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Deep learning shows promise for medical image analysis but lacks interpretability, hindering adoption in healthcare. Attribution techniques that explain model reasoning may increase trust in deep learning among clinical stakeholders. This paper aimed to evaluate attribution methods for illuminating how deep neural networks analyze medical images. Using adaptive path-based gradient integration, we attributed predictions from brain tumor MRI and COVID-19 chest X-ray datasets made by recent deep convolutional neural network models. The technique highlighted possible biomarkers, exposed model biases, and offered insights into the links between input and prediction. Our analysis demonstrates the method's ability to elucidate model reasoning on these datasets. The resulting attributions show promise for improving deep learning transparency for domain experts by revealing the rationale behind predictions. This study advances model interpretability to increase trust in deep learning among healthcare stakeholders.

1 Introduction task of disease categories. However, these methods have significant annotation costs, and concept-to-task mismatches can lead to considerable information leakage [START_REF] Salahuddin | Transparency of deep neural networks for medical image analysis: A review of interpretability methods[END_REF].

Another class of technique is Case-Based Models (CBMs), where class discriminative disentangled representations and feature mappings are learned. The final classification is performed by measuring the similarity between the input image and the base templates [START_REF] Bass | Icam: Interpretable classification via disentangled representations and feature attribution mapping[END_REF][START_REF] Kim | Xprotonet: diagnosis in chest radiography with global and local explanations[END_REF][START_REF] Li | Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions[END_REF]. But this class of techniques is not susceptible to corruption by noise and compression artifacts. It is also difficult to train models using this paradigm. Counter Factual Explanation is another approach where input medical images are perturbed in pseudo-realistic ways to generate an opposite prediction. They have the problem of generating unrealistic perturbations with respect to the input images which can often be low resolutions as opposed to the original images [START_REF] Baumgartner | Visual feature attribution using wasserstein gans[END_REF][START_REF] Cohen | Gifsplanation via latent shift: a simple autoencoder approach to counterfactual generation for chest x-rays[END_REF][START_REF] Lenis | Domain aware medical image classifier interpretation by counterfactual impact analysis[END_REF][START_REF] Schutte | Using stylegan for visual interpretability of deep learning models on medical images[END_REF][START_REF] Seah | Chest radiographs in congestive heart failure: visualizing neural network learning[END_REF][START_REF] Selvaraju | Grad-cam: Visual explanations from deep networks via gradient-based localization[END_REF][START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF][START_REF] Singla | Explaining the black-box smoothly-a counterfactual approach[END_REF]. Visualization of the internal network representation of learned features of kernels in CNNs is another technique that is used in model understanding. But this approach has a limitation of difficulty in interpreting feature maps in medical image analysis settings [START_REF] Bau | Network dissection: Quantifying interpretability of deep visual representations[END_REF][START_REF] Natekar | Demystifying brain tumor segmentation networks: interpretability and uncertainty analysis[END_REF].

An attribution map provides post-hoc explanations whereby regions of the input image are highlighted as indicated saliency method based on the model prediction.

In their paper, [START_REF] Böhle | Layer-wise relevance propagation for explaining deep neural network decisions in mri-based alzheimer's disease classification[END_REF] proposed layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification. A deep CNNbased model with Gradient Class Activation Map (Grad-CAM) was trained to classify oral lesions for clinical oral photographic images [START_REF] Camalan | Convolutional neural networkbased clinical predictors of oral dysplasia: class activation map analysis of deep learning results[END_REF]. In [START_REF] Kermany | Identifying medical diagnoses and treatable diseases by image-based deep learning[END_REF], a similar CNN-based Grad-CAM technique for the classification of Oral Dysplasia is proposed. However, our approach is different from [START_REF] Böhle | Layer-wise relevance propagation for explaining deep neural network decisions in mri-based alzheimer's disease classification[END_REF][START_REF] Camalan | Convolutional neural networkbased clinical predictors of oral dysplasia: class activation map analysis of deep learning results[END_REF][START_REF] Kermany | Identifying medical diagnoses and treatable diseases by image-based deep learning[END_REF] as we utilize adaptive path-based integrated gradients techniques to address the problem of noisy saliency masks which hinders former methods [START_REF] Kapishnikov | Guided integrated gradients: An adaptive path method for removing noise[END_REF].

