benchmark. On the other hand, the marginal rate

paid to small adopters is low. They adopt lower quantities than under the linear benchmark. By

definition, the net capacity effect is zero, and the government achieves the fixed capacity goal.

However, the net cost effect is not zero. The total payment to large adopters is the integral un-

der the orange/dotted curve. The low marginal rates for small adopters extract profit from large

adopters because they receive a lower payment for infra-marginal units. Therefore, the scheme

is less costly than the linear scheme. In contrast, when, as in reality, there are participation

margin responses, this strategy to extract profits is ineffective. Low marginal subsidy rates for

small capacities affect larger adopters by reducing their profit margins. It triggers responses
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at the participation margin and, therefore, a loss in capacity. This effect limits the room for

rent extraction through nonlinear pricing when the participation margin is active. Therefore,

cost-savings when both margins are active remain moderate.

The results in Figure 19 show that the participation margin changes the shape of the optimal

marginal subsidy. However, is it counterproductive to ignore participation when, in reality,

such a margin is present? Rochet and Stole (2002) show that when the type distribution fl(.)

is uniform, the undistorted and the optimal intensive allocation bound the optimal allocation

with both margins. Their result suggests that implementing the optimal intensive schedule in

Figure 19 might reasonably approximate the optimum. Appendix E.4.3 shows that their result

is not robust to more general forms of the type distribution. E.g. for the type-distribution in

this application, the optimal allocation is close to but outside the bounds derived by Rochet

and Stole (2002). To gather additional evidence, a fourth counterfactual exercise assumes the

policymaker implements the optimal intensive schedule, but adopters react at both margins.

I keep aggregate capacity constant again to allow for a meaningful comparison to the other

counterfactual exercises. The exercise finds that the optimal intensive schedule increases costs

by 3.1 per cent instead of decreasing them; i.e., ignoring participation has a sizable adverse

effect on costs. The result shows that the qualitative insight in Rochet and Stole (2002) provides

limited guidance to the policymaker. Combining their theoretical results with estimates of the

intensive and participation margin responses is crucial for implementing the optimal schedule.

Table E2 and E3 in Appendix E.5 summarise the results of the four counterfactual exercises.

7 Conclusion

This paper leverages a kinked incentive scheme to estimate agents’ intensive and participation

margin responses simultaneously. On the example of the German subsidy for rooftop solar

panels, it demonstrates how to use these estimates to evaluate and optimise a nonlinear in-

centive scheme. The paper reveals that adopters of solar panels react at both margins. The

nonlinearities in the current schedule are only modestly effective at reducing the public costs of

the programme. While an optimal subsidy schedule increases cost savings by a factor of three,
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overall, they remain modest. It is the participation margin responses that limit the scope for cost

reductions via second-degree price discrimination. Neglecting the participation margin when

optimising the policy has a sizable adverse effect on costs. The result highlights the importance

of considering both margins when evaluating and optimising nonlinear incentive schemes.

Deployment subsidies for nascent green technologies have become popular climate poli-

cies. The results of this paper indicate that nonlinearities can reduce the public costs of these

programmes; however, cost savings are likely moderate. Hence, nonlinear subsidies are not

a silver bullet and can even trigger detrimental effects. Estimating both response margins is

essential for their optimal design.

Adapting the estimator to exploit notches, i.e., discontinuities in incentive schemes, is

straightforward. Kinks and notches are common features of economic incentive schemes, as

are responses at the intensive and participation margin. Possible further applications of the

methodology in this paper are the evaluations of taxes, subsidies, transfers, and product prices.
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A Data description

The data used in this paper are administrative and contain all solar panels connected to the
grid and receiving subsidy payments. An adopter may be a household or a firm. The unit of
observation is the aggregated capacity installed by an adopter at a specific location. Therefore,
it is not possible to exploit the nonlinearities in the subsidy by splitting a large system into
smaller ones and asking for separate payments for each. Additionally, when an adopter adds
capacity to a preexisting system, the policymaker takes the preexisting capacity into account.
Therefore, it is not possible to exploit the nonlinearities by splitting up a large adoption into
smaller ones over time. The data provides information on the time point of adoption, the
location, the electricity production, the applied subsidy rates, and the system’s capacity. Table
A1 shows the yearly number of adoptions. It is increasing in most years.

Table A1: Number of adoptions per year

Year Number of adoptions Relative proportion in %

Until 2001 23498 10
2002 10999 5
2003 11928 5
2004 26070 11
2005 36448 15
2006 32730 13
2007 39883 16
2008 61220 25

All years 242776 100

Table A2 shows the relative number of adoptions, the total installed capacity, and the rela-
tive installed capacity by capacity ranges. The distribution of the number of adoptions is highly
skewed to the left. 65% of the adoptions are smaller or equal to 10 kWp. The distribution of
aggregate capacity is much less skewed to the left—installations with capacities ranging from
10 to 100 kWp account for 63% of total capacity.
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Table A2: Relative number of adoptions, total installed capacity, and relative installed capacity
by capacity range

Capacity [kWp] Rel. number [%] Tot. capacity [MWp] Rel. tot. capacity [%]

(0, 5] 33.7 267 9
(5, 10] 31.1 535 18
(10, 30] 29.0 1269 43
(30, 100] 5.6 596 20
(100, 150] 0.3 89 3
> 150 0.3 196 7

Total 100.0 2953 100

Note: The column "Rel. number" shows the fraction of adopters with an installed capacity in
the range in column "Capacity." The column "Tot. capacity" shows the total installed capacity
in each range. The column "Rel. tot. capacity" shows the installed capacity by range relative
to the overall capacity.

Table A3 shows the subsidy schedule in Euro cents per kWh per capacity range and over
time.

Table A3: The subsidy schedule in Euro cents per kWh

Year < 30 kWp 30-100 kWp >100 kWp

Until 2001 50.62 50.62 50.62
2002 48.10 48.10 48.10
2003 45.70 45.70 45.70
2004 57.40 54.60 54.00
2005 54.53 51.87 51.30
2006 51.80 49.28 48.74
2007 49.21 46.82 46.30
2008 46.75 44.48 43.99

Note: Source Übertragungsnetzbetreiber (2018)

B Details model

B.1 Heterogeneous discounting and radiation exposure

The German subsidy for solar panels is paid as a feed-in tariff. A feed-in tariff is a guaranteed
fixed price for produced electricity. The subsidy payment depends on the installed capacity and
the produced electricity. Electricity production is a function of the adopter-specific location
and capacity. The location matters since climate conditions vary across locations. Moreover,

43



adopters may have heterogeneous discount rates when evaluating future income streams. Dis-
counting matters because adopters take the adoption decision based on the present discounted
value of the income stream produced by the solar panel.

A household installing capacity qi produces electricity eit in a given year: eit = witq
i,

where wit is the efficiency of the panel in year t, which depends on weather conditions and
the location. Suppose electricity eit is remunerated according to the following kinked subsidy
scheme, which depends on the installed capacity:

Sk(q, eit) = sl eit, for q ≤ qK ; (16)

Sk(q, eit) = sl eit
qK

q
+ slρeit

q − qK

q
, for q > qK . (17)

It follows that the subsidy payment in a certain year as a function of q is:

Sk(q, wit) = sl wit q, for q ≤ qK ; (18)

Sk(q, wit) = slwitq
K + slρwit(q − qK), for q > qK . (19)

It follows that Sk(q, eit) = witSk(q). An agent evaluates the present discounting value of all
future subsidy payments when taking the adoption decision. The expected present discounted
value of all payments is

Ei

[
20∑
t=0

βtiwitSk(q)

]
= Sk(q)Ei

[
20∑
t=0

βtiwit

]
= Sk(q)ζ

i. (20)

The subsidy is paid for 20 years; assume that panels break down afterwards. Setting ρ = 1

shows that the equivalent is true for a linear scheme Sl.
The decision problem of an adopter is

π̃iv = max
q

{ζ iS(q)− c̃iv(q)}, (21)

and participate if and only if

π̃iv ≥ c̃if , (22)

where ζ i captures the individual-specific discounting and location. Normalisation by ζ i shows
the equivalence of Problem (21) and Problem (1). Therefore, the model outlined in Section
3 implicitly accounts for subsidy payments via a feed-in tariff. In particular, it accounts for
individual-specific discounting and location.
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B.2 Formal derivations Section 3.2

Denote by qi(s) the optimal choice of adopter i under a linear subsidy with rate s. Define the
intensive margin elasticity of adopter i under a linear subsidy with rate s by

ϵi(s) =
d ln qi(s)

d ln s
. (23)

Formally, using this notation, Assumption 1 states that for all marginal subsidy rates s in the
interval [sl, slρ] and for all adopters i such that their capacity-choice under the counterfactual
subsidy qi(sl) is in an interval [q, q] around the kink point qK , it holds that the elasticity ϵi(s) =
ϵ, where ϵ is a constant. Assumption 1 a is a reduced form assumption on an endogenous object,
i.e., a high-level assumption. However, it is equivalent to the structural assumption B1:

Assumption B1 (Structural assumption intensive margin). The cost function is locally isoelas-

tic. Formally, for all adopters i such that their capacity-choice under the linear subsidy qi(sl)

is in the interval [q, q], and for all quantities q in the interval [qi(slρ), qi(sl)], it holds that the

variable cost function civ(.) is equal to

civ(q) = θiq1+
1
ϵ , (24)

where θi is the variable cost type.

Lemma B1 (Equivalence intensive margin). Assumption 1 is equivalent to Assumption B1.

The proof is in Appendix B.2.1.

Denote the choice of adopter i under the counterfactual subsidy Sl by qil , where l stands for
linear: qil = qi(sl). Similarly, denote the total cost of adopter i under the counterfactual subsidy
Sl by cit, where t stands for total: cit = civ(q

i
l) + cif .

