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Abstract

Objective: BCI (Brain-Computer Interface) technology operates in three modes: online,
offline, and pseudo-online. In the online mode, real-time EEG data is constantly analyzed.
In offline mode, the signal is acquired and processed afterwards. The pseudo-online mode
processes collected data as if they were received in real-time. The main difference is that the
offline mode often analyzes the whole data, while the online and pseudo-online modes only
analyze data in short time windows. Offline analysis is usually done with asynchronous
BCIs, which restricts analysis to predefined time windows. Asynchronous BCI, compati-
ble with online and pseudo-online modes, allows flexible mental activity duration. Offline
processing tends to be more accurate, while online analysis is better for therapeutic appli-
cations. Pseudo-online implementation approximates online processing without real-time
constraints. Many BCI studies being offline introduce biases compared to real-life scenarios,
impacting classification algorithm performance. Approach: The objective of this research
paper is therefore to extend the current MOABB framework, operating in offline mode, so
as to allow a comparison of different algorithms in a pseudo-online setting with the use of a
technology based on overlapping sliding windows. To do this will require the introduction
of a idle state event in the dataset that takes into account all different possibilities that are
not task thinking. To validate the performance of the algorithms we will use the normalized
Matthews Correlation Coefficient (nMCC) and the Information Transfer Rate (ITR). Main
results: We analyzed the state-of-the-art algorithms of the last 15 years over several Motor
Imagery (MI) datasets composed by several subjects, showing the differences between the
two approaches from a statistical point of view. Significance: The ability to analyze the
performance of different algorithms in offline and pseudo-online modes will allow the BCI
community to obtain more accurate and comprehensive reports regarding the performance
of classification algorithms.

Keywords BCI-EEG, Asynchronous BCI, Riemann Geometry, MOABB, Pseudo Online BCI,
Deep Learning, Machine Learning.

1 Introduction

Brain Computer Interface (BCI) is a technology that allows a digital device to be controlled
through brain activity signals. In recent years, many diverse modalities for acquiring the signal
produced by the brain during a specific cognitive task have been developed. In general, we
can categorize such procedures into non invasive, with techniques like Electroencephalogram
(EEG) [1] or invasive as the recent Endovascular Electrodes [2]. EEG is a non-invasive acquisition
technique, with high time resolution and is relatively inexpensive. For these reasons, we will
focus on BCI-EEG. During this research, we will focus on Motor Imagery (MI) tasks, i.e., when
the user changes his mental activity by thinking of performing a particular body movement, but
the overall framework is generic and can be applied in many different BCI contexts.
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A BCI technology can operate in 3 different modalities: the online mode, which requires to
constantly analyze the new input data based on real-time EEG data, the offline mode where the
signal is first acquired and saved, and then processed later with no real time constraints. Lastly,
the pseudo-online mode does not process the data in real-time during the experiment but the
collected data are processed a posteriori as if they were received online. The main differences
are that in the offline mode the whole data is available for the analysis, while in the online or
pseudo-online modes, the data is typically analyzed in a short time window running across the
signal. The online and pseudo-online differ by the amount of time that can be used to process
the data i.e. the pseudo-online method analyzes the same data as the online method but with
no real time constraint on the processing time.

Offline analysis is usually done with synchronous BCIs, i.e. BCIs that process the signal in
predefined time windows where a mental task is performed (e.g. the imagination of a movement)
and discards the remaining signal, thus creating a mode of interaction that is unnatural for real-
life applications. In contrast, an asynchronous BCI, compatible both with online and pseudo-
online modalities allows a given mental activity to be performed for the duration decided by the
subject and not restricted to specific time windows. In particular, such BCIs must be able to
distinguish the brain signal between intervals of rest or idle periods vs mental activity. It might
as well be able to decide between different types of mental activities.

Usually offline processing of the EEG signals turns out to be more accurate, while a online
signal analysis approach generally produces results that are less accurate but more better suited
for use in a therapeutic application [3]. The pseudo-online implementation can be used as a
methodology that best approximates the online process while relaxing the real-time constraint
for the processing, thus showing the best attainable performance for a specific BCI task. Many
BCI studies are tested only offline, thus generating unrealistic performance compared to real-life
scenarios [4]. Such approaches introduce an important research bias, as many new classification
algorithms created to perform well offline lose their competitive nature in real-life applications.
It is therefore of particular importance for the advancement of BCI technology that algorithms
are validated in online or pseudo-online mode. Some studies test their algorithms online, but
their datasets and codes are not always made public, making the data analysis unreproducible.
All of this has an extremely negative influence on the speed of progress in the BCI field, making
it particularly difficult and complex for people to reproduce published results. As a matter of
fact, even just trying to reproduce the performance of state-of-the-art algorithms on a specific
dataset is complex and time demanding. In addition, the subjects collected in each dataset
are usually few, which is statistically non significant, thus comparing different algorithms on
different datasets can produce even antithetical results.

To solve some of these issues for the offline mode, the MOABB [5] framework was introduced
to test the performance of different classification algorithms on identical datasets and identical
preprocessing pipelines. This framework has been a turning point for the BCI community.
However, it does not currently include pseudo-online testing, thus having a lower impact on
online BCI quality.

Our first contribution is to propose a pseudo-online extension of MOABB, with the use of a
technology based on overlapping sliding windows, which also enables the integration of analyses
in asynchronous mode.

In addition, we created a performance dashboard comparing the best-known algorithms in
BCI classification. This dashboard can be used as a starting point for comparing one’s own
new algorithm. We took care to test the best state-of-the-art pipelines produced in the last 15
years. This list cannot be understood as definitive but rather as a starting point. To perform
this comparison, it was also necessary to extend MOABB, currently based on the scikit-learn
library, with the deep learning frameworks of TensorFlow and Keras.

