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Abstract

Air inlets coupled with mechanically controlled ventilation systems are

widely used to renew polluted indoor air. They are generally positionned

at the top of windows inducing a reduction of the sound insulation. As the

harmful consequences of noisy environments on human health are more and

more highlighted, it becomes necessary to maximize the sound insulation

while ensuring a sufficient fresh air flow. To this end, efficient numerical sim-

ulation appears to be a promising way for studying air inlet acoustic behavior:

many parameters can be considered without the need to carry out costly and

time-consuming laboratory tests. This work aims at developing a reliable nu-

merical model reproducing the acoustic laboratories used by manufacturers

for the measurements of air inlet sound reduction index. The low frequency

range is studied in the present paper as the measurement uncertainties aris-

ing from experimental conditions are the greatest at these frequencies. In

order to make the calculations computationally efficient, the proposed model
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uses a sub-structuring approach called the Patch Transfer Function (PTF)

method, and combines analytical or numerical solutions, depending on the

subdomain considered. Each subsystem of complex geometries is discretized

using finite elements. Conversely, the PTF of simple geometries are analyt-

ically computed from a modal decomposition, enriched with a quasi-static

correction numerically computed. As empirical improvements pointed out

the benefits of the addition of melamine foams, porous material modelling is

introduced in the study based on an equivalent fluid model.

Keywords: Air inlets, Patch Transfer Function Method, Noise reduction,

Porous materials, Quasi-static correction

1. Introduction

The consequences of noise pollution on health, economy and productivity

are increasingly acknowledged. The European Environment Agency esti-

mates that over 100 million people in Europe are exposed to harmful levels

of environmental noise pollution, mainly from their homes, inducing huge

social costs [1]. Thus, reduction of noise has become a key issue in most in-

dustrial fields, especially in the building industry. Factually, windows remain

the primary entry point for external noise as their soundproofing is drasti-

cally reduced by the installation of air-inlets, made mandatory to provide

ventilation in homes. In order to quantify the acoustic performance of their

products, manufacturers measure a SRI (Sound Reduction Index) called Dn,e

in acoustic laboratories [2]. This indicator shows the acoustic absorption in

third octave bands from 100Hz to 5000Hz. However, manufacturers usually

provide customers with a single value to characterize the acoustic absorption
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of their products over the entire frequency range, the Dn,e,w [3].

However, it is known that the experimental conditions of air inlet testing

imply a degree of uncertainty in measurements. Lots of studies pointed

out that dispersion on the measured SRI arise when low frequencies are

involved. The influence of laboratory properties and mounting conditions

on the measurements was pointed out in Ref. [4]. Later, it was shown in

Ref. [5] that the acoustic field in the low frequency range is dominated by

normal modes, so the hypothesis of a diffuse field cannot be validated. In

addition, an increase of uncertainties is demonstrated in Ref. [6] when low

frequencies are taken into account for the calculation of a single absorption

value. Many other studies emphasize that uncertainties increase when low

frequencies are involved and mention the need to assess them [7–9]. As a

result, factors such as the size of the room, the position and orientation of

the loudspeakers and microphones as well as the mounting system potentially

reduce the accuracy of the measurements, making air inlet testing difficult

to replicate and reproduce.

This highlights the need for a numerical tool dedicated to the prediction

of the acoustic performances of a window air inlet. It turns out that the noise

transmission of windows and building facades have been more widely mod-

elled [10, 11] than that of air inlets. Several studies deal with the acoustics of

ventilation windows and investigate different ways to increase the transmis-

sion loss factor, as the use of porous materials, perforated panels, resonators

or active noise attenuation systems [12, 13]. Closer to our issue, Jean et al.

estimated the Dn,e of a simple rectangular wall air inlet, potentially covered
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with absorbing materials [14, 15]. A previous study by the authors was ded-

icated to the calculation of the Transmission Loss (TL) of a single air-inlet

using the Finite Element Method (FEM) [16]. This study highlights the need

to model the rooms coupled to the air inlet in order to directly estimate its

sound transmission. So, the main goal of this research is the development

of a reliable model for the prediction of the noise transmission of air-inlets,

while taking the complexity of their geometries, the coupling with the testing

rooms and the presence of porous materials into account.

The large frequency range considered in the tests (50-5000 Hz) and the

need to integrate the testing rooms in the model make it difficult to choose

the appropriate method. At low frequencies, the reliability of the Finite Ele-

ment Method (FEM) has been widely demonstrated since its early develop-

ments [17] for various applications including porous material modelling [18],

which have a significant role in noise absorption of air inlets. The Bound-

ary Element Method (BEM) is an alternative to the FEM where only the

boundaries are discretized [19]. This powerful method shows great results

for radiation problems in infinite space (among others) but is less appropri-

ate for our study, as the inside of the air inlet has to be precisely modelled.

Also, prediction of sound absorption and transmission of multi-layered ma-

terials is commonly studied with the Transfer Matrix Method (TMM) [20].

The method can take into account porous media, allowing to define a local

impedance for the dissipative interfaces [21]. So, computationally efficient

FEM-TMM models have been developed (FEM for the fluid, TMM for the

porous media) with the added benefit of taking into account finite size ef-

fects and lateral boundary conditions [22]. In addition, in linear acoustics,
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as the system can be described by partial derivative equations and boundary

conditions, the pressure field in the domain can be calculated from a modal

expansion [23]. As the testing rooms are far too large to be considered with

FEM, analytical modal decomposition seems to be an interesting way to

consider them, provided that their geometries are simple enough.