Methods

We present the CNN models utilized to carry out experiments in this study for the classification tasks. Characterizations of these CNN architectures are expounded, indicating their inductive priors, strengths, and limitations in learning visual representations. We give a detailed description of the adaptive path-based integrated gradient techniques and their direct applications to deep learning-based models in medical image analysis. To achieve this, we have summarized the mathematical notation in Table 1 used in this work.

Background

We use 9 standard CNN architectures: Visual Geometric Group (VGG16 and VGG19 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]), Deep Residual Network (ResNet50, ResNet50V2) [START_REF] He | Deep residual learning for image recognition[END_REF], Densely Connected Convolutional Networks (DenseNet) [START_REF] Huang | Densely connected convolutional networks[END_REF], Deep Learning with Depthwise Separable Convolutions (Xception) [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF], Going deeper with convolutions (Inception) [START_REF] Szegedy | Going deeper with convolutions[END_REF], a hybrid deep Inception and ResNet and EfficientNet: Rethinking model scaling for convolutional neural networks [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] for classifying COVID-19 X-ray images and brain tumors from the T1-weighted MRI slices. The choice of these deep models is explained by the fact that they are modern techniques that are widely used in solving vision tasks and by extension medical image feature extraction for prediction and/or classification. The kernels for the i-th layer of a CNN L(•)
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VGG was first introduced in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014 challenge [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] mainly to evaluate the effect of increasing depth in a deep neural network architecture with very small (3 × 3) convolution kernels. The results showed that increasing depth from 16 to 19 weight layers is a significant factor in improving the prior-art configurations. Increment in neural architectural depth leads to more expressive models that learn better representations, thus, improving generalizations across training tasks. However, deeper networks are hard to train because of the vanishing gradient problem [START_REF] Hochreiter | Untersuchungen zu dynamischen neuronalen netzen[END_REF][START_REF] Bengio | Learning long-term dependencies with gradient descent is difficult[END_REF][START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. In that regard, deep residual learning: ResNet was introduced in [START_REF] He | Deep residual learning for image recognition[END_REF] to facilitate training routines for massively deeper neural networks. Results in [START_REF] He | Deep residual learning for image recognition[END_REF] empirically showed that ResNet converges faster using local search methods such as stochastic gradient descent (SGD) and can achieve higher accuracy from the considerably increased depth of several layers. The primary way the vanishing gradient problem is tackled in this framework is by introducing identity mappings that create shortcut connections to maximally exploit information flow in the network architecture thus solving the vanishing gradient problem. As depth is addressed by the residual network framework, another key concern is how wide can we go and in what variety of kernel sizes.

Thus, a natural solution would be to learn, within computational limits as many factors of variations as possible. This is the main idea introduced in the depth-wise separable layers based on the Inception architecture [START_REF] Szegedy | Going deeper with convolutions[END_REF]. Inspired by the promising performance of both Inception and ResNet, a hybrid model that combines any of the sub-versions (i.e., v1, v2, v3, or v4) of ResNet and Inception has shown satisfactory results when compared to ResNet-only or Inception-only [START_REF] Szegedy | Inception-v4, inceptionresnet and the impact of residual connections on learning[END_REF][START_REF] Alotaibi | A hybrid deep resnet and inception model for hyperspectral image classification[END_REF]. The drawback of the hybrid InceptionResNet is the computational requirements at the training stage.

In contrast to a standard Inception model that performs cross-channel correlations followed by spatial correlations, in the Xception model, spatial convolutions are performed independently [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF]. This consists of a spatial convolution performed independently for each channel of the input followed by a point-wise convolution across channels for dimensionality reduction of the computed features. In their work [START_REF] Huang | Densely connected convolutional networks[END_REF], introduced the idea of dense connectivity: DenseNet where each layer is connected to every other layer in a feed-forward fashion in neural networks. Their approach is an extension of the successes made by ResNets. A DenseNet comprises dense blocks which implement dense connectivity to reduce the computational cost of channel-wise feature concatenation. This architectural design is robust to gradient flow as it provides robust signals for gradient propagation in the layers of a substantially deeper network which results in gainful generalization performance. With a small growth rate, this architectural design is computationally efficient. The EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] introduced a principled study of model scaling considering the impact of depth, width, and resolution on model performance. A new compound scaling method was proposed that uniformly scales all three dimensions of an input image: depth, width, and resolution using a compound coefficient that is derived from a grid search method.