Corollary B1 (Type parameters). For each adopter i, there is a one-to-one mapping from the

variable and fixed cost type (θi, cif ) to the choice and total cost under the counterfactual subsidy

(qil , c
i
t):

θi =
sl

qil
1
ϵ

ϵ

1 + ϵ
, (25)

cif = cit − qilsl
ϵ

1 + ϵ
. (26)

Therefore, locally, the total cost function is equal to

c(q, ql, ct) =
sl

ql
1
ϵ

ϵ

1 + ϵ
q1+

1
ϵ︸ ︷︷ ︸

variable cost

+ ct − qlsl
ϵ

1 + ϵ︸ ︷︷ ︸
fixed cost

. (27)
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The type parameter (ql, ct) captures all relevant adopter-specific heterogeneity.

The proof is in Appendix B.2.2. Using (ql, ct) has the advantage that the type parameter
has direct economic meaning. The type is equal to the choice and cost under the counterfactual
subsidy. The mapping between (θ, cf ) and (ql, ct) depends on the counterfactual subsidy rate
sl. However, since sl is observable and fixed, this dependence poses no problem. Note that I
will drop the adopter-specific index i from now on.

The next paragraph imposes the structural iso-elasticity assumption on the participation
margin. Denote by ft|ql(.|ql) and Ft|ql(.|ql) the density and the CDF of the total cost ct condi-
tional on the type ql. Define a functional η(S, q) as

η(S, q) =
ft|ql(S(q)|q)
Ft|ql(S(q)|q)

S(q), (28)

where S(.) is a general subsidy function. The participation margin elasticity under the coun-
terfactual subsidy is η(Sl, ql).20 Formally, using this notation, Assumption 2 states that for all
subsidy functions S(q) such that Sl(q) ≥ S(q) ≥ Sk(q) and for all quantities q in an interval
[q, q] around the kink point, it holds that the functional η(S, q) = η, where η is the constant
participation margin elasticity. Again, Assumption 2 is a high-level assumption. It is equivalent
to the structural assumption B2:

Assumption B2 (Structural assumption participation margin). The conditional CDF of the to-

tal cost is locally isoelastic. Formally, for all values ct in the interval [Sk(ql), Sl(ql)], the

conditional CDF of the total cost is equal to

Ft|ql(ct|ql) =
(

ct
ct(ql)

)η
, (29)

where η is the constant participation margin elasticity, and ct(ql) is a normalisation term.

Lemma B2 (Equivalence participation margin). Assumption 2 is equivalent to Assumption B2.

The proof is in Appendix B.2.3.

B.2.1 Proof of Lemma B1

Assumption 1 ⇒ Assumption B1:
By Assumption 1 and the definition of the elasticity

ϵ =
qi

′
(s) s

qi(s)
, for all s in [slρ, sl]. (30)

20Note that, in general, η(S, q) is not the participation margin elasticity under subsidy S(q) because ct is
defined with respect to the counterfactual subsidy Sl.
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By the first order condition of the adopters’ problem: civ
′
(qi(s)) = s, and by differentiating the

FOC

qi
′
(s) =

1

civ
′′(qi(s))

. (31)

It follows that for all q in [qi(slρ), q
i(sl)]

ϵ =
civ

′
(q)

civ
′′(q) q

. (32)

Denote the choice of adopter i under the counterfactual subsidy Sl by qil = qi(sl), where l
stands for linear. Denote the total cost of adopter i under the counterfactual subsidy Sl by cit =
civ(q

i
l)+ c

i
f , where t stands for total. By the FOC civ

′
(qil) = sl and by definition civ(q

i
l)+ c

i
f = cit.

These two equalities together with the ordinary differential equation (32) form an initial value
problem with solution

civ(q) + cif =
sl

qil
1
ϵ

ϵ

1 + ϵ
q1+

1
ϵ︸ ︷︷ ︸

variable cost

+ cit − qilsl
ϵ

1 + ϵ︸ ︷︷ ︸
fixed cost

. (33)

The result follows by defining

θi =
sl

qil
1
ϵ

ϵ

1 + ϵ
, (34)

cif = cit − qilsl
ϵ

1 + ϵ
. (35)

Assumption B1 ⇒ Assumption 1:
By the FOC

qi(s) =

(
ϵ

(1 + ϵ)θi

)ϵ
sϵ. (36)

Using the definition of ϵi(s), it follows that ϵi(s) = ϵ.
qed.

B.2.2 Proof of Corollary B1

The cost function is equal to

civ(q) = θiq1+
1
ϵ .
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By the first order condition and the definition of qil

θi =
sl

qil
1
ϵ

ϵ

1 + ϵ
.

By the definition of cit and plugging qil and θi into the cost function

cif = cit − qilsl
ϵ

1 + ϵ
.

Changing variable in Equation (24) gives the result.
qed.

B.2.3 Proof of Lemma B2

Assumption 2 ⇔ Assumption B2:
By Assumption 2, for all S(q) such that Sl(q) ≥ S(q) ≥ Sk(q), and for all q in [q, q] ,

η =
ft|ql(S(q)|q)S(q)
Ft|ql(S(q)|q)

. (37)

It is equivalent to the following statement: For all ct such that ct is in [Sk(ql), Sl(ql)]

η =
ft|ql(ct|ql)ct
Ft|ql(ct|ql)

. (38)

The solution of this partial differential equation is

Ft|ql(ct|ql) =
(

ct
ct(ql)

)η
, (39)

where ct(ql) is a normalisation term.
qed.

B.3 Proof of Proposition 1

The variable ql is the choice of an adopter under the linear subsidy. To illustrate the dependence
of capacity on the subsidy scheme, in this section, denote qk the choice of the same adopter
under the kinked subsidy. Note that the rest of the paper simply denotes it by q to avoid an
overloaded notation.

Lemma B3. The choice under the kinked subsidy qk as a function of the choice under the linear

subsidy ql is
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qk(ql) = ql, for ql < qK ; (40)

qk(ql) = qK , for ql ∈ [qK , qKρ−ϵ]; (41)

qk(ql) = qlρ
ϵ, for ql > qKρ−ϵ. (42)

PROOF:
By Equation (27) and the first order condition of the adopters’ maximisation problem

q(s, ql) = ql

(
s

sl

)ϵ
. (43)

Below the kink point s = sl. Therefore,

qk(ql) = ql, for ql < qK . (44)

Adopters well above the kink point produce the same as under a linear subsidy with the
marginal rate s = slρ. It follows that

qk(ql) = qlρ
ϵ, for ql ≫ qK . (45)

Generally, adopters above the kink point reduce their production and produce qlρϵ. However,
for adopters in the interval ql ∈ (qK , qKρ−ϵ) it would mean to reduce the production below qK .
As soon as they reduce production to qK , they are not affected by the lower marginal price any
more, and therefore it cannot be optimal to reduce below qK . It follows that all adopters in this
interval chose to produce exactly qK ; they "bunch" at qK .
qed.

Denote the difference in cost of an adopter ql between the kinked and the linear subsidy by
∆c(ql) = c(qk(ql), ql, ct)− ct.

Lemma B4. The difference in cost ∆c(ql) of adopter ql between the kinked and linear subsidy

is

∆c(ql) = 0, for ql < qK ; (46)

∆c(ql) =
1

1 + ϵ−1

sl

q
1/ϵ
l

((qK)1+ϵ
−1 − q1+ϵ

−1

l ), for ql ∈ [qK , qKρ−ϵ]; (47)

∆c(ql) =
1

1 + ϵ−1
slql(ρ

ϵ+1 − 1), for ql > qKρ−ϵ. (48)

PROOF:
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By Corollary B1

c(q, ql, ct) = ct +

[
q1+1/ϵ

q
1/ϵ
l

− ql

]
sl

1 + 1/ϵ
. (49)

By definition and Lemma B3

∆c(ql) = c(qk(ql), ql, ct)− ct = c(ql, ql, ct)− ct for ql < qK ; (50)

= c(qK , ql, ct)− ct for ql ∈ [qK , qKρ−ϵ]; (51)

= c(qlρ
ϵ, ql, ct)− ct for ql > qKρ−ϵ. (52)

Use Equation (49) in Equation (50)-(52) to get Equation (46)-(48).
qed.

Define the function R(ql) as the net subsidy of adopter ql under the kinked scheme as a
fraction of the subsidy under the linear scheme:

R(ql) =
Sk(qk(ql))−∆c(ql)

Sl(ql)
. (53)

Lemma B5. The function R(ql) is:

R(ql) = 1, for ql < qK ; (54)

R(ql) =
qK

ql
+

ϵ

1 + ϵ

(
1−

(
qK

ql

) 1+ϵ
ϵ

)
, for ql ∈ [qK , qKρ−ϵ]; (55)

R(ql) = (1− ρ)
qK

ql
+

ϵ

1 + ϵ

(
1 +

ρϵ+1

ϵ

)
, for ql > qKρ−ϵ. (56)

PROOF:
By definition

R(ql) =
Sk(qk(ql))−∆c(ql)

Sl(ql)
, (57)

which together with Lemma B3 and B4 gives Equation (54)-(56).
qed.

Lemma B6. The mass of participating adopters under the kinked subsidy as a function of ql is

R(ql)
ηfl(ql), (58)
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where fl is the measure of capacity under the linear subsidy.

PROOF:
An adopter participates if its cost is smaller than the received subsidy: c(qk(ql), ql, ct) ≤
Sk(qk(ql)). Using definitions, this is equivalent to ct ≤ Sk(qk(ql))−∆c(ql). Given a certain ql,
the mass of adopters participating as a function of ql is

Ft|ql(Sk(qk(ql))−∆c(ql)|ql)
Ft|ql(Sl(ql)|ql)

fl(ql), (59)

where fl is the hypothetical measure of ql under the linear subsidy. By Assumption 2

Ft|ql(ct|ql) =
(

ct
ct(ql)

)η
, for all ct in [Sk(ql), Sl(ql)]. (60)

Note that by revealed preference Sk(ql) ≤ Sk(qk(ql))−∆c(ql). It follows that

Ft|ql(Sk(qk(ql))−∆c(ql)|ql)
Ft|ql(Sl(ql)|ql)

fl(ql) =

(
Sk(qk(ql))−∆c(ql)

Sl(ql)

)η
fl(ql), (61)

which, together with the definition of R, gives the result.
qed.