Despite their reliability and precision, the previously mentioned methods

(except for the TMM) are overwhelmed in high frequencies because of the

quantity of information required [24]. For FEM and BEM, increasing the

frequency amounts to decrease the element size, leading to a huge number

of degrees of freedom and prohibitive calculation time. Similarly, modes of

a system are easy to calculate and well separated at low frequencies, but

they start to overlap and multiply at high frequencies or for large geome-

tries, making the modal approach less relevant. Moreover, all the previously

described method are deterministic and thus require a rigorous knowledge

of the geometries, the assemblies, the parameters of materials, the nature

of sources, etc. These elements led to the development of other acoustic

methods dedicated to the high frequency range. For example, statistical ap-

proaches are based on the energy transfer between subsystems (Statistical

Energy Analysis [24, 25], Wave Intensity Analysis [26], Power Flow method

[27], etc). Also, high frequency analysis can be done using ray-tracing [28].

This paper focuses on the study of geometrical and material parameters

in the low frequency range (50-1000 Hz) and their influence on the sound

transmission of air inlets. As the problem involves a small air inlet cou-

pled with two large testing rooms, a full Finite Element model is too time-
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consuming. Therefore, the Patch Transfer Function method is used [29–32],

which involves separate calculations on the uncoupled subsystems before re-

assembling them from the continuity of normal velocity and pressure at the

interfaces. In this paper, Finite Element method is used for the air inlet,

while a semi-analytical modal summation is used for the rectangular testing

rooms. To reduce the truncation error caused by the stiffness contribution of

the modes outside the bandwidth of interest, convergence acceleration of the

PTF of the rooms is necessary. Several methods, based on the estimation of

residual mode contributions [31, 33], exist to address this issue. Our approach

is based on these methods: a FE calculation is used at a single frequency in

the rooms to evaluate contributions of higher modes. This approach leads

to a hybrid evaluation of the PTF, which is one of the originalities of the

present contribution.

The paper is organized as follows; Section 2 defines more precisely the

acoustic indicators involved, recalls the results of a previously developed

FEM model of a single air inlet and explains the need to consider the testing

rooms using a sub structuring method. Section 3 covers the principles of

the PTF approach and validates its implementation on simple geometries

including porous materials. Section 4 deals with convergence acceleration for

the PTF of the testing rooms is carried out in. Then, Section 5 applies the

PTF method on a real geometry of air inlet coupled with reduced testing

rooms.
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2. Acoustic indicators and industrial issue

The experimental set-up for the measurement of air inlets sound absorp-

tion is shown in Fig. 1 and has to meet standard ISO 10140 [2]. Two coupled

rigid-walled rooms are connected by an opening in which the tested air inlet

can be installed. A loudspeaker emits a white noise in the emission room

and the mean sound pressure level is measured in both rooms by a set of

microphones. From these measurements, the Dn,e is defined as:

Dn,e = Lpe − Lpr + 10 log10

(
A0

A

)
, (1)

with Lpe and Lpr the mean sound pressure level of the emission and reception

room respectively, A0 the reference area fixed to 10m2 and A the equivalent

absorbing area of the reception room calculated with Sabine formula [2].

Figure 1: Experimental configuration for the measurement of the sound reduction index

As explained in section 1, manufacturers use the Dn,e to determine the

Dn,e,w, a single value quantifying the general acoustic performance of their

products. Two other single value indicators C and Ctr are often added,

reflecting the acoustic insulation for two different types of noise source (low
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and high frequencies) [3]. It is widely observed that testing rooms influence

the measurements, particularly at low frequency: the modal density decreases

and diffuse pressure field hypothesis is no longer verified. That is why the

use of a FE model to compute the TL of a single air inlet, as made in Ref.

[16] is not sufficient for Dn,e prediction, as the coupling with testing rooms

is not taken into account.

Consequently, prediction of Dn,e means including testing rooms in the

model as well as calculation of the sound pressure level (SPL) at several

points in these rooms to get Lpe and Lpr. The size of the rooms would induce

prohibitive calculation costs if they were modelled with FEM. Therefore a

sub-structuring method called Patch Transfer Function is used to separate

the calculation of the rooms from that of the air inlet [29, 31, 32]. The

principles and interests of the method are explained in the next section,

followed by a validation of SPL calculation at listening points on simple and

complex geometries containing acoustic melamine. Special attention will be

paid to gains in computation time made possible by the approach followed.

3. Patch Transfer Function Method

The Patch Transfer Function method is a sub-structuring approach for

studying complex acoustic problems. It consists in the separation of the com-

plete domain we need to resolve in several subdomains computed separately,

before being assembled. To achieve this, the coupling surfaces between each

subdomain are divided into elementary areas called patches. Transfer func-

tions are then calculated between the patches and the possible sources and

listening points in each uncoupled system. Then, the subdomains can be
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assembled using continuity of the pressure and the normal velocity on each

patch of the coupling surfaces. Thus, a PTF system is obtained having the

normal velocity on the patches for unknown. Once the system is solved,

the superposition principle is used to calculate the acoustic pressure at any

listening point of the global domain, as the sum of each patch contribution

[29, 32].

Lots of advantages result from this kind of approach. Firstly, each sub-

domain is calculated with the best fitted method. In the industrial case

presented below, the simple geometries are computed using an analytical

modal decomposition, while the complex geometries are solved using FEM.