The above architectures as described are known in the context of supervised deep learning for which the optimization uses gradient-based local search methods. The goal of the optimization is to find an optimal fitted function that minimizes the empirical risk; measured from the training samples with a defined loss function L:

θ = arg min θ 1 N N m=1 L(y m , f (x m ; θ)), (1) 
where θ compacts the parameters of the trainable neural network f (x m ; θ), N the number of training examples, x m and associated y m are the features vector and label for sample m respectively. To prone generalization, a regularization term is imperatively added

θ = arg min θ 1 N N m=1 L(y m , f (x m ; θ)) + α||θ|| 2 2 (2)
in the L 2 norm regime with α the learning rate. In order words for f (x m ; θ) = σ(θ 1 x m + θ 2 ) with θ = (θ 1 , θ 2 ), at layer l we want to interpolate f (x m ; θ) such that

f l (x m ; θ) = σ l (θ l 1 D l f l-1 (x m ) + θ l 2 ) (3) 
predicts the label y m for l = 2, 3, 4, • • • . In this notation, f l is the output interpolation of layer l, σ l is the activation function at layer l, θ l = (θ l 1 , θ l 2 ) is the learnable parameters at layer l with θ l 1 and θ l 2 the weight matrix and bias vector respectively. In the expression in Equation 3 the weights matrix D l is introduced as a sort of regularization that activates the connections which contribute to the interpolation of f l (x m ; θ) at layer l; this is known as the dropout regularization.

Adopting a gradient flow training method with variable learning rate α l at layer l, in the meta-learning regime as we adopted in this work, the update of θ follows two procedures. If p(T ) is assumed to be the distribution of tasks where each task is sampled as T i ∼ p(T ) with the aim to learn prior knowledge from all these T i . As discussed in [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF] the main goal is to encapsulate the prior knowledge of all T i as the initial weight θ of the fitted function f (x, θ) which can now be used as an initial weight for quick adaptation to a new task. The first attempts is to find the parameter θ i,k of a task T i with training sample

D i = {(x m , y m ) i }; m = 1, • • • , N i where N i is the number of sample in D i . At the (k + 1) th iteration, θ i,k is updated as: θ i,k+1 = θ i,k -α l ∇ θ Di 1 N i L Ti (y m , f (x m ; θ i,k )), θ i,0 = θ (4) 
which is now followed by a proper update of θ using the direction of the gradient and the test samples

D ′ i = {(x m , y m ) i } of the task T i ; m = 1, • • • , N ′ i where N ′ i is the number of sample in D ′ i .
Assume that θ ′ i is obtained after several update as discussed in Equation 4for each task T i , the proper update of θ follows:

θ ← θ -β l ∇ θ Ti D ′ i 1 N T N ′ i L Ti (y m , f (x m ; θ ′ i )), (5) 
where N T and β l are the number of tasks and the learning rate at layer l respectively.

Proposed Visual Explainable Framework

To help interpret a model inference mechanism, which is crucial in building trust for clinical adoption of deep learning-based computer-aided diagnostic systems, we have proposed an interpretability framework depicted in Figure 1 that gives an overview of an attribution mechanism. [START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF] posited fundamental axioms: Sensitivity and Implementation Invariance that attribution methods must satisfy. All selected saliency methods in this study adhere to this axiom. For a macro-scale attribution, a model h(x i ; ϕ) that has learned statistical regularities of any given bioimaging dataset D m that has an arbitrary number of classes to produce a representation z i for each medical image slice x i that is a compact latent representation in a vector space. With this representation, any arbitrary dimensionality reduction method can map the latent representation onto a lower-dimensional space for analysis and visualization. This could be a Gaussian Mixture Model (GMM) [START_REF] Duda | Pattern Classification and Scene Analysis[END_REF], t-Distributed Stochastic Neighbor Embedding (t-SNE) [START_REF] Maaten | Visualizing data using t-sne[END_REF] or Principal Component Analysis (PCA) [START_REF] Wold | Principal component analysis[END_REF] technique to understand the latent space projection.

