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Cross-correlation Coefficient with Sliding Windows
Approach
Zouhaier Dhifaoui

Department of Family and Community Medicine, Faculty of Medicine of Sousse, 8 Mouhamed
Karoui Street 4002, University of Sousse, Tunisia

Abstract

Due to its fundamental connection to food prices, climate change is crucial to the development
of the countries. Although the widespread influence of climate change on the crop yields of the
main agricultural commodities are well known, the impact of climatic change on the price of food
still remains uncertain. This study explores the impact of the most well-known climate index,
the North Atlantic Oscillation (NAO) index, on the international food prices. For this goal, a
new robust power-law cross-correlation coefficient is used. First, we determine the statistically
critical value for power-law cross-correlation coefficient. Second, we obtain the color map of
such coefficient by using the sliding windows approach for different time scales, and we deduce
a time-varying version of such coefficient. Our results suggested that large increments of the
NAO index are followed by large increments of the different international food prices for short
and long-term scales. Accordingly, the NAO index influences the international foods price.

Keywords: Food security, robust long-range cross-correlation coefficient, bivariate Hurst
exponent, NAO index, international food prices.

1. Introduction

Compared with pre-pandemic forecasts, 75 million people are expected to fall into extreme
poverty by the end of 2022 and global hunger remains alarmingly high (USAID, 2022). Before
the onset of the covid-19 pandemic, the number of people affected by hunger rose to 828 million
in 2021, an increase of about 46 million since 2020 and an increase of 150 million since 2019.
The global food crisis has been exacerbated in part by the growing number of food trade re-
strictions that countries have imposed to boost domestic supplies and drive down prices (Mari
and Axel, 2022; Kristalina and Sebastian Sosa, 2022). In addition, to export restrictions, some
countries have eased import restrictions, which could put additional pressure on food prices
as demand increases. Global food production is also being impacted by rising temperatures,
shifting precipitation patterns, and increasingly frequent extreme weather events (EPA, 2022;
C.Worldwide, 2022). Since 1961, climate change has caused a 21% decrease in worldwide agri-
cultural productivity. This stunts growth, reduces labor productivity and threatens economic
development, especially in developing countries (W.Bank, 2022).



Extreme weather events like scorching temperatures or torrential rain are becoming more
common due to the effects of climate change. Agricultural supply is highly weather-dependent
and the North Atlantic Oscillation (NAO) index, which represents the redistribution of atmo-
spheric mass between the arctic or subarctic regions and the subtropical regions of the Atlantic,
has a strong bearing on world crop production (Porter and Semenov, 2005; Heino et al., 2018).
Moreover, NAO index prominently influences the intensity of winter conditions in Asia, Europe,
and the United States (Visbeck et al., 2001; Wang and You, 2004) and they then influence agri-
culture production (Shah et al., 2021). Based on food and agricultural organization, in 2020,
the United States is the largest producer of corn in the world with 31.8% of global production
followed by China with 23% of global production, Brazil with 9.6% of global production, Iowa
with 5.1% of global production and Argentina with 4.8% of global production. Additionally,
the world produced 760 million tons of wheat, with China, India, and Russia being the three
biggest producers, together making up roughly 41% of the total. The world’s fourth-largest
producer of wheat is the United States. However, if we count the European Union as one coun-
try, it produces more wheat than any other country except China. Regarding the production of
oats, in 2020, the European Union was the largest producer of oats in the world with 36.4% of
global production followed by Canada with 17.95% of global production, Russia with 16.19% of
global production, Australia with 6.57% of global production and United States with 3.72% of
global production. Furthermore, the total world soybean production in 2020 was 353,463,735
tons. Brazil is the largest producer, with his 34% of global production, followed by the United
States with 32% of global production.

The largest producing countries of wheat, oats, corn and soybean are near to the North
Atlantic. On the other hand, and similarly the NAO index measures a phenomenon affecting
the climate system of the North Atlantic Ocean. Also, the NAO index describes the variations
in the ocean atmosphere regime over the region and is, generally, the difference in atmospheric
pressure between the Azores High and the Iceland Low. NAO index is a determining climatic
factor on a regional scale because it is related to the position and trajectory of meteorological
disturbances that affect Western Europe as well as ocean temperatures in the North Atlantic
basin. It is natural to find , in the NAO index, outlier observations causing by a strongly
positive values linked to warm conditions across the U.S. East and Northern Europe, and cold
conditions across southern Europe. As well, outlier observation in the NAO index can be
caused by a strongly negative values linked to cold conditions in the U.S. East and Northern
Europe, and warm conditions in Southern Europe. To study a possible nexus between the
NAO index and the international food price it is necessary to apply a robust method to test for
outliers observations. It’s proved that the Granger causality test is sensitive to additive outliers
observations (Baldd Rodrez, 2005; Bojanic and Lo, 2016), as well for vectorial autoregressive
model (Funke, 1992). This study addresses the potential relationship between the NAO index
and international food prices through a novel approach dealing with robust power-law cross-
correlation coefficient within a sliding windows framework. For this objective, data includes
the daily time series of the NAO index, and the international price of wheat, corn, soybean,
and oats, respectively. In addition, we apply the robust power-low cross-correlation coefficient
proposed by (Dhifaoui, 2022) that can prove if the fluctuations of the process X is followed by
the fluctuations of the process Y or not. Moreover, we use a sliding windows approach to study
a possible connection between NAO index and the international food prices over the time-scale.
Our findings have implications, first, for how careful investors should be when assessing climate



risk. Additionally, they need to have portfolios that are well-diversified and have a hedging
strategy in place, for the food markets, which could suffer if the climate risk increases. Second,
for responsible authorities, to prepare well for food crises due to climate change, by storing
food products, or replacing some food products with others available and at low prices.

