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Gravitational-wave detectors as Virgo, LIGO and KAGRA are modified Michelson interferometers, with a system of
coupled Fabry-Perot cavities, to increase its sensitivity and bandwidth. In order to control the detector, several radio-
frequency sidebands, not resonant in the kilometric arms but resonant in the central part of the interferometer, are
added to the carrier frequency to extract longitudinal and alignment error signals. Misalignment of the laser in the
Fabry-Perot cavities causes sensitivity degradation through different mechanisms, and results in non-superposition of
carrier and sidebands. These relative misalignment between fields at different frequency contain clues to optimally
align the interferometer, but the question of the direction of a reflected beam by a Fabry-Perot cavity, as a function of
the state of resonance of the incoming electromagnetic field, is neither straightforward nor intuitive. While numerical
optical simulations used in the gravitational-wave detector community are able to answer the question, they do not give
a qualitative and handy understanding of the observed phenomenon, useful for the commissioning and operation of
the detectors. In this letter, we present a model based on first-order modal Gaussian beam development to calculate
analytically how misalignment on the input beam in a Fabry-Perot cavity translates into misalignment of the reflected
and circulating beams. We find a strong dependence on the beam resonance condition, but also on the mirror geometry.
Finally, we checked the consistency of our model by comparing its predictions with existing numerical simulators.

In reflection of the coupled cavities constituting a
gravitational-wave interferometer, we sometimes observe pat-
terns where the laser field frequency components are no longer
superposed in the transverse plane (they are on input). This ef-
fect is attributed to residual mismatch and misalignment. To
understand this phenomenon in complex systems, the first step
is to study for a single Fabry-Perot cavity.

Such a cavity of length L consists in two spherical mirrors
Mi (input) and Me (end) facing each other, with radii of cur-
vatures Ri,Re. The input beam is a monochromatic laser of
wavelength λ0. The cavity axis (Oz) goes through both cen-
ters of curvature (see figure 1).

Misalignment designates the differences (mainly shift and
tilt) between the axes of the laser propagation, and of the
cavity. For spherical mirrors, shift and tilt along (Ox) and
(Oy) are independent at first order (small misalignment) and
can be treated analogously (axial symmetry): we therefore re-
duce our 3-dimensional problem to a 2-dimension one in plane
(x,z).

a)A. Cahuzac and M. Gross contributed equally to this work

Figure 1. Fabry-Perot cavity and associated frame.

The caviy geometry (length L and radii of curvature Ri,Re)
determines the beam shape that can resonate in it (propagation
axis, waist size w0 and waist position z0).

In paraxial approximation (moderate divergence) a laser
field of wavelength λ0 can be modeled as a Gaussian beam,
characterized by a beam shape and a transverse beam profile.

A Hilbert basis of E , the space of Gaussian beams with
wavelength λ0, is obtained by decomposing the transverse
profile in Hermite-Gaussian functions with a chosen common
beam shape. The basis vectors are Transverse Electromag-
netic Modes (TEMnm) with the form (conventionally z0 = 0):

ψ
±
nm(x,y,z) = ψ

⊥
nm(x,y,z)e

−i(±kz∓(n+m+1)φ(z)) (1)

with spatial pulsation k (k0 = 2π/λ0 for carrier frequency,
k = k0±2π f/c for modulation sidebands). The sign is + for
forward beams (from the laser), − for backward ones. ψ⊥nm is
slowly-varying in z and real for z = 0. The Gouy phase shift
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φ(z) = arctan
2z

kw2
0

(2)

thus describes the phase difference between the fundamen-
tal Gaussian beam and the plane wave of same wavelength.

One beam shape makes the TEMnm eigenmodes of the cav-
ity, ie eigenstates of the round-trip operator (seen as a linear
operator C : E → E ). Indeed, under the stability condition

0 < g =

(
1− L

Ri

)(
1− L

Re

)
< 1

C is diagonalizable in the eigenbasis of Hermite-Gaussian
TEMnm with axis (Oz) and a waist size and position depend-
ing only on Ri,Re,L,λ0.