To attain local information about an attribution scheme because of the limitations of global attribution as it does not give contextual information of feature importance in the input space. We, therefore, propose the use of gradient information since neural models are differentiable or at least partially differentiable functions. We propose a framework of an adaptive path-based gradient integration method that utilizes the Guided Integrated Gradient (GIG) [START_REF] Kapishnikov | Guided integrated gradients: An adaptive path method for removing noise[END_REF] as shown in Equation 8 and a Region-based saliency method: eXplanation with Ranked Area Integrals (XRAI) [START_REF] Kapishnikov | Xrai: Better attributions through regions[END_REF]. The core idea of Integrated Gradient (IG) is that given a non-linear differentiable function h defined as:

h :R n -→ [0, 1] (6) 
x -→ h(x),

which represents a deep neural network and an input x = (x 1 , . . . , x n ) ∈ R n . A general attribution of the prediction at the input x relative to some baseline input x ′ is a vector A h (x, x ′ ) = (a 1 , . . . , a n ) ∈ R n where a i is the contribution of the vector component x i to the function h(x). In a medical image analysis context, the function h represents a deep neural network that learns a disentangled non-linear transformation of given medical image slices. The input vector x is a simple tensor of the k channel image, where the indices correspond to pixels. The attribution vector a = (a 1 , . . . , a n ) serves as a mask over the original input to show the regions of interest of the model for the given predicted score. This information gives us insight into regions of interest for any given 2D image slice:

IG i (x) = (x i -x ′ i ) α=1 α=0 ∂ ∂x i h x ′ + α (x -x ′ ) dα, (8) 
where

(x i -x ′ i )
is the difference between the input image and the corresponding baseline input at each pixel.

Computing and visualizing the saliency maps involve the following steps:

1. We initialize a baseline with all zeros. This baseline input remains prediction-neutral and has a crucial role in the interpretation and visualization of the input pixel feature importance. 2. Linear interpolations are generated between the baseline and the original image that are incremental steps (α) in the feature space between the baseline x ′ and the input image x. 3. The gradient in Equation 8 is computed to measure the relation between the features x i and changes in the model class predictions. It gives a criterion for pixels with the most relevance to the model class probability scores. This gives a basis for quantifying feature importance in the input image with respect to the model prediction. 4. Using a summation method, an aggregate of the gradients is computed. 5. The aggregated saliency mask is scaled to the input image to ensure that feature attribution values are accumulated across multiple interpolated images that are all on the same scale that represents the saliency map on the input image with the pixel feature saliency.

Experimental Results

In this section, we present an overview of the datasets used in this paper including the annotation procedure for the segmentation of regions of interest in each MRI image. We further explain the training regime for all the models and elaborate on the framework for computing interpretable features using adaptive path-based gradient integration techniques for scoring pixel-wise feature relevance as discussed in Section 3.2. Results show that deep neural network models trained on medical images can give prediction confidence through softmax scores as well as use visual interpretability techniques to infer feature attribution maps.

Datasets

We use two types of medical image data modalities to test the attribution framework. The choice of the two modalities depends on the availability of data. Other types of modalities are also applicable to the attribution framework. We leave this for future work. The brain tumors MRI dataset [START_REF] Cheng | brain tumor dataset[END_REF] As depicted in the figure, Pituitary tumors are abnormal growths that develop in the pituitary gland that lead to excess hormonal releases that regulate important body functions.