Ultimately, the goal of this paper is to introduce a framework for pseudo online analysis of
BCI datasets, so as to enable rapid advancement of performance in the BCI community and also
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to make the community more inclusive to people with different backgrounds. The framework is
showcased with EEG Motor Imagery with 4 datasets but the framework can be easily extended
to other MI datasets, data acquisition procedures or even other types of BCIs.

The following article is structured as follows: in 2, we describe the framework and the
pipelines considered in the state of the art; 3 lists the results obtained using within-session and
cross-session evaluation. Finally, 4 analyzes the implications of the framework and its current
limitations; 5 summarizes the results of our study.

2 Methods

In this section, we list the different Motor Imagery (MI) datasets considered in this research,
along with the methodology used to transform a regular offline dataset into a format suitable for
a pseudo online analysis. This procedure is applicable to every dataset recorded using normal
procedures to be processed offline, providing a great versatility to the framework. This concept
of extending a synchronously recorded dataset to an asynchronous approach has already been
proposed in [6].

We will also explain the concept of paradigm and the possible different evaluation procedures.
We will then present the statistical analysis that we used and devote special attention to the
metrics considered in that analysis. The differences of the proposed framework with respect
to the standard MOABB is described in the Figure 1. The whole project is implemented using
Python3 and is based on the use of the MNE [7], PyRiemann [8], scikit-learn [9], TensorFlow [10],
MOABB [5] and SciKeras libraries.

Figure 1: Representation of the framework for the pseudo-online architecture, partially inspired
by [5].

2.1 Datasets

We consider 4 open-access motor imagery offline BCI datasets consisting of several subjects for
each dataset and several sessions for each subject. 1 contains all the details about these datasets.

Each of these datasets include a stimulus channel (stim channel) that marks an events only
when the subject is actively engaged in a task. To align the datasets with online situations, the
first step to transform it is to introduce a nothing event for each part that is not associated to
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Table 1: Datasets considered during this study.

Dataset Subjects Channels Sampling Rate Sessions Task
BNCI2014001 [11] 9 22 250 Hz 2 4
BNCI2015001 [12] 12 13 512 Hz 1 2
BNCI2014002 [13] 14 15 512 Hz 5 2
BNCI2014004 [14] 9 3 250 Hz 1 2

a task. This inclusion allows for a performance evaluation that better reflects real-life scenarios.
In practical applications, individuals may have periods where they actively attempt to perform
a task, while they may be engaged in various unrelated thoughts such as daydreaming at other
times. The nothing event is designed to encapsulate these diverse possibilities that are not
task-related.

The introduction of the nothing event, however, introduces an important issue; the dataset
now turns out to be strongly unbalanced toward that new class. We will analyze this problem
and propose possible solutions in 2.3.1.

Using this procedure, we were able to test algorithms for the classification of 5 MI tasks
(BNCI2014001) or 3 MI tasks (BNCI2014002, BNCI2014004, BNCI2015001).

2.2 Paradigm

Following the line drawn by MOABB, we consider the paradigm as a way to transform continuous
data to trials, i.e., the basic elements for any machine learning algorithm. In addition, the
paradigm is used to set the preprocessing of the continuous data, keeping it unique for all
datasets and all subjects considered in order to allow a fair comparison.

To enable the framework to operate in pseudo-online mode, an extension of the methodology
is required, taking into account that tasks can vary in duration. This extension is achieved by
employing a sliding window approach. In the MOABB framework, a single trial is extracted
for each task performed by the subject, resulting in a pure signal consisting of only one epoch
extracted from each task. However, in order to achieve a performance evaluation that closely
resembles a real BCI application, it is necessary to transform the dataset into an asynchronous
format using an overlapping sliding windows approach. The idea is to select a sliding windows
with size T that is smaller than the total time of the task and run it on the continuous data
with a step size, which is controlled using the overlapping parameter (see 2). In general, the
optimal values for the length of the sliding window and the overlapping is a trade-off between
accuracy and response speed.

The sliding window approach can be seen as a data augmentation procedure. This approach
actually generates a significantly greater number of trials per class compared to the original
method [15].

Implementing the sliding windows approach introduces the challenge of generating windows
that contain a mixture of events, as the sliding operation spans across the entire continuous
data. To deal with this issue, we had to assign a unique label to these events, in order to create
a dataset that is compatible with most machine learning algorithm. The assignment of this
unique label is based on the percentage of data contained within a specific mixed window. We
consider that windows are small enough so that only two events can appear in a window. Let
us call a and b respectively the percentages of the window with the first and second events:

• If a > b, we assign the label of the initial event.

• If a ≤ b, we assign the label of the last event. This label is used in case of equality because
the subject intent is to perform the new task.
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Figure 2: Figure explaining the introduction of the nothing event and the sliding windows in
the BCI Dataset 2a (BNCI2014001) [11]. In this example, we use a window of 2 seconds with
an overlapping of 50%

A detailed representation of this procedure can be found in 3.

Figure 3: The different ways to treat the windows that contain two events.

We enforce the evaluation process to include all the different tasks plus the new nothing task,
generating a non binary classification. This problem will be taken in account in 2.3.1.

2.3 Evaluation

Having split the continuous data using the sliding window approach, we are now ready to
evaluate the performance of several algorithms on these modified datasets. In this section, we
discuss the metrics used as well as the possible different evaluations types: Within-Session and
Cross-Session.

2.3.1 Metrics

The transformation of the dataset introduces an important issue: the transformed dataset is
strongly unbalanced with respect to the nothing event. Furthermore, the transformation always
introduces a new class, so that we have to deal with non-binary classification throughout our
processing.