E has two orthogonal components: forward-propagating
beams E + (basis ψ+

nm), and backward-propagating ones E −

(basis ψ−nm). Bases ψ±nm are related by the coordinate change
(x,z,θ) −→ (x̃, z̃, θ̃) = (x,−z,−θ) (see figure 2):

ψ
−
nm(x,y,z) = ψ̃

+
nm(x̃, ỹ, z̃) (3)

Figure 2. Backward propagation coordinates.

Physically, all modes have same electromagnetic frequency.
Because of the accumulated Gouy phase shift (2), they
resonate however for different cavity lengths and appear
frequency-shifted on a cavity scan. Therefore, the cavity is
said “resonant at λ0" when TEM00 is resonant, and a beam is
“aligned and matched" when the input field is exactly the cav-
ity’s resonant TEM00. From this configuration, we misalign
the beam by tilting or shifting the propagation axis. Mismatch
being a second-order modal perturbation1, we here assume
perfect matching (ie the laser waist is at z = z0 = 0 and has
radius w0).

Beam misalignment is characterized by two numbers (see
figure 3):

Tilt α: angle between cavity and beam axis

Shift a: distance between beam and cavity axes at z = 0
(waist)

Figure 3. Misaligned beam.

A slightly misaligned beam can be decomposed using only
modes 00 and 10 (first order):

Ein = ψ
+
00 +

(
a

w0
− i

k0w0

2
α

)
ψ

+
10 (4)

(up to a global amplitude). The coupling coefficients are
derived following the reasoning by Anderson1 (their formula1

contains a +i instead of our −i, but −i is coherent in our co-
ordinate system and passes the test of Finesse and OSCAR
comparison, unlike +i). This peculiar expression is of course
only valid in a Hermite-Gauss basis.

A wave centered around k ̸= kẑ is thus approximated by
a combination of cavity eigenmodes axed on z. The beam
axis position is encoded in the real and imaginary parts of the
relative amplitude of both modes.

Usually, for a plane mirror M and plane waves, we define
coefficients r, t between input, reflected and transmitted fields
Ein, Er, Et as ratios between two complex fields in a fixed
point (the mirror):

Er

∣∣∣∣
M
= rEin

∣∣∣∣
M

Et

∣∣∣∣
M
= itEin

∣∣∣∣
M

where r, t are real (we set the phase reference so that ψ+ and
ψ− are in phase on Mi). Phase i is chosen to be coherent with
the Finesse description (power continuity requires a phase of
±i between r and t).

The plane waves space E ±plane being only 1-dimensional,
linear operators are entirely defined by these proportionality
coefficients. With the infinite-dimensional E , these operators
are a priori not proportional to the identity (or a “pseudo-
identity" between bases ψ±nm) and we need to write their ac-
tion on each mode TEMnm. Since different TEMs are only in
phase at the waist, we consider

Eout
n′m′

E in
nm

∣∣∣∣
waist

(5)

where Enm is the single-mode component of index n,m in
the field E. In the following, Mi,Me are not necessarily plane.
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Consider first transmission Ta through Ma (a ∈ {i,e}
placed at za. For zero-thickness mirrors, it should conserve
the wavefront and thus be proportional to the identity:

Ta : ψ
±
nm 7→ itaψ

±
nm

with transmittivity coefficients ti, te ∈ R. In a high-finesse
cavity, te, ti ≪ 1. We also define reflectivity coefficients
ri,re ∈ R such that r2

a + t2
a = 1 (power conservation) and:

Er

∣∣∣∣
Ma

= raEin

∣∣∣∣
Ma

(6)

Indeed, local behaviour matches plane reflection-
transmission, since we can always adopt a local plane
approximation.

Local considerations do not immediately give global modal
descriptions for transmission and reflection; they are only
boundary condition.

Reflection operator Ra should be proportional to ra, but
not to the identity since it relates disconnected subspaces E ±

and E −. We can however decompose it into two operators
R+

a : E +→ E − and R−a : E −→ E + and express them in the
bases ψ±nm.