The following describes the structure of this article: Section 1 is devoted to the introduction.
The review of the literature is located in Section 2. We introduce the methods employed in this
research in Section 3. We describe the sample data and provide descriptive statistics for the
chosen sample in Section 4. Section 5 outlines the results. A robustness exercise is presented
in Section 6. Theoretical and empirical implications is given in section 7. We present our
conclusion in Section 8.

2. Literature review

Despite the fact that the impact of the NAO index on agricultural production is discussed
in various studies, at the time of writing of the present article, we have not found a study
focussed on the impact of the NAO index on any international food prices. Nevertheless, there
are some works interested in the connection between some other climate change indices, like
El Nin0 or La Nina indices, and some food products. Peri (2017) discusses the effect of the
El Nino and La Nina events according to the Spring-Summer and Autumn-Winter weather
seasons, and shows that both events increase the expected volatility of corn price, showing the
strongest impact during the El Nino phase in Spring-Summer. Also, soybean price volatility
tends to decrease slightly during the fall and winter weather seasons and increase during the
Spring-Summer period. As well, Ubilava (2017) showed, by studying the monthly spot prices
of wheat from the United States, the European Union, Australia, Canada, and Argentina,
that wheat price tend to increase after La Nina events and decrease after El Nino events. In
addition, Gutierrez (2017) showed that wheat export prices are positively linked to the events
in La Nina, demonstrating once again its constant impact in the short and long term. By
studying the dynamics of the fishmeal-soybean flour price ratio, Ubilava (2014) showed the
significant impacts of the bi-monthly multivariate El Niio Southern Oscillation (ENSO) on the
dynamics of the price ratio, and indicated the statistical significance of these effects up to one
year after the ENSO shocks. Moreover, Hasudungan et al. (2021) showed that the price of rice
is positively related to the El Nino index and negatively related to the shocks of La Nina.

Although there is no study that has dealt with a possible relationship between NAO index
and some international food price, several research studies are interested in the impact of NAO
index on some food price for different regions or countries. Heino et al. (2020a) showed that
the NAO index has an impact on the soybean production in Australia and Europe. With other
different climate change indices, Salinger et al. (2022) proves the connection between NAO
index and soybean production in Italy. Also, Anderson et al. (2019) demonstrated that the
global aggregated variability in corn, soybean, and wheat output is accounted for by the ENSO
index, the Indian Ocean Dipole, tropical Atlantic variability, and the NAO index, respectively.
As well, Najafi et al. (2019) showed that large-scale changes in the NAO index are strongly
correlated with soybean yield variability in north and south America, Oceania and south of
Asia. The relationship between variability of NAO index and corn production is studied in
different works. Zhou et al. (2012) showed that the springtime NAO index is significantly
correlated to the increment of corn and rice yield in Northeast China. The study in (Brown,



Table 1: Summary of previous research.

Study Climatic indices Method Causality
Zhou et al. NAO index Correlation coefficient Yes
(2012)
Brown (2012) Meteorological data, biocli- Correlation coefficient Yes
matic metrics, and the NAO
index
Ubilava (2014) El Nino index A smooth transition autore- Yes
gressive model
Peri (2017) El Nino index Volatility impulse response Yes

function from a multivariate

GARCH model.

Ubilava (2017) El Nino index Vector smooth transition Yes
autoregressive model

Gutierrez (2017) El Nino index Global dynamic model Yes
Anderson et al. NAO, Indian Ocean Dipole, Maximum covariance analy- Yes
(2019) tropical Atlantic variability, sis

and ENSO indices
Najafi et al. NAO index Robust principal compo- Yes
(2019) nent analysis
Heino et al. NAO index Multivariate linear regu- Yes
(2020a) larisedridge regression
Hasudungan El Nino index The vector error correction Yes
et al. (2021) model
Salinger et al. NAO index Simulated Annealing classi- Yes
(2022) fication and principal com-

ponent transversa

2012) reveals that a significant relationship between wheat, barley, oats, and potatoes and
climate vary depending on the crop type and month. Table 1 briefly summarizes the past
research focused on the relationship between some climatic change indices and food prices.

3. Methodology

In this section, we recall the robust outliers power-law cross-correlation coefficient proposed
in (Dhifaoui, 2022). This coefficient is named the bivariate Hurst exponent and permits to
testing if the fluctuations of the process X is followed by the fluctuations of the process Y when
these two processes are cross correlated contaminated by outlier observations. In addition, we
use the bootstrap method to obtain the statistical critical value of such coefficient, and the
sliding windows approach is used to obtain the nexus between X and Y over time and time-
scale.

