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Abstract

The proposal for an alternative to the theory of special and general relativity is based on the transfor-
mation of the Weak Equivalence Principle into a law of conservation of acceleration. This states that the
intrinsic acceleration of a particle with or without mass is equal to the sum of the accelerations imposed
on it by the exterior; the fundamental law of dynamics is therefore expressed exclusively in terms of
accelerations. To establish it, a number of general concepts were revisited: (i) the principle of inertia,
extended to uniform expansion and rotation motions; (ii) the compatibility of the Galilean and Lorentz
transformations; (iii) the abandonment of the concept of space-time; (iv) the substitution of the notion
of gravitational deformation of space-time by that of gravitational potentials. Maxwell’s major idea of
the unification of electrodynamics and magnetism, where direct and induced currents flow on the same
support, is taken up to form intrinsic acceleration, an energy per unit of mass and length. The law of
motion is a naturally relativistic wave equation obtained without recourse to the Lorentz transformation.
Three emblematic examples taken up by the proposed formulation enable us to recover the results of
observations, even though it is strictly disjoined from the theory of relativity.
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1 Introduction

The theory of special and general relativity is not called into question, as it is perfectly
coherent and compatible with observations made in the various fields of physics. It is therefore
very difficult, if not impossible, to point out possible flaws, and this is not the aim of this
presentation. Many excellent textbooks are devoted to this theory, for example [1, 2], and only
those elements strictly necessary for the presentation of the formulation will be discussed.

The approach to the formalism described is strictly disjoint from the theory of special and
general relativity. The aim is to show in fine that the results of observations are also rendered by
this new formulation. It corresponds to the extension of discrete mechanics [3] developed around
classical mechanics for fluid flows, solid behavior and wave propagation. It is presented as an
alternative to the equations associated with these fields of physics, the Navier-Stokes equation,
the Navier-Lamé equation or the wave equation. This starting point ensures that the equation of
motion is representative of the most elementary motions, before extending its scope to relativistic
motions.

The first part of this article is devoted to objections to the fundamental concepts on which
relativity theory is based. The first of these concerns the physical meaning of the Weak Equiva-
lence Principle (WEP); since Galileo, the interpretation of the free fall of bodies has focused on
mass, i.e. the mass associated with inertia and equal to the mass associated with gravitation.
Newton would later make this his second law, introducing the concept of momentum, the conse-
rvation of which is one of the pillars of mechanics and relativity. The WEP is revisited to extract
a principle of conservation of acceleration, i.e. that the intrinsic acceleration of a particle with
or without mass is equal to the sum of the accelerations applied to it. Other physics notions are



reconsidered, such as Galilean invariance, which is a form of the principle of inertia, or Newton’s
first law, according to which any body continues on a straight trajectory at constant velocity if
no acceleration is applied to modify this state. In mechanics, rotational motion at constant an-
gular velocity is considered accelerated motion. It is necessary to extend the concept of Galilean
invariance to this rotational motion in order to establish an equation for accelerated motion; in
particular, it is necessary to eliminate the singularity of rotational motion at infinity.

The properties of the discrete law of motion are directly derived from Maxwell’s original
model. It is naturally relativistic without the need to introduce the Lorentz transformation at
any point. Its structure confers numerous conservation properties, including that of total energy
per unit mass, the sum of translational and rotational energies, i.e. compressive and angular
accelerations. By adding time invariance, we find the main symmetries of Noether’s theorem, no
longer in terms of momentum and total energy, but in terms of accelerations.

The aim of this article is to show that this formulation, presented as an alternative to the
theory of special and general relativity, recovers the properties necessary to translate the fun-
damental notion of relativity. Three emblematic examples of SR and GR show how the exact
result is obtained with a strictly disjoint formalism.

2 Objections to general concepts

2.1 Interpretation of the Weak Equivalence Principle

We have to go back to Galileo and his universal principle of the free fall of bodies to un-
derstand the origin of mechanics. All physics rests on this pillar, and all the advances made by
Newton, Einstein and the countless scientists who followed have not called into question either
the observation or the interpretation of it. The successive laws of physics have been built logi-
cally and coherently on the basis of their predecessors. The fact that some of them are based
on incontestable experimental observations does not guarantee the validity of the assumptions
and postulates used to arrive at them; moreover, there are parallel or alternative paths that may
be of particular interest. The unification of the laws of physics has necessitated a return to the
Galilean source to understand the path that led to attributing the notion of free fall to mass. All
experiments since Galileo show that the Weak Equivalence Principle (WEP) is verified with great
precision; the fall of two masses in space carried out recently Microscope [4] provides the same
result with a precision of the order of 10−15 in terms of the Eötvös number. These experiments
continue, despite the level of precision achieved today, in order to search for possible violations
of this principle that could explain certain behaviors of quantum mechanics.

The formalization of mechanics by Newton’s second law establishes, in a more modern version,
that the force required to maintain acceleration is proportional to mass F = m γ. Applied to
gravitational force, it becomes:

mi γ = mg g, (1)

where mi is the mass associated with inertia and mg with gravitation. The WEP [5] assumes
the equality of these two masses. If mi = mg, we can remove the mass from both members of
this relationship:

γ = g. (2)

This observation can be made in many areas of physics, including cosmology, where, for example,
two bodies - a pulsar and a white dwarf - of very different masses, attracted by a larger object,
move towards it with the same acceleration. This law has since been extended to all externally
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imposed h accelerations, as a postulate of discrete mechanics:

γ = h, (3)

where this fundamental law reads as follows: "the intrinsic local acceleration of a particle, with
or without mass, or material medium is equal to the sum of all accelerations applied to it".

2.2 Uniform rotational motion is not accelerated

Galilean or inertial invariance is defined by the satisfaction of the principle of inertia, accor-
ding to which a particle retains its velocity on a straight trajectory if it is not subjected to any
action. Its definition can be formulated by the condition:

dv

dt
= 0, (4)

where v is velocity and γ = dv/dt is acceleration; inertial motion has zero acceleration.
Uniform rotational motion, i.e. motion in which the velocity of rotation about an axis is

constant, is considered in physics to be accelerated motion. Consider the case of a particle whose
angular velocity is equal to Ω around the axis Oz, such that ω = Ω · ez, so the local velocity is
equal to vrot = Ω× r. In cylindrical coordinates, the only non-zero component of motion is that
which follows the r coordinate, vrot = ω r eθ. The equilibrium equation then becomes:

dv

dt
= ω2 r er − 2 ω2 r er = −ω2 r er, (5)

where the two terms on the left-hand side of the relation (5) represent inertia in a Galilean
frame of reference, and the term on the right-hand side corresponds to a fictitious centrifugal
force, −Ω × Ω × r. The conclusion of classical mechanics is that uniform rotational motion is
accelerated motion.