The intuitive idea (justified by full calculations in ABCD
formalism2) is that, for an incident wave ψ±, (6) determines
the reflected field on a transverse surface (the mirror), which
is enough to derive its decomposition in the basis ψ∓nm.

More specifically, conservation of the transverse beam pro-
file implies that R+

a is diagonal in the bases (ψ+
nm,ψ

−
nm). For

such a diagonal operator, we call “pseudo-eigenvalues" co-
efficients r+a (ψ

+
nm) associated to “pseudo-eigenmode" pairs

(ψ+
nm,ψ

−
nm):

R+
a ψ

+
nm = r+a (ψ

+
nm)ψ

−
nm

Boundary conditions then require phase equality of the in-
cident and reflected beams at the mirror, but ψ±nm has, here, a
phase e∓i(kza−(n+m+1)φ(za)). To restore phase continuity, nec-
essarily

ra(ψ
+
nm) = rae−i2(kza−(n+m+1)φ(za))

In particular, the reflection operator is therefore not propor-
tional to the pseudo-identity.

Reflection from the other side R−a has pseudo-eigenvalues

ra(ψ
−
nm) = rae−i2(kza+(n+m+1)φ(za))

Note that the propagation phase 2kza does not change sign.

Using this description for individual mirrors, we can now
obtain relations between various fields in and around a Fabry-
Perot cavity. In a plane cavity, we compute them considering
all possible reflection-transmission combinations, introducing
the half-round-trip phase ϕcav = kL:

• Reflection coefficient:

rcav =
Er

Ein

∣∣∣∣
Mi

= ri−
t2
i ree−i2ϕcav

1− riree−i2ϕcav
(7)

• Transmission coefficient:

tcav =
Et

Ein

∣∣∣∣
Me

=− titee−iϕcav

1− riree−i2ϕcav
(8)

• Forward circulating coefficient (along +z)

c+cav =
E+

c

Ein

∣∣∣∣
Mi

=
iti

1− riree−i2ϕcav
(9)

• Backward circulating coefficient (along −z)

c−cav =
E−c
Ein

∣∣∣∣
Mi

=
itiree−iϕcav

1− riree−i2ϕcav
(10)

They depend only on ϕcav. It has been suggested3 to adapt
(7) to (10) to curved-mirror cavities using the ϕcav-adaptation

ϕ
plane
cav = kL−→ ϕ

nm
cav = kL− (n+m+1)φG

where the additional phase (n+m+ 1)φG is due to Gouy
phase shift (2):

φG = φ(ze)−φ(zi) = arctan
2ze

kw2
0
− arctan

2zi

kw2
0

(11)

However, a problem arises at ri −→ 1: all modes being re-
flected with same coefficient 1, the outgoing beam has in ba-
sis ψ−nm exact same expression as the incoming beam in basis
ψ+

nm. This describes a plane reflection at the waist, which con-
tradicts geometric intuition. Besides, while φG in the round-
trip phase ensures beam phase continuity over one round-trip,
on single reflection (ri = 1) we are again confronted with a
mode-dependent discontinuity (for a phase discontinuity to be
physically acceptable, it should be intrinsic to the mirror and
independent of the mode number).

As a satisfying upshot of this description, mirrors now in-
troduce naturally the round-trip phase: instead of describing a
double reflection as

1. propagation zi −→ ze

2. reflection with coefficient re

3. propagation zi←− ze

4. reflection with coefficient ri

we now have

1. reflection with re at ze

2. reflection with ri at zi
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We keep the notation ϕcav because the round-trip phase is
the tuning variable in cavity frequency scans.

We can now compute cavity operators in the mirror opera-
tors algebra. For instance, the cavity operator C is C = RiRe
of eigenvalues riree−i2(φ(ze)−φ(zi)). This algebraic method
gives, in fact, the same results as substituting r, t in plane-
cavity expressions with corresponding pseudo-eigenvalues.