3.1. Robust bivariate Hurst exponent

The robust bivariate Hurst exponent (BHE) is based on the use of the deterended cross-
correlation function. Let a zero means stochastic processes X and Y and are long-range tem-
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porally autocorrelated with power-law auto-correlations as:
E[X ()X (¢ 4+ 5)] ~ s*#X72 and E[Y ()Y (£ 4 5)] ~ s2Hv 2, (1)

where (Hx, Hy) € [0.5,1[* are the Hurst exponents and ~ denotes proportionality. The power-
law cross-correlations are defined by:

E[X(0)Y (£ + s)] ~ As**? and E[Y (£)X (¢ + s)] ~ Bs*~2, where (A, B) € R%, (2)

and the scaling exponent v characterizes the cross-correlation properties of X and Y.

For computing cross-correlation function, considering two time series { X; }i—1,.
Each time series is covered with Ny = [N/s| non overlapping boxes of size s where [.] is a lower
integer sign. The profiles in the v-th box [¢, + 1,4, + s|, where ¢, = (v — 1)s, are determined

to be:
k k

Xo(k) = X(Ly+j) and Yy (k) = Y Y (L +j), fork=1,...,s. (3)

J=1 J=1

Assume that the local trends of X, (k) and Y, (k) are respectively X, (k) and Y, (k). According
to (Xiaojun et al., 2014), the cross-correlation for each box is given by:

s

£ (5) = - S (Kh) = KR (Valk) ~ Vilk)), forv=1,...,N, (4)
k=1

and the g-th order cross-correlation function is calculated as follows:

N, L
(3 TEY ) wheng 20,

Fxy(q,s) = v:11 N, ()
exp(2N Zlog(ff’y(s))), when ¢ = 0.

Then, when s is large enough, we expect the following scaling relation:
Fxy(q,s) ~ §1xx(9), (6)

where vxy(q) characterizes the long-range cross-correlation properties of processes X and Y.
If vxy(2) = 0.5 or Fxy(2,s) oscillates around zero suggested that no cross-correlation. If
vx.v(2) > 0.5, then there is a positive power-law cross-correlation, which indicates that a large
increment in one process is more likely to be followed by a large increment in the other process.
If yxyv(2) < 0.5, then X and Y are anti-correlated.

In the case where the processes X and Y are cross-correlated and contaminated with outliers
observations, the BHE, Hx + Hy, is established from the behavior of E[Fxy (2, s)?], for large
values of s, given in the following relation (Dhifaoui, 2022):

B[ (2,8)7] = RS O(1) + S )

where ox = y/var(X(1)), oy = y/var(Y (1)) and pxy = cor(X(1),Y(1)).
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3.2. Statistical critical value of bivariate Hurst exponent

It is proved, in (Dhifaoui, 2022), that vxy(2) = (Hx + Hy)/2, then, according to last
interpretations of vxy(2), if Hx + Hy = 1 then their is no cross-correlation, if Hy + Hy > 1
then there is a positive power-law cross-correlation, and if Hy + Hy < 1 then X and Y are
anti-correlated. Herein, we note by Hx y the BHE and we determine their critical value and the
associated p-value using the procedure given in (Podobnik et al., 2011). Then, we will follow
the steps:

1. We generate pairs of i.i.d time series (Hx = Hy = 1/2) of length N taken from a Gaussian
distribution.

2. We estimate the BHE using the procedure proposed in (Dhifaoui, 2022).

3. We repeats steps 1 and 2 for N,., = 10000 times.

4. We calculate the probability density function (PDF) of BHE.

The descriptive statistics of 10000 times BHE for different N are given in Table 2 and the
associated probability density functions are illustrated in Figure 1. According to Table 2, the
Kurtosis coefficient is near to zero for all NV values which implies that the distribution of BHE
is flattened. The Skewness coefficient revels that, for N = 300, the distribution of BHE is
symmetric whereas for N = 500 and N = 1000 the distribution of BHE is not symmetric.
We applied Kolmogorov-Smirnov (K.S) and Jarque-Berra (J.B) tests for testing the normality
distribution of BHE. The results of K.S test shows that the BHE is normally distributed for
all N values. This results is confirmed by J.B test for N = 300 and N = 500, whereas the
distribution of BHE is not normal for N = 1000. Then, according to this results we assume
that the probability distribution of BHE is normal and we test the null hypothesis against the
alternative hypothesis, that is:
HO: Hy + Hy =1 (no cross-correlation),
H1: Hy + Hy > 1 (positive power-law cross-correlation).
Therefore, for each N, we found the critical value HS y (N) of BHE for 90%, 95%, and 99% of
confidence level, as follows:

Hg(,Y(N> = Max y + ZaaHX,Y? (8>

where mpy, .. is the mean value of 10000 times BHE, o, , is the standard deviation and Z, is
fractile of standard normal distribution for the desired confidence level 1 — «. In addition, the
p-value of Hx y is given by:

N,
1 rep
pv(Hxy) = N, Z Lty <(fixs)e) (9)
re 4:1

where (f-\l xv)e is the estimated value of BHE of /¢-th simulated two i.i.d time series and
1{HX7Y§(}7X7Y>£} =1if Hxy < (Hxy), and 0 otherwise. Then, we reject the hypothesis HO if
Hxy > H%y(N) and we consider that the positive power-law cross-correlation is statistically
significant. The obtained critical values H y (NN) for different confidence level (CL) 1 — a and
some descriptive statistics of Hx y for different NV are given in Table 2.



