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Abstract
Deep learning shows promise for medical image analysis but lacks interpretabil-
ity, hindering adoption in healthcare. Attribution techniques that explain model
reasoning may increase trust in deep learning among clinical stakeholders. This
paper aimed to evaluate attribution methods for illuminating how deep neural
networks analyze medical images. Using adaptive path-based gradient integra-
tion, we attributed predictions from brain tumor MRI and COVID-19 chest
X-ray datasets made by recent deep convolutional neural network models. The
technique highlighted possible biomarkers, exposed model biases, and offered
insights into the links between input and prediction. Our analysis demonstrates
the method’s ability to elucidate model reasoning on these datasets. The resulting
attributions show promise for improving deep learning transparency for domain
experts by revealing the rationale behind predictions. This study advances model
interpretability to increase trust in deep learning among healthcare stakeholders.
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Networks, Deep Learning, Explainability, Guided Integrated Gradients, Healthcare,
Integrated Gradients, Interpretability, Medical Images, Mammography, Radiology,
Region-based Saliency, Saliency Analysis, X-ray

1



1 Introduction
Recent advances in compute and deep neural architectures [1–5] have enabled rapid
progress in automated medical image analysis. Medical imaging techniques like Com-
puted Tomography (CT), Magnetic Resonance Imaging (MRI), Functional Magnetic
Resonance Imaging (fMRI), Positron Emission Tomography (PET), Mammography,
Ultrasound, and X-ray are traditionally interpreted by radiologists and physicians for
timely disease detection and diagnosis [6]. However, the healthcare field’s high demand
for skilled labor can lead to fatigue, necessitating computer-aided diagnostic tools. The
maturation of deep learning is thus accelerating the adoption of computer-assisted
tools to aid experts and reduce manual analysis.

Deep learning shows particular promise for democratizing healthcare globally
by reducing prohibitive costs of expertise [7]. However, successful clinical adoption
depends on assured trust in model robustness and interpretability, which is crucial in
safety-critical healthcare [8]. Despite the inherent complexity of deep learning mod-
els, we present techniques to illuminate their inference mechanisms. By this, we refer
to how a deep model takes an input (e.g., a medical image) and produces an output
prediction (e.g. a disease classification).

Using adaptive path-based integrated gradients, we systematically studied model
predictions on brain tumor MRI [9] and COVID-19 chest X-rays [10] medical images.
Attribution maps highlighted salient input features corresponding to model predic-
tions. These techniques can build understanding, trust, and verification by experts to
enable the adoption of computer-aided diagnostics.

In this work, we aim to evaluate attribution methods on convolutional neural
networks (CNNs) analyzing medical images (Section 3). Experiments assess tech-
nique effectiveness across models and modalities (Section 4). Our results demonstrate
the ability of these attribution methods to provide insights into input-prediction
relationships, reveal potential biomarkers, and uncover model biases.

This work makes key contributions through a comprehensive evaluation of adap-
tive gradient-based attribution methods across diverse CNNs and medical imaging
datasets. Visualizations demonstrate clear technique differences and reveal relation-
ships to model structure.

The paper is organized as follows. Related interpretability approaches are discussed
in Section 2. Section 3 describes the methodology. Section 4 presents experimental
results on three datasets. Section 5 concludes and proposes future directions. Together,
this work advances model transparency to increase trust in deep learning for medical
image analysis.

2 Related Literature
Varied interpretability methods have been recently proposed for medical image anal-
ysis tasks. Research in this direction is growing primarily to help build trustworthy
artificial intelligence (AI) systems that use a human-in-the-loop approach to com-
plement domain experts. Concept Learning techniques have been used in [11–13] to
manipulate high-level concepts to train models that can perform multi-stage predic-
tions from high-level clinical concepts which provide input to the final classification
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task of disease categories. However, these methods have significant annotation costs,
and concept-to-task mismatches can lead to considerable information leakage [14].