PROOF of Proposition 1:
Change variable in Equation (58) using Lemma B3 to derive Equation (5) and (7). Integrate
Equation (58) over

[
qK , qKρ−ϵ

]
to derive Equation (6). Remember, to avoid an overloaded

notation, the rest of the paper denotes the choice under the kinked subsidy simply by q.
qed.

B.4 Proof of Proposition 2

By Assumption 3

gf (fl(q)) =
∞∑
p=0

γp
1

p!

(
gq(q)− gq(q

K)
)p
, (62)

where gf is the transformation of fl and gq is the transformation of q. Assume the transforma-
tion is known. Section D.8 discuss the choice of transformation. The measure fl is identified
because all γp are identified from the left limit

γp = lim
q−→qK

dpgf (fk(q))
d(gq(q)− gq(qK))p

, for all p. (63)

The elasticities ϵ and η are jointly identified as the simultaneous solution to Equation (6)

51



and (7). By Condition 1, the solution is locally unique. Because Condition 1 holds generically,
ϵ, η, and fl are generically identified. The response margins ϵ and η are locally identified. I
verify the uniqueness of the solution to Equations (5) to (7) ex-post estimation, which provides
strong evidence for global identification. It is important that the interval [q, q] is large enough.
It needs to hold that the lower bound q < qK and the upper bound q > qKρ−ϵ. The upper
bound depends on the unknown parameter. For most applications, it is safe to assume that ϵ is
bounded, i.e., the elasticity ϵ is an element of a bounded interval [0, ϵ). It follows that it suffices
to assume q = qKρ−ϵ. For unbounded ϵ, it is necessary to assume q = ∞.
qed.

B.5 Identification in a discontinuous (i.e., notched) incentive scheme

This section generalizes the result in Proposition 2 for the case when there is a discontinuity
(i.e., a notch) in the incentive scheme.

Consider the discontinuous subsidy schedule Sd(.):

Sd(q) = slq, for q ≤ qD; (64)

Sd(q) = slq −∆S sl, for q > qD; (65)

where qD denotes the notch point and ∆S denotes the size of the notch relative to sl.

Proposition B1 (The observed density in case of a notch). Close to the notch point, the ob-

servable measure fd(.) under the notched subsidy Sd(.) is a function of three unknowns: the

intensive margin elasticity ϵ, the participation margin elasticity η, and the counterfactual mea-

sure fl(.). At the notch point qD, there is a mass point with bunching mass B. Four parts of the

observable measure fd(.) depend distinctly on the three unknowns:

fd(q) = fl(q), for q < qD; (66)

B =

∫ qB(ϵ,∆S)

qD

R(ql, ϵ)
ηfl(ql)dql, for q = qD; (67)

fd(q) = 0, for qD < q < qB; (68)

fd(q) =

(
1− ∆S

q

)η
fl(q), for q > qB. (69)

Note: The variable qD denotes the notch point; ∆S denotes the size of the notch relative to sl; R(., ϵ)

defined in Equation (55) is the net subsidy payment to an adopter under the notched scheme relative to

the subsidy payment under the counterfactual scheme. The variable qB(ϵ,∆S) defined in Equation (73)

defines the quantity-choice of the marginal buncher. It is a function of the intensive margin elasticity ϵ

and the size of the notch ∆S.
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PROOF:
Use the FOC of adopters to derive that

q = ql, for ql < qD; (70)

q = qD, for qD ≤ ql ≤ qB; (71)

q = ql, for ql > qB. (72)

The variable qB(ϵ,∆S) denotes the quantity-choice of the marginal buncher. It is implicitly
defined by the indifference condition of that agent:

qD − ϵ

1 + ϵ

1

q
1
ϵ
B

qD
1+ 1

ϵ = qB
1

1 + ϵ
−∆S (73)

The rest of the proof follows the steps in Section B.3.
qed.

Proposition B2 (Identification in case of a notch). The observable measure fd(.) identifies the

counterfactual measure fl(.), the intensive margin elasticity ϵ, and the participation margin

elasticity η.

PROOF:
As in Section B.4. Three parts of the measure (66), (67), and (69) are sufficient to identify the
three unknowns.
qed.

C Details estimation

C.1 The estimation of ̂ln f(qj)

As a first step, construct the empirical histogram f̂(qj) by choosing bins and counting the
number of adopters in each bin. Normalisation, by the bin size and the total number of adopters,
gives the observed density f̂(qj) at point qj , where the index j in {−N−, ...,−1, 0, 1, ..., N+}
is the index of the bin and N = N− +N+ is the total number of bins.

The empirical model (9) in Section 4 uses the logarithm of f̂(qj) as the dependent variable.
Using the logarithm does not affect consistency (see Appendix C.1.1); however, it introduces
a small sample bias. Appendix C.1.2 applies bias-correction techniques to reduce the bias’s
impact. The variable ̂ln f(qj) denotes the bias-corrected dependent variable. The logarithmic
model (9) has several advantages over the additive model f̂(qj) = fk(qj | η, γ, ϵ) + uj. First,
the observed density is positive by definition in the logarithmic model. The additive model’s
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density is negative for large negative uj . Therefore, only the logarithmic model is logically
consistent. Second, the noise term uj may capture additional random disturbances besides
sampling noise. I.e. for some random reasons, specific capacities may be more or less frequent
in the data than predicted by fk. It is more natural to model these additional disturbances as
proportional to fk.

The logarithm makes it necessary to have at least one observation in each bin because the
logarithm of zero is not defined. Additionally, even after bias correction, the small sample bias
caused by the logarithm decreases in each bin’s number of observations. Therefore, it is prefer-
able to avoid bins with a small number of observations. The observed density is decreasing in
capacity q. As a consequence, the expected number of observations in an interval decreases
in capacity. To counteract this effect, use bins with a bin size that increases in capacity. Such
a binning procedure does not affect consistency because f̂(qj) equals the number of observa-
tions in bin j normalised by the bin size and the total number of observations. An additional
advantage of this binning procedure is that it equalises the variance of the dependent variable
̂ln f(qj). Therefore, it avoids the need for a weighting matrix in the estimation. Concretely, use

the function

qj = qK(1− jc0(n))
− 1

ω , (74)

where qj is the right border of a bin and c0(n) is a constant that goes to zero as n goes to
infinity. This binning function is advantageous for the following reason. The variance of the
log-histogram depends on the number of observations in each bin. Approximately the log-
histogram has constant variance if the number of observations is approximately constant. The
distribution of observations is close to a Pareto-distribution. It follows that the expected number
of observations in a bin is approximately equal to

ϕ0

(
qj
qK

)−ϕ1
− ϕ0

(
qj+1

qK

)−ϕ1
, (75)

where ϕ0 and ϕ1 are the parameters of the Pareto-distribution. If ω is equal to ϕ1, the above
expression is equal to ϕ0c0(n), which is constant.

C.1.1 Consistency of ln f̂(q)

Denote by n the sample size and denote byQι a single observation. The variable qj is the centre
of a bin. Denote by N̂j the number of observations in a bin. The variable hj is the bin size. It
is a function of n and goes to zero as n goes to infinity. The constructed dependent variable is

f̂(qj) =
N̂j

nhj
. (76)
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Lemma C1. f̂(qj) converges to fk(qj) in probability, which is also true in logarithms:

f̂(qj)
p→ fk(qj); (77)

ln f̂(qj)
p→ ln fk(qj). (78)

The corresponding result holds for B̂.

PROOF:
Write f̂(qj) as

f̂(qj) =
1

n

n∑
ι=1

1[qj − hj/2 ≤ Qι < qj + hj/2]

hj
. (79)

Using the law of large numbers, it follows that

1

n

n∑
ι=1

1[qj − hj/2 ≤ Qι < qj + hj/2]

hj

p→ 1

hj

∫ qj+hj/2

qj−hj/2
fk(q)dq. (80)

As hj goes to zero when n goes to infinity

1

hj

∫ qj−hj/2

qj+hj/2

fk(q)dq = fk(qj). (81)

By the continuous mapping theorem, it follows that

ln f̂(qj)
p→ ln fk(qj). (82)

The same arguments hold for B̂.
qed.

C.1.2 Bias and bias-correction of ln f̂(qj)

While ln f̂(qj) converges to ln fk(qj), E
[
ln f̂(qj)

]
is not equal to ln fk(qj). Therefore, using

the logarithm introduces a small-sample bias. To counteract this effect, model (9) in Section 4
uses the bias-corrected dependent variable

̂ln f(qj) = ln f̂(qj) +
1

2N̂j

, (83)

where N̂j denotes the number of observations in a bin. Note that ̂ln f(qj) denotes the bias-
corrected dependent variable, while ln f̂(qj) denotes the logarithm of the histogram. Using
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(83) reduces bias since

E
[
̂ln f(qj)

]
= ln fk(qj) +O

(
1

N2
j

)
, (84)

where Nj is the expected value of N̂j .
PROOF:

Taylor approximate all functions of random variables in Equation (83) around their expected
values and use fk(qj) n hj = Nj:

̂ln f(qj) ≈ ln fk(qj) +
1

Nj

(N̂j −Nj)−
1

2N2
j

(N̂j −Nj)
2 +

1

3N3
j

(N̂j −Nj)
3+

+
1

2Nj

− 1

2N2
j

(N̂j −Nj) +
1

2N3
j

(N̂j −Nj)
2. (85)

Take the expectation on both sides above. Note that, because N̂j follows a Binomial distribu-
tion, E(N̂j −Nj) = 0, E(N̂j −Nj)

2 = Nj , and E(N̂j −Nj)
3 = Nj .

qed.