Figure 1: Probability distribution of BHE for i.i.d time series (Hx = Hy = 1/2).

Table 2: Descriptive statistics of BHE for N = 300, N = 500 and N = 1000, respectively.

N = 300 N =500 N = 1000
Mean 0.983 0.998 1.01
Median 0.984 1.0009 1.011
Std.D 0.191 0.143 0.102
Skewness 0.001 -0.021 -0.053
Kurtosis -0.038 -0.046 -0.058
K.S test 0.004(0.969)*** 0.009(0.329)*** 0.011(0.152)***
J.B test 0.585(0.746)*** 1.662(0.435)*** 6.209(0.044)***
Hs.y (V)
C.L=90% 1.227 1.182 1.142
C.L=95% 1.297 1.234 1.179
C.L=99% 1.427 1.332 1.249

Note: The value between parenthesis is the associated p-value and *** indicates that the value is
statistical significant for 1%. C.L is the abbreviation of confidence level.

3.3.

Sliding windows approach of BHE

The proposal of this article consisting to take the robust long-range cross-correlation co-
efficient Hxy with sliding windows approach. Let N the length of the initial time series, h

the
1<

size of window where 1000 < h < N/2, n the time scale and T the time period where
T < N — h, then we obtain the color map of Hx y (T, n) using sliding windows framework

as follows:

1.

We fixe h = N/2 and, for fixed T in [1,h + 1], we consider the pairs of time series
For fixed n, each time series is covered with N = [(h — n)/s| non overlapping boxes of
size s. We compute the profiles in the v-th box [¢, + 1, ¢, + s], where £, = (v — 1)s using
Eq. (3).

We compute the cross-correlation f,~" (s) for each box using Eq. (4) for v =1,..., N,
and the second order cross-correlation function F'(7,n)xy(2,s) by Eq. (5) as:

FT,m)xv (2,5 = 2 3 75 (s).

We obtain Hy y(T,n) by the liner regression of log(F (T, n)xy(2,s)?) on log(s).
We repeat steps 14 for T'=1,...,h + 1 and for n = 50, 100, 150, 200.

4. Data and descriptive statistics

The analyzed time series are the North Atlantic Oscillation (NAO) index time series down-
loaded from the website https://www.cpc.ncep.noaa.gov/products/precip



/CWlink /pna/nao.shtml and the international price of corn, soybean, oats and wheat in U.S.
Dollars per bushel downloaded from the Bloomberg Terminal. The time series cover the period
from January 06, 2020 until May 18, 2022, then we have a daily time series of 600 observations.
Except the NAO index, in order to study the fluctuation of such time series, we analyze its re-
turn given by x;11 — ;. The studied time series are shown in Figure. 2 with the blue continued
curve and where the red points represented the detected outlier observations. Some descriptive
statistics of studied time series are given in Table 3. According to Table 3, the NAO index is
characterized by a negative mean and by a high value of variance, whereas other time series
have a zero means and low variances.

The bivariate Hurst exponent proposed in (Dhifaoui, 2022) need that the used processes are
a fractional Gaussian noise (fGn) processes contaminated with additive outliers observations.
In this study, to compute the bivariate Hurst exponent, we proceed as follow: we prove the
presence of outliers in studied time series, then we remove outliers from time series, and we
test the normality and stationarity of time series without outliers, as well we test if the process
without outliers is stochastic. If the time series without outliers is stochastic, stationary, and
normally distributed we can assimilate that it is a fractional Gaussian noise.

In order to detecting outlier observations in the studied time series, the extreme value theory
test of Holesovsky et al. (2018) is used. The result of this test is given in Table 3 where the value
between parenthesis indicate the percentage of outliers observations in each time series. On the
other hand, it is known that the augmented Dickey-Fuller (ADF) or the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests are very sensible to the effect of outliers observations (Franses and
Haldrup, 1994; Otero and Smith, 2005). To overcome this problem, the unit root test based
upon the Breitung’s variance ratio (Breitung, 2002) is used. In addition, the robust Jarque-
Bera (robust J.B) test (Gel and Gastwirth, 2008) is used to testing normality distribution of
the studied time series. The results of the above tests are given in Table 3.

The result of detection of outliers test reveals that the NAO index, the return of oats,
the return of corn, the return of soybean and the return of wheat time series contains 3.5%,
3.291%, 3.041%, 2.083% and 1.958% of outliers observations, respectively. In addition, the
robust stationarity test rejects the initial hypothesis of non-stationarity against the alternative
hypothesis of stationarity using that all p-values are less than 1%, then, the studied time series
are stationary. The no-normality distribution of studied time series is confirmed using the
robust Jarque-Berra (J.B) test where the corresponding p-values given between parenthesis are
less than 1% which indicates the rejection of initial hypothesis of normality.