Another class of technique is Case-Based Models (CBMs), where class discrim-
inative disentangled representations and feature mappings are learned. The final
classification is performed by measuring the similarity between the input image and the
base templates [15–17]. But this class of techniques is not susceptible to corruption by
noise and compression artifacts. It is also difficult to train models using this paradigm.
Counter Factual Explanation is another approach where input medical images are
perturbed in pseudo-realistic ways to generate an opposite prediction. They have the
problem of generating unrealistic perturbations with respect to the input images which
can often be low resolutions as opposed to the original images [18–25]. Visualization of
the internal network representation of learned features of kernels in CNNs is another
technique that is used in model understanding. But this approach has a limitation of
difficulty in interpreting feature maps in medical image analysis settings [26, 27].

An attribution map provides post-hoc explanations whereby regions of the input
image are highlighted as indicated saliency method based on the model prediction.
In their paper, [28] proposed layer-wise relevance propagation for explaining deep
neural network decisions in MRI-based Alzheimer’s disease classification. A deep CNN-
based model with Gradient Class Activation Map (Grad-CAM) was trained to classify
oral lesions for clinical oral photographic images [29]. In [30], a similar CNN-based
Grad-CAM technique for the classification of Oral Dysplasia is proposed. However,
our approach is different from [28–30] as we utilize adaptive path-based integrated
gradients techniques to address the problem of noisy saliency masks which hinders
former methods [31].

3 Methods
We present the CNN models utilized to carry out experiments in this study for
the classification tasks. Characterizations of these CNN architectures are expounded,
indicating their inductive priors, strengths, and limitations in learning visual represen-
tations. We give a detailed description of the adaptive path-based integrated gradient
techniques and their direct applications to deep learning-based models in medical
image analysis. To achieve this, we have summarized the mathematical notation in
Table 1 used in this work.

3.1 Background
We use 9 standard CNN architectures: Visual Geometric Group (VGG16 and
VGG19 [5]), Deep Residual Network (ResNet50, ResNet50V2) [2], Densely Connected
Convolutional Networks (DenseNet) [32], Deep Learning with Depthwise Separable
Convolutions (Xception) [3], Going deeper with convolutions (Inception) [33], a hybrid
deep Inception and ResNet and EfficientNet: Rethinking model scaling for convolu-
tional neural networks [34] for classifying COVID-19 X-ray images and brain tumors
from the T1-weighted MRI slices. The choice of these deep models is explained by the
fact that they are modern techniques that are widely used in solving vision tasks and
by extension medical image feature extraction for prediction and/or classification.
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Table 1: A summary of the mathematical notations in this paper.

Notation Description

R Set of real numbers
Rd Set of d-dimensional real-valued vector
Rn×d Set of n× d real-valued matrix
x ∈ Rn×d×1 Set of n× d× 1 real-valued tensor which is a single channel image input to a neural network
y ∈ R|C| A corresponding one-hot encoded label for an image input x
|C| Cardinality of the set of medical image classes.
Wi The kernels for the i-th layer of a CNN
L(·) A loss function
f l(xm,θ) Non-linear transformation of input xm at layer l parameterized by θ
σl Activation function at layer l
α ∈ R+ Non-negative real-valued regularization hyperparameter
|| · ||22 The squared ℓ2 norm
Di and D′

i A training and testing samples of task Ti respectively. Ti is sampled from the distribution of task
h(·) A neural network that produces latent representation for each input
Ah An attribution operator that takes a trained model h to produce a saliency map
x̂ Computed saliency map for a given input image x

VGG was first introduced in the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) 2014 challenge [35] mainly to evaluate the effect of increasing depth
in a deep neural network architecture with very small (3×3) convolution kernels. The
results showed that increasing depth from 16 to 19 weight layers is a significant factor
in improving the prior-art configurations. Increment in neural architectural depth leads
to more expressive models that learn better representations, thus, improving general-
izations across training tasks. However, deeper networks are hard to train because of
the vanishing gradient problem [36–38]. In that regard, deep residual learning: ResNet
was introduced in [2] to facilitate training routines for massively deeper neural net-
works. Results in [2] empirically showed that ResNet converges faster using local search
methods such as stochastic gradient descent (SGD) and can achieve higher accuracy
from the considerably increased depth of several layers. The primary way the vanish-
ing gradient problem is tackled in this framework is by introducing identity mappings
that create shortcut connections to maximally exploit information flow in the network
architecture thus solving the vanishing gradient problem. As depth is addressed by
the residual network framework, another key concern is how wide can we go and in
what variety of kernel sizes.