Different solutions are possible in such situations. Collecting a large amount of data for
BCI purposes can be expensive and time-consuming, making data cancellation (randomly delete
samples from the majority class to balance the class distribution) an impractical option. To solve
this problem, we adopted a metric that is reliable with unbalanced datasets [16]. The standard
measure used in BCI is accuracy, which gives reliable results for balanced datasets. When this
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condition fails, accuracy produces an overly optimistic performance estimation. While such a
metric is perfectly adequate to evaluate the performance in a synchronized BCI where usually
the datasets are balanced, it no longer is in an asynchronous setting. In such a situation, the
BCI literature recommends the use of Cohen’s Kappa coefficient [16, 17]. There are however
other measures to deal with unbalanced datasets [18] such as Matthews Correlation Coefficient
(MCC) [19], which was introduced by Matthews in the case of binary classification [19] and
generalized to multi-class problems [20]. Recent research has shown that Cohen’s Kappa and
MCC performance measures are very similar in most situations, but may differ in others. This
leads to anomalous performance for Cohen’s Kappa in certain situations, which is why we
preferred to use MCC [21, 22]. In addition, MCC has been shown to be much more informative
than several metrics including ROC-AUC in binary classification [23]. In the case of binary
classification MCC is defined as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (1)

where TP , TN , FP and FN are respectively the number of true positives, true negatives, false
positives and false negatives defined using the confusion matrix. MCC lies in the range [-1,
+1], with -1 and +1 being reached respectively in case of perfect misclassification and perfect
classification. MCC = 0 is the expected value for the coin tossing classifier [24]. We decided to
use the normalized version of MCC in the framework, the nMCC is defined as nMCC = MCC+1

2 .
Such normalization projects the original range [-1,+1] into the interval [0, +1], where +1

correspond to a perfect classification while nMCC = 0.5 is for prediction similar to random
guessing. Identical considerations apply to its extension to multi label classification.

The performance of a BCI system can also be evaluated by how much information can be
transferred without committing errors in a specific time frame, i.e., the bit-rate of the system.
Usually, the information transfer rate (ITR) is used, of which two definitions have been formu-
lated: the first, which was proposed by Wolpaw et al [25] includes the use of accuracy in its
definition and thus is based on the same assumptions as accuracy. In our situation, we therefore
decided to adopt the definition of ITR given by Nykopp [26, 27], that is based on the concept
of Mutual Information (MI) [28]. The MI between two discrete random variables X and Y is
defined as

MI(X;Y ) =
∑
yεY

∑
xεX

p(x, y) log
p(x, y)

p(x)p(y)
(2)

where p(x, y) is the joint probability of realizing events x and y simultaneously and p(x) and p(y)
is the probability associated with the individual variables. The logarithm used in this context is
base two, as information is measured and conveyed in bits. ITR is then defined as the amount
of information transmitted per minute (bits/minute)

ITR = MI(X,Y )
60

T
(3)

where T (seconds/symbol) is the time in seconds needed to transmit a symbol, in our case to
select a task. Similar considerations apply to its extension to multi label classification.

2.3.2 Within-Session Evaluation Procedure

The Within-Session evaluation procedure involves evaluating performance directly within the
same session of a certain subject. The current evaluation method employed in MOABB utilizes
a 5-fold Cross Validation. However, in the Pseudo-Online extension, we decided to not use
Cross Validation as our objective is to explicitly preserve the causal relationship within the
data. Therefore, we enforced that the test dataset temporally follows the training portion. For
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the same reason, we also decided to not shuffle the data. Since, in the datasets considered, there
is not a predefined split in the training and test part, we followed the state-of-the-art procedure,
which is to split the dataset into a training dataset containing the first 80% windows and a test
dataset containing the 20% remaining ones. For the hyper-parameter, we used a 5-fold cross
validation on the training dataset.

2.3.3 Cross-Session Evaluation Procedure

The Cross-Session evaluation procedure focuses on a single subject and incorporates all sessions
except one for the training phase, while utilizing the remaining session for the testing phase.
This approach is carried out with a Leave One Out Cross Validation.

In order to allow a complete fairness of the approach, we performed a Nested Cross Vali-
dation when the hyper parameter tuning was necessary [29]. However, it is noticeable that the
performance obtained using the nested approach is statistically similar to that obtained with
the less computationally intensive flat cross-validation approach, a finding that is aligned with
some recent research [30]. We chose to produce the Nested Cross Validation results, but those
obtained using the flat cross-validation are given for comparison in the appendix in Table 8.

2.3.4 Pipelines Considered

We considered different state of the art pipelines for Motor Imagery classification in BCI de-
scribed in 2. This list covers the algorithms that have shown good classification performance
in the last 15 years. This list is not intended as definitive but rather as a starting point: each
research group will be able to add its algorithm to the dashboard, after testing it/them in the
same setting.

To perform this comparison, it was also necessary to extend MOABB, currently based on the
sole scikit-learn library to enable it to use the Deep Learning (DL) frameworks of TensorFlow
and Keras.

In recent years, DL algorithms became increasingly popular for solving extremely complex
problems that could not be solved by traditional Machine Learning (ML) approaches. The
popularity of such algorithms is due to recent successes in a wide variety of fields, from Natural
Language processing [31] to image recognition [32]. Only recently have such algorithms begun
to be applied for BCI classification.

Conventional ML – non DL – algorithms are not suitable to process directly the raw data.
There is usually a feature extraction step that is designed with some domain expertise. On the
contrary, DL models have shown remarkable capabilities in automatically learning and extracting
relevant features from raw data, such as EEG signals. In addition, these models proved to be
particularly adaptable and generelizable to new subjects and sessions. Despite their potential,
DL models are not extensively used in the field of BCI due to several challenges: they typically
demand a substantial volume of training data, which can be difficult and costly to acquire in BCI
due to the specialized equipment and expertise required. Additionally, they are often perceived
as black boxes, lacking interpretability and making it challenging to understand the decision-
making process. In BCI applications, interpretability is essential for fostering user trust, gaining
clinical acceptance, and enabling effective feedback mechanisms.