borders depicted in red as shown in Figure 2. These 2D slices of T1-weighted images train standard deep CNNs for a 3-class classification task into Glioma, Meningioma, and Pituitary tumors. The input to each model is a R 225×225×1 tensor that is a resized version of the original R 512×512 image slices primarily due to computational concerns. Unlike the brain cancer MRI dataset which comes with segmentation masks from experts in the field, the COVID-19 X-ray dataset [START_REF] Chowdhury | Can ai help in screening viral and covid-19 pneumonia[END_REF] used in this work has no ground truth segmentation masks. This was chosen as an edge-case analysis due to the fact that a vast majority of datasets do not have segmentation masks. This dataset was curated from multiple international COVID-19 X-ray testing facilities during several time periods. The dataset is made up of an unbalanced percentage of the four classes in which we have 48.2 % normal X-ray images, 28.4 % cases with lung opacity, 17.1 % of COVID-19 patients and 6.4% of patients with viral pneumonia of the 19820 total images in the dataset. This unbalanced nature of the dataset comes with its own classification challenges and has prompted several researchers to implement methods to classify the dataset using deep learning methods. Out of the four classes, for consistency with the other datasets used in this work, we choose to classify three classes (i.e., Normal, Lung Opacity, and COVID-19). For an in-depth discussion of works that deal with this dataset, we refer to [START_REF] Brima | Transfer learning for the detection and diagnosis of types of pneumonia including pneumonia induced by covid-19 from chest x-ray images[END_REF]. Figure 3 shows 16 selected random samples. Table 2 summarizes those three datasets.

Implementation Performance

As the primary objective of this study is to build a framework for understanding the visual interpretability of deep learning models in medical image analysis, we limit our experiments to 9 modern vision-based deep neural architectures. We trained and tested the 9 modern CNN architectures; results are shown in Figures 4, and5 and summarized in Table 3 with training hyperparameters depicted in Table 4 for the two datasets used to test the proposed attribution method. The object of this work is not to find models that outperform the current literature with the different datasets, but rather to answer the question: what do the deep learning models learn in medical images via the proposed attribution method? We conducted all experiments on an NVIDIA K80/T4 GPU. In Section 4.3 several saliency methods are applied to understand model prediction interpretability. With the brain MRI dataset, the DenseNet121 model shows the best overall test performance reaching 98.10%. While the hybrid InceptionResNetV2 outperformed the other models on the COVID-19 X-ray dataset with an accuracy of 89.0%. The test results indicate the high confidence and stability of model prediction. This is the basis of selection for further feature attribution given that it is the best-performing model implying it has learned a more robust and generalizable representation of the data distribution as shown in Figures 6, and Fig. 5: InceptionResNetV2 reached the best test-time performance for the chest Xray dataset. All models nearly uniformly performed well on this dataset primarily because of the huge number of data points that are well-suited for high-capacity models to prevent overfitting. From the corresponding confusion matrix, on the left, Lung Opacity has the largest number of misclassification relative to the distribution of the dataset.

Table 3: A comparison of the 9 models on the test set including their architectural properties. DenseNet121 has the best overall performance on the unseen test set reaching a top-1 accuracy of 98.10% on the brain tumor MRI dataset. Relative to the least performing model, VGG19, it is not only parameter efficient but has a small memory footprint of at least 16 times less than VGG19. From this table, we chose the top three best-performing models per dataset for saliency analysis considering the impact of parameter count and depth on the type of representations learnable from these models. InceptionResNetV2 outperformed other models for the COVID-19 chest X-ray dataset. 