Note that the PTF of subsystems could also be obtained from experiments

as done in Ref. [34]. Secondly, in the case where two neighboring meshed

domains are considered, another advantage is that the meshes do not nec-

essarily need to be compatible as physical quantities are averaged over the

patches placed on the interface. Thirdly, if a subdomain is unchanged for

several configurations, there is no need to calculate the transfer function

again: only the PTF of the changing subdomains have to be recalculated

or remeasured. Therefore, calculation costs are drastically reduced, notably

for configurations where only a little part of the global domain is changing.

Thus, the PTF approach could be a great help for the implementation of an

optimization process of air inlets, as the testing rooms remain the same when

the sample is changed.

In this section, the equations of the method are reminded and applied

on the geometry shown in Fig. 2 which consists in two rigid-walled acoustic
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rooms coupled with a simplified air inlet of rectangular shape.

Figure 2: Description of the geometry. Three domains are separated by two interfaces,

each discretized into three patches. Two listening points are placed in the subdomains Ω1

and Ω3.

3.1. Description of the method

The complete domain Ω is divided into three subdomains Ω1, Ω2 and Ω3.

There are two coupling surfaces with N1 and N2 patches. An acoustic point

source S is placed in Ω1. Two listening points are also considered: L1 placed

in Ω1 and L2 placed in Ω3.

The first step consists in calculating separately the transfer functions of

each subdomain. Mathematically, a transfer function is the linear relation

between the input and the output of an invariant system. For the PTF

method, a pressure output caused by a normal velocity input is computed,
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so the transfer function has the same meaning as an acoustic impedance.

Here, the input/output entity can be a patch, a source or a listening point.

For an acoustic cavity Ωk, we define the PTF ZΩk
ij between an excited

patch j and a receiver patch i, as the ratio of the averaged pressure p̄Ωk
i on

the patch i and the averaged normal velocity v̄Ωk
j on the patch j:

ZΩk
ij =

p̄Ωk
i

v̄Ωk
j

, (2)

where •̄p =
1

Sp

∫
Sp

• dSp is the space average on the patch p of surface Sp.

Likewise, on acoustic cavity Ωk, the PTF ZΩk
Lj is the ratio of the pressure

pΩk
L on a listening point L and the average normal velocity v̄Ωk

j on the patch

j:

ZΩk
Lj =

pΩk
L

v̄Ωk
j

. (3)

With these definitions, the space averaged pressure p̄Ωk
i on a patch i of

each uncoupled system is exclusively related to the velocity v̄Ωk
j of all patches

j and a possible source term p̃Ωk
i if there is a source in the cavity Ωk. In the

example presented in Fig. 2, there is only one source, placed in Ω1, so the

source term will be null for the two other cavities. In the end, pressure can

be expressed as follows:

p̄Ωk
i = p̃Ωk

i + ZΩk
ij v̄Ωk

j . (4)

The previous equation is general and does not consider the interfaces. In

order to specify it and then apply it to the acoustic problem presented in

Fig. 2, we define the vector p̄Ωk
a which contains the averaged pressure of all
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the patches of the coupling surface a in the cavity Ωk. Likewise, we define

the vector v̄Ωk
a which contains the averaged normal velocity of all the patches

of the coupling surface a in the cavity Ωk. Then, the pressure on the patches

can be expressed in the three uncoupled domains as:

p̄Ω1
1 = p̃Ω1

1 + ZΩ1
11 v̄Ω1

1 / Ω1p̄Ω2
1

p̄Ω2
2

 =

ZΩ2
11 ZΩ2

12

ZΩ2
21 ZΩ2

22


v̄Ω2

1

v̄Ω2
2

 / Ω2

p̄Ω3
2 = ZΩ3

22 v̄Ω3
2 / Ω3

. (5)

Note that the subdomain Ω2 involves two interfaces. Thus, the PTF matrix

has diagonal and coupling terms. ZΩk
mn represents the averaged pressure of the

patches of the interface m caused by a unit average velocity of the patches

of the interface n, in the subdomain Ωk.

Then, the coupling of the subdomains Ω1, Ω2 and Ω3 is based on the con-

tinuity of the pressure and the normal velocity on each patch of the coupling

surfaces. In the example described in this section, coupling conditions are:



p̄Ω1
1 = p̄Ω2

1 = p̄1

p̄Ω2
2 = p̄Ω3

2 = p̄2

v̄Ω1
1 = −v̄Ω2

1 = v̄1

v̄Ω2
2 = −v̄Ω3

2 = v̄2

. (6)

So, the system of Eq. (5) can be written:ZΩ1
11 + ZΩ2

11 ZΩ2
12

ZΩ2
21 ZΩ2

22 + ZΩ3
22

v̄1

v̄2

 =

−p̃Ω1
1

0

 . (7)
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Here, dimensions of matrices ZΩ1
11 and ZΩ2

11 are N1 ×N1, ZΩ2
12 is N1 ×N2, ZΩ2

21

is N2 ×N1, ZΩ2
22 and ZΩ3

22 are N2 ×N2.

The previous system can be expressed in a more compact form as:

ZΩ v̄ = −p̃. (8)

where ZΩ is the PTF matrix of the global system and p̃ the source term.

The vector v̄ can then be deduced:

v̄ = −Z−1
Ω p̃. (9)

Finally, the pressure at the listening points can be calculated as a sum

of the contribution of each patch and that of an eventual source p̃Ωk
L if a

listening point L and a source are in the same subdomain Ωk:pΩ1
L = p̃Ω1

L + ZΩ1
L1v̄1

pΩ3
L = ZΩ3

L2v̄2

, (10)

with the PTF matrix ZΩk
Li representing the pressure at the listening points L

caused by the patch of the interface i, in the subdomain Ωk.