To replicate the state of the art, we used the Keras [33] framework and the KerasClassifier
function from the SciKeras package. With this library, it is possible to create a deep learning
architecture and convert it into a scikit-learn pipeline that can be integrated directly into the
standard MOABB framework. In order to make the results more stable, every deep learning
pipeline is preceded by a standardization step which puts each channel to zero mean and unit
standard deviation. We also apply a re-sampling procedure to ensures that each architecture
incorporates a temporal filter that is aligned with the implementation provided in the state-of-
the-art techniques. Moreover, the same sliding window parameters were used for all algorithms



Classification of BCI-EEG based on Augmented Covariance Matrix

in order to allow for a fair comparison. Details on the DL hyper parameters are given in Table 3.

Table 2: Pipelines considered in this study.

Name Pipeline Feature Extraction Classifier References
MDM Spatial Covariance estimated

with Sample Estimator
Mean Distance to Mean (MDM) [34]

Cov + EN Spatial Covariance estimated
with Sample Estimator mapped
to Tangent Space

Optimized Elastic Network
(EL)

[35]

FgMDM Spatial Covariance estimated
with Sample Estimator

Minimum Distance to Mean
with geodesic filtering
(FgMDM)

[34]

TANG + SVM Spatial Covariance estimated
with Sample Estimator mapped
to Tangent Space

Optimized Support Vector
Machine (SVM)

[34]

AUG + TANG + SVM Augmented Spatial Covariance
estimated with Sample
Estimator mapped to Tangent
Space

Optimized SVM [36]

CSP + LDA Common Spatial Patterns
(CSP)

Optimized shrinkage Linear
Discriminant Analysis (LDA)

[37]

CSP + RF CSP Optimized Random Forest (RF) [37]
CSP + SVM CSP Optimized SVM [37]
AR + SVM Autoregressive Coefficient Optimized SVM [38]
AR + LR Autoregressive Coefficient Optimized Linear Regression

(LR)
[38]

FBCSP+LDA Filter Bank Common Spatial
Patterns (FBCSP)

Optimized Shrinkage LDA [39, 37]

FBCSP+SVM FBCSP Optimized SVM [39]
FBCSP+MLP FBCSP MLP [39]
FBCSP+RF FBCSP Optimized RF [39]

ShallowConvNet Standardized and resample
EEG signal at 250Hz

CNN [40]

DeepConvNet Standardized and resample
EEG signal at 250Hz

CNN [40]

EEGNet 8 2 Standardized and resample
EEG signal at 128Hz

CNN with architecture EEGNet [41]

EEGTCNet Standardized and resample
EEG signal at 250Hz

CNN with architecture
EEGTCNet

[42]

EEGITNet Standardized and resample
EEG signal at 128Hz

CNN with architecture
EEGITNet

[43]

EEGNeX 8 32 Standardized and resample
EEG signal at 128Hz

CNN with architecture
EEGNeX

[44]

When possible, the hyper-parameters of the classification models were optimized using a Grid
Search procedure. We did not create an ablation study for the DL models since we faithfully
reproduced the architectures proposed in the respective references.

3 Results

In this section, we report the performance results obtained with the pipelines considered. Ul-
timately, to validate the robustness and validity of our pseudo-online approach, we tested the
algorithms on different datasets, subjects and tasks.

3.1 Paradigm

The sliding window is defined to have a 2 s duration windows with a 50% overlapping.
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Table 3: Common parameters for DL pipelines.

Parameter Value
Epoch 300

Batch Size 64
Validation Split 0.2

Loss Sparse Categorical Crossentropy
Optimizer Adam

Learning Rate = 0.0009
Callbacks ES Early Stopping

Patience = 75
Monitor = Validation Loss

Callbacks LR ReduceLROnPlateau
Patience = 75

Monitor = Validation Loss
Factor = 0.5

Except for the filter-bank base algorithms, we applied on all datasets a standard preprocess-
ing – for the motor imagery task – band-pass filter in the region [8; 30] Hz. For pipelines based
on the Filter Bank paradigm, we used 6 different non overlapping windows in order to filter the
EEG signal into 8–12 Hz, 12–16 Hz, 16–20 Hz, 20–24 Hz, 24–28 Hz, 28–35 Hz.

3.2 Pseudo Online Evaluation

3.2.1 Within-Session Evaluation

We give the results of the pseudo-online evaluation using the within-session methodology in
Table 4. These results are also displayed in the appendix (8, 9, 10 and 11), showing also a
detailed study of the statistical significance.

Table 4: Performance Pseudo Online Within-Session Evaluation. Results for the DL architecture
are listed after the two line.