For acceleration to be zero, motion must be stationary, ∂v/dt = 0, and the sum of the inertia
terms must also be zero. In continuum mechanics, the inertia term can be written in several
equivalent forms:

v · ∇v = ∇
Å |v|2

2

ã

− v ×∇× v = ∇ · (v v)− v ∇ · v, (6)

where L = −v×∇× v is the Lamb vector. In the case of uniform motion with velocity v0 on a
straight trajectory, it’s easy to show that the inertia term is identically zero. The condition (4)
is satisfied, but not for uniform rotational motion, whatever the form of the inertia term.

From a physical point of view, there’s no reason why a solid in uniform rotation around
an axis not subject to friction shouldn’t persist indefinitely in this motion. The only possible
explanation calls into question the classical mechanical formulation of inertia, represented by one
of three expressions (6).

The alternative definition of inertia in classical mechanics is symbolized by the form derived
from discrete mechanics :

κ = ∇
Å |v|2

2

ã

−∇⊗
Å |v|2

2
n

ã

, (7)

where κ is the inertial vector, n, the unit vector orthogonal to the axis of rotation and the symbol
∇⊗, the dual curl. The quantity κ can be interpreted as the curvature of the inertial potential
|v|2/2. For uniform translation and rotation about an axis, the inertia is identically zero and the
condition (4) is well satisfied. This result has important consequences: (i) it removes the notion
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of fictitious force or acceleration, leaving only real quantities in the laws of physics, and (ii) it
opens up the possibility of annihilating all terms relating to these two motions in these same
laws.

2.3 Space-time or space and time?

The notion of space-time, introduced in the 18th century by J. Lerond-d’Alembert, was
taken up by the theory of special relativity, then developed into general relativity by A. Einstein.
Until then, Newtonian mechanics had considered space and time as disjoint concepts. In special
relativity, space-time is constructed from the classical coordinates of space, (x, y, z), and a spatial
coordinate defined by the product of celerity and time, d = c0 t. Space-time is then characterized
by the quadruplet (c0 t, x, y, z). In the theory of relativity, lengths are no longer fixed but depend
on the time interval dt considered; using the distance c0 t as length, the metric is written:

ds2 = dx2 + dy2 + dz2 − c20 dt
2, (8)

where ds is the relativistic Minkowski length. The Minkowski spacetime metric is a relativistic
invariant. Indeed, as c0 dt = γ (c0 dt

′ + vdx′/c), dx = γ (dx′ + vdt′), dy = dy′ and dz = dz′ then
the relativistic distance:

ds2 = dx2 + dy2 + dz2 − c20dt
2 = dx′2 + dy′2 + dz′2 − c20dt

′2, (9)

remains unchanged during the transformation between the two inertial coordinate systems. Two
different events can thus be separated by zero distance.

Length contraction and time dilation are ad hoc hypotheses in line with other relativity co-
ncepts, notably the Lorentz transformation. This conception of space-time is open to objections,
even if it is no longer debated in the scientific community. Is it possible to arrive at the same
conclusions and results by exploring potential avenues for a return to Newtonian notions of space
and time?

A return to the concepts of disjoint space and time is not impossible. In this case, lengths
are fixed and time flows smoothly, without depending on velocity. The concepts of relativity
theory, originally based on thought experiments, the clock, proper time and relativistic time,
can be abandoned; space and time no longer depend on the frame of reference. The undisputed
results of special relativity and general relativity must then be found naturally, by the new laws
of physics.

2.4 Compatibility of Galilean and Lorentz transformations

Sometimes presented as contradictory, they are in fact separate and complementary. Let’s
start with the Galilean transformation. A reference frame R

′ moves at a constant velocity v0
relative to a reference frame R. The spatial coordinate in the direction of the wave is represented
by r(t) in the latter frame of reference and by r′(t) in the R

′ frame of reference. To move from
R to R

′, simply apply the transformation:






r′(t) = r(t)− v0 t.

t′ = t
(10)

If a physical law is invariant under the effect of this transformation, it is said to respect
Galileo’s invariance. Applying Newton’s law in the R

′ reference frame, we can easily show that:

F′(t) = m γ ′(t) = m γ(t) = F(t), (11)
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the law of the initial reference frame is valid in any reference frame. This interpretation of
Galileo’s transformation is relative to a change of reference frame, and is used to predict motion
in the R

′ reference frame, considering that the laws are the same in any Galilean or inertial
reference frame. In fact, it should be noted that invariance can be implicitly realized by the
corresponding law F(v0) = 0, whatever its form.

The Lorentz transformation [6] is presented as an extension of Galileo’s transformation to
relativistic motion. One of its forms is written :















r′ = γ (r − v t)

t′ = γ

Å

t− v r

c2
0

ã

,
(12)

where γ is the Lorentz factor γ = 1/
»

1− v2/c2
0
. Note that the Lorentz transformation only

affects the component corresponding to the direction of the wave, while the other components
of space satisfy the Galilean transformation. Although this transformation (12) recovers the
Galilean transformation (11) when v → c0, they are not compatible, as the γ factor in front of
the brackets leads to the appearance of phenomena such as the contraction of lengths and the
dilation of durations. These constraints are in fact ad hoc abstractions that allow us to satisfy
the behavior of a particle’s velocity to tend towards the celerity of the medium on a rectilinear
trajectory. The specific form of the Lorentz factor rules out any possibility of velocity above the
medium’s celerity. For the Galilean and Lorentz transformations to be compatible, without the
abstractions of length contraction and time dilation being endorsed, they will have to be verified
intrinsically by the laws of physics; this is the case of Maxwell’s equations or the wave equation.
The extension of Galileo’s invariance to uniformly rotated motions is therefore essential.

3 Discrete equation of motion

3.1 Maxwell’s local frame of reference

The local reference frame for discrete mechanics is named here "Maxwell’s reference frame",
in honor of J.C. Maxwell. Maxwell, who was the first to understand the entanglement of mutual
interactions between the electrodynamic and magnetic effects of intertwined electrical circuits.
This frame is illustrated in Figure 1.

The local reference frame shown in Figure 1 consists of two geometric structures, primal and
dual. The primal structure is a rectilinear segment Γ oriented by the unit vector t of length
dh = [a, b] named discrete horizon. The dual geometry is a closed contour ∆ positively oriented
by the unit vector n. By construction, the two unit vectors are orthogonal, so t ·n = 0. A family
of Γ∗ segments can be constructed by joining several Γ segments by their common vertices to
tessellate a complete physical Ω domain bounded by a ∂Ω surface. Scalar quantities are defined
on the a or b vertices of the Γ segment as the celerity c0 or the scalar potential φ; the potential
vector ψ is linked to the dual contour ∆. The vectors velocity v and acceleration γ are fixed
on the segment Γ. Velocity and acceleration are not vectors of three-dimensional space but their
restrictions to the Γ segment, they are components of velocity and acceleration of space whose
representations are not necessary. The formulation leaves aside the notions of tensor and the
vectors are themselves scalars on oriented segments; the potential vector ψ is itself a scalar
attached to a primal facet orthogonal to the unit vector n.