A validation of the method on several geometries is completed in the

following section.

3.2. Validation of the PTF method

We present a validation of the PTF method applied on three configu-

rations, one of them including porous materials. Modal and patches mesh

convergences will be discussed, as well as the influence of the listening point
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position on the accuracy of the results. Then, the calculation time of the PTF

method will be compared to that of the FEM. Fig. 3 shows the geometries

considered.

Figure 3: Geometries for PTF method validation. (a): first configuration with two listen-

ing points placed close and far from the interface, with all the sub domains filled with air.

(b): second configuration (with all the sub domains filled with air) and third configuration

(with the central sub domain filled with acoustic melamine)

3.2.1. First configuration

The first geometry consists in a rigid walled rectangular bloc filled with air

divided into three subdomains, with one source and one listening point (see

Fig. 3a). The SPL computed at the listening point using the PTF method is

compared to a FEM reference computed in the whole domain. Table 1 gives

all the geometrical parameters. Reference values at 15◦C are taken for the air

density ρ and the sound speed c. A general viscous fluid model is used, with

a damping coefficient η which adds an imaginary part on the sound speed
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and air density [35]: 
ceq = c

√(
1 + iω

η

c2

)
ρeq =

ρc2

c2eq

. (11)

Table 1: Geometrical and physical parameters of the first system presented on Fig. 3. All

lengths are in meters.

Ω1 Ω2 Ω3

(x ; y ; z) (0 ; 0 ; 0) (0.5 ; 0 ; 0) (0.5 ; 0.2 ; 0)

(Lx ; Ly ; Lz) (0.5 ; 0.6 ; 0.7) (0.4 ; 0.2 ; 0.7) (0.4 ; 0.4 ; 0.7)

Source S (0.2 ; 0.2 ; 0.2)

Listening points L1: (0.55 ; 0.25 ; 0.3), L2: (0.85 ; 0.55 ; 0.3)

ρ 1.225 kg.m−3

c 340.27 m.s−1

η 0.02

In a rigid acoustic cavity, the pressure P at a listening point L generated

by a monopole source located at point S of amplitude Q(ω) pulsating at

the angular frequency ω can be analytically calculated as an infinite sum of

modal contributions [32]:

p (L, S, ω) = Q (ω)
∞∑
k=1

ϕL
k ϕ

S
k(

k2
eq − k2

k

)
Λk

, (12)

where ϕL
k , ϕS

k , keq = ω
ceq

, kk = ωk

c
and Λk are respectively, the mode shape

evaluated at the point L, the modal shape evaluated at the point S, the wave

number, the modal wave number and the modal mass of the mode k. We
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remind that the mode shape ϕP
mnp of mode of indices (m, n, p) at a point P

of coordinates (x, y, z) in a rectangular box (dimensions Lx × Ly × Lz) is

given by:

ϕP
mnp = cos

(
mπ

Lx

x

)
cos

(
nπ

Ly

y

)
cos

(
pπ

Lz

z

)
. (13)

Similarly, each term of the analytical PTF matrices can be expressed as

follows: 
Zij(ω) = iωρeqΓj

∑M
k=1

⟨ϕi
k⟩
〈
ϕj
k

〉(
k2
eq − k2

k

)
Λk

ZLj(ω) = iωρeqΓj

∑M
k=1

ϕL
k

〈
ϕj
k

〉(
k2
eq − k2

k

)
Λk

, (14)

where Γj is the area of the patch j and ⟨ϕi
k⟩ is the mode shape (Eq. (13))

averaged on the patch i:

〈
ϕi
k

〉
=

1

Si

∫
M∈Si

ϕk(M) dSi. (15)

The parameter nfmax is introduced, linking fmode the limiting frequency

of the modal basis with fmax the maximum frequency of the study:

fmode = nfmax fmax (16)

For instance, if nfmax = 3 and the maximum frequency of the study is 1kHz,

all the modes having a natural frequency below 3kHz are kept in the modal

basis. So the number of modes M retained in the modal basis depends on

the parameter nfmax .

The PTF approach implies to design patches on the interfaces. We define

the criterion h as the ratio between the minimum wavelength λmin and L

the patch length. If h is set to 3 then they are at least 3 patches for one

wavelength. So, this criterion has to be optimized.
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For all the calculations, the accuracy of the PTF method is measured

using the mean absolute error value:

e = ⟨|LpPTF − LpFEM |⟩ , (17)

with LpPTF and LpFEM respectively the SPL (the pressure reference for the

calculation in dB is 20 µPa) computed with the PTF approach and the FEM

reference solution. All FEM models in this paper are meshed in 3D with 10

nodes tetrahedral elements with a λmin

6
criterion (with λmin = c

fmax
) to insure

the convergence of the mesh.

Fig. 4 compares the SPL at listening point L1 obtained with FEM method

and with the PTF approach. It shows that PTF approach converges slowly

with respect to nfmax . Fig. 5 shows the influence of the patch mesh size on

the accuracy of the PTF approach. For nfmax = 10, it appears that the error

stabilizes for h = 2. Fig. 6 shows the evolution of the error in function of

nfmax and h, for two positions of the listening point.

Several observations can be made. Firstly, the calculation costs for the

FEM reference solution (20k dofs) lasted about 8 minutes while the PTF

method took between 2 seconds and 10 minutes depending on the parameters

nfmax and h. Fig. 4 shows that the peaks are not exactly reconstructed, which

is likely due to the low absorption in the model, making them very sharp

and sensitive to frequency resolution. The error is acceptable but there is

disparity in the frequency range.