Thus, a natural solution would be to learn, within computational limits as many
factors of variations as possible. This is the main idea introduced in the depth-wise
separable layers based on the Inception architecture [33]. Inspired by the promising
performance of both Inception and ResNet, a hybrid model that combines any of the
sub-versions (i.e., v1, v2, v3, or v4) of ResNet and Inception has shown satisfactory
results when compared to ResNet-only or Inception-only [39, 40]. The drawback of the
hybrid InceptionResNet is the computational requirements at the training stage.

In contrast to a standard Inception model that performs cross-channel correla-
tions followed by spatial correlations, in the Xception model, spatial convolutions are
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performed independently [3]. This consists of a spatial convolution performed inde-
pendently for each channel of the input followed by a point-wise convolution across
channels for dimensionality reduction of the computed features. In their work [32],
introduced the idea of dense connectivity: DenseNet where each layer is connected
to every other layer in a feed-forward fashion in neural networks. Their approach is
an extension of the successes made by ResNets. A DenseNet comprises dense blocks
which implement dense connectivity to reduce the computational cost of channel-wise
feature concatenation. This architectural design is robust to gradient flow as it pro-
vides robust signals for gradient propagation in the layers of a substantially deeper
network which results in gainful generalization performance. With a small growth rate,
this architectural design is computationally efficient. The EfficientNet [34] introduced
a principled study of model scaling considering the impact of depth, width, and res-
olution on model performance. A new compound scaling method was proposed that
uniformly scales all three dimensions of an input image: depth, width, and resolution
using a compound coefficient that is derived from a grid search method.

The above architectures as described are known in the context of supervised deep
learning for which the optimization uses gradient-based local search methods. The goal
of the optimization is to find an optimal fitted function that minimizes the empirical
risk; measured from the training samples with a defined loss function L:

θ̂ = argmin
θ

1

N

N∑
m=1

L(ym, f(xm;θ)), (1)

where θ compacts the parameters of the trainable neural network f(xm;θ), N the
number of training examples, xm and associated ym are the features vector and
label for sample m respectively. To prone generalization, a regularization term is
imperatively added

θ̂ = argmin
θ

1

N

N∑
m=1

L(ym, f(xm;θ)) + α||θ||22 (2)

in the L2 norm regime with α the learning rate. In order words for f(xm;θ) =
σ(θ1x

m + θ2) with θ = (θ1, θ2), at layer l we want to interpolate f(xm;θ) such that

f l(xm;θ) = σl(θl1D
lf l−1(xm) + θl2) (3)

predicts the label ym for l = 2, 3, 4, · · · . In this notation, f l is the output interpolation
of layer l, σl is the activation function at layer l, θl = (θl1, θ

l
2) is the learnable param-

eters at layer l with θl1 and θl2 the weight matrix and bias vector respectively. In the
expression in Equation 3 the weights matrix Dl is introduced as a sort of regulariza-
tion that activates the connections which contribute to the interpolation of f l(xm;θ)
at layer l; this is known as the dropout regularization.

Adopting a gradient flow training method with variable learning rate αl at layer
l, in the meta-learning regime as we adopted in this work, the update of θ follows
two procedures. If p(T ) is assumed to be the distribution of tasks where each task
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is sampled as Ti ∼ p(T ) with the aim to learn prior knowledge from all these Ti.
As discussed in [41] the main goal is to encapsulate the prior knowledge of all Ti as
the initial weight θ of the fitted function f(x,θ) which can now be used as an initial
weight for quick adaptation to a new task. The first attempts is to find the parameter
θi,k of a task Ti with training sample Di = {(xm, ym)i}; m = 1, · · · , Ni where Ni is
the number of sample in Di. At the (k + 1)th iteration, θi,k is updated as:

θi,k+1 = θi,k − αl∇θ

∑
Di

1

Ni
LTi(y

m, f(xm;θi,k)), θi,0 = θ (4)

which is now followed by a proper update of θ using the direction of the gradient and
the test samples D′

i = {(xm, ym)i} of the task Ti; m = 1, · · · , N ′
i where N ′

i is the
number of sample in D′

i. Assume that θ′
i is obtained after several update as discussed

in Equation 4 for each task Ti, the proper update of θ follows:

θ ← θ − βl∇θ

∑
Ti

∑
D′

i

1

NT N ′
i

LTi(y
m, f(xm;θ′

i)), (5)

where NT and βl are the number of tasks and the learning rate at layer l respectively.