The only dimension of space retained for the derivation of the fundamental law of discrete
mechanics is that set by t. Following Maxwell’s idea of electromagnetism, the circulation of a
current in the ∆ circuit generates, in a time-varying regime, an induced current on Γ. Direct and

5



Figure 1. Native discrete mechanics model: a rectilinear segment Γ of length dh = [a, b] oriented
along the unit vector t forms the primal structure. The dual contour ∆ positively oriented by n

is such that t·n = 0. Acceleration γ and velocity v are vectors carried by the Γ oriented segment;
scalar potential φ is assigned to its ends and vector potential ψ is fixed on the ∆ contour.

induced currents are associated with the Γ segment alone. Interactions in the other dimensions
of space are causal from one segment to the next, through their common vertices.

Time flows continuously, invariant to translation. Duration is noted here as dt, and is strictly
independent of velocity, contrary to the theory of special relativity. Physically, it represents the
passage of time between two mechanical equilibria, themselves defined by the solution of the
equation of motion at two instants, to and t = to + dt. The length dh = c0 dt corresponds to
the discrete horizon, the distance [a, b] where a signal emitted at a begins to be perceived by an
observer located at b. The length dh is not contracted and time dt does not undergo dilation as
a function of the ratio v/c0, the definitions and concepts ad hoc of the theory of relativity are
abandoned; the Lorentz transformation is not used for the derivation of the law of motion.

Four operators can be used to transform the information established on the primary structure
and apply it to the dual structure, and vice versa. The discrete gradient of a scalar ∇φ =
(φb − φa)/dh is the restriction of the classical gradient to the segment Γ. The primal curl ∇× v
corresponds to the circulation of the velocity vector along the segments of the Γ∗ family. The
∇·v operator is the divergence of the velocity assigned to the a vertex of the flows on all segments
having this vertex in common. Finally, the dual curl ∇ ⊗ ψ is calculated as the circulation of
ψ along the dual contour ∆. The symbol ∇⊗ is sometimes used to define the tensor product,
but the absence of tensors in the presented formulation avoids any possible confusion. These
differential geometry operators, used in certain approaches notably linked to exterior calculus,
have remarkable properties, notably to mimic certain established continuous media, ∇×(∇φ) = 0
and ∇ · (∇ ⊗ ψ) = 0 whatever the polygonal or polyhedral geometric structures used. Direct
currents are represented by the potential gradient ∇φ and induced currents by the operator
∇ ⊗ ψ, which projects the result onto Γ. In fact, the acceleration γ fixed on Γ is the only
quantity that defines the problem at hand, and the equation of motion is built around it.

3.2 Fundamental law of dynamics

The interpretation of the WEP leads to a conservation of accelerations on the segment Γ,
γ = h, of the proper or intrinsic acceleration γ of the particle or material medium and of those
applied to it, h. The law of dynamics is as follows:

γ = −∇φ+∇⊗ψ, (13)
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where −∇φ is the applied direct acceleration and ∇ ⊗ ψ is the induced acceleration. These
are the only two ways in which γ can be modified by external actions. The expression (13)
corresponds to the Helmholtz-Hodge decomposition of acceleration, and φ and ψ are its scalar
and vector potentials. In this case, the decomposition is locally orthogonal [7] and unique [8].
Indeed, all uniform translational and rotational motions have been eliminated from the outset,
and the decomposition has no harmonic terms with both divergence-free and curl-free.

The physical modeling of the potentials translates their evolutions φ = φo+dφ, ψ = ψo+dψ
between times to and t0 + dt, the quantities φo and ψo are the retarded potentials in the sense
of electromagnetism [9] :

φo = −
ˆ to

0

c20 ∇ · v dτ, ψo = −
ˆ to

0

c20 ∇× v dτ. (14)

The increments dφ and dψ are energies per unit mass which are functions of the celerity of
light c0 and the velocity v. Their modeling leads to dφ = c20 dt∇ · v and dψ = c20 dt∇× v [3],
these quantities represent compression or expansion energy and rotational energy respectively.

The equation of motion can only be defined over limited space and time intervals, (i) the
discrete horizon dh = [a, b] in Figure 1 and dt = t − to the time lapse between two mechanical
equilibria, each defined by the solution of the equation of motion. Progression in space is by
cause and effect from one segment to the next, and in parallel, progression in time is ensured by
the time derivative.

In classical mechanics, acceleration is the material derivative of velocity, which can take
various forms: v · ∇v, or ∇(|v|2/2)− v ×∇v or ∇ · (v v)− v∇ · v. The term L = −v ×∇× v
is Lamb’s vector [10]. In discrete mechanics, the material derivative of velocity is expressed in
three terms: the time derivative, the gradient of the inertial potential ∇(|v|2/2) and a third
non-classical term ∇⊗ (|v|2/2 n) [11]:

γ ≡ dv

dt
=

∂v

∂t
+∇
Å |v|2

2

ã

−∇⊗
Å |v|2

2
n

ã

, (15)

where the last two terms are those of a Helmholtz-Hodge decomposition of the inertial potential,
and their sum represents the curvature κ of this potential. In general, the two components of a
Helmholtz-Hodge decomposition can be interpreted as the curvature of a certain potential, e.g.
that of gravitation is expressed not only as a gradient but also as a dual curl. The Lamb vector
L is not divergence-free, even if the velocity itself is divergence-free. The discrete form (15) is
essential to exclude all harmonic solutions of an equation, such as that corresponding to uniform
rotational motion. The average acceleration over the Γ segment is then presented as the integral:

ˆ

Γ

dv

dt
dl = −

ˆ

Γ

∇φ dl +

ˆ

Γ

∇⊗ψ dl, (16)

which is a form of total energy per unit mass. The first term of the second member is the conse-
rvation of compression energy on Γ and the last term is the conservation of angular acceleration.

By replacing the increments of the potentials and the inertia terms, the law of dynamics
reads:

∂v

∂t
= −∇

Å

φo +
|v|2
2

− c20 dt∇ · v
ã

+∇⊗
Å

ψo +
|v|2
2

n− c20 dt∇× v
ã

. (17)

The law of motion (17) is an integro-differential equation when retarded potentials (14) are
inserted. Its integration is complex, but can be replaced by explicit updates deduced from their
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definitions.

updates























αl φ
o − c20 dt∇ · (v − vo) 7−→ φo

αt ψ
o − c20 dt∇× (v − vo) 7−→ ψo

vo + γ dt 7−→ vo,

(18)

where the symbol 7−→ indicates the replacement of the quantity known at time to by the current
quantity. Updating the velocity v can be done directly when solving the equation of motion.
Although γ is the main variable considered as an absolute quantity, it is the velocity v that is
the unknown in the equation of motion.