Additionally, the surface plot in Fig. 6 demonstrates that the error de-

pends on the location of the listening point. When it is placed close to the
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Figure 4: Influence of the modal truncation on the accuracy of the PTF approach for the

calculation of the pressure at the listening point L1. The parameter h is set to 2.

interfaces, the error increases due to artificial acoustic near field phenomenon.

We can see that the error stabilizes at h = 2 (a value obtained by Ouisse et

al. [29]), although slightly better accuracy can be achieved with higher val-

ues (when the parameter nfmax is above 10). Results indicate that the PTF

method converges very slowly with respect to the nfmax parameter, making

the calculations time consuming when attempting to enhance the accuracy.

In fact, it can be seen that modes up to 10 times the higher frequency of the

study still have a significant contribution on the results. For real cases, high

frequency modes will be less resonant due to the general damping, reducing

their contribution. Incidentally, it would be impossible to consider modal

contribution with such a high frequency for real rooms as they are much

larger. Finally, a balance between accuracy and calculation costs needs to
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Figure 5: Influence of the patch mesh criterion h on the accuracy of the PTF approach

for the calculation of the pressure at the listening point L1. The parameter nfmax is set

to 10.
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Figure 6: Error between the PTF approach and the FEM reference solution in function of

nfmax
and h, for positions L1 (far from the interfaces) and L2 (close from the interfaces)

of the listening point.
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be found. If the PTF approach is not suitable for such a basic geometry, the

next section will demonstrate that it is very efficient for geometries which

cannot be solved analytically.

3.2.2. Second and third cases

The second and the third cases compare the PTF method response with

a FE solution for a geometry composed of three rectangular subdomains,

imitating a simple air inlet placed between two rooms (see Figs. 2 and 3b).

In the second case, the central subdomain is filled with air while the air is

replaced by an acoustic melamine in the third case.

Dimensions of the geometries are given in Table 2. The sizes of the rooms

Ω1 and Ω3 are defined small enough to keep a numerical validation possible,

based on the finite element method. The mesh of the whole geometry is

displayed in Fig. 7. Regarding PTF calculations, the convergence criterion

h is set to 2 for the patch mesh. So, in both cases, the PTF response

is compared to a finite element reference solution calculated for the whole

domain Ω.

For the second configuration, all the subdomains are filled with air and

PTF are obtained from an analytical modal summation (as in the previous

case). For the third case, only subdomain Ω2 varies: the air Ω2 is replaced

by an acoustic melamine. So, the PTF of subdomains Ω1 and Ω3 do not

need to be recomputed, and the PTF of the subdomain Ω2 are now obtained

using FEM. To do this, the Johnson-Champoux-Allard model is used for the

poroacoustic domain [21]. Porous parameters of the melamine are given in

Table 3. Comparisons are shown in Fig. 8 and 9.

21



Table 2: Geometrical and physical parameters of the second system presented on Fig. 3.

All lengths are in meters.

Ω1 Ω2 Ω3

(x ; y ; z) (0 ; 0 ; 0) (1.2 ; 0.7 ; 0.644) (1.5 ; 0 ; 0)

(Lx ; Ly ; Lz) (1.2 ; 1.6 ; 1.3) (0.3 ; 0.4 ; 0.05) (1.5 ; 1.6 ; 1.3)

Source S (0.2 ; 0.2 ; 0.2)

Listening points L1: (0.6 ; 0.8 ; 0.65), L2: (2.25 ; 0.8 ; 0.65)

ρ 1.22 kg.m−3

c 340 m.s−1

η 0.02

(Lx ; Ly) Patches 6 patches of size (0.4
3

; 0.05)

Figure 7: Finite Element mesh for the calculation of the reference solution. It has about

722 000 dofs.
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Table 3: Acoustic parameters of melamine. Resistivity σ, porosity ϕ, tortuosity α∞,

viscous length Λ and thermal length Λ’ relate to the fluid phase of the porous material.

σ ϕ α∞ Λ Λ′

Units Pa.s/m2 - - µm µm

Melamine 15 300 0.96 1.02 105 205

It appears that the PTF method ensures a good prediction of the SPL at

a listening point, particularly in the third case. This can be explained by the

dissipation added by the presence of acoustic melamine. We can see in Fig. 9

that the melamine decreases the sound pressure level in subdomain Ω3. In

addition, the prediction is more accurate when the listening point is in the

same subdomain as the source, so in Ω1. Moreover, the PTF approach saves

a lot of computation time for both configurations. The FEM resolution of

the whole domain lasted 21 hours (it has 721 993 dofs) while the complete

PTF approach lasted only 1 minute for the "air" case and about 20 minutes

for the "melamine" case. The "melamine" case is longer because the PTFs of

subdomain Ω2 are computed using FEM. So, the duration of the FEM method

confirms that it would be impossible to apply it to real testing rooms as their

total volume is about 50 times larger, thus it would take 50 times more dofs

to reach the same frequency with the same accuracy, which is totally beyond

current computing resources.

However, the size of the rooms can also be a limitation for the mode

expansion approach used, as the number of modes grows strongly with the
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Figure 8: All the domains are filled with air. At the top: the SPL at the listening point

L1. At the bottom: the SPL at the listening point L2. h = 2, nfmax
= 6.

volume. The next section introduces a way to reduce the bandwidth for the

calculation of modal contributions.