The results of stationarity and normality tests of studied time series without outliers are
reported in Table 4, these time series are shown in Figure 8. According to the results of
ADF and J.B tests given in Table 4, the studied time series without outliers are stationary
and Gaussian distributed. In addition, the estimated value of Hurst exponent (H), using
corrected rescaled range (R/S) approach (Hurst, 1951; Weron, 2002), are more than 0.5 which
implies that the time series without outliers have a long memory. On the other hand, in
order to test if the studied time series after removing outliers are a fractional Gaussian noise
processes, we conduct a graphical comparison between their autocorrelation functions and the
autocorrelation function of fractional Gaussian noise process using the estimated value of Hurst
exponent H. The autocorrelation function of fractional Gaussian noise process is given by
p(k) = Vg (|k + 112 + |k — 11 — 2|k[*") where Vy = I'(1 — 2H) cos(rH)/(2mH) and k is
the time lag. Based on Figure 9, we remark that the autocorrelation function (in blue color)
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Table 3: Descriptive statistics of studied time series.

Time series Mean Std. Extreme Breitung ratio test Robust J.B test
Dev value variance
theory test

NAO index -1.839  110.543 47(1.958%) 0.005(0.001 )*** 98.554(0.000)***
Return of Corn 0.0001  0.084 79(3.291%) 0.0002(0.001)*** 631128.2(0.000)***
Return of Soybean  0.001 0.16 73(3.041%) 0.0001(0.001 )*** 11679.66(0.000)***
Return of Wheat 0.001 0.127 50(2.083%) 0.0002(0.001)*** 376399.5(0.000
Return of Oats 0.001 0.081 84(3.5%) 0.0001(0.001)*** 39656.19(0.000)***

Note:
statistical significant for 1%.

The value between parenthesis is the associated p-value and *** indicates that the value is

of all studied time series without outliers and autocorrelation function of fractional Gaussian
noise process (in red color) have almost the same behavior. In addition, the stochasticity of
studied time series without outliers are tested using the robust correlation dimension estimator
proposed in (Dhifaoui, 2016) where is based on the use of Gaussian kernel correlation integral
(Diks, 1996; Yu et al., 2000; Dhifaoui, 2018) (for application of this method, reader can se
(Zouhaier, 2022)). The results of the used stochasticity test are shown in Figure 10, where we
remark that the correlation dimension increase when the embedding dimension (m) increase,
then we can conclude that the studied time series after removing outliers are stochastic, this
results are also confirmed by evolution of confidence interval of estimated correlation dimension.
Based on the above results, we can consider that the studied time series are a fractional Gaussian
noise processes corrupted by outliers.

Table 4: Results of stationarity and normality tests and the Hurst exponent (H) of the studied time series
without outliers.

Time series ADF test J.B test H

NAO index -7.384(0.010)*** 3.494(0.174)* 0.683
Return of Corn -7.276(0.010)*** 0.947(0.622)*** 0.595
Return of Soybean 7.366(0.010)** 2.472(0.290)"** 0.545
Return of Wheat -6.777(0.010)*** 0.051(0.974)* 0.575
Return of Oats -7.786(0.010)** 0.413(0.813)** 0.583

Note: indicates that the value is

statistical significant for 1%.

The value between parenthesis is the associated p-value and ***

5. Empirical results and discussions

The sliding window approach for long-range cross-correlation between NAO index and the
return of different international food prices is obtained for 1 < 7T < 300 i.e for time period from
March 16, 2021 until May 18, 2022 and for time scale n equal to 50, 100, 150 and 200 days.
Herein, we consider n from 50 days to 100 days as a short-term scale, and when n from 150
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days to 200 days as a long-term scale. Additionally, we propose the time-varying long-range
cross-correlation as the average of Hy y (T, n) for all n as follows:

H(T)xy(2) =~ Z Hxy(T,n). (10)

n={50,100,150,200}

Furthermore, we take 1.297 as a statistical critical value for Hx y for confidence level equal to
95% (see Table 2), then we consider each Hyy > 1.297 is statistically significant and then their
is a positive power-law cross-correlation. The sliding windows long-range cross-correlation,
illustrated by contour plot, and the corresponding time-varying long-range cross-correlation
coefficient (the dashed red line represent H(T)xy = 1.297) for different pairs are given in
figures 3, 4, 5 and 6.

(NAO, Return of Corn)

May 2021 Jul 2021 Sep 2021  Nov 2021  Jan 2022 Mar 2022  May 2022 awr. 2021 Juil. 2021 oct 2021 Janv. 2022 awr. 2022

Time Time

(a) Sliding windows BHE. (b) Time-varying BHE.

Figure 3: Sliding window and time-varying BHE for NAO and return of Corn time series.

Our principal finding, of this section, is that there is a significant positive power-law cross-
correlation, for different time scale n and all time period 7', between the fluctuation of NAO
index and the fluctuation of studied international food prices. These results suggests that there
is a long-range cross-correlation between NAO index and different return of international food
prices. Therefore, a large change in the NAO index is followed by a large change in the return
of wheat, soybean, corn and oats prices, respectively.