The quantities αl and αt are attenuation factors for longitudinal and transverse waves respe-
ctively. In the case of light propagation in a vacuum, the celerity is equal to c0 and the restitution
factors are equal to unity.

The potentials are updated from the difference in velocities (v − vo) at times to and to + dt.
The extension of Galilean invariance is thus guaranteed de facto by the law of motion and its
improvements by the elimination of harmonic solutions. Lorentz invariance becomes a constraint
that must be intrinsically guaranteed by the equation (17) itself. This law has many properties,
including the preservation of energy, mass, angular momentum and so on.

Real media are not considered here, but there is no difficulty in modeling wave propagation
in such media. In this case, the energy restitution factors αl or αt are different from unity if
longitudinal or transverse waves are attenuated. In addition, the celerity itself may be affected
by a change of medium, so that the values of the longitudinal cl and transverse ct celerities
may be different. For example, monochromatic light is diffracted by an air-water interface with
different refractive indices. Many physical phenomena concerning waves in general and light in
particular can be simulated by the equation of motion (17) without modifying their structure,
interference, absorption, reflection, etc. This law of motion can be perceived as a law of motion.

This law of motion can be perceived on all time scales dt and space scales dh, from very
small time lapses dt ≈ 10−20s for light propagation to very large time constants for stationary
phenomena. From a practical point of view, the solutions of this equation are always consistent
when solved with increments dt and dh compatible with the physics to be captured.

4 Properties of Discrete equation

4.1 A naturally relativistic law

The law of motion (17) is a naturally relativistic wave equation obtained without the use a

priori of the Lorentz transformation, which it nevertheless satisfies identically [12]. To show that
this equation is relativistic, it is essential to eliminate all uniform translational and rotational
motion from the outset. To eliminate any dependence on the translational velocity v0, it is
possible to change the reference frame from an absolute reference frame R to a relative reference
frame R′:







r′ = r − v0 t

t′ = t,
(19)

where r and r′ are the coordinates along the chosen rectilinear axis corresponding to the velocity
vector v0 and t and t′ are the times associated with the reference frames R and R′.

This uniform translational motion is insufficient to describe all non-accelerated motions.
Indeed, an isolated observer has no way of observing a uniform expansion of the Universe such
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as ∇ · v = cte and similarly, a uniform rotation at constant angular velocity such as ∇× v = cte
cannot be perceived by this observer. In classical mechanics, the latter motion is considered
accelerated, but this is no longer the case in discrete mechanics; this formalism establishes an
equation free of such motions in order to represent only those that are accelerated γ 6= 0. The
aim of this section is to show that the discrete mechanics equation (17) can be used to extend the
concept of Galilean relativity to all uniform motions. Uniform motions of expansion and rotation
play a very special role in mechanics. The laws of physics must eliminate the terms associated
with these motions from the outset. Uniform expansion motion is defined by the velocity vexp =
v0 + ar where v0 and a are constants; Galilean invariance is a special case of expanding motion
where a = 0. Uniform rotational motion is fixed by the velocity vrot = Ω × r where Ω is
a constant rotational velocity. Both motions are stationary and unaccelerated. Applying the
divergence and curl operators leads to ∇ · vexp = a and ∇ × vrot = 2 Ω, both constant. Let’s
look at the divergence of the expansion velocity in different coordinate systems:

∂vexp
∂r

=
1

r

∂(r vexp)

∂r
=

1

r2
∂(r2 vexp)

∂r
= a. (20)

A constant divergence of the axial velocity vector in Cartesian, polar or spherical coordinates
always gives the same result for vexp = v0 + ar; it does not depend on the dimension of space.
A particle or material medium whose motion we follow in such a flow undergoes expansion if
∇ · vexp > 0 or compression if ∇ · vexp < 0. In Lagrange coordinates, velocity divergence is
expressed as the ratio of acceleration to velocity:

∇ · vexp =
dvexp
dr

=
1

vexp

dvexp
dt

=
γexp

vexp
. (21)

This time-independent divergence (21) reflects the local expansion or contraction that follows
a material medium as it moves. In practice, the expansion of a gas cannot continue indefinitely
without the velocity of the fluid reaching an unsurpassable limit celerity; in this case, the velocity
becomes equal to this limit velocity and acceleration becomes zero, expansion is complete. In
cosmology, the Universe underwent a phase of rapid expansion known as cosmic inflation, which
would explain certain phenomena such as the horizon problem. There is a link between the
evolution over time of velocity divergence, which is the measure of expansion, and the flatness
of the Universe, i.e. its curvature becomes zero. The notion of cosmological fluid is based on
a reworking of the equations of mechanics, taking into account the expansion of the Universe
and positing v = H r where H is the Hubble parameter [13]; this reformulation is based on the
use of comoving coordinates. As with expansion/compression, the primal curl ∇ × vrot of the
rotational motion will be positive or negative depending on the direction of rotation on the facet
oriented by n. The superposition of these motions will have the same properties.

Uniform dilation and rotation motions have remarkable properties that are very useful for
their immediate elimination, called filtering, in the equation of these motions:







































vrot = Ω× r, vexp = v0 + a r

∇ · vexp = a, ∇× vrot = 2Ω

∇ · vrot = 0, ∇× vexp = 0

∇ (∇ · vexp) = 0, ∇⊗ (∇× vrot) = 0.

(22)

In practice, continuous expansion cannot be pursued physically, as the velocity of a gas in one
dimension of space cannot exceed the celerity of sound, v < cs. The analogy with the velocity of
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photons leads to a limitation of the celerity of light, v < c0. Just as uniform rotational motion
presents a singularity when r → ∞, circumferential velocity also tends towards infinity. However,
unlike expansion, rotational velocities at the periphery of some systems are much higher than
the celerity of sound. Transposing this to the case of light would be risky, as light can only
undergo deflection and rotation in the presence of considerable gravity, such as that observed in
the vicinity of black holes. In the absence of any curvature, the velocity of photons is equal to
the celerity of light in vacuum, an invariant where c0 = 3 108 m/s, and this postulate of special
relativity is not disputed. In the presence of spatial curvature, the wave’s celerity remains equal
to c0, but the massless photon possesses inertia.

Galileo introduced the concept of relativity, which later became the principle of relativity; it
is closely linked to the principle of inertia, Newton’s first law. It assumes that the sum of the
forces applied to a material point is equal to zero. The only motion considered is translation
at constant velocity, such that ∇ · v = 0 and ∇ × v = 0. The principle of inertia expresses,
according to the interpretation given here, that a particle not subjected to acceleration continues
its rectilinear trajectory at the same velocity v0. In this context, it makes no reference to mass
and applies whether the particle has mass or not. The point is to extend the Galilean principle
of relativity to the two uniform motions of expansion and rotation, and no longer to consider
the latter as an accelerated motion as in classical mechanics or relativity theory. Translational
motion at uniform velocity is replaced by expansion motion at constant divergence, and rotational
motion is eliminated from the fundamental law of dynamics. Restrictions on the existence of
these motions when r increases indefinitely will no longer be necessary.