Attribution

Our proposed framework for understanding attribution is predicated on the notion that visual inspection has a major role in medical image analysis decision-making. Naturally, an automated visual attribution method is vital in a human-centered AI medical image analysis pipeline. Given that many attribution methods have been proposed, we have, however, used gradient-based adaptive path integration methods because of their robustness to noise and smoother pixel-level feature saliency mappings. For each of the datasets, the proposed visual attribution framework is implemented with the Vanilla Gradient [START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF], Guided Integrated Gradient (GIG) [START_REF] Kapishnikov | Guided integrated gradients: An adaptive path method for removing noise[END_REF] and XRAI [START_REF] Kapishnikov | Xrai: Better attributions through regions[END_REF] using the three best performing deep learning models for each dataset as shown in Figures 4, and5; i.e. DenseNet121, Xception, and ResNet50V2 are the best three models for Fig. 6: A t-SNE [START_REF] Maaten | Visualizing data using t-sne[END_REF] two-dimensional projection of the unrolled pixel space representation of MRI slices where the colors purple, green, and yellow represent the three classes of Meningioma, Glioma, and Pituitary tumor respectively. However, given that the data is generated under differing physical and statistical conditions, the classes are entangled. This can impede learning using linear function approximations. (Right) A t-SNE projection of the embedding representation from a trained DenseNet121 network. The model has disentangled the underlying factors of variation in a latent representation space that allows separability using either linear or non-linear function approximators as shown by the nearly distinct manifolds of the three classes. and9 shows three randomly sampled test images from each brain tumor MRI, and chest X-ray that are chosen for saliency analysis using the three trained best deep learning models for each of the datasets. Each of the image modalities undergoes saliency analysis using each of the attribution methods as shown in the first row titles from Vanilla Gradient-based to Smooth Blur Guided Integrated Gradients. The images are plotted on a grayscale, and the bright spots for the brain tumor show the regions in the input selected for classification into the predicted class by the model. Overall, XRAI has the best explainability of the input signals. This is further explored by pruning 30% of less explainable features of the attributed image as presented in the Fast XRAI 30%. There is an emergence of salient features that correspond to the input region of interest for each tumor class. In contrast to other deep learning models, the saliency maps of the Xception model have the least saliency map stability with increased noise levels across all three brain MRI classes. More importantly, XRAI has wider regions of interest computed that correspond to the input signal segmentation mask. DenseNet121 and InceptionResNetV2 are the overall best-performing models in this study for the brain tumors, and chest X-ray datasets respectively. This is also confirmed and visible from the saliency maps that these models have attributed to the inputs. Here, we observe that with a suitably trained model, Vanilla Gradient shows a minuscule degree of regularity in the saliency maps where features in all three tumor images are highlighted by the model. As with the other models, XRAI has the best interpretability for the input phenomena.

Xception shows the least visual explainability as indicated in Figure 8a. From the input image, the Pituitary tumor located in the pituitary gland, a region below the hypothalamus is faintly attributed by all but XRAI. We can see that across all data modalities in Figures 8, and9, the attribution masks give little meaningful information about the region of interest where the tumor is present although one is unsure of the COVID-19 X-ray as it is not segmented for cross-matching. Though other factors such as the dataset size, batch size, annotation quality, and data augmentation technique can considerably lead to the emergence of such characteristics, the model architecture and optimization objective have a large effect as they introduce stronger inductive priors on the space of learning functions all which we have experimentally tried to control for through hyperparameter optimization. Moreover, this result indicates the difference between statistical correlations learned by CNNs being different from the way humans perceive and process visual stimuli.

We observed that XRAI gives the best saliency maps as shown in the masked MRI images. We also observed segmented regions in the X-ray images with XRAI. In all the image modalities, VG and SG have coarse and partially noisy saliency maps, and can not be used to infer meaningful explanations of the model inference mechanism. The baseline choice has a major effect on the obtainable saliency map [START_REF] Kapishnikov | Guided integrated gradients: An adaptive path method for removing noise[END_REF][START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF][START_REF] Kapishnikov | Xrai: Better attributions through regions[END_REF]. We used a baseline of zero pixels for all attribution methods primarily because it is information neutral. XRAI demonstrated higher interpretability compared to vanilla gradient and guided integrated gradient methods because it is more suited to deep learning-based medical image analysis tasks where the emphasis is to understand the region of interest from which a model inferred its prediction. We observed that a combination of XRAI and Blur IG can deduce feature saliency from the medical scans as 35% of saliency maps of XRAI highlights important features that are in a close approximation of expert segmentation for the DenseNet121 model. So, utilizing multiple attribution methods can improve model interpretability for domain experts. These results, therefore, open the possibility of not only accelerating the visual interpretability of deep neural models in medical image analysis but as well offset prepossessing such as human-in-the-loop segmentation, model debugging, and debiasing which are all crucial in real-world application use cases. The latter has an important role in low-decision risk and highly regulated domains such as healthcare. In sum, these stated use cases can rapidly advance access to needed but affordable healthcare for low-resource settings.