3.2 Proposed Visual Explainable Framework
To help interpret a model inference mechanism, which is crucial in building trust for
clinical adoption of deep learning-based computer-aided diagnostic systems, we have
proposed an interpretability framework depicted in Figure 1 that gives an overview
of an attribution mechanism. [42] posited fundamental axioms: Sensitivity and Imple-
mentation Invariance that attribution methods must satisfy. All selected saliency
methods in this study adhere to this axiom. For a macro-scale attribution, a model
h(xi;ϕ) that has learned statistical regularities of any given bioimaging dataset Dm

that has an arbitrary number of classes to produce a representation zi for each medi-
cal image slice xi that is a compact latent representation in a vector space. With this
representation, any arbitrary dimensionality reduction method can map the latent
representation onto a lower-dimensional space for analysis and visualization. This
could be a Gaussian Mixture Model (GMM) [43], t-Distributed Stochastic Neighbor
Embedding (t-SNE) [44] or Principal Component Analysis (PCA) [45] technique to
understand the latent space projection.

To attain local information about an attribution scheme because of the limitations
of global attribution as it does not give contextual information of feature importance
in the input space. We, therefore, propose the use of gradient information since neural
models are differentiable or at least partially differentiable functions. We propose a
framework of an adaptive path-based gradient integration method that utilizes the
Guided Integrated Gradient (GIG) [31] as shown in Equation 8 and a Region-based
saliency method: eXplanation with Ranked Area Integrals (XRAI) [46]. The core idea
of Integrated Gradient (IG) is that given a non-linear differentiable function h defined
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as:

h :Rn −→ [0, 1] (6)
x 7−→ h(x), (7)

which represents a deep neural network and an input x = (x1, . . . , xn) ∈ Rn. A general
attribution of the prediction at the input x relative to some baseline input x′ is a vector
Ah (x,x

′) = (a1, . . . , an) ∈ Rn where ai is the contribution of the vector component
xi to the function h(x). In a medical image analysis context, the function h represents
a deep neural network that learns a disentangled non-linear transformation of given
medical image slices. The input vector x is a simple tensor of the k channel image,
where the indices correspond to pixels. The attribution vector a = (a1, . . . , an) serves
as a mask over the original input to show the regions of interest of the model for the
given predicted score. This information gives us insight into regions of interest for any
given 2D image slice:

IGi(x) = (xi − x′
i)

∫ α=1

α=0

∂

∂xi
h
(
x′ + α (x− x′)

)
dα, (8)

where (xi − x′
i) is the difference between the input image and the corresponding

baseline input at each pixel.
Computing and visualizing the saliency maps involve the following steps:

1. We initialize a baseline with all zeros. This baseline input remains prediction-neutral
and has a crucial role in the interpretation and visualization of the input pixel
feature importance.

2. Linear interpolations are generated between the baseline and the original image
that are incremental steps (α) in the feature space between the baseline x′ and the
input image x.

3. The gradient in Equation 8 is computed to measure the relation between the fea-
tures xi and changes in the model class predictions. It gives a criterion for pixels
with the most relevance to the model class probability scores. This gives a basis
for quantifying feature importance in the input image with respect to the model
prediction.

4. Using a summation method, an aggregate of the gradients is computed.
5. The aggregated saliency mask is scaled to the input image to ensure that feature

attribution values are accumulated across multiple interpolated images that are all
on the same scale that represents the saliency map on the input image with the
pixel feature saliency.