The extension of Galilean invariance (22) to uniform motions of expansion and rotation allows
us to dispense with satisfying this invariance and concentrate on the second requirement, the
limitation of velocity to the celerity c0 of light in vacuum, a constraint satisfied by the Lorentz
transformation. Indeed, the two invariances, Galileo’s and Lorentz’s, would be incompatible
and non-comparable if they were of the same nature, which is not the case. Indeed, the former
aims to eliminate an absolute reference frame, which is an undeniable advance in mechanics,
and the latter reflects a local phenomenon whereby a particle or material medium cannot exceed
the celerity of the medium in which it evolves. Note that this limitation applies only to one-
dimensional motion, i.e. the trajectory of a photon or other particle along a rectilinear axis.

Let’s consider the two classic reference frames, an absolute R and a relative R′. The change
of reference frame traditionally brings out the three spatial and temporal coordinates, even for
a four-vector formulation. The discrete mechanics point of view is based on a one-dimensional
spatial model defined by the r coordinate, the direction of the γ segment of the Figure 1. This
concept is not incompatible with that of special relativity. Indeed, the other two directions y and
z, orthogonal in a Cartesian reference frame to the direction of propagation, are not necessary,
as relativistic transformations do not modify these coordinates in the relative reference frame
R′(x′, y′, z′) with respect to the reference frame R. The theory of special relativity, essentially
due to Lorentz, Poincaré and Einstein, introduces the eponymous Lorentz transformation, whose
most common form is:















r′ = γ (r − v t)

t′ = γ

Å

t− v r

c2
0

ã

,
(23)

where γ is the Lorentz factor γ = 1/
»

1− v2/c2
0
.

It’s easy to see that this Lorentz transformation is incompatible with Galileo’s transformation
(19), (r′ = r − v t, t′ = t), if length and time in a frame of reference in relative motion had the
same meanings as in the R frame of reference. Einstein’s idea for resolving this incompatibility
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was to define a distance and duration that depend on the Lorentz factor γ; thus, in the course
of motion, time undergoes a dilation and length a contraction.

The proof of the relativistic nature of the equation (17) lies in its natural transformation into
a wave equation. Like Maxwell’s equations, the wave propagation equation is relativistic, i.e.
the Lorentz transformation allows us to conclude that it is true whatever the inertial reference
frame considered. Using the formula for calculating the vector ∇2u = ∇ (∇ · u)−∇×∇×u we
obtain:

1

c2
0

d2u

dt2
−∇2u = −∇φo +∇×ψo, (24)

where u = v dt is the displacement and the second member corresponds to the Helmholtz-Hodge
decomposition of the retarded acceleration. The first member of this equation is an d’Alembertian
in a Lagrangian reference frame; in an Eulerian formulation the wave equation is written:

�u ≡ 1

c2
0

∂2u

∂t2
−∇2u. (25)

Given the definition of the retarded potentials φo and ψo their sum also forms a Laplacian
of the retarded displacement uo independent of time and the equation (24) becomes:

1

c2
0

d2u

dt2
−∇2 (u− uo) = 0. (26)

The difference between (24) and the classical form of a wave equation (25) is the inertia. The
former expression involves inertia terms of the form ∇

(

|v|2/2
)

− ∇ ⊗
(

|v|2/2 n
)

introduced in
[11].

The final step is to show that the wave equation is relativistic; this demonstration is classical,
but is repeated here in the one-dimensional spatial framework. As the equation of motion is
derived on a single rectilinear segment, interactions in other directions are taken into account
from cause to effect, via the common vertices of neighboring segments. What is shown here for
the r direction alone will be valid for all the others. Applying the inverse Lorentz transformation
(23) and differentiating each expression twice with respect to r and t, we obtain:

∂2

∂r2
− 1

c2
0

∂2

∂t2
= γ2

Å

1− v2

c2
0

ã

∂2

∂r′2
− 1

c2
0

γ2
Å

1− v2

c2
0

ã

∂2

∂t′2
. (27)

Given the definition of the Lorentz parameter, we find that � = �
′, the wave equation is in-

deed invariant with respect to the Lorentz transformation. The model represented by the discrete
equation (17) satisfies both the extension of the Galilean transformation to uniform motions of
expansion and rotation, and Lorentz invariance for rectilinear wave propagation limited by the
celerity of the material medium. This approach leaves aside the need to consider the contraction
of distances and the dilation of time.

4.2 Laws of conservation of compressive and rotational energy

Given the intrinsically orthogonal nature of the gradient and dual curl operators, the corre-
sponding compression or expansion and rotation energies cannot be spontaneously exchanged.
The submission of one to the other must be ensured by the intrinsic acceleration that entangles
the two physical effects. Before combining them in the same formulation, it is useful to analyze
what the separate balances of each represent. The notion of equivalence between mass and energy
must be strictly demonstrated, as must an analogous law for rotation.

Let’s consider the compressive energy φ contained in the dual volume Ω centered around a
vertex a of the primary structure that we follow in its motion. The Ω volume remains fixed,
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while a flow of energy is injected through its Σ surface. The compression energy per unit mass
initially contained in Ω is denoted φo and its variation over time is a function of the injected flow
rate represented by the divergence of the velocity normal to the boundary, ∇ · v. This variation
is therefore equal to dφ for a time lapse of dt. Similarly, the rotational energy per unit mass ψ
about an axis n orthogonal to each facet of the primary structure is associated with the rate of
rotation characterized by the vortex vector ω = ∇ × v; the potential vector ψ and the vortex
vector ω are, of course, collinear. Thus, the conservation of compression and rotation energies
is given by the laws:



















γc =
dφ

dt
= −φ ∇ · v

γr =
dψ

dt
= −ψ ∇× v,

(28)

where ψ∇× v is the symbolic notation for (ψ · ∇ × v) n, both vectors being collinear with the
unit vector n. If the time interval dt = t− to is small enough for ∇ · v and ∇× v to be constant
between two observations of mechanical equilibrium, then:











φ = −φo e−dt∇ · v

ψ = −ψo e−dt∇× v .
(29)

In all cases, ∇ · v and ∇ × v are local and instantaneous quantities determined by solving
the equation of motion. The groupings dt∇ · v and dt∇ × v must be compared with unity for a
coherent temporal representation of the phenomena; the time lapse or the value of the velocity
operators have no quantitative significance in themselves.

Let’s return to continuum mechanics and consider a mass of fluid m contained in the volume
Ω that we follow in its motion. The volume Ω remains fixed while a flow of matter is injected
through its surface Σ at velocity v. The local mass conservation equation relates directly to m
or mass per unit volume ρ, the density. Similarly, let’s consider the evolution over time of the
moment of inertia J∆ subjected to a constraint designed to modify its angular momentum. The
conservation of mass and moment of inertia can be written as follows:



















dm

dt
= −m∇ · v ⇐⇒ dφ

dt
= −φ∇ · v

dJΓ
dt

= −JΓ ∇× v ⇐⇒ dψ

dt
= −ψ ∇× v.