4. Convergence acceleration of PTF computation using quasi-static

correction

As the rooms increase in volume, the analytical model based on the mode

expansion requires a larger number of modes to ensure convergence of the

PTF which quickly becomes time consuming [36]. Thus, there is a need

to speed up the calculation of the PTF using reduction methods. To this

end, Aucejo et al. calculated the residual deformations on each patch and

added them to their original modal basis, using a re-orthogonalization pro-

cedure [31]. This correction was applied to water cavities of relatively small
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Figure 9: Subdomain Ω2 is replaced by melamine. At the top: the SPL at the listening

point L1. At the bottom: the SPL at the listening point L2. h = 2, nfmax = 6.
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dimensions, containing less modes than air ones. In this section, we will il-

lustrate how to estimate the stiffness contribution of the modes beyond the

bandwidth to correct the mode approximation.

Previous results were achieved using a large number of modes in order to

ensure a better convergence of the PTF quantities. The relatively small size

of the considered cavities allow us to take into account modal contributions

up to 6 times the upper frequency of the study, which is 6kHz. However,

the volume of the real rooms used for industrial measurements is about 120

m3, which is about 50 times the volume of the largest cavity considered in

the previous section. For a 3D rectangular box, the number of modes M

below the frequency fmode = nfmax fmax can be estimated (fmax beeing the

maximum frequency of the study) [28]:

M =
4πV

3

(
fmode

c

)3

+
πS

4

(
fmode

c

)2

+
L

8

(
fmode

c

)
, (18)

where c is the speed of sound, V is the room volume, S is the total area

of the walls and L is the sum of all edge lengths of the room. For the

cavity Ω1 we had about 60 000 modes below 6kHz. Then if we consider

the emitting room of a real acoustic laboratory, we find about 3 500 000

modes. That would make the calculation far too costly in time and memory.

Thus, acceleration of the convergence is necessary in order to keep the modal

approach possible for larger geometries. A quasi-static correction is defined,

implemented and tested over a simple case. Benefits of this approach for

convergence enhancement are shown hereunder.
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4.1. Definition of the implemented quasi-static correction

As we can see in Eq. (14), PTFs of any acoustic geometries have the

following generic expression:

Z(ω) = A(ω)
∞∑
k=1

Φk(
k2
eq − k2

k

)
Λk

, (19)

where A(ω) = iωρeqΓj, Φk is the product of averaged modal shapes: Φk =

⟨ϕi
k⟩
〈
ϕj
k

〉
for a PTF between two patches or Φk = ϕL

k

〈
ϕj
k

〉
for a PTF between

a patch and a listening point.

This equation can be rewritten as follows:

Z (ω) = A(ω)

(
M∑
k=1

Φk

(k2 − k2
k) Λk

+
∞∑

k=M+1

Φk

(k2 − k2
k) Λk

)
, (20)

where the left sum is the modal basis which has been kept and the right one

is the truncation error.

Assuming that the natural frequencies of the omitted modes are much

higher than the frequency studied: ωk >> ω, or kk >> k. So, the k2 term of

the right summation can be neglected. The Eq. (20) simplifies:

Z (ω) ≈ A(ω)

(
M∑
k=1

Φk

(k2 − k2
k) Λk

−
∞∑

k=M+1

Φk

k2
kΛk

)
. (21)

The right sum is a constant and can be deduced from a finite element

result at quasi-static frequency. For ω = ωqs:

Z (ωqs) ≈ A(ωqs)

(
M∑
k=1

Φk(
k2
qs − k2

k

)
Λk

−
∞∑

k=M+1

Φk

k2
kΛk

)
≈ ZFE (ωqs) , (22)
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with kqs =
ωqs

ceq
and ZFE (ωqs) the PTF obtained using the finite element

method at the frequency ωqs.

Then, the infinite sum can be isolated:

∞∑
k=M+1

Φk

k2
kΛk

≈
M∑
k=1

Φk(
k2
qs − k2

k

)
Λk

− ZFE (ωqs)

A(ωqs)
. (23)

Finally, the infinite sum is isolated and the Eq. (19) can be rewritten:

Z(ω) ≈ ω

ωqs

ZFE (ωqs)+A(ω)
M∑
k=1

Φk

(
1

(k2 − k2
k) Λk

− 1(
k2
qs − k2

k

)
Λk

)
. (24)

So, we get a hybrid expression of Z(ω) calculated from an analytical mode

expansion corrected with FEM. This allows for the consideration of smaller

value for M , thus the summation over the number of modes is reduced and

calculation time can be saved.

There is no mathematical rule for the choice of the quasi-static frequency

ωqs. Empirical tests have been performed for several geometries over the

entire bandwidth to identify a favorable region. We observe that the correc-

tion is more efficient when the FE calculation is computed at a frequency far

from those of the eigenmodes of the considered subdomain, because the static

contribution of higher modes is relatively more important away from reso-

nances. Therefore, the following procedure has been selected for the choice of

the quasistatic frequency: for each subdomain, we keep the first ten natural

frequencies. Among these, we look for the two more distant ones ωa and ωb,

then the calculation is made at the middle: ωqs =
ωa + ωb

2
.
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4.2. Validation of the quasi-static correction

The previous correction has been implemented over the second geometry

presented in Fig. 2 with Ω2 filled with air. The effect of the method is

displayed in Fig. 10: the response of a FE calculation is compared with the

response of the PTF calculation without and with the quasi-static correction.

h and nfmax are set to 3 for this comparison, so the modal values are calculated

up to 3kHz. For the sake of clarity, a zoom is performed over the frequency

range 400-1000 Hz. Note that below 400 Hz, the FE calculation and both

PTF calculations give approximatively the same results. We can see that the

quasi-static correction drastically reduces the mean absolute error.