4 Experimental Results
In this section, we present an overview of the datasets used in this paper including the
annotation procedure for the segmentation of regions of interest in each MRI image. We
further explain the training regime for all the models and elaborate on the framework
for computing interpretable features using adaptive path-based gradient integration
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Fig. 1: A dataset of m samples of T1-weighted contrast-enhanced images slices is
the input to a standard CNN classification model depicted in the figure as h(·) that
learns the non-linear mapping of the features to the output labels. h(·) is utilized with
an attribution operator Ah to attribute salient features x̂ of the input image. Ah is
an operator that can be used with varied differentiable architectures. This proposed
framework is general and can be applied to any problem instances where explainability
is vital in building trust in the model inference mechanism.

techniques for scoring pixel-wise feature relevance as discussed in Section 3.2. Results
show that deep neural network models trained on medical images can give prediction
confidence through softmax scores as well as use visual interpretability techniques to
infer feature attribution maps.

4.1 Datasets
We use two types of medical image data modalities to test the attribution frame-
work. The choice of the two modalities depends on the availability of data. Other
types of modalities are also applicable to the attribution framework. We leave this for
future work. The brain tumors MRI dataset [9] is used. It comprises 2D slices of brain
contrast-enhanced MRI (CE-MRI) T1-weighted images consisting of 3064 slices from
233 patients. It includes 708 Meningiomas, 1426 Gliomas, and 930 Pituitary tumors.
Representative MRI image slices with large lesion sizes are selected to construct the
dataset. In each slice, the tumor boundary is manually delineated and verified by
radiologists. We have plotted 16 random samples from the three classes with tumor
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Fig. 2: Shows randomly sampled images from the brain tumor dataset. The red anno-
tated regions indicate perimeters of segmented tumor borders. From the figure, Glioma
samples have the widest tumor areas as opposed to the other two tumor classes. Glioma
tumor tissue can be formed in varied locations in the brain. Like Glioma, a Menin-
gioma is a primary central nervous system (CNS) tumor and can begin in the brain or
spinal cord areas. Meningioma is the most common type of tumor among patients. As
shown in the figure, samples often occur in pairs across opposite regions of the brain.
As depicted in the figure, Pituitary tumors are abnormal growths that develop in the
pituitary gland that lead to excess hormonal releases that regulate important body
functions.

borders depicted in red as shown in Figure 2. These 2D slices of T1-weighted images
train standard deep CNNs for a 3-class classification task into Glioma, Meningioma,
and Pituitary tumors. The input to each model is a R225×225×1 tensor that is a resized
version of the original R512×512 image slices primarily due to computational concerns.
Unlike the brain cancer MRI dataset which comes with segmentation masks from

experts in the field, the COVID-19 X-ray dataset [47] used in this work has no ground
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Table 2: The 2 datasets comprising different modalities used to carry out experiments
in this study.

Source Classes Number
of samples Total Modality Segmented

Brain Tumor Dataset [9]
Meningioma 708

3064 MRI yesGlioma 1,426
Pituitary tumor 930

COVID-19 database [10]
COVID-19 3,616

19,820 X-ray noNormal 10,192
Lung Opacity 6,012

truth segmentation masks. This was chosen as an edge-case analysis due to the fact
that a vast majority of datasets do not have segmentation masks. This dataset was
curated from multiple international COVID-19 X-ray testing facilities during several
time periods. The dataset is made up of an unbalanced percentage of the four classes
in which we have 48.2 % normal X-ray images, 28.4 % cases with lung opacity, 17.1 %
of COVID-19 patients and 6.4% of patients with viral pneumonia of the 19820 total
images in the dataset. This unbalanced nature of the dataset comes with its own clas-
sification challenges and has prompted several researchers to implement methods to
classify the dataset using deep learning methods. Out of the four classes, for consis-
tency with the other datasets used in this work, we choose to classify three classes
(i.e., Normal, Lung Opacity, and COVID-19). For an in-depth discussion of works that
deal with this dataset, we refer to [48]. Figure 3 shows 16 selected random samples.
Table 2 summarizes those three datasets.

4.2 Implementation Performance
As the primary objective of this study is to build a framework for understanding the
visual interpretability of deep learning models in medical image analysis, we limit our
experiments to 9 modern vision-based deep neural architectures. We trained and tested
the 9 modern CNN architectures; results are shown in Figures 4, and 5 and summarized
in Table 3 with training hyperparameters depicted in Table 4 for the two datasets
used to test the proposed attribution method. The object of this work is not to find
models that outperform the current literature with the different datasets, but rather
to answer the question: what do the deep learning models learn in medical images
via the proposed attribution method? We conducted all experiments on an NVIDIA
K80/T4 GPU. In Section 4.3 several saliency methods are applied to understand model
prediction interpretability.