C.2 Asymptotic normality of ϵ̂ and η̂

The histogram is asymptotically normal:

lim
n→∞

√
nhj(n)

(
f̂(qj)− fk(qj)

)
∼ N(0, fk(qj)). (86)

By the delta method, the log-histogram is asymptotically normal:

lim
n→∞

√
nhj(n)

(
̂ln f(qj)− ln fk(qj)

)
∼ N(0,

1

fk(qj)
). (87)

The binning function keeps the variance of the log-histogram constant. Approximately hj ≈
h0(n)

1
fk(qj)

, and h0(n) decreases slowly with sample size. It follows that asymptotically

lim
n→∞

√
nh0(n)

(
̂ln f(qj)− ln fk(qj)

)
∼ N(0, 1). (88)

Write

̂ln f(qj) = ln fk(qj|ϵ, η, fl) + uj (89)

where

uj ∼ N(0,
1

nh0(n)
). (90)
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The errors uj are approximately uncorrelated for n large enough. Chen (2007) shows that the
nonlinear least square estimate of Equation (89), where the nonparametric function ln fk(qj|ϵ, η, fl)
is replaced by ln fk(qj|ϵ, η, γP ) and P goes slowly to infinity as sample size goes to infinity,
gives consistent and asymptotically normal estimates ϵ̂ and η̂. This result does also hold when
ϵ̂ and η̂ are constraint to positive values using an exponential transformation, i.e., ϵ̂ = exp(β̂ϵ)

and η̂ = exp(β̂η). I use the auxiliary parameters β̂ϵ and β̂η to minimise the sum of squares.
By the same argument as above, they are asymptotically normal. It implies that ϵ̂ and η̂ are
asymptotically normal.

C.3 Estimation of the mean squared error

The bias and the variance of the estimates depend on the order of the polynomial P . It is
standard in nonparametric estimations to choose a specification that minimises an estimate of
the mean squared error. As the estimate of the participation margin η̂ is more sensitive to the
specification than the intensive margin ϵ̂, I use an estimate of its mean squared error to choose
the specification. The estimate η̂(P, n) is a function of the specification parameter and the
sample size n. The mean squared error is defined as

MSE = E
[
(η̂(P, n)− η)2

]
, (91)

where η is the true value of the parameter. A standard bias-variance decomposition renders

MSE = E
[
(η̂(P, n)− E [η̂(P, n)])2

]︸ ︷︷ ︸
variance

+(E [η̂(P, n)]− η)2︸ ︷︷ ︸
bias2

. (92)

Define

η̃(P ) := lim
n→∞

η̂(P, n), (93)

where P is kept constant.21 Intuitively, η̃(P ) is the "true" value of the parameter under the
parametric specification P . Therefore, η̃(P )− η is the estimator’s specification bias. Note that
in large enough samples E [η̂(P, n)] ≈ η̃(z). Therefore, the mean squared error is the sum of
the "parametric variance" and the estimator’s squared specification bias. All parts of the MSE
are unknown and need to be estimated. The nonparametric bootstrap provides a consistent
estimate for the variance.

Estimating the bias is more challenging since it depends on η̃(P ) and the true value η. A
consistent estimate of η̃(P ) is the estimate η̂(P, n) itself. However, a consistent estimate of
η, which converges fast, is challenging to find. Therefore, I estimate the bias out of sample
on untreated data. This approach has the advantage that, out of sample, the true value of η is

21Note that if P changes accordingly with sample size, η̃(P ) converges to the true value η. However, that is
not true if the specification is kept constant.
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known. It is equal to zero because there is no treatment. The estimate of the bias is

̂bias(η̂(P, n)) = η̂os(P, n)− ηos = η̂os(P, n), (94)

where η̂os is the estimate of the participation margin out of sample. This estimate of the bias has
the advantage that it converges at a parametric rate. This approach relies on the assumption that
absent the treatment, the treated data is similar to the out-of-sample data. Intuitively, any effect
estimated on the untreated data is a bias due to the specification. The next section discusses the
derivation of the estimate of the bias in detail.

C.3.1 The estimator of the bias of η̂

Denote by (ϵ̃, η̃, γ̃P ) the estimate of (ϵ, η, γP ) under specification P and when sample sizes
goes to infinity, e.g., η̃ := limn→∞ η̂(P, n), where P is kept constant. The parameter vector
γP denotes (γ0, ..., γP ). The parameter γ̃P is identified from the derivatives of the observed
distribution to the left of the kink point. It can be estimated without bias because the bandwidth
[q, q] converges to qK as n goes to infinity. Therefore, assume γ̃P = γP . The parameter ϵ is
much less sensitive to the specification than the parameter η. Assume that P is large enough
such that ϵ̃ ≈ ϵ. The parameter η̃ is estimated from points just to the right of the kink point.
Because the bandwidth [q, q] converges to qK as n goes to infinity,

lim
q↓qK

ln fk(q|ϵ, η, γ) = lim
q↓qK

ln fk(q|ϵ̃, η̃, γ̃P ) (95)

Therefore, using Equation (7) renders

∞∑
p=0

γp
1

p!

(
ln

(
qKρ−ϵ

qK

))p
+ η lnR(qKρ−ϵ, ϵ) + ln

(
ρ−ϵ
)

(96)

=
P∑
p=0

γ̃p
1

p!

(
ln

(
qKρ−ϵ̃

qK

))p
+ η̃ lnR(qKρ−ϵ̃, ϵ̃) + ln

(
ρ−ϵ̃
)
. (97)

Use γP = γ̃P , ϵ = ϵ̃, and rearrange to derive that

η̃ − η =

∑∞
p=P γp

1
p!
(ln (ρ−ϵ))

p

lnR(qKρ−ϵ, ϵ)
(98)

The bias in η depends only on ϵ and on the un-estimated rest of the parameter γ, i.e., (γP+1, γP+2, ...).
Estimating the bias on out-of-sample data is possible if the counterfactual distributions in

the treated and untreated data are similar. More specifically, assume that there exists a certain
order of the series expansion of the two distributions, such that all coefficients above that order
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are equal. Mathematically,

ln(fxl (q)) =
∞∑
p=0

γxp
1

p!

(
ln

(
q

qK

))p
, (99)

where x is either is (in sample) or os (out of sample) and denotes the respective counterfactual
measure. Assume there exists an order j∗ such that for all j ≥ j∗ the coefficients are equal:
i.e., γisj = γosj . Furthermore, assume that P ≥ j∗.

Additionally, Equation (98) shows that the bias depends on the intensive margin response ϵ.
To consider this dependence, first estimate ϵ̃ on the treated data using an auxiliary specification.
Second, simulate the intensive margin response in the untreated data using the auxiliary esti-
mate ϵ̃. Third, estimate ηos(P ) in the untreated data. I do not constrain ηos(P ) to positive values
and I use the inequality constraint ϵos(P ) ≥ 0. A discussion of the choice of the out-of-sample
data and the estimates of the MSE are in Section C.4.

C.4 The selection of the optimal specification

The counterfactual analysis in Section 6 uses the estimates from the pooled sample from 2004
to 2008. Therefore, this section chooses the optimal specification for this sample. For sim-
plicity, I use this specification also for the yearly estimates in Table 1. The estimation of the
variance uses the nonparametric bootstrap with 200 repetitions at 30kWp and 1000 repetitions
at 100kWp and 250 kWp.

C.4.1 The untreated data for estimating the bias

As discussed in Section C.3, for each kink point, it is necessary to choose a range of untreated
data to estimate the bias. A natural choice is observations in the years 2000 to 2003. In these
years, the subsidy was linear. Therefore, the counterfactual distribution is directly observable.
I use it to estimate the bias at 30kWp.

For the kink point at 100 kWp, the pre-treatment data is not a satisfactory choice to estimate
the bias for two reasons. First, the number of observations around 100 kWp is very low these
years. Second, in 2000-2003, the data do not specify whether a solar panel was installed on
a rooftop or the ground. From 2004 onwards, the data specifies where a panel is installed.
This paper only considers rooftop panels. Overall, ground panels are only a very small share
of installations. Also, the subsidy for ground panels is linear in all years. After 2004 and
close to capacity 30kWp, only very few panels are ground panels. Therefore, the fact that
the sample from 2000-2003 contains ground panels does not pose a concern for using these
years to estimate the bias at 30 kWp. However, this is not true for capacities close to 100 kWp.
There is a significant number of ground panel installations exactly at 100 kWp in the years after
2004. For these reasons, I cannot use observations around 100 kWp in the years 2000-2003 to
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estimate the bias at 100 kWp. To be conservative, I remove the observations at and around
100kWp when using the data to estimate the bias of the parameter at 30 kWp.

Therefore, to estimate the bias at 100 kWp, I use observations around a point similar to
100 kWp in 2004-2008. On the one hand, for the counterfactual distribution to be similar, the
point should be close to 100 kWp. On the other hand, it should be far enough from 100 not to
include observations affected by the kink. I choose the point 250 kWp because it satisfies these
requirements. Like the point 100 kWp, the point 250 kWp is a focal point (i.e., it is a quarter
of 1,000 kWp).

The out-of-sample data needs to be similar to the treated data in the sense discussed in
Section C.3. Section D.7 checks the similarity of the treated and untreated data for the estimates
at 30 and 100 kWp. Section C.4.3 reports the estimates of the mean squared error.

C.4.2 The parameters of the binning function

As discussed in Section C.2, the binning function in Equation (74) should guarantee a constant
variance of the log-histogram and sufficiently many observations in each bin. To select its
parameters, I pre-select initial maximal bandwidths. For the estimation at 30 kWp, I use a
maximal bandwidth of [9.5, 95]. I use this interval because it is symmetric around 30 on the
logarithmic scale, and the upper limit is such that the sample does not contain observations
from the second kink point at 100.

For the estimation at 100 kWp, I use the interval [42, 1600]. I use this interval for the
following reasons. The proportional interval around 250 kWp, which I use to estimate the bias,
is [105, 4000].22 The lower limit for the interval around 250 is 105 - and therefore, in proportion,
42 around 100 - to keep a distance from the next kink point at 100. The upper limit is 4,000 -
and therefore, in proportion, 1,600 - because there are only very few observations above 4,000
kWp. The interval is asymmetric to increase the sample size.

In the next step, I choose the size of the bin at the kink point h0 and the scaling parameter
ω. I choose the two parameters such that there are at least four observations in each bin, and
the variance of the log-histogram in an auxiliary estimation is approximately constant. By
Equation (84), four observations guarantee that the bias introduced by the logarithm is of the
order 1

16
. The procedure gives the following specification:

2242 250
100 = 105 and 1600 250

100 = 4000.
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Table C1: Selected bin size h0 and scaling parameter ω.