Figure 10: Comparison of the uncorrected and corrected PTF response against the FE

reference. At the top: the SPL at the listening point L1. At the bottom: the SPL at the

listening point L2.

A comparison is made between the convergence of the PTF model without
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and with the quasi-static correction in Fig. 11. The mean error in dB at

the listening points is calculated depending on nfmax varying from 1 to 6. It

appears that the correction allows to stay below 1 dB of mean absolute error.

Moreover, we can lower nfmax from 6 to 1 while keeping a similar error. As

the number of modes is dependent on f 3 (see Eq. (18)), it is equivalent to a

reduction of the number of modes required by approximately 216.

Figure 11: Convergence of the PTF model with and without the quasi-static correction,

in function of the multiple of the maximum frequency kept for modal calculation.

This section demonstrated the interest of the quasi-static correction for a

faster convergence of the PTF approach. As the number of modes required

for a good convergence is significantly reduced, it would be possible to en-

large the size of the rectangular domains while keeping reasonable calculation

costs. The next section validates a reduced model of the laboratory used for
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measuring the sound transmission air inlets, opening the way for calculation

with real dimensions.

5. Application of the PTF method on a real air inlet

The PTF method is used to model a small-scale laboratory, in order to

compute the SPL at listening points located in both rooms separated by a real

air inlet. This section details the reduced geometry of the real laboratory, the

subdomains considered and their interfaces. It presents how the computation

and the assembly of PTF sub-systems is achieved and finally compares the

results with a full FEM calculation.

5.1. Description of the industrial case study

A 2D diagram and the 3D view of the laboratory in which the calculation

of the SPL is made, is presented Fig. 12. Note that the relative shapes of the

rooms are drastically reduced to allow for FEM calculation. As the emission

and reception rooms have a rectangular shape, analytical solutions exist for

the PTF. However, the canopy of the air inlet (where the incident surface

is located) protrudes in the emission room domain. So, a fictive rectangular

block is extracted from the emission room to be part of the computer aided

design (CAD) domain containing the air inlet canopy, the window hole and

the inner part of the air inlet. This block has to be large enough to contain

various sizes of canopies (the idea is to keep the same interfaces independently

of the inserted canopy), and small enough to keep the numerical computation

efficient. Finally, four other rectangular blocks are created to fill the emission

room.
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Figure 12: (a): Diagram of the industrial case (small-scale laboratory) and (b): geometry

of the reduced industrial case - 9 subdomains, 16 interfaces, 569 patches. A λ
3 criterion is

chosen for the size of the patches.

The presented division in subdomains has two benefits. First, it allows to

use an analytical model for all the rectangular blocks. On the other hand, if

we change the air inlet, only the PTF of the subdomain called ’CAD’ have to

be recalculated. Indeed, as the interfaces remain the same, all other domains

have to be computed only once. The connectivity graph presented in Fig. 13

highlights the interfaces between all the subdomains.

As displayed in Fig. 12, two listening points are placed at the center of the

reduced testing rooms, and a loud speaker is placed in the emission room. All

the dimensions are given in Table 4. Four configurations for the subdomain

CAD are under study, as presented in Fig. 14.

The ’Convergent’ is the last subdomain computed with FEM. It has about

190 000 dofs. All the results are presented in the next subsection.

32



Figure 13: Subdomain connectivity graph. 9 subdomains (2 numerical, 7 analytical), 16

interfaces.

Figure 14: Four configurations are computed for the CAD domain. (a): an opening drilled

in the window. (b): melamine is inserted in the opening (in orange). (c): a real air inlet is

inserted without melamine foam. (d): the same air inlet with melamine foam (in orange).

(e): the finite element mesh for these configurations, having about 190 000 dofs for the

more complex geometry.
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Table 4: Geometrical and physical parameters of the system presented on Fig. 15. All

lengths are in meters.

Emission room Block top Block right

(x ; y ; z) (0 ; 0 ; 0) (0.92 ; 0 ; 0.74) (0.92 ; 1.1 ; 0.66)

(Lx ; Ly ; Lz) (0.92 ; 1.7 ; 1.4) (0.08 ; 1.7 ; 0.66) (0.08 ; 0.6 ; 0.08)

Block left Block bottom Block R1 Reception Room

(0.92 ; 0 ; 0.66) (0.92 ; 0 ; 0) (1.662 ; 0.105 ; 0.1) ( 1.992 ; 0 ; 0)

(0.08 ; 0.6 ; 0.08) (0.08 ; 1.7 ; 0.66) (0.33 ; 1.49 ; 1.2) (0.8 ; 1.7 ; 1.4)

Source S (0.2 ; 0.2 ; 0.2)

Listening points L1: (0.5 ; 0.85 ; 0.7) and L2: (2.392 ; 0.85 ; 0.7)

ρ 1.22 kg.m−3

c 340 m.s−1

η 0.02

Patches 569 patches of maximum size 0.11 m
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5.2. Implementation of the computation and assembly of PTF subsystems

The relative complexity of the industrial case led to the development of

an application dedicated to the creation of the geometries, the detection of

the interfaces, the creation of the patches and all the acoustic calculations

based on the PTF method. The program is structured around the following

steps:

1. Sizing and positioning of all the subdomains, sources and listening

points;

2. Definition of the frequency range, the maximum size of the patches,

the maximum frequency for the modal bases;

3. Calculation of the natural frequencies and the associated modal mass

and damping for each rectangular subdomain;

4. Detection of the coupling surfaces between each subdomain, definition

of a list of neighboring subdomains for each subdomain;

5. Definition of the patches;

6. Calculation of the averaged mode shapes on each patch, and the mode

shape at source points and listening points for each rectangular subdo-

main;

7. Loading of the pre-calculated PTF matrices of FE domains;

8. Initialization of the general PTF block matrix;

9. Calculation of quasi-static corrections for each analytical domain;

10. Starting the frequency loop: calculation of all the patch transfer func-

tions, resolution of the matrix system (velocity on the patches) and

calculation of the pressure at the listening points;

11. Save the PTF matrices for future calculations;
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12. Post-processing and display.