With the brain MRI dataset, the DenseNet121 model shows the best overall test
performance reaching 98.10%. While the hybrid InceptionResNetV2 outperformed the
other models on the COVID-19 X-ray dataset with an accuracy of 89.0%. The test
results indicate the high confidence and stability of model prediction. This is the basis
of selection for further feature attribution given that it is the best-performing model
implying it has learned a more robust and generalizable representation of the data
distribution as shown in Figures 6, and 7. The clear distinction between Figures 6,
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Fig. 3: Random selected 16 samples. The dataset was curated from multiple inter-
national COVID-19 X-ray testing centers during several time periods. The dataset is
made up of an unbalanced percentage of the four classes in which we have 48.2 %
normal X-ray images, 28.4 % cases with lung opacity, 17.1 % of COVID-19 patients
and 6.4% of patients with viral pneumonia of the 19820 total images in the dataset.
The highly unbalanced percentages explain the occurrence of normal and lung opacity
cases in the random selection versus COVID-19 and/or viral pneumonia.

and 7 left and right panels give an evident indication that the model has learned
inherent factors of variation in the signals which have been disentangled into nearly
separable manifolds in the learned representation space). These figures support the
results of the confusion matrices in Figures 4, and 5. However, this ability of learning
necessitates the notion of what has the model learned about the data space and how
can it be interpreted by domain experts. Thus, the notion of feature attribution is
investigated to make sense of mapping between the model input and the predicted
class.
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Fig. 4: Performance measure of the 8 CNN architectures used in this experiment all
trained for 20 epochs on the brain MRI dataset. Overall, DenseNet121 [3] showed the
highest F1 Score reaching 0.981. The confusion matrix for test samples represents 10%
of the dataset. The model could generalize well with 5, 4, and 3 misclassifications for
Meningioma, Glioma, and Pituitary tumor respectively. Because of the distinctness of
both Meningioma and Pituitary tumor, the model has 0 false positives between both
classes.

Fig. 5: InceptionResNetV2 reached the best test-time performance for the chest X-
ray dataset. All models nearly uniformly performed well on this dataset primarily
because of the huge number of data points that are well-suited for high-capacity models
to prevent overfitting. From the corresponding confusion matrix, on the left, Lung
Opacity has the largest number of misclassification relative to the distribution of the
dataset.
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Table 3: A comparison of the 9 models on the test set including their architectural
properties. DenseNet121 has the best overall performance on the unseen test set
reaching a top-1 accuracy of 98.10% on the brain tumor MRI dataset. Relative
to the least performing model, VGG19, it is not only parameter efficient but
has a small memory footprint of at least 16 times less than VGG19. From this
table, we chose the top three best-performing models per dataset for saliency
analysis considering the impact of parameter count and depth on the type of
representations learnable from these models. InceptionResNetV2 outperformed
other models for the COVID-19 chest X-ray dataset.

Model Size (MB) Parameters Depth Top-1 Accuracy

Brain Tumor
Dataset

COVID-19
database

VGG16 528 138.4M 16 0.928797 0.891616
VGG19 549 143.7M 19 0.887658 0.889571
ResNet50 98 25.6M 107 0.936709 0.857873
ResNet50V2 98 25.6M 103 0.962025 0.881391
InceptionV3 92 23.9M 189 0.944620 0.880368
Xception 88 22.9M 81 0.966772 0.889571
EfficientNetB0 29 5.3M 132 0.933544 0.880368
DenseNet121 33 8.1M 242 0.981013 0.884458
InceptionResNetV2 215 55.9M 449 - 0.895706

Table 4: Training hyperparameters.