Figure 3a represent the color map of Hx y for pairs NAO index and the return of corn price.
From this figure we remark that Hy y is greater than 1.9 for short and long term scale and for
all studied time period. On the other hand, Figure 3b showed that the time-varying long-range
cross-correlation coefficient is greater than the critical value 1.297 for all time periods except
in the middle of September 2021 and the middle of December 2021. This result implies that a
large change in the NAO index is followed by a large change in the return of corn price, so we
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Figure 4: Sliding window and time-varying BHE for NAO and return of Oats time series.
(NAO, Return of Soybean)

200

180

160 K

140} .
7 .
2 120

100

May 2021 Jul 2021 Sep 2021 Nov 2021 Jan 2022 Mar 2022 May 2022 awr. 2021 juil. 2021 oct 2021 Janv. 2022 avr. 2022
Time Time

(a) Sliding windows BHE. (b) Time-varying BHE.

Figure 5: Sliding window and time-varying BHE for NAO and return of Soybean time series.

12



(NAO, Return of Wheat)

avr. 2021 juil. 2021 oct 2021 jany. 2022 aur. 2022
Time

May 2021 Jul 2021  Sep 2021 Nov2021 Jan2022 Mar 2022 May 2022
Time

(a) Sliding windows BHE. (b) Time-varying BHE.

Figure 6: Sliding window and time-varying BHE for NAO and return of Wheat time series.

conclude that NAO index influences the fluctuation of corn price. In our knowledge, there is
no scientific research proves the connection between fluctuation of NAO index and the return
of corn price. This finding is due, probably, to the impact of NAO index on the corn yield
(Malone et al., 2009; Zhou et al., 2012; Heino et al., 2020a) which influence the corn price.
Furthermore, the relationship between NAO index and the return of corn price can be due to
relationship between NAO index and some other climatic change indices which impacts the
fluctuation of corn price or corn yield (Noah S. et al., 2012; Hatfield and Dold, 2018; Moschini
et al., 2021). Moreover, different studies showed the impact of NAO index on the quality of
water (Sarafanov, 2009; Rust et al., 2022) or the rainfall (Rust et al., 2021), and it is known the
importance of the irrigation and the rainfall on the corn productivity (Ren et al., 2008; Florio
et al., 2014; Xu et al., 2021). Accordingly, we can, probably, associate our finding about the
relationship between NAO index and the corn price to the impact of NAO index on production
of corn which is sensitive to the quality of the used water for irrigation and to the rainfall.

According to Figure 4a which represents the color map of Hy y for pairs NAO index and the
return of oats price, we remark that Hx y is greater than 1.7 for short term scale (50 < n < 100).
Whereas Hx y is greater than 1.9 for long term scale (150 < n < 200) for all studied time period.
In addition, the lang-range cross-correlation coefficient given by Figure 4b showed that it is not
constant and it is time-varying for all studied time period. As well, Hx y is greater than 1.297
for all studied time period expect in the middle of November 2021 and in the begin of April
2022 where Hx y is less than 1.297. The obtained result reveals that a large change in the NAO
index is followed by a large change in the return of oats price. Like the previous finding, in our
knowledge there is no work studying the relationship between NAO index and the fluctuation
of oats price. We associate our finding, possibly, with the connection between NAO index and
oats yield (Kim and McCarl, 2005; Brown, 2013), or to the relationship between NAO index and
some climatic changes which influence the oats price (Gordeev et al., 2022; Ljungqvist et al.,
2022). Also, based on the connection between NAO index and water or rainfall, we thought
to explain the relationship between NAO index and the oats price to the impact of water and
rainfall on the yield of oats (Jia et al., 2019; Klink et al., 2014)
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The color map of long-range cross-correlation of pairs NAO index and the return of soybean
price is given by Figure ba which showed that Hx y is greater than 1.297 for short- and long
term scales. In addition, evolution of long-range cross-correlation coefficient over time, given
in Figure 5b, is not constant and it is time-varying. As well, Hx y is greater than 1.297 expect
in the middle of November 2021. According to this finding we conclude that a large change in
the NAO index is followed by a large fluctuation in soybean price. Our finding is consistent
with other research showing a significant relationship between NAO index and the fluctuation
of soybean price (Najafi et al., 2019; Heino et al., 2020Db).

The color map of Hy y for pairs NAO index and the return of wheat price, given by Figure
77, revealed that Hyy is greater than 1.8 for all time period and for short- and long-term
scales. Figure 77 showed that the long-range cross-correlation coefficient is time-varying and it
is greater than 1.297 expect in the middle of November 2021 and in the beginning of January
2022. These results suggested that a large change in the NAO index is followed by a large
change in the return of wheat price. This finding is consistent with different other works showing
significant relationship between NAO index and the fluctuation of wheat price (Kettlewell et al.,
1999; Gimeno et al., 2002; Shmelev et al., 2021).