Pipeline BNCI2014002 BNCI2014004 BNCI2015001 BNCI2014001
MDM 0.66± 0.09 0.63 ± 0.06 0.72 ± 0.07 0.67± 0.05

Cov + EN 0.65± 0.09 0.62 ± 0.08 0.73 ± 0.08 0.69± 0.07

FgMDM 0.67± 0.09 0.64 ± 0.06 0.74 ± 0.07 0.70± 0.07

TANG + SVM 0.69± 0.10 0.61 ± 0.08 0.74 ± 0.08 0.70± 0.08

AUG + TANG + SVM 0.70 ± 0.10 0.66 ± 0.09 0.76 ± 0.08 0.70± 0.07

CSP + LDA 0.58± 0.10 0.60 ± 0.08 0.65 ± 0.09 0.57± 0.05

CSP + RF 0.59± 0.10 0.61 ± 0.06 0.65 ± 0.08 0.56± 0.05

CSP + SVM 0.59± 0.10 0.60 ± 0.08 0.65 ± 0.08 0.57± 0.05

FBCSP+LDA 0.69± 0.10 0.65 ± 0.09 0.74 ± 0.08 0.71 ± 0.06
FBCSP+SVM 0.69± 0.11 0.64 ± 0.09 0.74 ± 0.09 0.70± 0.07

FBCSP+MLP 0.67± 0.11 0.65 ± 0.08 0.72 ± 0.09 0.69± 0.06

FBCSP+RF 0.69± 0.10 0.63 ± 0.08 0.73 ± 0.09 0.68± 0.07

ShallowConvNet 0.64± 0.10 0.58 ± 0.06 0.73 ± 0.08 0.69± 0.08

DeepConvNet 0.61± 0.09 0.58 ± 0.05 0.63 ± 0.08 0.61± 0.07

EEGNet 8 2 0.65± 0.08 0.59 ± 0.07 0.73 ± 0.07 0.67± 0.07

EEG ITNet 0.61± 0.08 0.57 ± 0.06 0.68 ± 0.08 0.64± 0.08

EEG TCNet 0.64± 0.10 0.58 ± 0.08 0.70 ± 0.08 0.66± 0.07

EEGNeX 8 32 0.58± 0.08 0.56 ± 0.06 0.66 ± 0.07 0.61± 0.07
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3.2.2 Cross-Session Evaluation

We give the results of the pseudo-online evaluation using the Cross-Session methodology in
Table 5. These results are also displayed in the appendix (12, 13 and 14), showing also a
detailed study of the statistical significance.

Table 5: Performance Pseudo Online Cross-Session Evaluation Using Nested Cross Validation.
Results for the DL architecture are listed after the two line.

Pipeline BNCI2014004 BNCI2015001 BNCI2014001
MDM 0.61 ± 0.06 0.67 ± 0.07 0.65± 0.05

Cov + EN 0.59 ± 0.07 0.69 ± 0.07 0.67± 0.06

FgMDM 0.62 ± 0.06 0.69 ± 0.06 0.67± 0.06

TANG + SVM 0.57 ± 0.07 0.68 ± 0.07 0.65± 0.08

AUG + TANG + SVM 0.63 ± 0.08 0.72 ± 0.06 0.69 ± 0.06
CSP + LDA 0.58 ± 0.07 0.61 ± 0.07 0.57± 0.05

CSP + RF 0.58 ± 0.05 0.61 ± 0.07 0.56± 0.04

CSP + SVM 0.57 ± 0.07 0.61 ± 0.07 0.56± 0.05

FBCSP+LDA 0.62 ± 0.07 0.70 ± 0.07 0.68± 0.06

FBCSP+SVM 0.61 ± 0.07 0.68 ± 0.08 0.67± 0.06

FBCSP+MLP 0.62 ± 0.06 0.68 ± 0.08 0.65± 0.06

FBCSP+RF 0.61 ± 0.07 0.67 ± 0.08 0.66± 0.06

ShallowConvNet 0.55 ± 0.05 0.70 ± 0.07 0.69± 0.06

DeepConvNet 0.56 ± 0.04 0.64 ± 0.05 0.62± 0.07

EEGNet 8 2 0.56 ± 0.05 0.70 ± 0.06 0.67± 0.07

EEG ITNet 0.55 ± 0.05 0.68 ± 0.07 0.65± 0.07

EEG TCNet 0.56 ± 0.06 0.70 ± 0.06 0.66± 0.06

EEGNeX 8 32 0.55 ± 0.05 0.65 ± 0.06 0.61± 0.06

4 Discussion

The numerous results performed on different datasets with different classification tasks, both
binary and multi-class, showed a good alignment with state-of-the-art results. Overall, the
method that shows the best performance is the augmented covariance method with classification
using SVM on the tangent space [36]. In some situations, the FBCSP-based algorithms also
obtain comparable results (BNCI2014001, BNCI2014002), while in the remaining considered
datasets (BNCI2014004, BNCI2015001), the performance produced by the augmented covariance
method appears to be superior.

However, the augmented covariance method depends on the selection of two hyper parameters
with a grid search which is computationally intensive due to the increasing size of the augmented
covariance matrix with the order parameter [45].

In this analysis, it is shown that in general DL algorithms have lower performance than
standard machine learning algorithms. One possible explanation is that more data are needed to
train the models efficiently, eventually using data augmentation procedures, such as introducing
random Gaussian noise on the data or time inversion procedures [46].

4.1 Comparison Pseudo Online vs Offline Evaluation

In general, it is observed that the performance achieved through pseudo-online evaluation is
lower compared to offline evaluation. This can be attributed to several factors. Firstly, in order
to enable real-time applications, the duration of epoch sliding window is typically reduced,
which can impact the accuracy of classification. Secondly, the introduction of the nothing event
introduces an additional class to the already complex classification task. The nothing event
encompasses a wide range of mental phenomena, resulting in high variability within this class,
which in turn affects the overall performance of the classification task.
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4.1.1 Within-Session Evaluation

We want to emphasize the change in performance and ranking for the best algorithms using
the standard offline against the pseudo-online using the Within-Session evaluation methodology,
both using nMCC as metric. The performance of the offline methodology turns out to be much
better compared to the pseudo-online evaluation as shown in Tables 6 and 4.