Hyperparameter Setting

Learning rate 1e-3
Batch size 32
Number of epochs 20
Training set 0.7
Test set 0.3
Input shape R225×225×1

Momentum 9.39e-1
Decay 3e-4
Optimizer Stochastic Gradient Descent with Momentum (SDGM)

4.3 Attribution
Our proposed framework for understanding attribution is predicated on the notion that
visual inspection has a major role in medical image analysis decision-making. Natu-
rally, an automated visual attribution method is vital in a human-centered AI medical
image analysis pipeline. Given that many attribution methods have been proposed,
we have, however, used gradient-based adaptive path integration methods because of
their robustness to noise and smoother pixel-level feature saliency mappings. For each
of the datasets, the proposed visual attribution framework is implemented with the
Vanilla Gradient [42], Guided Integrated Gradient (GIG) [31] and XRAI [46] using the
three best performing deep learning models for each dataset as shown in Figures 4,
and 5; i.e. DenseNet121, Xception, and ResNet50V2 are the best three models for
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Fig. 6: A t-SNE [44] two-dimensional projection of the unrolled pixel space represen-
tation of MRI slices where the colors purple, green, and yellow represent the three
classes of Meningioma, Glioma, and Pituitary tumor respectively. However, given that
the data is generated under differing physical and statistical conditions, the classes
are entangled. This can impede learning using linear function approximations. (Right)
A t-SNE projection of the embedding representation from a trained DenseNet121
network. The model has disentangled the underlying factors of variation in a latent
representation space that allows separability using either linear or non-linear function
approximators as shown by the nearly distinct manifolds of the three classes.

Fig. 7: A similar 2D t-SNE visualization of the InceptionResNetV2 latent represen-
tations for the chest X-ray dataset. This dataset has a rich statistical structure across
all classes, however, it is also imbalanced like many medical datasets. (Right) A plot of
latent embeddings prior to training, the dataset is biased towards normal class which
was addressed through class weighting during training. (Right) Embeddings of the net-
work after training. There is a visible decrease in the intra-class cluster size as samples
belonging to the same class are pulled closer during the training phase in the repre-
sentation space. This notion is supported by the confusion matrix plot in Figure 5.

the brain tumor MRI dataset and Inception-ResNetV2, Xception, and VGG16 for the
COVID-19 X-ray dataset. Results are depicted in Figures 8a, 8b, 8c for the three brain
MRI tumor classes and in Figures 9a, 9b, and 9c for three COVID-19 X-ray classes.

Figures 8, and 9 shows three randomly sampled test images from each brain tumor
MRI, and chest X-ray that are chosen for saliency analysis using the three trained best
deep learning models for each of the datasets. Each of the image modalities undergoes
saliency analysis using each of the attribution methods as shown in the first row
titles from Vanilla Gradient-based to Smooth Blur Guided Integrated Gradients. The
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(a) Xception

(b) ResNet50V2

(c) DenseNet121

Fig. 8: Brain tumor MRI: In the first column on the left is the input image where the
red borders depict the delineated boundaries of tumors. Three randomly sampled test
images from each tumor class are chosen for saliency analysis using the top 3 trained
models.
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images are plotted on a grayscale, and the bright spots for the brain tumor show the
regions in the input selected for classification into the predicted class by the model.
Overall, XRAI has the best explainability of the input signals. This is further explored
by pruning 30% of less explainable features of the attributed image as presented in
the Fast XRAI 30%. There is an emergence of salient features that correspond to the
input region of interest for each tumor class. In contrast to other deep learning models,
the saliency maps of the Xception model have the least saliency map stability with
increased noise levels across all three brain MRI classes. More importantly, XRAI has
wider regions of interest computed that correspond to the input signal segmentation
mask. DenseNet121 and InceptionResNetV2 are the overall best-performing models
in this study for the brain tumors, and chest X-ray datasets respectively. This is also
confirmed and visible from the saliency maps that these models have attributed to the
inputs. Here, we observe that with a suitably trained model, Vanilla Gradient shows a
minuscule degree of regularity in the saliency maps where features in all three tumor
images are highlighted by the model. As with the other models, XRAI has the best
interpretability for the input phenomena.