6. Robustness check

In this section, we conduct a robustness check for the obtained results. For this goal,
a variable-lag transfer entropy (VLTE) causality test (Amornbunchornvej et al., 2021) with
sliding windows approach is used. The same sliding windows and scales us for the power-low
cross-correlation coefficient with sliding window approach are used. Barnett et al. (2009) found
complete equivalence between the Granger causality test and the transfer entropy approach
for Gaussian time series. Also, Edinburgh et al. (2021) advocated the usage of the transfer
entropy approach and the nonlinear Granger causality test after comparing the transfer entropy
method to ten causality methodologies and causality tests. On the other hand, the effectiveness
of transfer entropy method when their are a outliers observations in studied time series is
proved in (Falkowski and Domanski, 2020). Furthermore, transfer entropy has found practical
applications (Dhifaoui et al., 2022, 2023). We employ the VLTE method that can infer a causal
relationship of Granger or transfer entropy where a cause impacts an effect with arbitrary
dynamically delays. According to (Amornbunchornvej et al., 2021), the VLTE method consists
to compute the transfer entropy from X to Y noted Tx_,y and from Y to X noted 7y _,x and
if VLTE ratio = Tx_,y/Ty_x is greater than 1 then we state that the variable X transfer
entropy cause the variable Y. For our studied time series, the obtained results of VLTE ratio
are reported in figures 7a, 7b, 7c and 7d.

According to Figure. 7a, the VLTE ratio is greater than 1 for short-term scale and all studied
time period, then we conclude that the NAO index transfer entropy causes the fluctuation of
international price of corn. The color map of VLTE ratio for pairs NAO index and the return
of corn price is given in Figure. 7b, where we remark that the VLTE ratio is greater than
1 for short- and long-term scale which implies that the NAO index transfer entropy causes
the fluctuation of the international price of oats. Figure. 7c report the VLTE ratio for pairs
NAO index and the return of international price of soybean where VLTE ratio is greater than
1 for short-term scale and all studied time period. As well, VLTE ratio is greater than 1 for
long-term scale but for time interval from the beginning of the studied time period to the
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begin of November 2021. This result suggested that the NAO index transfer entropy causes the
fluctuation of the international price of soybean. Based on Figure. 7d, the VLTE ratio is greater
than 1 for short-term scale and almost long-term scale (90 < n < 180) and for time interval
from beginning of studied time period to the end of November 2021. This result indicated
that the NAO index transfer entropy causes the fluctuation of the international price of wheat.
The obtained results using VLTE causality test with sliding windows approach confirms the
obtained results using the bivariate Hurst exponent with sliding widows approach.
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Figure 7: Time-scale VLTE ratio for different pairs of time series.

7. Implications for theory and practice

7.1. Theoretical implications

The purpose of this article is to find out if the NAO index will have an impact on the
international food prices at both time and time scales. The robust power-law cross-correlation
coefficient, which allows for capturing effects of the NAO index on international food prices,
was used in this study to advance the field. This study makes several contributions to the
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climate change-food price impact literature. First, this study extended the literature by using
an innovative robust power-law cross-correlation coefficient. Second, we propose the color map
of power-law cross-correlation coefficient obtained by sliding window framework, and we deduce
the time-varying robust power-law cross-correlation coefficient. As far as we know, no academic
researcher has presented this novelty from theoretical and empirical perspectives, despite the
cross-correlation method is used in different works (He and Chen, 2011; Wei et al., 2017).

7.2. Empirical implications

The global food crisis has worsened as a result of the covid-19 pandemic, which has disrupted
food prices in almost all countries. Different studies shows that the food prices are negatively
affected during the pandemic compared to the pre-pandemic period (Bairagi et al., 2022; Beck-
man et al., 2021). The covid-19 pandemic continues to have devastating effects on hunger and
poverty around the world, particularly on the poorest and most vulnerable communities. On
the other hand, the persistent consequences of the COVID-19 epidemic, combined with the
Russian-Ukrainian conflict, have already contributed to soaring food costs on both domestic
and international markets (Behnassi and Haiba, 2022). So, rising food prices could become the
new normal as a result of covid-19 pandemic and conflicts creating endemic and ubiquitous
hazards to global food security. Our study suggested that their is a positive power-law cross-
correlation between fluctuation of NAO index and that’s of international price of oats, soybean,
corn and wheat, respectively for short- and long terms. For this goal, a robust bivariate Hurst
exponent is used. First, we give the statistical critical value of such exponent. Second, we
obtain a color map by computing the bivariate Hurst exponent for different time scale and
using the sliding window approach. Our result reveals that a large fluctuations of NAO index
is followed by a large fluctuations of studied international foods price. Accordingly, the NAO
index can be considered as an explain variable of international food price, which increase the
level of uncertainty on the international food markets.