A detailed analysis of Figure 4 reveals several noteworthy differences indicated by the gray
regions in Figure 4(b). Firstly, the ACM methodology outperforms the state of the art ap-
proaches in both offline and pseudo online evaluations. Secondly, some DL algorithms seem
to be more stable in the pseudo online approach for the BNCI2014001 dataset. This can be
attributed to the utilization of sliding windows as a data augmentation technique, highlighting
the significant dependence of – at least some – DL algorithms on large amounts of data. The
ranking of certain algorithms is completely opposite: the red box in Figure 4(b) representing
the pipelines "CSP+LDA" and "MDM" are an example of such a ranking change. Figure 5
presents a meta-analysis of these two pipelines. The results demonstrate the superiority of the
"CSP+LDA" pipeline in the offline evaluation that is completely reversed in the pseudo-online
approach.

(a) (b)

Figure 4: Result for 3 task classification using results of dataset BNCI2015001, BNCI2014002
and BNCI2014004 using Within-Session evaluation. Plot (a) shows the meta analysis of the
different methods considered using offline evaluation. Plot (b) shows the meta analysis of the
different methods considered using pseudo online evaluation. The grey zone is where we find a
statistical significant difference between the two evaluations. Red boxes indicate the behaviour
analyzed in 5, which plots the significance that the algorithm on the y-axis is better than the
one on the x-axis. The color represents the significance level of the difference of accuracy, in
terms of t-values, and we show only the significant interactions (p < 0.05).

4.1.2 Cross-Session Evaluation

We made the same analysis of change in performance and ranking for the best algorithms for
the Cross-Session evaluation. To compare the performance between offline and pseudo-online
refer to Tables 7 and 5.

A detailed analysis of Figure 6 reveals several noteworthy differences indicated by the gray
regions in Figure 6(b). The findings in the Cross-Session case align with our previous obser-
vations. In this case also, we noticed a complete reversal in the ranking of certain algorithms
compared to the results highlighted in Figure 6(b). Specifically, the red boxes representing the
pipelines "CSP+LDA" and "MDM" exemplify this ranking discrepancy. To further analyze
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(a) (b)

Figure 5: Result for Meta Analysis of CSP+LDA vs MDM on 3 task classification using results
of dataset BNCI2015001, BNCI2014002 and BNCI2014004 using Within-Session evaluation.
Plot (A) shows the meta analysis using offline evaluation. Plot (B) shows the meta analysis
using pseudo online evaluation. We show the standardized mean differences, while p-values are
computed as one-tailed Wilcoxon signed-rank test for the hypothesis given as title of the plot
and the gray bar denote 95% interval. Here, * stands for p < 0.05, ** for p < 0.01, and *** for
p < 0.001.

these pipelines, we conducted a meta-analysis, in Figure 7. The outcome of this analysis clearly
demonstrates the superiority of the "CSP+LDA" pipeline in the offline evaluation, whereas the
pseudo-online approach completely reverses this superiority.

(a) (b)

Figure 6: Result for 3 task classification using results of dataset BNCI2015001 and BNCI2014004
using Cross-Session evaluation. Plot (a) shows the meta analysis of the different methods con-
sidered using offline evaluation. Plot (b) shows the meta analysis of the different methods
considered using pseudo online evaluation. The grey zone is where we find a statistical signif-
icant difference between the two evaluations. Red boxes indicate the behaviour analyzed in 7,
which plots the significance that the algorithm on the y-axis is better than the one on the x-axis.
The color represents the significance level of the difference of accuracy, in terms of t-values, and
we show only the significant interactions (p < 0.05).
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(a) (b)

Figure 7: Result for Meta Analysis of CSP+LDA vs MDM on 3 task classification using results
of dataset BNCI2015001 and BNCI2014004 using Cross-Session evaluation. Plot (a) shows the
meta analysis using offline evaluation. Plot (b) shows the meta analysis using pseudo online
evaluation. We show the standardized mean differences, while p-values are computed as one-
tailed Wilcoxon signed-rank test for the hypothesis given as title of the plot and the gray bar
denote 95% interval. Here, * stands for p < 0.05, ** for p < 0.01, and *** for p < 0.001.