5.3. FEM validation

In order to validate the implementation, the same geometry is computed

using FEM. A comparison of the meshes used for the PTF approach and the

full FEM approach is displayed in Fig. 15.

Figure 15: (a): Meshed domains for the PTF approach. CAD subdomain has 32 000

dofs, convergent subdomain has 61 000 dofs. (b): mesh of the complete domain for the

calculation of FE reference (about 900 000 dofs).

5.4. Results

Results of the reduced industrial case are presented for the four configu-

rations. Parameter nfmax is set to 3, and the quasi-static correction is used

for all the rectangular subdomains. Parameter h is set to 3. It provides

better results in this complex configuration having lots of subdomains and

mixing analytical and numerical PTF matrices. Other tests (not presented

here) with h = 2 have shown that the error is cumulative and grows with the

number of subdomains.
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Figure 16: First case: The CAD domain only contains the opening filled with air. At the

top: the SPL at listening point L1. At the bottom: the SPL at listening point L2.

Figure 17: Second case: The CAD domain only contains the opening filled with melamine.

At the top: the SPL at listening point L1. At the bottom: the SPL at listening point L2.
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Figure 18: Third case: The CAD domain contains the air inlet without melamine foam.

At the top: the SPL at listening point L1. At the bottom: the SPL at listening point L2.

Figure 19: Fourth case: The CAD domain contains the air inlet with melamine foam. At

the top: the SPL at listening point L1. At the bottom: the SPL at listening point L2.
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Figures 16, 17, 18 and 19 show that differences between the configura-

tions are hardly noticeable because of the low dissipation inducing strong

resonances. In all cases, the mean error between the PTF response and the

FEM reference is reasonably low which validates the implementation. Table 5

shows the duration of all the calculations.

Table 5: Detailed calculation costs for FEM and PTF methods. PTF analytical and quasi-

static correction lines concerns the calculation of the PTF of all rectangular subsystems.

Case considered 1 2 3 4

FEM 14h 20min 14h 20min 19h 10min 19h 10min

PTF analytical 3min - - -

Quasi-static correction 25min - - -

PTF of Convergent 30h - - -

PTF of CAD 12h 20min 12h 20min 17h 30min 17h 30min

PTF resolution 15s 15s 15s 15s

PTF total 42h 50min 12h20min 17h 30min 17h 30min

Table 5 states that the PTF approach and the FEM reference took ap-

proximatively the same time to compute, except for the first case (43 hours)

as it includes the calculation of the PTF of all the rectangular domains plus

the Convergent subsystem. As these subsystems and interfaces remain the

same between configurations, their PTF are simply reused for the other cases,

this is one of the interests of this approach. We are here considering a re-

duced case: the volume of the real testing rooms is about 50 times larger

(as well as the number of dofs), making the use of FEM almost unfeasible
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on standard computers. Conversely, with the PTF approach, we will first

need to calculate the PTF of the uncoupled rectangular subsystems which

should take a few hours, because the number of modes increases along with

frequency. Once these PTFs are calculated, the total duration of all the other

cases will not change as it depends only on the duration of the PTF of CAD

subsystem calculation. Note that the PTF resolution will last longer because

of the increasing number of patches. However, it remains negligible compared

to the total duration. The duration of quasi-static correction should not vary

a lot since it is computed around the first eigenmodes of the rectangular sub-

systems. Preliminary calculations on real size geometries required about 40

hours to compute the PTF matrices of all the rectangular subdomains due

to a high number of patches (around 2000) and the multiplication of eigen-

modes. However, the duration of PTF resolution remains below 10 minutes.

Finally, these results open the way for calculations on real testing rooms.

6. Conclusion

A model of an air inlet coupled with testing rooms was presented, utiliz-

ing the PTF method to calculate the SPL at a listening point generated by

a monopole source. The model included analytical mode expansion for rect-

angular cavities and used FEM for more complex geometries. A convergence

acceleration was successfully implemented for the analytical calculations. It

allows to reduce by half the maximum frequency for the modal summation,

making calculations on large testing rooms possible. Melamine foams inside

the air inlets are also considered using an equivalent fluid model.

The results showed the accuracy of the PTF approach, as the results
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were similar to the FEM model for all the geometries considered. It was also

demonstrated that the calculation of PTF in subdomains is a fast process,

and has the advantage of remaining nearly the same with larger testing rooms

where FEM is no longer applicable. This demonstrates again the considerable

interest of this approach. Upcoming developments will extend the study to

a model with real dimensions and compare predicted Dn,e with measured

ones for several air inlets. It will be necessary to calibrate the testing room

responses using measurements made in a specific laboratory. To ensure the

accuracy, dissipative interfaces will be plugged into several locations on the

walls of the testing room to replicate the behavior of a real testing facility.
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