(30)

A comparison of the classical equilibrium laws of mass and moment of inertia (30) with
those of discrete mechanics (28) clearly shows the equivalence between mass and compression
energy, on the one hand, and moment of inertia and rotational energy, on the other; these are
equivalences, not simple proportionalities. The units of mass and compression energy may not be
the same, but their balance equations are, and this is what expresses the notion of equivalence.

In the theory of special relativity, the equivalence of mass and energy is summed up by A.
Einstein’s famous formula E = m c20 where m is the moving mass. However, this law shows a
simple proportionality between E and c20, the factor of which is mass. If we now consider energy
per unit mass e = E/m, we see that energy can be identified with the scalar potential φ = c20.
These laws (28) are very general and apply not only to light, but also to the celerities of the
medium, for example the celerity of sound cl in the case of fluid flows. Note that these balances
are expressed in local Lagrangian coordinates, so the advection of the quantities considered must
be taken into account.
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For example, the equivalence of mass and energy in special relativity only concerns com-
pression energy; rotation energy is not mentioned. Total energy is considered to be the sum of
potential energy and kinetic energy. In discrete mechanics, the kinetic energy carried by the po-
tential |v|2/2 is a component of the intrinsic acceleration integrated into the material derivative
in the form of a Helmholtz-Hodge decomposition.

Intrinsic energy is directly defined as the discrete integral over the Γ segment, and is equal
to the sum of compression and rotation energy:

ˆ

Γ

γ · t dl = −
ˆ

Γ

∇φ · t dl +
ˆ

Γ

∇⊗ψ · t dl. (31)

This equation (31), derived from the fundamental law of discrete physics, expresses the
conservation of total energy per unit mass on the segment Γ. The two terms in the second
member represent, respectively, the direct energy of compression and the induced energy of
rotation. Remember that these last two energies cannot be exchanged without an intrinsic
acceleration; this mutual dependence is called mechanical entanglement. It plays a fundamental
role in highly non-linear phenomena, such as fluid turbulence.

4.3 Invariances and Noether’s theorem

Noether’s theorem [14, 15, 16] establishes the link between certain symmetries in the action
of systems and the conservation of certain quantities in physics, (i) directional invariance to
the conservation of linear momentum, (ii) rotational invariance to the conservation of angular
momentum, (iii) translational invariance in time to the conservation of energy, for the three main
ones. This theorem removes the notion of absolute reference for each of these motions in the
establishment of the laws of physics. It was developed within the framework of Lagrangian or
Hamiltonian mechanics.

The discrete equation does not derive from a variational formulation, and the link with
Noether’s theorem cannot be formally established. Furthermore, the quantities used in this
theorem to define actions - mass, momentum, force, etc. - are no longer quantities used in
mechanics.

The law of motion (17) is not directly derived from Lagrange’s formalism for a number of
reasons, (i) the discrete formulation is derived from Maxwell’s founding idea, (ii) the actions
associated with Lagrangians are kinetic energy and potential energy are not the only ones, (iii)
mass is always present in Lagrangian mechanics is an abandoned notion and (iv) invariants are
formulated in terms of accelerations.

To clarify the nature of the phenomena present in the equation (17) of accelerated motion,
let’s write it in the form:

∂v

∂t
+∇
Å |v|2

2

ã

−∇⊗
Å |v|2

2
n

ã

= −∇
(

φo − c2l dt∇ · v
)

+∇⊗
(

ψo − c2t dt∇× v
)

, (32)

where the time derivative is the sum of a curl-free term and a divergence-free term. Like inertia
and the material derivative itself, this is a two-term Helmholtz-Hodge decomposition.

The interpretation of the law (32) turns out to be in agreement with Noether’s theorem,
although the approaches are very different. This law expresses the conservation of total energy
linked to the acceleration γ ≡ dv/dt of the first member, where the acceleration itself is energy
per unit mass and length. The first term of the second member is an acceleration related to the
conservation of translational energy (compression and expansion). The second term, associated
with rotational energy, is an angular acceleration. Remember that these last two terms are free
from the contributions of uniform-velocity translational and rotational motion. These two terms
are orthogonal, which from a physical point of view means that they are disjoint, that an angular
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acceleration cannot be described by the gradient of a scalar potential and that a translational
acceleration cannot be represented by a dual curl of a vector potential. The table 1 summarizes
the three main invariances of Noether’s theorem, but in terms of accelerations:

Property of the system Symmetry Invariant

translation in time time invariance conservation of total energy
compression and rotation

homogeneous space invariance by translation conservation of compression energy
and of translation acceleration

mass conservation
isotropic space invariance by rotation conservation of rotational energy

and of angular acceleration
conservation of angular momentum

Table 1. Invariance and conservation of the law of motion (32)

The deeper meaning of the law (32) refers above all to the principle of inertia, i.e. if the
second member is zero, then the material derivative is zero and uniform translational motion and
uniform rotational motion persist indefinitely. This equation of motion is therefore specifically a
law of accelerated motion. When the inertia terms are transferred to each of the two right-hand
member terms for stationary motion, the time derivative ∂v/∂t = 0 separates the two orthogonal
contributions into two equivalent equations where the second members are harmonic functions.
In other words, the scalar potential φo does not depend on the vector potential ψo. In the general
case, all the terms in equation (32) are intertwined, i.e. a change in the scalar potential generates
a change in the intrinsic acceleration of the particle or material medium, which in turn modifies
the rotational energy described by the vector potential. This interweaving of contributions is
strictly linked to accelerated motions, which are physically identified with oscillators. Each
oscillator of the second member is itself composed of a potential and an operator, ∇·u or ∇×u,
weighted by the celerity, which translates the exchanges between potential energy and kinetic
energy of the same nature, compression or rotation. For the record, the Table 1 reproduces
the invariants of classical mechanics concerning mass and angular momentum. It is therefore
directly the law of discrete motion that establishes the links, in terms of accelerations, between
the invariants and conservations of Noether’s theorem.

4.4 A Helmholtz-Hodge decomposition of acceleration

The aim is to show that the intrinsic acceleration of a particle or material medium γ is an
absolute quantity associated with the two potentials of the relation (13) excluding the addition
of divergence-free and curl-free term of a three-term Helmholtz-Hodge decomposition.