However, Table 3 in tandem with Figures 8 and9 show that the inductive architectural priors have to most impact on the selectivity of the receptive fields of CNNs for visual saliency analysis. CNNs perform spatial weight sharing where each filter is replicated across the entire visual field of the input [START_REF] Luo | Understanding the effective receptive field in deep convolutional neural networks[END_REF], thus, the resolution of this receptive field matters. Unlike humans, CNNs have frequency response, texture, and shape biases that are evident across all the model architectures [START_REF] Geirhos | Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness[END_REF][START_REF] Baker | Deep convolutional networks do not classify based on global object shape[END_REF]. Visual attribution methods must consider raising this notion in human-in-the-loop AI systems to ameliorate the pitfalls of the wrong attribution in deep models for real-world healthcare applications.

Conclusion

Deep learning models are gaining traction in ubiquitous healthcare applications from the application of vision techniques to language models. However, the inference mechanisms of these models are still an open question. In this paper, we posed the question: What do these deep learning models learn in medical images? To answer this question, we study a selection attribution framework and evaluated the framework using two widely used medical imaging modalities, namely MRI, and X-ray with publicly available datasets. Our findings show that the robust statistical regularities learned between input-output mappings differ from biological visual stimuli processing done by humans. We show that different input attribution methods have varying degrees of explainability of the input signal. A robust representation learner and the right attribution approach are crucial to getting interpretable saliency maps of deep CNNs in medical image analysis. This is important because it will help in building humanin-the-loop computer-aided diagnostic models that not only generalize well to unseen samples but are also explainable to domain experts. Our findings indicate that deep learning models can complement the efforts of medical experts in efficiently detecting and diagnosing diseases from medical images. Thus, a human-in-the-loop approach can accelerate the adoption of neural models in medical decision-making. It provides a path toward building stakeholder trust given that healthcare requires critical evaluation of assistive technologies before adoption and general usage.

Finally, we encourage further research into volumetric medical imaging data, quantification of explainability of these visual attribution methods, developing benchmarks against which new visual attribution methods can be measured to accelerate model explainability research, and the provision of open access segmented dataset so as to test new saliency algorithms in ground truth expert segmented datasets.
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 1 Fig.1:A dataset of m samples of T1-weighted contrast-enhanced images slices is the input to a standard CNN classification model depicted in the figure as h(•) that learns the non-linear mapping of the features to the output labels. h(•) is utilized with an attribution operator A h to attribute salient features x of the input image. A h is an operator that can be used with varied differentiable architectures. This proposed framework is general and can be applied to any problem instances where explainability is vital in building trust in the model inference mechanism.

Fig. 2 :

 2 Fig. 2: Shows randomly sampled images from the brain tumor dataset. The red annotated regions indicate perimeters of segmented tumor borders. From the figure, Glioma samples have the widest tumor areas as opposed to the other two tumor classes. Glioma tumor tissue can be formed in varied locations in the brain. Like Glioma, a Meningioma is a primary central nervous system (CNS) tumor and can begin in the brain or spinal cord areas. Meningioma is the most common type of tumor among patients. As shown in the figure, samples often occur in pairs across opposite regions of the brain.As depicted in the figure, Pituitary tumors are abnormal growths that develop in the pituitary gland that lead to excess hormonal releases that regulate important body functions.
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  Fig. 3: Random selected 16 samples. The dataset was curated from multiple international COVID-19 X-ray testing centers during several time periods. The dataset is made up of an unbalanced percentage of the four classes in which we have 48.2 % normal X-ray images, 28.4 % cases with lung opacity, 17.1 % of COVID-19 patients and 6.4% of patients with viral pneumonia of the 19820 total images in the dataset. The highly unbalanced percentages explain the occurrence of normal and lung opacity cases in the random selection versus COVID-19 and/or viral pneumonia.
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 3 Fig. 3: Random selected 16 samples. The dataset was curated from multiple international COVID-19 X-ray testing centers during several time periods. The dataset is made up of an unbalanced percentage of the four classes in which we have 48.2 % normal X-ray images, 28.4 % cases with lung opacity, 17.1 % of COVID-19 patients and 6.4% of patients with viral pneumonia of the 19820 total images in the dataset. The highly unbalanced percentages explain the occurrence of normal and lung opacity cases in the random selection versus COVID-19 and/or viral pneumonia.