Years Interval Bin Size Scaling Parameter

2004-08 pooled [9.5, 95] 0.18 -0.35
2004-08 pooled [42, 1600] 1.7 1.2
2004-08 pooled [105, 4000] 10 1.5
2000-03 pooled [9.5, 95] 1.5 0.6
2004-11 yearly [9.5, 95] 0.8 0.1

Note: The table shows the selected bin size h0 and scale parameter ω of the binning function

in Equation (74). The parameters guarantee a minimum of 4 observations in each bin and an

approximately constant variance.

C.4.3 Estimates of the mean squared error

As discussed above, this section estimates the mean squared error using the variance estimate
from the treated sample and the bias estimate from the untreated sample. To estimate the
variance, it uses the nonparametric bootstrap. Table C2 shows the estimated mean squared
error (MSE) for different bandwidths and orders P of the series at 30 kWp.

Table C2: Estimated mean squared error of η̂30

Bandwidth P=1 P=2 P=3

[16.4, 55] 2611 3960 40268
[15.0, 60] 3956 490 40129
[13.8, 65] 1779 457 1880
[12.9, 70] 764 23681 10150
[12.0, 75] 14 19428 18436

[11.2, 80] 121 15078 17047
[10.6, 85] 6 1855 4265
[10.0, 90] 74 1871 4742
[9.5, 95] 139 120 2708

Note: The table reports the estimated mean squared error (MSE) of η̂30 for different bandwidths
b and orders of the series P . The estimate is the lowest for P = 1 and b = [10.6, 85].

The optimal bandwidth for the estimation at 30 kWp is [10.6, 85]; the optimal order of the
series is P = 1.

For the kink at 100 kWp, Table C3 shows the estimated mean squared error (MSE) for
different bandwidths and orders P of the series.
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Table C3: Estimated mean squared error of η̂100

Bandwidth P=1 P=2 P=3

[67, 150] 23007 40025 40287
[50, 200] 478 24513 28034
[42, 400] 41 3159 4459
[42, 700] 701 9751 3541
[42, 1000] 700 9750 2212

[42, 1300] 369 733 9046
[42, 1600] 379 755 8990

Note: The table reports the estimated mean squared error (MSE) of η̂100 for different band-
widths b and orders of the series P . The estimate is the lowest for P = 1 and b = [42, 400].

The optimal bandwidth for the estimation at 100 kWp is [42, 400]; the optimal order of the
series is P = 1.

For both kink points, the optimal bandwidth is relatively large, and the series’ optimal
order is low. Consistent with the graphical evidence in Figure 4, this result shows that the
counterfactual distribution is very close to a Pareto distribution.

D Additional results and robustness

D.1 The estimates of the participation margin elasticity η̂

Since κ = η/S(q), it follows that κ̂30 = η̂30
30

and κ̂100 = η̂100
96.5

. The standard deviation of κ̂
follows from the delta method: SDκ = SDη/S(q).

Table D1: Estimates η̂ at various kink points

Kink Point η̂ (SD)

30 kWp 2004 96.2 (4.3)
30 kWp 2005 74.7 (3.9)
30 kWp 2006 56.4 (4.2)
30 kWp 2007 60.1 (3.5)
30 kWp 2008 52.7 (2.6)

30 kWp 2004-08 69.2 (1.7)
100 kWp 2004-08 0.0 (2.4)

Note: The table reports the estimated participation elasticity η̂ with standard errors in brackets.
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D.2 Estimation pooling observations from 2004 to 2008

The optimal specification, derived in Section C.4, for the estimation at 30 kWp is: bin-size h0 =
0.18, scaling parameter ω = −0.35, bandwidth b = [10.6, 85], bunching window [26.5, 31.75],
and series order P = 1. Figure D1 shows the histogram with the estimated model and the
counterfactual. The results are in Table 2.

Figure D1: Histogram for observations from 2004 to 2008 at 30 kWp with estimated model
and counterfactual
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Note: The x-axis shows the normalised logarithm of capacity. The y-axis shows the logarithm

of the density. The red line marks the kink point. The estimation minimises the distance between

the data in black and the model in blue.

The optimal specification, derived in Section C.4, for the estimation at 100 kWp is: bin-size
h0 = 1.7, scaling parameter ω = 1.2, bandwidth b = [42, 400], bunching window [95, 102.5],
and series order P = 1. Figure D2 shows the histogram with the estimated model and the
counterfactual. The results are in Table 2.
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Figure D2: Histogram for observations from 2004 to 2008 at 100 kWp with estimated model
and counterfactual
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Note: The x-axis shows the normalised logarithm of capacity. The y-axis shows the logarithm
of the density. The red line marks the kink point. The estimation minimises the distance between
the data in black and the model in blue.

D.3 Robustness check 100 kWp

I run the robustness check for the estimation at 100 kWp on the data around 250 kWp pool-
ing observations from 2004 to 2008. For a discussion of this choice, see Section C.4. Both
estimates are insignificant.
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Figure D3: Histogram at 250 kWp with estimated model
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Note: The figure shows the robustness check. The x-axis shows the normalised logarithm of
capacity. The y-axis shows the logarithm of the density. The red line marks the kink point. The
model in blue is equal to the counterfactual in purple. The estimates are not significant.

Table D2: Results for the untreated data at 250 kWp

Capacity ϵ̂ (SD) κ̂ (SD)

250 kWp 0.00 (1.04) 0.00 (0.18)

Note: The table shows the results of the robustness check. The standard errors are in brackets.
The estimates are not significant.

D.4 Ignoring the participation margin or the intensive margin in the es-
timation

Given a certain amount of bunching, ignoring the participation margin biases the estimate of
the intensive margin elasticity downwards. To evaluate this bias, I estimate an intensive margin
elasticity ϵ̃, ignoring the participation margin, but using the rest of the parameters from the
correct estimation (11):

ϵ̃ = argmin
ϵ

(
l̂nB − ln

∫ qH

qL

fk(q | η = 0, γ̂, ϵ) dq

)2

, (100)
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where γ̂ is the same estimate as in (11). Correspondingly, ignoring the intensive margin biases
the estimate of the participation margin elasticity. To evaluate the bias, I proceed correspond-
ingly to the above:

η̃ = argmin
η

∑
j

(
̂ln f(qj)− ln fk(qj | η, γ̂, ϵ = 0)

)2
. (101)

Table D3 summarises the results for the estimates at 30 kWp pooling 2004 to 2008. The result
shows that ignoring participation introduces a downward bias of 20% in the estimate of the
intensive margin elasticity. Ignoring the intensive margin introduces an upward bias of 5% in
the estimate of the participation margin elasticity.

Table D3: Biased estimates ignoring the other margin

Parameter Unbiased Estimate (SD) Biased Estimate (SD) Relative Difference in %

ϵ 4.37 (0.13) 3.49 (0.11) -20
η 69.24 (1.71) 72.97 (1.50) 5

Note: The table shows the unbiased estimates in the second column. The third column shows
the biased estimates ignoring the other margin. The fourth column shows the relative magni-
tude of the bias.

D.5 Rank condition and global identification

Equations (5)-(7) form a simultaneous, nonlinear system of equations. The system must not be
colinear to identify the parameters of interest. Denote the right hand side of Equation (7) as a
function f(q, ϵ, η, fl) and the bunching mass in Equation (6) as a function B(ϵ, η, fl):

f(q, ϵ, η, fl) = R(q ρ−ϵ, ϵ)ηfl(q ρ
−ϵ)ρ−ϵ, (102)

B(ϵ, η, fl) =

∫ qKρ−ϵ

qK
R(ql, ϵ)

ηfl(ql)dql. (103)

Formally, Condition 1 states that there exists a q such that

∂B(ϵ,η,fl)
∂ϵ

−∂B(ϵ,η,fl)
∂η

−
∂f(q,ϵ,η,fl)

∂ϵ

−∂f(q,ϵ,η,fl)
∂η

̸= 0. (104)

Condition 1 is a rank condition that holds generically. To see that, note that the condition does
not hold if

∂B(ϵ,η,fl)
∂ϵ

−∂B(ϵ,η,fl)
∂η

=
∂f(q,ϵ,η,fl)

∂ϵ

−∂f(q,ϵ,η,fl)
∂η

for all q. (105)
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Equation (105) implicitly defines a function f̃l. Condition 1 is violated only if fl = f̃l. Since
any particular function fl has measure zero, this is a zero probability event. However, even
if Condition 1 holds, identification could be weak if the two sides of the condition are almost
equal. I verify Condition 1 at the estimated values and find that it holds by a large amount.
Table D4 shows the result; the standard errors are in brackets:

Table D4: Rank condition evaluated at the estimated values and q = qK .

Capacity Rank Condition (SD)

30 kWp 143 (8)
100 kWp 2833 (1158)

Note: The table shows the rank condition (Condition 1) evaluated at the estimated values and
q = qK . The standard errors are in brackets. The condition holds by a large amount.

Moreover, there is an economic argument why Condition 1 holds. On the one hand, the
bunching mass B depends strongly on ϵ, as ϵ determines the mass of adopters who potentially
bunch. That is why the upper bound of the integral in Equation (6) is a function of ϵ. Addition-
ally, B depends only very weakly on η. The dependence is through the power of R, where R is
very close to one. This is because R is roughly one minus the profit loss from re-optimisation.
Due to the Envelope Theorem, the profit loss is of second order and hence very small. The
strong dependence on ϵ and the weak dependence on η imply that

∂B(ϵ,η,fl)
∂ϵ

−∂B(ϵ,η,fl)
∂η

(106)

is large. On the other hand, f mainly depends on η. To see that, consider the elasticity E of the
function fk.23 From Equation (7) it follows that:

Efk(q) = Efl(q ρ−ϵ) + η ER(q ρ−ϵ). (107)

In my application, fl is close to a Pareto distribution, and therefore, Efl is approximately con-
stant. For reasonable values of ϵ, and q close to qK , ER is approximately −(1− ρ). Therefore,
it is approximately constant as well. Denoting the right hand side of Equation (107) by Ef , it
follows that ∂Ef(q,ϵ,η,fl)

∂ϵ
is close to zero. These properties of B and Ef make it very likely that

Condition 1 holds.
I find no evidence for multiple solutions of the estimation, which is strong evidence for

global identification.