The Helmholtz or Helmholtz-Hodge decomposition is widely used in mathematics to project
a field onto a zero-divergence space, as well as in image processing, fingerprint recognition and
many other applications [17, 18, 19, 11, 20]. The problem posed here is of a different nature, we
want to show that absolute acceleration can be formulated as a Helmholtz-Hodge decomposition.
This suggestion is based on Maxwell’s idea of associating [21] direct and induced currents with
temporal dynamics. Let’s consider any V vector field, which can be generally decomposed into
three terms:

V = −∇A+∇×B +H, (33)

where H is a vector that can be written as a harmonic term, with zero or constant divergence and
zero or constant curl. Indeed, the application a posteriori of the divergence and curl operators
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will make the constant disappear. The two conditions for ∇ ·H = cte are as follows:

∇ ·H = cte ⇒







H = ∇× β

H = a r,
(34)

where β is any vector with zero divergence and r is any radial vector with constant divergence.
Similarly, consider the conditions under which the rotation vector H satisfies the equality ∇×
H = cte:

∇×H = cte ⇒







H = ∇α

H = Ω× r,
(35)

where it is then necessary for H to be the gradient of a scalar H = ∇α or for it to be constant
Ω× r. But as it is necessary that ∇β = 0 as well as ∇ ·∇α = 0 it is necessary to fix α = β = 0
and the harmonic field becomes:

H = a r +Ω× r, (36)

the stationary field H has constant divergence ∇ ·H = a and constant rotation ∇ ×H = 2Ω
for continuous functions a r and Ω× r.

We need to add a condition to these two stationary motions: they must also have zero inertia.
This is the case in discrete mechanics, where the material derivative cancels out:

∂H

∂t
+∇
Å

1

2
|H|2
ã

−∇⊗
Å

1

2
|H|2 n

ã

= 0. (37)

Since velocity is reduced to its harmonic component V = H, its acceleration is zero, since H

is a stationary field and its material derivative is equal to dH/dt = 0.
In conclusion, the notion of galilean or inertial reference frame associated with uniform trans-

lational motion alone in continuum mechanics is extended, in discrete mechanics, to uniform
dilatational motion and uniform rotational motion. From the point of view of the equation of
motion, the two uniform motions are filtered out, as they concern acceleration and not velocity.
Thus, the Helmholtz-Hodge decomposition of acceleration γ = −∇φ+∇⊗ψ is unique.

5 Three emblematic examples

5.1 Particle under constant acceleration

Equation (17) applies equally to fluid flows under conditions where the velocity is of the
order of magnitude of the celerity of sound c = cl and to phenomena related to special or general
relativity c = c0. The case of a single particle with or without mass subjected to an external
acceleration hs = g ex = ∇φs from a state of rest is an emblematic case of special relativity
which has an exact solution. Consider a particle at rest at the initial time, set in motion by
means of an acceleration imposed from the outside, a gravitational field or a magnetic field, to
the charged particles. In a Lagrangian description movement is described by the time-dependent
position of the particle x(t) and velocity v(t) = dx/dt with v = vex. The equation of the discrete
motion (17) to the rectilinear movement of the particle from its origin located at x = 0 to t = 0
is rewritten:

dv

dt
= − d

dx

Å

φo − dt v2
dv

dx

ã

+ g. (38)
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In order to quantify the movement of the particle in terms of velocity and position in a more
general vision, let us pose the following quantities to resize distance, time, velocity and energy
per unit of mass:

x∗ =
x g

c2
; t∗ =

t g

c
; v∗ =

v

c
; φ∗o =

φo

c2
, (39)

where the starred quantities are the dimensionless variables. To lighten the writing, the same
symbols are used to express the dimensionless quantities. The equation thus becomes:

dv

dt
= − d

dx

Å

φo − dt v2
dv

dx

ã

+ 1. (40)

Compression energy φo is that accumulated at time t from the initial time:

φo(t) = −
ˆ t

0

v2
dv

dx
dτ = −

ˆ t

0

dt

dx
v2 dv = −v2

2
. (41)

Thus, at each instant, the compression energy of the wave is exactly equal to the kinetic
energy acquired by the particle. As g ex = ∇(g x) in real variables, the scalar potential of the
acceleration becomes equal to:

φ(t) = x− φo(t) = x− v2

2
. (42)

Equation (40) becomes:

dv

dt
=

d

dx

Å

v2

2

ã

. (43)

Position of the particle x and time t are not independent and the relation (43) is not an equa-
tion but an identity; each member expresses the material derivative in a Lagrangian description,
because dx/dt is none other than the velocity v. In fact the equation of discrete motion is not
a simple differential equation. It involves a temporal process called "accumulation" where the
description of the mechanical equilibrium at the instant t is deduced from that at the previous
equilibrium instant to by a Lagrangian formulation composed of an equation on acceleration and
its updates on velocity, energy and spatial coordinates:



















































γ = 1− 1

v

d

dt

Å

φo − v
dv

dt

ã

φo − v
dv

dt
7−→ φo

vo + dt γ 7−→ vo

xo + dt v 7−→ xo.

(44)

It is possible to find a robust solution by considering the energy necessary for the particle to
overcome inertia and a velocity which tends towards celerity. This energy, by definition equal to
c2/2, is expressed as a function of the integral of the acceleration from zero to infinity, i.e. in
dimensionless form:

φc =

ˆ

∞

0

γ(x) dx =
1

2
. (45)
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Acceleration is thus a decreasing function of x in O(x−n), whereby n = 3 in order to satisfy
the condition (45). The initial condition corresponding to an acceleration equal to unity for
x = 0, satisfied by the system equation (44), leads to the following form:

γ =
1

(1 + x)3
. (46)

Imposed acceleration hs = 1 is transformed partly into compression energy equal to φo.
This compression energy is transferred to the particle to increase its own kinetic energy φc and
therefore its own acceleration γ. At each instant we have φc = φo and the vector potential of
the acceleration is equal to φ = x− φo; equilibrium is reached when −∇φ+1 = 0. The imposed
acceleration hs then no longer acts on the particle, the movement is incompressible, ∇ · v = 0,
and the particle moves at a velocity equal to the celerity v = c.

Solution to the problem in dimensionless form obtained by the incremental system (44)
corresponds very precisely to the solution obtained in the context of special relativity:















































γ(t) =
1

(1 + x)3
=

1

(1 + t2)3/2

v(t) =

√

x(2 + x)

(1 + x)
=

t√
1 + t2

φ(t) = x− v2

2
.

(47)

Figure (2) shows the evolutions obtained numerically by the system (44), the acceleration
γ(t), the velocity v(t) and the scalar potential φo(t) which tends towards the value 1/2. The
divergence of velocity ∇·v = γ/v = 1/(1+t2)t shows that the movement becomes incompressible,
explaining that the velocity of the particle tends towards celerity.

Figure 2. Acceleration of an isolated particle with or without mass over time: v(t) its velocity,
γ(t), its acceleration and φo(t) the scalar potential.

With short times, the acceleration is equal to unity, the velocity increases in the form v(t) ≈
t2/2 and the divergence of the velocity is then in O(t−1); at this point the accumulated energy
is very close to zero. When the time increases beyond t ≈ 0.5 the potential φ = x−φo increases,
the intrinsic acceleration γ decreases and the growth in velocity slows down. The acceleration
then tends towards zero and the velocity towards the celerity of the medium. The root cause
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of this limitation is the divergence of the motion of the particle, which goes from O(t−1) for
Newtonian mechanics to O(t−3) in relativity and in discrete mechanics when time increases.