Fig. 4 :

 4 Fig. 4: Performance measure of the 8 CNN architectures used in this experiment all for 20 epochs on the brain MRI dataset. Overall, DenseNet121 [3] showed highest F 1 Score reaching 0.981. The confusion matrix for test samples represents 10% of the dataset. The model could generalize well with 5, 4, and 3 misclassifications for Meningioma, Glioma, and Pituitary tumor respectively. Because of the distinctness of both Meningioma and Pituitary tumor, the model has 0 false positives between both classes.

Fig. 7 :

 7 Fig. 7: A similar 2D t-SNE visualization of the InceptionResNetV2 latent representations for the chest X-ray dataset. This dataset has a rich statistical structure across all classes, however, it is also imbalanced like many medical datasets. (Right) A plot of latent embeddings prior to training, the dataset is biased towards normal class which was addressed through class weighting during training. (Right) Embeddings of the network after training. There is a visible decrease in the intra-class cluster size as samples belonging to the same class are pulled closer during the training phase in the representation space. This notion is supported by the confusion matrix plot in Figure 5.

Fig. 8 :

 8 Fig. 8: Brain tumor MRI: In the first column on the left is the input image where the red borders depict the delineated boundaries of tumors. Three randomly sampled test images from each tumor class are chosen for saliency analysis using the top 3 trained models.

Fig. 9 :

 9 Fig. 9: COVID-19 X-ray: Three randomly sampled test images from each tumor class are chosen for saliency analysis using the trained (a) VGG16, (b) Xception, and (c) InceptionResNetV2. The infected regions are not segmented from the studied dataset.

Table 1 :

 1 A summary of the mathematical notations in this paper.

	Notation	Description
	R	Set of real numbers
	R d	Set of d-dimensional real-valued vector
	R n×d	Set of n × d real-valued matrix
	x ∈ R n×d×1	Set of n × d × 1 real-valued tensor which is a single channel image input to a neural network
	y ∈ R |C|	A corresponding one-hot encoded label for an image input x
	|C|	Cardinality of the set of medical image classes.
	W i	

  is used. It comprises 2D slices of brain contrast-enhanced MRI (CE-MRI) T1-weighted images consisting of 3064 slices from 233 patients. It includes 708 Meningiomas, 1426 Gliomas, and 930 Pituitary tumors.Representative MRI image slices with large lesion sizes are selected to construct the dataset. In each slice, the tumor boundary is manually delineated and verified by radiologists. We have plotted 16 random samples from the three classes with tumor

Table 2 :

 2 The 2 datasets comprising different modalities used to carry out experiments in this study.

	Source	Classes	Number of samples	Total	Modality	Segmented
		Meningioma	708			
	Brain Tumor Dataset [9]	Glioma	1,426	3064	MRI	yes
		Pituitary tumor 930			
		COVID-19	3,616			
	COVID-19 database [10]	Normal	10,192	19,820 X-ray	no
		Lung Opacity	6,012			

Table 4 :

 4 Training hyperparameters.

	Model	Size (MB) Parameters Depth	Top-1 Accuracy
					Brain Tumor	COVID-19
					Dataset	database
	VGG16	528	138.4M	16	0.928797	0.891616
	VGG19	549	143.7M	19	0.887658	0.889571
	ResNet50	98	25.6M	107	0.936709	0.857873
	ResNet50V2	98	25.6M	103	0.962025	0.881391
	InceptionV3	92	23.9M	189	0.944620	0.880368
	Xception	88	22.9M	81	0.966772	0.889571
	EfficientNetB0	29	5.3M	132	0.933544	0.880368
	DenseNet121	33	8.1M	242	0.981013	0.884458
	InceptionResNetV2 215	55.9M	449	-	0.895706
	Hyperparameter	Setting			
	Learning rate		1e-3			
	Batch size		32			
	Number of epochs 20			
	Training set		0.7			
	Test set		0.3			
	Input shape		R 225×225×1			
	Momentum		9.39e-1			
	Decay		3e-4			
	Optimizer		Stochastic Gradient Descent with Momentum (SDGM)
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