5 Conclusion

In this research, we introduced an extension of the current MOABB framework in order to
provide a framework to test different algorithms in a pseudo-online evaluation. In particular,
this modification is based on the use of an overlapping sliding windows approach and on the
introduction of an idle state in the normal Motor Imagery datasets. In order to verify the func-
tioning of such a framework, we tested some of the most efficient algorithms produced in the
state-of-the-art of the last 15 years using both ML and DL algorithms. With such a statisti-
cal analysis, we show how the augmented covariance approach produces superior performance
compared to the state of the art, considering different classification task and different evaluation
procedures. We also showed that the efficiency and ranking of the algorithms is highly dependent
on the type of analysis – offline or pseudo-online – performed. The pseudo-online mode also
exhibited some more stable performance for some combinations of DL algorithms and datasets.
In conclusion, the ability to analyze the performance of various algorithms in both offline and
pseudo-online modes can significantly accelerate the progress of classification algorithms in the
BCI community. By conducting evaluations in offline mode initially and then validating the
results in pseudo-online mode, researchers can effectively enhance the performance of these al-
gorithms. This iterative approach enables the identification of strengths, weaknesses, and areas
for improvement, leading to advancements in BCI classification algorithms at a faster pace.
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Figure 8: Result for BNCI2014001 classification, using Within-Session evaluation. Plot (a) shows
the rain clouds plots for each pipeline, showing the distribution of the score of every subject.
Plot (b) shows a bar plot of the score with the error of the different pipelines and for every
datasets considered. Plot (c) shows the meta analysis of the different methods considered. This
plots the significance that the algorithm on the y-axis is better than the one on the x-axis. The
color represents the significance level of the difference of accuracy, in terms of t-values, and we
show only the significant interactions (p < 0.05).
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Figure 9: Result for BNCI2014002 classification, using Within-Session evaluation. Plot (a) shows
the rain clouds plots for each pipeline, showing the distribution of the score of every subject.
Plot (b) shows a bar plot of the score with the error of the different pipelines and for every
datasets considered. Plot (c) shows the meta analysis of the different methods considered. This
plots the significance that the algorithm on the y-axis is better than the one on the x-axis. The
color represents the significance level of the difference of accuracy, in terms of t-values, and we
show only the significant interactions (p < 0.05).
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Figure 10: Result for BNCI2014004 classification, using Within-Session evaluation. Plot (a)
shows the rain clouds plots for each pipeline, showing the distribution of the score of every
subject. Plot (b) shows a bar plot of the score with the error of the different pipelines and for
every datasets considered. Plot (c) shows the meta analysis of the different methods considered.
This plots the significance that the algorithm on the y-axis is better than the one on the x-axis.
The color represents the significance level of the difference of accuracy, in terms of t-values, and
we show only the significant interactions (p < 0.05).
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Figure 11: Result for BNCI2015001 classification, using Within-Session evaluation. Plot (a)
shows the rain clouds plots for each pipeline, showing the distribution of the score of every
subject. Plot (b) shows a bar plot of the score with the error of the different pipelines and for
every datasets considered. Plot (c) shows the meta analysis of the different methods considered.
This plots the significance that the algorithm on the y-axis is better than the one on the x-axis.
The color represents the significance level of the difference of accuracy, in terms of t-values, and
we show only the significant interactions (p < 0.05).
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Figure 12: Result for BNCI2014001 classification, using Cross-Session evaluation. Plot (a) shows
the rain clouds plots for each pipeline, showing the distribution of the score of every subject.
Plot (b) shows a bar plot of the score with the error of the different pipelines and for every
datasets considered. Plot (c) shows the meta analysis of the different methods considered. This
plots the significance that the algorithm on the y-axis is better than the one on the x-axis. The
color represents the significance level of the difference of accuracy, in terms of t-values, and we
show only the significant interactions (p < 0.05).
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Figure 13: Result for BNCI2014004 classification, using Cross-Session evaluation. Plot (a) shows
the rain clouds plots for each pipeline, showing the distribution of the score of every subject.
Plot (b) shows a bar plot of the score with the error of the different pipelines and for every
datasets considered. Plot (c) shows the meta analysis of the different methods considered. This
plots the significance that the algorithm on the y-axis is better than the one on the x-axis. The
color represents the significance level of the difference of accuracy, in terms of t-values, and we
show only the significant interactions (p < 0.05).



I. Carrara and T. Papadopoulo

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
score

MDM

Cov
+EN

Fg
MDM

TA
NG+SV

M

AUG+TG
SP

+SV
M

CSP
+LD

A

CSP
+RF

CSP
+SV

M

FB
CSP

+LD
A

FB
CSP

+SV
M

FB
CSP

+MLP

FB
CSP

+RF

Sh
allo

wCon
vN

et

Dee
pC

on
vN

et

EE
GNet_

8_2

EE
GTC

Net

EE
GITN

et

EE
GNeX

pi
pe

lin
e

(a)

001-2015
dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sc
or

e

pipeline
MDM
Cov+EN
FgMDM
TANG+SVM
AUG+TGSP+SVM
CSP+LDA
CSP+RF
CSP+SVM
FBCSP+LDA
FBCSP+SVM
FBCSP+MLP
FBCSP+RF
ShallowConvNet
DeepConvNet
EEGNet_8_2
EEGTCNet
EEGITNet
EEGNeX

(b)

AU
G+

TG
SP

+S
VM

CS
P+

LD
A

CS
P+

RF

CS
P+

SV
M

Co
v+

EN

De
ep

Co
nv

Ne
t

EE
GI

TN
et

EE
GN

eX

EE
GN

et
_8

_2

EE
GT

CN
et

FB
CS

P+
LD

A

FB
CS

P+
M

LP

FB
CS

P+
RF

FB
CS

P+
SV

M

Fg
M

DM

M
DM

Sh
al

lo
wC

on
vN

et

TA
NG

+S
VM

AUG+TGSP+SVM

CSP+LDA

CSP+RF

CSP+SVM

Cov+EN

DeepConvNet

EEGITNet

EEGNeX

EEGNet_8_2

EEGTCNet

FBCSP+LDA

FBCSP+MLP

FBCSP+RF

FBCSP+SVM

FgMDM

MDM

ShallowConvNet

TANG+SVM
3

2

1

0

1

2

3

sig
ni

f. 
t-v

al
 (p

<0
.0

5)

(c)

Figure 14: Result for BNCI2015001 classification, using Cross-Session evaluation. Plot (a) shows
the rain clouds plots for each pipeline, showing the distribution of the score of every subject.
Plot (b) shows a bar plot of the score with the error of the different pipelines and for every
datasets considered. Plot (c) shows the meta analysis of the different methods considered. This
plots the significance that the algorithm on the y-axis is better than the one on the x-axis. The
color represents the significance level of the difference of accuracy, in terms of t-values, and we
show only the significant interactions (p < 0.05).
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Table 6: Performance Offline Within-Session Evaluation using the package MOABB changing
the scoring to use nMCC. Results for the DL architecture are listed after the two line.