5.2 Gravitational lensing

This problem of light being deflected by the sun is also known as gravitational lensing, a
deflection of light by the presence of bodies, stars or clusters, present in the vicinity of its
trajectory. The deviation is measured by an angle Φ defined as the angle formed by the two
trajectories upstream and downstream of the body producing the deviation. The first scientific
studies on this subject were carried out by Soldner [22], but the problem was the subject of
experimental and theoretical studies by Dyson and Eddington [23, 24, 25, 26, 27, 5], who showed
that the theory of general relativity developed a few years earlier by Einstein was able to predict
the observed result. This theoretical value is very close to Eddington’s observed value of Φ =
4GM⊙/(c

2
0R⊙) where G is the gravitational constant, M⊙ the mass of the sun and R⊙ its mean

radius.
In discrete mechanics, proper mass is a concept that has been abandoned for the description

of physical phenomena in general and gravitation in particular. The gravitational potential
becomes:

φo
g = G M⊙/r, (48)

where φo
g is the energy per unit mass, independent of its own mass.

From a physical point of view, two actions are in competition: (i) the inertia of particles,
which tends to keep them on a straight trajectory, and (ii) gravitation, which attracts photons
towards the massive body. Here, it is no longer space-time that is curved, but the acceleration of
gravity that applies to any particle, with or without mass. The attraction exerted on this particle
does not depend at all on its mass, as suggested by the WEP revisited by discrete mechanics.
Generally speaking, inertia is fixed by the material derivative:

dv

dt
≡ ∂v

∂t
+∇
Å |v|2

2

ã

−∇⊗
Å |v|2

2
n

ã

, (49)

where the last two terms of (49) represent the curvature κi of the inertial potential. Photons
have no mass, but do possess kinetic energy. Gravitation acts on photons travelling close to the
Sun, attracting them as soon as they enter its sphere of influence and accelerating them. As
with geometric curvature, the spherical character of inertial potential has twice the curvature of
a cylinder. The gravitational potential (48) induces two accelerations, the first as a direct action
and the second corresponding to an action induced to form the curvature of the gravitational
potential :

κg = −∇φg +∇⊗ψg. (50)

In discrete mechanics, the acceleration vector is always represented by two contributions,
the gradient of a scalar potential and the dual curl of the inertial potential, here ψg = φg n.
Assuming the phenomenon is stationary, the equation of motion is written :

∇
Å |v|2

2

ã

= −∇
ÅG M⊙

R⊙

ã

+∇⊗
ÅG M⊙

R⊙

n

ã

= −2∇
ÅG M⊙

R⊙

ã

. (51)

Given the small deviation of light cosΦ ≈ 1, the approximation v ≈ c0 is adopted and the
value of the deviation is equal to:

Φ ≈ 4 G M⊙

c2
0
R⊙

, (52)
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is the correct value obtained by general relativity and corroborated by observation.
The reasoning followed is close to that of Newtonian mechanics, where inertia and gravitation

are confronted. But here we’re talking about equality between the potential curves, that of
inertia and that of gravitation, i.e. κi = κg. In summary, Newtonian mechanics leads to an
angle Φ = 4.250 10−6rd or Φ = 0.875 arc second, while the theory of general relativity predicts
an angle twice as large Φ = 8.498 10−6rd or Φ = 1.750 arc second, and experiments confirm this
prediction [23].

5.3 Gravitational redshift

The redshift of radiation corresponds to a loss of energy as it passes through an inhomogene-
ous gravitational field, whose intensity decreases along its path. The phenomenon of gravitational
blue-shift is observed when the observer is in a region where the gravitational field is greater
than that in which the radiation is emitted.

∇
Å |v|2

2

ã

= ∇
ÅG M

r

ã

. (53)

The Galilean approximation assumes that the velocity of photons is equal to the celerity of
light; under these conditions, the ratio of frequencies is equal to

∆f

f
=

2 G M

c2
0
r

, (54)

where the second member is none other than the Schwarzschild radius Rs. In special relativity,
the calculation is completed by an additional term; the argument developed by A. Einstein is
based on the existence of two times, the one observed in the absence of the gravitational field
dt and the proper time dτ < dt such that dτ =

√

1−Rs/r dt. This phenomenon is called
gravitational time dilation, but the result is the same when the concept of length contraction is
invoked.

The discrete formulation is more complex, as the solution is derived from the law of motion,
where the photon’s velocity and radius vary along a trajectory:

∂v

∂t
= −∇

Å |v|2
2

− c20 dt∇ · v
ã

+∇
ÅG M

r

ã

. (55)

In the general case, the photon’s velocity is no longer equal to c0, but is reduced by the gravity
field. The velocity divergence is no longer zero, since it varies along the rectilinear trajectory
and the gravity field depends on the radius. As the velocity v decreases during expansion, the
divergence is positive, so energy is borrowed from the kinetic energy |v|2/2. The frequency
ratio is therefore modified in this relativistic framework. The differences between the simplified
analysis (54) and the complete approach (55) are very small, even in the case of stars like the
sun. Introducing the displacement du = v dt and considering stationary motion, equation (55)
reads as follows:

2∇ · u =

Å |v|2
c2
0

− Rs

r

ã

≈
Å

1− Rs

r

ã

, (56)

or, by identification with the time ratio of general relativity, 2 ∇ · u ≈ dτ2/dt2. Using the
Schwarzschild metric centered on a spherically symmetrical solid body, we find the coefficient of
the time coordinate g00 = 1−Rs/r [27, 5].
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6 Conclusions

The concepts of special relativity and general relativity, whose legitimacy is not called into
question, are simply discarded to establish a disjoint formulation. The abandonment of the
notion of mass, the omnipresent quantity in the equations of physics, as soon as the Weak
Equivalence Principle is stated eliminates any similarity with Newtonian mechanics and the
theory of relativity. This approach also implies abandoning the classical quantities of mechanics:
momentum, force, energy... All that remains is acceleration, a quantity considered absolute in
discrete mechanics. Acceleration gives rise to relative quantities such as velocity or energy per
unit mass. Maxwell’s model unifies electrodynamics and magnetism in a dynamic representation,
electromagnetism, emphasizing the interconnection of longitudinal compression and transverse
propagation.

The law of discrete motion (17), already demonstrated in classical mechanics by numerous
examples, proves perfectly compatible with the results of relativity theory. The dissimilarities
and divergences concern fundamental concepts, such as the existence of the notion of space-
time, replaced by the independent notions of space and time. The formalism used corresponds
to a parsimonious vision of the physical model and considerably simplifies the understanding of
observed phenomena, replacing, for example, the use of high-order tensors with simple differential
operators.
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