23The definition of the elasticity of a function g(q) is Eg(q) = d ln g(q)
d ln q .
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D.6 Robustness bunching interval

After the histogram’s visual inspection, I choose the two bunching intervals [26.5, 31.5] and
[95, 102.5]. The intervals are asymmetric because there is more non-sharp bunching before the
kink point than after. This section reports the robustness of the estimates to changes in the
bunching interval.

Table D5: Estimates at 30 kWp for various bunching intervals

Interval η̂ (SD) ϵ̂ (SD)

[25.50, 32.250] 70.1 (1.7) 4.18 (0.14)
[25.75, 32.125] 69.4 (1.7) 4.34 (0.14)
[26.00, 32.000] 69.4 (1.7) 4.34 (0.14)
[26.25, 31.875] 69.1 (1.7) 4.38 (0.14)
[26.50, 31.750] 69.2 (1.7) 4.37 (0.13)

[26.75, 31.625] 69.9 (1.7) 4.23 (0.12)
[27.00, 31.500] 69.2 (1.7) 4.34 (0.12)
[27.25, 31.375] 70.8 (1.6) 4.00 (0.10)
[27.50, 31.250] 71.3 (1.6) 3.89 (0.10)

Note: The table shows estimates of the two elasticities for different bunching intervals. The
estimates are robust to changes in the bunching interval.

The estimates at 30 kWp are robust to changes in the bunching interval.

Table D6: Estimates at 100 kWp for various bunching intervals

Interval η̂ (SD) ϵ̂ (SD)

[92.00, 104.00] 0.0 (1.3) 5.12 (0.99)
[93.50, 103.25] 0.0 (1.7) 5.05 (0.89)
[95.00, 102.50] 0.0 (2.4) 4.63 (0.84)
[96.50, 101.75] 0.0 (2.8) 4.51 (0.80)
[98.00, 101.00] 0.0 (2.5) 4.67 (0.68)

Note: The table shows estimates of the two elasticities for different bunching intervals. The
estimates are robust to changes in the bunching interval.

The estimates at 100 kWp are robust to changes in the bunching interval.

D.7 Robustness check out of sample data

At both kink points, the optimal order of the series is P = 1. To check if the untreated data can
be used to estimate the bias, I test if the differences in the second-order parameters γis2 − γos2 of
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the two series expansions are not significantly different from zero. The indices is and os denote
the parameter of the in-sample and out-of-sample data, respectively. I restrict the elasticities to
their value in Table 2 and use a series of order P = 2 to estimate γis2 − γos2 . Table D7 shows the
estimates.

Table D7: Estimates of γis2 − γos2 at the two kink points with standard errors in brackets.

Capacity γis2 − γos2 (SD)

30 kWp 0.13 (0.11)
100 kWp -0.03 (0.15)

Note: The table shows the difference γt2 − γnt2 at the two kink points with standard errors in
brackets. It is not significantly different from zero.

The difference is not significantly different from zero. It suggests the distributions fulfil the
requirement.

D.8 The choice of the series expansion

This section discusses the choice of the series expansion of fl(.). By Assumption 3

gf (fl(q)) =
∞∑
p=0

γp
1

p!

(
gq(q)− gq(q

K)
)p
, (108)

where gf (.) is the transformation of fl(.) and gq(.) is the transformation of q. It is efficient to
use transformations gf (.) and gq(.) such that the Series (108) converges fast. I use a logarithmic
transformation on fl(.) and q:

ln fl(q) =
∞∑
p=0

γp
1

p!

(
ln

q

qK

)p
. (109)

The logarithmic transformation of the measure and the argument is natural because both vari-
ables are defined over a positive domain.24 To use the logarithm guarantees that the measure is
non-negative and restricted to the domain of q. Additionally, the logarithmic series expansion
in Equation (109) contains the uniform distribution, the Pareto distribution, and the log-normal
distribution as special cases. As already mentioned in Section 4, these are common distribu-
tions for variables on a positive domain and Figure 4 suggests that the observed distributions

24The empirical evidence suggests the measure of adoptions is strictly positive on the domain.
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are very close to a Pareto distribution.25

This section checks the fit of the log-log transformation against a specification without
transformation and a logarithmic transformation on fl(.) only. To this end, it uses pre-treatment
and treated data, excluding observations around the kink. Formally, it regresses

gf (f̂(qj)) =
P∑
p=0

γp
1

p!

(
gq(qj)− gq(q

K)
)p

+ uj, (110)

where uj is the error term. The section runs the regression for P = 1 and P = 2, which gives
a low-order approximation of the Series (108). It considers three combinations of transforma-
tions:

1. id-id transformation: gf (.) and gq(.) are equal to the identity function (no transformation).

2. log-id transformation: gf (.) is equal to the natural logarithm and gg(.) is equal to the
identity function.

3. log-log transformation gf (.) and gq(.) are equal to the natural logarithm.

It runs the estimations on the pre-treatment data containing observations from 2000 to 2003.
It uses data in the capacity range 10.6 to 85 because it corresponds to the optimal bandwidth
selected in Section C.4. For the treated data, it excludes capacities close to the kink points.
Consistent with the optimal bandwidths selected in Section C.4, it runs the regression on the
intervals [10.6, 26.5], [35, 95], and [105, 400]. It uses R2 as a measure of fit. Tables D8-D11
summarise the results.

25fl could also be developed using a different transformation. Typically, the bunching literature does not use
a transformation and directly assumes a power series. This approach has the disadvantage that many common
distributions, such as the exponential distribution, the normal distribution, the Pareto distribution, or the log-
normal distribution, are not special cases of the specification. Polynomial densities, which would be special
cases of that expansion, are very uncommon. Additional restrictions must be implemented to ensure that the
expansion fulfils a measure’s standard properties, such as non-negativity and integrability. Alternatively, one can
use a logarithmic transformation on the measure but not the argument (log-density estimation; see Stone, 1990).
This transformation is a natural approach when the argument’s domain is the real line, which is not true in my
application. It contains the exponential distribution and the normal distribution as special cases.
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Table D8: R-squared for untreated data in the years 2000-2003 and capacity range [10.6, 85]

Order of the series P Transformation R-squared

P=1 id-id 0.48
P=1 log-id 0.79
P=1 log-log 0.85

P=2 id-id 0.66
P=2 log-id 0.85
P=2 log-log 0.85

Note: Number of bins: N=54. Number of observations: n=3447.

Table D9: R-squared for treated data in the years 2004 to 2008 and capacity range [10.6, 26.5]

Order of the series P Transformation R-squared

P=1 id-id 0.3
P=1 log-id 0.31
P=1 log-log 0.33

P=2 id-id 0.37
P=2 log-id 0.35
P=2 log-log 0.36

Note: Number of bins: N=124. Number of observations: n=48452.

Table D10: R-squared for treated data in the years 2004 to 2008 and capacity range [35, 85]

Order of the series P Transformation R-squared

P=1 id-id 0.57
P=1 log-id 0.74
P=1 log-log 0.77

P=2 id-id 0.7
P=2 log-id 0.77
P=2 log-log 0.77

Note: Number of bins: N=182. Number of observations: n=7106.
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Table D11: R-squared for treated data in the years 2004 to 2008 and capacity range [105, 400]

Order of the series P Transformation R-squared

P=1 id-id 0.21
P=1 log-id 0.22
P=1 log-log 0.23

P=2 id-id 0.23
P=2 log-id 0.23
P=2 log-log 0.23

Note: Number of bins: N=54. Number of observations: n=1073.

The log-log transformation performs particularly well. It outperforms the other transforma-
tions in most specifications and over most data ranges. Moreover, contrary to the other trans-
formations, the log-log transformation performs almost as well with P = 1 as with P = 2. It
is evidence that the series expansion converges fast in the log-log transformation.

E Details policy evaluation

E.1 Extension Assumption 5

Assumption 5 implies that ql and cf are independent. However, the assumption can be easily
extended to allow for a correlation between ql and cf . Assume cf follows a truncated normal
distribution: cf ∼ N(µf , σf , cf (ql), cf (ql)), where cf (ql), cf (ql) are the truncation bounds
which can vary with ql. Denote by Ff (.) the CDF of the normal distribution. It follows that
the CDF of cf is F (cf )

F (cf (ql))−F (cf (ql))
; hence, cf and ql can be correlated. Assume that the bounds

cf (ql), cf (ql) are large enough such that the variable profit of an agent implied by any of the
counterfactual exercises lies within the bounds. As a consequence, all results in Section 6
remain unchanged.

E.2 The calibration and estimation of the type distributions

The observed subsidy Sk(.) has two kink points: qK1 = 30 and qK2 = 100. The relative slope
change at the kink points is ρ1 = 0.95 and ρ2 = 0.99.

Sk(q) = q, for q ≤ qK1 ; (111)

Sk(q) = qK1 (1− ρ1) + qρ1, for q ∈ (qK1 , q
K
2 ]; (112)

Sk(q) = qK1 (1− ρ1) + qK2 ρ1(1− ρ2) + qρ1ρ2, for q > qK2 . (113)
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Using Assumption 4 , the choice q as a function of type ql is:

q(ql) = ql, for ql ∈ [qminl , qK1 ]; (114)

q(ql) = qK1 , for ql ∈ [qK1 , q
K
1 ρ

−ϵ
1 ]; (115)

q(ql) = qlρ
ϵ
1, for ql ∈ [qK1 ρ

−ϵ
1 , qK2 ρ

−ϵ
1 ]; (116)

q(ql) = qK2 , for ql ∈ [qK2 ρ
−ϵ
1 , qK2 (ρ1ρ2)

−ϵ]; (117)

q(ql) = ql(ρ1ρ2)
ϵ, for ql ∈ [qK2 (ρ1ρ2)

−ϵ, qmaxl ], (118)

where qminl and qmaxl denote the highest and lowest type respectively.
The semi-elasticity of participation at the observed capacity q is

ff
Ff

(Sk(q)− cv(q, ql(q))|µf , σf ) = κ(q), (119)

where ql(q) denotes the inverse of q(ql) and cv(q, ql) denotes the variable part of the cost func-
tion in Assumption 4.