Xception shows the least visual explainability as indicated in Figure 8a. From the
input image, the Pituitary tumor located in the pituitary gland, a region below the
hypothalamus is faintly attributed by all but XRAI. We can see that across all data
modalities in Figures 8, and 9, the attribution masks give little meaningful information
about the region of interest where the tumor is present although one is unsure of the
COVID-19 X-ray as it is not segmented for cross-matching. Though other factors such
as the dataset size, batch size, annotation quality, and data augmentation technique
can considerably lead to the emergence of such characteristics, the model architecture
and optimization objective have a large effect as they introduce stronger inductive
priors on the space of learning functions all which we have experimentally tried to
control for through hyperparameter optimization. Moreover, this result indicates the
difference between statistical correlations learned by CNNs being different from the
way humans perceive and process visual stimuli.

We observed that XRAI gives the best saliency maps as shown in the masked MRI
images. We also observed segmented regions in the X-ray images with XRAI. In all the
image modalities, VG and SG have coarse and partially noisy saliency maps, and can
not be used to infer meaningful explanations of the model inference mechanism. The
baseline choice has a major effect on the obtainable saliency map [31, 42, 46]. We used
a baseline of zero pixels for all attribution methods primarily because it is information
neutral. XRAI demonstrated higher interpretability compared to vanilla gradient and
guided integrated gradient methods because it is more suited to deep learning-based
medical image analysis tasks where the emphasis is to understand the region of interest
from which a model inferred its prediction. We observed that a combination of XRAI
and Blur IG can deduce feature saliency from the medical scans as 35% of saliency
maps of XRAI highlights important features that are in a close approximation of expert
segmentation for the DenseNet121 model. So, utilizing multiple attribution methods
can improve model interpretability for domain experts.
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(a) VGG16

(b) Xception

(c) InceptionResNetV2

Fig. 9: COVID-19 X-ray: Three randomly sampled test images from each tumor class
are chosen for saliency analysis using the trained (a) VGG16, (b) Xception, and (c)
InceptionResNetV2. The infected regions are not segmented from the studied dataset.
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These results, therefore, open the possibility of not only accelerating the visual
interpretability of deep neural models in medical image analysis but as well offset pre-
possessing such as human-in-the-loop segmentation, model debugging, and debiasing
which are all crucial in real-world application use cases. The latter has an important
role in low-decision risk and highly regulated domains such as healthcare. In sum,
these stated use cases can rapidly advance access to needed but affordable healthcare
for low-resource settings.

However, Table 3 in tandem with Figures 8 and 9 show that the inductive archi-
tectural priors have to most impact on the selectivity of the receptive fields of CNNs
for visual saliency analysis. CNNs perform spatial weight sharing where each filter
is replicated across the entire visual field of the input [49], thus, the resolution of
this receptive field matters. Unlike humans, CNNs have frequency response, texture,
and shape biases that are evident across all the model architectures [50, 51]. Visual
attribution methods must consider raising this notion in human-in-the-loop AI sys-
tems to ameliorate the pitfalls of the wrong attribution in deep models for real-world
healthcare applications.

5 Conclusion
Deep learning models are gaining traction in ubiquitous healthcare applications from
the application of vision techniques to language models. However, the inference mech-
anisms of these models are still an open question. In this paper, we posed the question:
What do these deep learning models learn in medical images? To answer this ques-
tion, we study a selection attribution framework and evaluated the framework using
two widely used medical imaging modalities, namely MRI, and X-ray with publicly
available datasets. Our findings show that the robust statistical regularities learned
between input-output mappings differ from biological visual stimuli processing done
by humans. We show that different input attribution methods have varying degrees
of explainability of the input signal. A robust representation learner and the right
attribution approach are crucial to getting interpretable saliency maps of deep CNNs
in medical image analysis. This is important because it will help in building human-
in-the-loop computer-aided diagnostic models that not only generalize well to unseen
samples but are also explainable to domain experts. Our findings indicate that deep
learning models can complement the efforts of medical experts in efficiently detecting
and diagnosing diseases from medical images. Thus, a human-in-the-loop approach can
accelerate the adoption of neural models in medical decision-making. It provides a path
toward building stakeholder trust given that healthcare requires critical evaluation of
assistive technologies before adoption and general usage.

Finally, we encourage further research into volumetric medical imaging data, quan-
tification of explainability of these visual attribution methods, developing benchmarks
against which new visual attribution methods can be measured to accelerate model
explainability research, and the provision of open access segmented dataset so as to
test new saliency algorithms in ground truth expert segmented datasets.
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