Although that the NAO index increase the level of uncertainty in the international food
markets, but our study finds that the NAO index and the international food price rest essen-
tially on a single modelling framework. So, we prove that the NAO index is a explicative factor
of the fluctuation of international food price. Then, to mitigate food market uncertainty can be
done by actions on the fluctuation of NAO index. It is well known that the NAO index is related
to temperature, then decreasing the temperature can help to control NAO index and then the
international price of food (Bandara and Cai, 2014; Chen and Villoria, 2019). The Paris Agree-
ment signed in 2015 to prevent severe climate change by keeping global warming well below
2°C'" and pursuing efforts to keep it below 1.5°C' is considered in this objective. For decreasing
global temperature, different strategies are used. Employing decarbonization techniques and
technologies that reduce carbon dioxide emissions, such as nuclear power, renewable energy, and
the use of alternative fuels, are traditional mitigation measures (Bataille et al., 2018; Bustreo
et al., 2019). On the other hand, a new set of technologies and techniques that have just been
developed. These processes are known as negative emissions technologies, and they have the
potential to be used to capture and sequester carbon dioxide from the atmosphere (Ricke et al.,
2017). The main negative emissions technologies that have received a lot of attention in the
literature are bioenergy carbon capture and storage, biochar, enhanced weathering, direct air
carbon capture and storage, ocean fertilization, ocean alkalinity enhancement, soil carbon se-
questration, afforestation and reforestation (Lawrence et al., 2018; Palmer, 2019; Goglio et al.,
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2020). Since industrial sectors have gotten more focus on greenhouse gas mitigation efforts
than the food industry, by the middle of the century, emissions from agriculture can become
the main source of emissions worldwide (Lynch et al., 2021; Crippa et al., 2021). Therefore, it
is very important to applied different strategies to mitigate emissions given from food industry,
like a shift to more plant-based diets (Shukla et al., 2022), less food waste (Fund, 2022) and
improvements in crop yields and farming practices (Northrup et al., 2021; Islam et al., 2022).

Our findings suggested that, for short- and long-term scale, changes in the NAO index can
spread to changes in the international price of food, and that one large increment in the NAO
index is likely to result in further large increment in the international food prices. Accordingly,
different strategies can be applied by policymakers to insure the alimentary security. To secure
food and nutrition security in the face of a warming climate, governments, private companies,
and international partners must work toward more productive, resource-efficient, varied, and
nutrient-rich farming systems. Produce more varied and nutrient-dense food with less water
and fertilizer for a growing population, while reducing land use change and greenhouse gas
emissions. Other temporary measures that can be considered by governments include import
levies or price subsidies with clear sunset provisions for basic food commodities. Additionally,
governments should assist food production, refrain from stockpiling, and utilize food reserves
when they are available in an effort to improve the food supply.

8. Conclusion

Even prior to the covid-19 pandemic, rising levels of food insecurity were noted throughout
the world. These levels were attributed to a variety of issues, including rising food prices,
declining wages, broken supply chains and climate change. This study examined the impact
of fluctuations of the NAO index on the fluctuations of international price of wheat, corn,
soybean and oats, respectively. We remind that wheat and corn with rice comprise a major
component of the human diet. As well, oats is the most ingredient in the manufacture of
healthy food products. As a significant source of both human and animal protein, demand
for soybeans, on the other hand, is currently correlated with the world’s meat consumption
and is anticipated to increase. The used data are the daily time series over the period from
January 06, 2020 until May 18, 2022. After proving, by robust statistical tests, the existence
of outliers observations in our studied time series, a new robust power-law cross-correlation
coefficient with sliding windows approach is used as the analysis method. Before obtaining a
color map and the time-varying version of power-law cross-correlation coefficient, we determine
the statistical critical value of such coefficient, for different confidence levels and different length
of time series and windows, by bootstrap method. We find that, for short- and long terms, the
power-law cross-correlation coefficient of pairs of time series (NAO index, wheat), (NAO index,
soybean), (NAO index, oats) and (NAO index, corn) is above the critical value 1.297 for 95%
confidence level. Accordingly, our major result is that there is a statistically significant impacts
of fluctuations of the NAO index on the fluctuations of different international food price, since
we showed a significant positive power-law cross-correlation meaning that large increments of
the NAO index are followed by large increments of each international food price. Our finding
are confirmed using variable-lag transfer entropy causality test.

In practice, our findings can be used by the responsible authorities for creation of some
public policies to reduce the effects of the NAO index on the international food prices. Fur-
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thermore, the prediction of international food price using the evolution of NAO index can give
satisfactory results. For this goal, univariate models like the autoregressive model (AR) with
NAO index as an exogenous variable (AR-NAO) model or the time-varying AR-NAO model
can be used. For multivariate models, the vector autoregressive fractionally integrated moving
average (VARFIMA) model can be applied to capture both long-range and short-range depen-
dence dynamics between NAO index and international food prices, as well for forecasting. In
addition, different scenarios can be simulated for the future evolution of studies of different
food prices which can be done using these suggested econometric models.

Our proposed method being based on the robust power-law cross-correlation coefficient.
Recall that, the outliers’ observations can be caused by the occasional events such as in climate
change time series or on the international food price. As well, in our method, we can choose
the time scale we need. Our proposed method proves, if there is a power-law cross-correlation
between two processes X and Y, that a large increment in X is followed by a large increment in
Y, but our method does not give the time interval when the large increment in X is followed by
large increment in Y which is very important in practice for preventive actions. To overcome
this problem, future research will first continue to explore the robust power-law cross-correlation
coefficient with time interval localization. Second, we can combine our proposed method with
a decomposition technic, like wavelet decomposition or empirical mode decomposition, to test
power-law cross-correlation between time series in both time and frequency.
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