Using Assumptions 4, 5, the results in Table 2, and inverting this equation at the two kink
points gives (µf , σf ) in Table E1.26 Figure 16 shows the calibrated density of fixed costs and
the implied semi-elasticities of participation at counterfactual capacities ql. Note that the two
red lines illustrate the counterfactual capacity with corresponding variable profit as under the
observed subsidy, i.e., ql solves ql − cv(ql, ql) = S(qK) − cv(q

K , ql(q
K)). Because at the first

kink point q = ql, the first red line is at qK1 = 30, while the second red line is slightly above
qK2 = 100.

As suggested by the empirical evidence, assume the distribution fl(.) of the variable cost
type ql is log-normal in its lower part and Pareto in its upper part:

fl(ql) = exp
(
γ0l + γ1l ln(ql) + γ2l ln(ql)

2
)

for ql ∈ [qminl , qlb] (120)

fl(ql) = exp (γ0u + γ1u ln(ql)) for ql ∈ (qlb, q
max
l ]. (121)

The parameters are such that fl(.) has a continuous first derivative. I use [qminl , qmaxl ] such that
q ∈ [0.5, 4000], which covers 99.9991% of observed aggregate capacity. The observed capacity
distribution fk(.) is

fk(q) = fl(ql(q))
Ff (Sk(q)− cv(q, ql(q))

Ff (ql(q)− cv(ql(q), ql(q)))

dql
dq
. (122)

I estimate the parameters γ1l and γ2l using the observed capacity range [0.5, 21] and γ1u using
the observed range [105, 400]. I follow the same estimation procedure as in Section 4. I cali-
brate γ0l so that total capacity equals the observed QT = 2.7GWp. The parameters γ0u and qlb

26The unrounded point estimate of the participation semi-elasticity at 100 kWp is 2.1× 10−7.
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are determined by the smoothness of fl(.). Table E1 summarises the parameter values:

Table E1: Parameters distribution of fixed cost and variable cost types

Parameter Value

µf 10.88
σf 1.57
γ0l 7.70
γ1l 3.12
γ2l -1.01

γ0u 17.15
γ1u -3.07
qlb 21.24

Note: The table shows the parameters of the distribution of fixed costs and of the type distribu-

tion fl(.).

E.3 The general welfare function and the optimal subsidy

Assume the utility of an adopter is equal to

u ((S(q)− cv(q, ql)− cf )1 (S(q)− cv(q, ql) ≥ cf ) + y − T (y)− cl(y, a)) , (123)

where the utility function u(.) is increasing and concave, S(.) is the subsidy function, cv(q, ql)
is the variable cost of type ql to adopt capacity q, and cf is the fixed cost. The symbol 1(.)
denotes the indicator function. Agents only adopt if they make positive profit. The first part
of the expression within the utility function is the net income from participating in the subsidy
scheme. The variable y denotes other income, such as labour income. The function T (.) is
an income tax, and cl(y, a) is the effort-cost of producing income y for an agent with ability
a. The second part of the expression within the utility function is the net labour income. The
type θ of an adopter is three dimensional: θ = (ql, cf , a) with density fθ(θ). Note that q is a
function of adopter type ql. I will not explicitly denote this dependence to avoid an overloaded
notation. The adopter type ql contains all characteristics determining the intensive margin
decision. In particular, it is determined by the characteristics of the adopter’s roof and the
adopter’s preference for using her roof. Income y is a function of ability a. Again, I will not
explicitly denote this dependence. For simplicity, I use a quasi-linear utility function. It rules
out income effects and complementaries between income and solar adoption.
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Consider the following objective function of the government:

max
S(.)

∫
G
(
(S(q)− cv(q, ql)− cf )1 (S(q)− cv(q, ql) ≥ cf )+

+ y − T (y)− cl(y, a)
)
fθ(θ)dθ + V (Q), (124)

such that∫
q 1 (S(q)− cv(q, ql) ≥ cf ) fθ(θ)dθ = Q, (125)

and∫
T (y)− S(q)1 (S(q)− cv(q, ql) ≥ cf ) fθ(θ)dθ −R = 0. (126)

The variable Q denotes the aggregate capacity; V (.) is the government’s value of aggregate ca-
pacity. The function G(.) weights agents’ utilities and represents the redistributive preferences
of the government. It is increasing and concave. Its argument is the same as the argument
of the agents’ utility function. In the special case where G(.) = u(.), the government is util-
itarian. Equation (126) is the government’s budget constraint. The variable R denotes other
government spending.

Objective (124) assumes that the government sets the subsidy S(q) independently of in-
come y. This assumption is not without loss of generality. Generally, a subsidy S(q, y) that
depends on adopted capacity and income may achieve higher social welfare than a subsidy that
only depends on capacity. However, I follow this approach for three reasons. First, I do not
observe the income of adopters. Joint information about adoption decisions q and income y is
necessary to solve for the optimal joint subsidy S(q, y). Due to this data limitation, I will fo-
cus on the optimal separable problem, where subsidy payments are only a function of capacity
q. Second, the observed subsidy is independent of income. Arguably, a subsidy that depends
on income is complicated to implement. Therefore, the government did choose a subsidy that
only depends on capacity q. Third, Problem (124) is a multidimensional screening problem.
The type parameter determining the choice of capacity q and income y is two-dimensional.
Theoretically, these problems are challenging to solve because local incentive-compatibility
constraints are generally insufficient to determine the optimal schedule (see Rochet and Chone,
1998 for a detailed discussion). Treatment of the multidimensional screening problem is an in-
teresting direction for future research beyond this paper’s scope. I do not make any assumption
on the income tax T (y) except for the requirement that the government’s budget is balanced.
In particular, the income tax may be optimal.
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E.3.1 Derivation of the optimality condition

I use a mechanism design approach to solve for the optimal subsidy. Denote by q(ql) the
capacity q produced by type ql. Define the variable profit πv(ql) of type ql as

πv(ql) = S(q(ql))− cv(q(ql), ql). (127)

The government chooses functions q(.) and πv(.) instead of choosing S(.) directly. The inter-
pretation is as follows. Imagine the government asks an agent to reveal her type ql. The agent
reports the type; the government asks the agent to produce q(ql) and pays variable profit πv(ql)
as compensation. An incentive-compatible mechanism is two functions q(.), πv(.), under which
each an agent is incentivised to report her type truthfully. Therefore, the government’s objective
is to find two such functions which give the highest payoff. Using standard mechanism design,
it follows that a mechanism is incentive compatible if and only if

π′
v(ql) = −∂cv(q(ql), ql)

∂ql
, (128)

and q(.) non-decreasing. As standard in the literature, I neglect the monotonicity constraint
on q(.). It can be verified ex-post. Equation (128) defines a function q(π′

v). Therefore, the
government’s problem reduces to choosing a function πv(.):

max
πv(.)

∫
G ((πv − cf )1 (πv ≥ cf ) + y − T (y)− cl(y, a)) fθ(θ)dθ + V (Q), (129)

s.t.∫
q 1 (πv ≥ cf ) fθ(θ)dθ = Q, (130)

and∫
T (y)− (πv + cv(q, ql))1 (πv ≥ cf ) fθ(θ)dθ −R = 0. (131)

For better readability, I suppress the arguments of the functions πv(.), π′
v(.), and q(.). I solve

Problem (129) using calculus of variation.
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E.3.2 The general optimality condition

It follows that in the optimum∫ qmax
l

ql

[ ∫ πv

−∞

(∫ ∞

0

G′(πv − cf + y − T (y)− cl(y, a))

λ
fa(a|cf , q̃l)da− 1

)
ff (cf |q̃l) dcf+

+

(
V ′(Q)

λ
q − πv − cv(q(π

′
v), ql)

)
ff (πv|ql)

]
fl(q̃l)dq̃l+

+

(
V ′(Q)

λ
− ∂cv(q, ql)

∂q

)
dq

dπ′
v

Ff (πv|ql)f(ql) = 0 (132)

and(
V ′(Q)

λ
− ∂cv(q, ql)

∂q

)
dq

dπ′
v

Ff (πv|ql)fl(ql) = 0 for ql = qminl and ql = qmaxl . (133)

The variable λ is the marginal cost of public funds. Equation (132) is a second-order differential
equation in the function πv(.) with two boundary conditions (133). The optimal rent πv(.) is
the solution to this system.

E.3.3 The Pigouvian subsidy (i.e., the Samuelson rule)

The Pigouvian subsidy is a linear subsidy where the marginal subsidy rate is equal to the
marginal social benefit of the public good, i.e., S ′(q) = V ′(Q)

λ
for all q. This solution is also

known as the Samuelson rule (Samuelson, 1954). To implement the Pigouvian subsidy, know-
ing how adopters react to the subsidy is not necessary. It suffices to know V ′(Q). However,
the Pigouvian subsidy is only optimal if the government is indifferent in distributing rents to
adopters. Even if an optimal income tax is available, Kaplow (1996) and Kaplow (2012) show
that the Pigouvian subsidy is optimal only if preferences are separable, and the only relevant
heterogeneity is earnings ability. Intuitively, in this case, the income tax is sufficient to redis-
tribute optimally, and the choice of the public good is, therefore, not distorted. Kaplow (2008)
shows that this result breaks down when agents’ heterogeneity is more than one-dimensional.
Importantly, in my application, the heterogeneity determining the capacity choices of adopters
and income from other sources is two-dimensional. Therefore, the Pigouvian subsidy is not
optimal even if income is taxed optimally. Intuitively, if the heterogeneity determining income
and capacity choices correlate positively, agents in the upper part of the income distribution
profit more from the subsidy programme. Because they have a low marginal social welfare
weight, limiting their rents through a nonlinear subsidy is optimal.