Pipeline BNCI2014002 BNCI2014004 BNCI2015001 BNCI2014001
MDM 0.73± 0.15 0.73 ± 0.14 0.81 ± 0.14 0.81± 0.11

Cov + EN 0.82± 0.12 0.75 ± 0.14 0.86 ± 0.10 0.83± 0.10

FgMDM 0.81± 0.11 0.74 ± 0.14 0.85 ± 0.11 0.81± 0.11

TANG + SVM 0.81± 0.12 0.75 ± 0.14 0.85 ± 0.11 0.82± 0.10

AUG + TANG + SVM 0.84± 0.11 0.81 ± 0.12 0.90 ± 0.08 0.86 ± 0.09
CSP + LDA 0.80± 0.13 0.74 ± 0.14 0.84 ± 0.11 0.79± 0.10

CSP + RF 0.79± 0.12 0.72 ± 0.14 0.83 ± 0.11 0.78± 0.10

CSP + SVM 0.80± 0.13 0.75 ± 0.15 0.84 ± 0.10 0.80± 0.11

FBCSP+LDA 0.81± 0.13 0.77 ± 0.14 0.88 ± 0.09 0.84± 0.09

FBCSP+SVM 0.82± 0.12 0.78 ± 0.13 0.88 ± 0.08 0.84± 0.09

FBCSP+MLP 0.81± 0.12 0.78 ± 0.14 0.87 ± 0.09 0.83± 0.09

FBCSP+RF 0.81± 0.13 0.75 ± 0.14 0.86 ± 0.09 0.82± 0.09

ShallowConvNet 0.88 ± 0.12 0.72 ± 0.18 0.91 ± 0.11 0.72± 0.17

DeepConvNet 0.87± 0.11 0.72 ± 0.19 0.88 ± 0.14 0.34± 0.08

EEGNet 8 2 0.85± 0.16 0.69 ± 0.20 0.90 ± 0.12 0.61± 0.21

EEG ITNet 0.70± 0.18 0.65 ± 0.15 0.71 ± 0.17 0.34± 0.05

EEG TCNet 0.73± 0.20 0.69 ± 0.20 0.76 ± 0.19 0.40± 0.14

EEGNeX 8 32 0.70± 0.21 0.67 ± 0.17 0.72 ± 0.20 0.45± 0.16

Table 7: Performance Offline Cross-Session Evaluation using the package MOABB changing the
scoring to use nMCC. Results for the DL architecture are listed after the two line.

Pipeline BNCI2014004 BNCI2015001 BNCI2014001
MDM 0.79 ± 0.14 0.87 ± 0.11 0.59± 0.14

Cov + EN 0.81 ± 0.14 0.90 ± 0.10 0.64± 0.12

FgMDM 0.80 ± 0.14 0.89 ± 0.10 0.63± 0.13

TANG + SVM 0.81 ± 0.14 0.90 ± 0.10 0.62± 0.13

AUG + TANG + SVM 0.85 ± 0.14 0.94 ± 0.07 0.73 ± 0.13
CSP + LDA 0.81 ± 0.14 0.89 ± 0.10 0.60± 0.14

CSP + RF 0.76 ± 0.15 0.86 ± 0.12 0.56± 0.13

CSP + SVM 0.81 ± 0.14 0.89 ± 0.10 0.61± 0.13

FBCSP+LDA 0.82 ± 0.14 0.91 ± 0.08 0.66± 0.13

FBCSP+SVM 0.83 ± 0.14 0.91 ± 0.08 0.66± 0.13

FBCSP+MLP 0.82 ± 0.14 0.92 ± 0.08 0.65± 0.12

FBCSP+RF 0.80 ± 0.15 0.90 ± 0.09 0.63± 0.11

ShallowConvNet 0.73 ± 0.19 0.92 ± 0.10 0.70± 0.16

DeepConvNet 0.75 ± 0.17 0.90 ± 0.11 0.37± 0.10

EEGNet 8 2 0.75 ± 0.16 0.90 ± 0.12 0.59± 0.19

EEG ITNet 0.71 ± 0.15 0.79 ± 0.15 0.43± 0.16

EEG TCNet 0.74 ± 0.20 0.84 ± 0.17 0.44± 0.14

EEGNeX 8 32 0.71 ± 0.16 0.76 ± 0.19 0.46± 0.16
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Table 8: Performance Pseudo Online Cross-Session Evaluation. Results for the DL architecture
are listed after the two line.

Pipeline BNCI2014004 BNCI2015001 BNCI2014001
MDM 0.61 ± 0.06 0.67 ± 0.07 0.65± 0.05

Cov + EN 0.59 ± 0.07 0.69 ± 0.07 0.67± 0.06

FgMDM 0.62 ± 0.06 0.69 ± 0.06 0.67± 0.06

TANG + SVM 0.58 ± 0.07 0.68 ± 0.07 0.66± 0.06

AUG + TANG + SVM 0.64 ± 0.08 0.73 ± 0.06 0.70 ± 0.06
CSP + LDA 0.58 ± 0.07 0.62 ± 0.07 0.57± 0.05

CSP + RF 0.58 ± 0.06 0.61 ± 0.07 0.57± 0.04

CSP + SVM 0.60 ± 0.07 0.61 ± 0.07 0.57± 0.05

FBCSP+LDA 0.62 ± 0.07 0.70 ± 0.07 0.68± 0.06

FBCSP+SVM 0.61 ± 0.07 0.70 ± 0.08 0.68± 0.05

FBCSP+MLP 0.63 ± 0.07 0.69 ± 0.08 0.68± 0.06

FBCSP+RF 0.61 ± 0.07 0.68 ± 0.08 0.66± 0.06

ShallowConvNet 0.55 ± 0.05 0.71 ± 0.07 0.69± 0.06

DeepConvNet 0.56 ± 0.05 0.64 ± 0.06 0.62± 0.07

EEGNet 8 2 0.56 ± 0.06 0.70 ± 0.07 0.67± 0.08

EEG ITNet 0.55 ± 0.05 0.68 ± 0.07 0.64± 0.07

EEG TCNet 0.55 ± 0.06 0.70 ± 0.07 0.66± 0.06

EEGNeX 8 32 0.56 ± 0.05 0.66 ± 0.07 0.61± 0.06
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