To see this point formally, note that the Pigouvian subsidy is optimal only if∫ πv

−∞

(∫ ∞

0

G′(πv − cf + y − T (y)− cl(y, a))

λ
fa(a|cf , q̃l)da− 1

)
ff (cf |q̃l) dcf = 0, (134)

for all capacity types ql. The see this result, guess and verify the solution, using the first order
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condition of adopters ∂cv(q,ql)
∂q

= V ′(Q)
λ

. However, in general, Condition (134) does not hold.
The condition particularly depends on the marginal social weight of adopters G′(.) relative
to the marginal cost of public funds λ. If the possibility to adopt solar panels is positively
correlated with ability a, and the tax T (y) does not fully equalise marginal social welfare
weights, then Condition (134) does not hold. The term to the left of the condition is smaller
than zero in this case. Importantly, in general, even an optimal income tax does not equalise
marginal social welfare weights. Consider the optimality condition for the optimal income tax.
Following Saez (2001), I solve for the optimal tax using the variational approach:∫ ∞

y

(
1−

∫
G′ ((πv − cf )1 (πv ≥ cf ) + ỹ − T (ỹ)− cl(ỹ, a

−1(ỹ)))

λ
×

× f(cf , ql|ỹ)dcfdql
)
fy(ỹ)dỹ + T ′(y)

dy

dT ′ f(y) = 0 (135)

As long as there are behavioural responses to taxation, the government does not equalise
marginal welfare weights G′(.).

E.3.4 The relation to the simple objective (14)

Consider redistributive preferences G(.) such that the marginal welfare weight for income
above a certain level y is zero. Additionally, assume only agents with income higher than y
can adopt solar panels. For instance, this could be the case since only agents with income
higher than y own buildings. It follows that Condition (134) is equal to −1. Importantly, only
high-income agents adopt solar panels because of the correlation of earning ability a and capac-
ity type ql, not because of an income effect. There are no income effects since I use quasi-linear
preferences. These preferences and correlation patterns, together with the assumption that the
government values aggregate capacity only up to the capacity goal QT , reduce Problem (124)
to Problem (14). For example, it is the case if the redistributive preferences are Rawlsian, and
households with the lowest incomes cannot adopt solar panels.

E.4 Counterfactual experiments

E.4.1 The optimal linear subsidy

A first experiment solves for the optimal linear subsidy. The exercise solves for a linear subsidy
rate ρl that incentivises the adoption of the same aggregate capacity as the observed kinked
subsidy.27 By the first order condition of the agents’ problem, the choice q of type ql under
subsidy ρl is q(ql, ρl) = qlρ

ϵ
l .Denote by cv(q, ql) the variable part of the cost function cv(q, ql) =

c(q, ql, cf ) − cf . Denote the variable profit of type ql under subsidy rate ρl as πv(ql, ρl) =

ρlq(ql, ρl) − cv(q(ql, ρl), ql). Given the estimate of fl(ql), the unconditional type distribution

27Note that sl is normalised to one; ρl’s interpretation is relative to sl.
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fu(ql) is

fu(ql) =
fl(ql)

Ff (ql − cv(ql, ql))
. (136)

It follows that ρl is the solution to∫
q(ql, ρl)Ff (πv(ql, ρl))fu(ql)dql = QT , (137)

where QT is the observed aggregate capacity. I find that ρl = 0.998. The public cost of the
linear policy is QTρl. The policy is 0.14 per cent more expensive than the actual subsidy.

E.4.2 The optimal nonlinear subsidies

The second counterfactual experiment solves for the optimal nonlinear policy using mechanism
design. The analysis follows the screening problem in Rochet and Stole (2002). Rewrite the
government’s objective (14) as a Lagrangian and a mechanism design problem. The govern-
ment maximises

max
ψ,q(.),πv(.)

∫
(ψq(ql)− πv(ql)− cv(q(ql), ql))Ff (πv(ql))fu(ql)dql − ψQT , (138)

such that for all ql

π′
v(ql) = −∂cv(q(ql), ql)

∂ql
and q(.) is not decreasing. (139)

(139) is the incentive-compatibility constraint. The variable ψ denotes the Lagrange multiplier.
Substitute the subsidy paid to type ql using the definition: S(q(ql)) = πv(ql) + cv(q(ql), ql).
Problem (138) is equivalent to Problem (14). The government chooses functions q(ql) and
πv(ql) instead of a subsidy S(q). The interpretation is as follows. Imagine the government
asks an agent to reveal her type ql. The agent reports the type; the government asks the agent
to produce q(ql) and pays variable profit πv(ql) as compensation. An incentive-compatible
mechanism is two functions q(.), πv(.), under which each agent is incentivised to report her
type truthfully. Therefore, the government’s objective is to find two such functions which
maximise its objective. The incentive-compatibility constraint (139) follows from the standard
revealed preference argument in mechanism design. As standard in the literature, neglect the
monotonicity constraint on q(.) and verify it ex-post. Define as

L(πv, π
′
v, ql) =

(
qlψ(π

′
v(1 + ϵ))

ϵ
1+ϵ − πv − qlϵπ

′
v

)
Ff (πv)fu(ql), (140)

which is the integrand of Problem (138). Use Equation (139) to substitute for the function q(.).
The problem simplifies to finding an optimal function πv(.). Suppress the arguments of the
functions πv(.), π′

v(.) for better readability. By calculus of variation, it follows that the optimal
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function πv satisfies

∂L(πv, π
′
v, ql)

∂πv
=

d

dql

∂L(πv, π
′
v, ql)

∂π′
v

for all ql, (141)

and

∂L(πv, π
′
v, ql)

∂π′
v

= 0 for ql = qminl and ql = qmaxl . (142)

The values qminl and qmaxl denote the boundaries of the type distribution fl(.). For each ψ, the
Equations (141) and (142) define a nonlinear second-order differential equation with boundary
values. Fix ψ, solve the differential equation numerically, and evaluate the capacity constraint
Q = QT . Iterate over ψ until the constraint holds. Using the first order condition and the
solution π′

v(ql), solve for the optimal nonlinear marginal subsidy S ′(q(ql)) in Figure 18. Using
the definition of the variable profit, it follows that the total public costs are∫

(πv(ql) + cv(q(ql), ql))Ff (πv(ql))fu(ql)dql. (143)

The optimal subsidy is 0.45 per cent less costly than the linear benchmark.
The third counterfactual experiment assumes there is no participation margin response. It

solves the problem using the same methodology as above, but assuming Ff (πv) = 1 for all πv.
The fourth counterfactual experiment implements the optimal intensive schedule from the third
experiment but lets agents react at both margins. Both experiments keep aggregate capacity
constant by adjusting the Lagrange multiplier.

E.4.3 Comparison to Rochet and Stole (2002)

Figure E1 compares the optimal allocation to the bounds derived in Proposition 4 in Rochet and
Stole (2002). They show that when the type distribution fl(.) is uniform, the optimal allocation
q(ql) is bounded from above by the undistorted allocation qfb(ql) = ψϵql and from below by
the optimal intensive allocation qit(ql) derived in the third counterfactual experiment. Note
that Rochet and Stole (2002) also assume the distribution of fixed costs is log-concave, which
is the case in my application. Contrary to the third counterfactual experiment and consistent
with the result in Rochet and Stole (2002), I do not adjust the Lagrange multiplier to fulfil the
capacity constraint, but I use the multiplier from the second counterfactual experiment. The
figure shows that there exist regions where the optimal allocation lies outside the bounds. It
shows that the result in Rochet and Stole (2002) is not robust to a more general form of the type
distribution fl(.). E.g., the type distribution in my application is log-normal at the bottom and
Pareto at the top.
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Figure E1: The optimal allocation q(ql) and the bounds derived by Rochet and Stole (2002)
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Note: The figure shows the optimal allocation and the bounds derived by Rochet and Stole
(2002). In some regions, the optimal allocation lies outside the bounds.

E.4.4 Comparison to Germeshausen (2018)

Germeshausen (2018) uses a difference-in-difference approach to estimate the treatment effect
of introducing a new kink of 5% at 10 kWp in Germany in 2012. Methodologically, Germe-
shausen (2018) follows Best and Kleven (2017) and controls for self-selection due to bunching
in the dif-in-dif. He estimates the treatment effect of introducing the new kink; he finds it
reduces capacity installed in the interval of 10-20 kWp by 43%. I cannot use his methodol-
ogy because my data suggest that the parallel trend assumption necessary for a difference-in-
difference approach is not satisfied.

Germeshausen does not estimate intensive and participation margin elasticities. To compare
the results in the two studies, I use my estimates to calculate the implied treatment effect of
introducing a new kink of 5% at 10 kWp in my data, i.e., I calculate:

∫ qmaxρ−ϵ
1

qK1
q(ql)Ff (Sk(q(ql))− cv(q(ql), ql)) fu(ql)dql∫ qmax

qK1
qlfl(ql)dql

, (144)

where q(.) and Sk(.) are defined in Section E.2, fu(.) is defined in Section E.4.1, qK1 =10 kWp,
ρ1 = 0.95, ρ2 = 1, and qmax= 20 kWp.

I find introducing the kink would reduce capacity in the range 10-20 kWp range by 40%.
The similarity of the two treatment effects provides evidence for the validity of the respective
identifying assumption in both studies.
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E.5 Summary results policy evaluation

Table E2 and E3 summarise the results of the counterfactual exercises.

Table E2: Cost of the counterfactual scenarios compared to the optimal linear subsidy

Subsidy Relative Cost Compared to Optimal Linear in %

Optimal Linear 0
Observed -0.14
Optimal Nonlinear -0.45
Only Intensive Margin Hypothetical -8.71
Only Intensive Margin Real +3.08

Note: The table shows the cost of the counterfactual scenarios relative to the cost of the optimal
linear subsidy in per cent.

Table E3: Subsidy payment to the lowest type (0.5 kWp) under the counterfactual scenarios

Subsidy Subsidy Payment to Lowest Type (0.5 kWp)

Optimal Linear 0.499
Observed 0.5
Optimal Nonlinear 0.323
Only Intensive Margin Hypothetical 0.323
Only Intensive Margin Real 0.323

Note: The table shows the subsidy payment to the lowest type at 0.5 kWp under the counterfac-
tual subsidies.
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