We obtain the expressions of four diagonal operators in our
chosen bases. To recover (7) for TEM00 and simpler formu-
las, we redefine our ψ−nm basis by absorbing in each mode a
common phase e−i2(kzi−φ(zi)), so that (3) becomes

ψ
−
nm(x,y,z) = e−i2(kzi−φ(zi))ψ̃

+
nm(x̃, ỹ, z̃) (12)

(keeping notation ψ−nm after redefinition to avoid unneces-
sary heaviness). Nothing changes in the previous reasoning:
the Hermite-Gauss property is preserved, and only relative
amplitude and phase within a beam modal decomposition (in-
volving one direction only) matter.

Finally, the cavity operators in our coupled bases ψ±nm have
following (pseudo-)eigenvalues:

• Reflection R:

rcav(ψ
+
nm) = ei2(n+m)φ(zi)

(
ri−

t2
i ree−i2ϕcav

1− riree−i2ϕcav

)
(13)

• Transmission T :

tcav(ψ
+
nm) =−

titee−iϕcav

1− riree−i2ϕcav
(14)

• Forward circulating field C+
cav:

c+cav(ψ
+
nm) =

iti
1− riree−i2ϕcav

(15)

• Backward circulating field C−cav:

c−cav(ψ
+
nm) = ei2(n+m)φ(zi)

itiree−i2ϕcav

1− riree−i2ϕcav
(16)

tcav, c+cav keep their plane-wave expression (ie only depend
on ϕcav) but rcav,c−cav get an additional phase e2i(n+m)φ(zi):
while a plane-mirror cavity operates a faithful basis change
ψ+

nm 7→ ψ−nm, a curved-mirror cavity sends basis ψ+
nm to the

“twisted" basis e2i(n+m)φ(zi))ψ−nm.
In the particular case of a plano-concave cavity with flat Mi,

φ(zi) = 0 (waist on the flat mirror) and everything only de-
pends on ϕcav. This is in fact the condition for ϕcav-adaptation
to work (VIRGO once had plane input mirrors).

As consistency check, consider reflection on a single curved
mirror.

Figure 4. Chosen beam shape and frame.

Although there is no cavity here, a laser field can be said
“matched to the mirror M" when M is an isophase surface of
its TEM00 (see figure 4): many beams can match the mirror
but this arbitrary choice has no influence on final results.

Figure 5. Misaligned beam on curved mirror.

For better intuition, we choose a matched beam basis
and corresponding frame in which tilt a and shift α satisfy
a =−ziα (always possible for a spherically symmetric mir-
ror): the beam thus hits M on the z-axis with angle α (see
figure 5). At first order in α as in (4),

Ein = ψ
+
00 +

(
− ziα

w0
− i

k0w0

2
α

)
ψ

+
10 (17)

Applying reflection on each mode (ri = 1),

ψ
+
00 7→ ψ

−
00 ψ

+
10 7→ e2iφ(zi)ψ

−
10

we get:

Er = ψ
−
00 + e2iφ(zi)

(
a

w0
− i

k0w0

2
α

)
ψ
−
10

= ψ
−
00 +

(
1

w0

(
acos2φ(zi)+

k0w2
0α

2
sin2φ(zi)

)
− i

k0w0

2

(
− 2a

k0w2
0

sin2φ(zi)+α cos2φ(zi)

))
ψ
−
10

Note that mode amplitudes do not tell us anything as yet
about the reflected beam direction, since we only derived cou-
pling coefficients (4) for the forward basis ψ+

nm. A simple way
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Figure 6. Reflected by single mirror.

to deduce the reflected beam axis is then to change frame from
(x,z,θ) to (x̃, z̃, θ̃) and express the field in basis ψ̃+

nm (forward
basis if the laser came “from the right"). ψ−nm and ψ̃+

nm de-
scribe the same field, and since mode amplitudes are dimen-
sionless numbers that cannot depend on the coordinates (a,α
were measured in the same frame as w0,k0), Er becomes in
these new coordinates:

Ẽr = ψ̃
+
00+

(
1

w0

(
acos2φ(zi)+

k0w2
0α

2
sin2φ(zi)

)
− i

k0w0

2

(
− 2a

k0w2
0

sin2φ(zi)+α cos2φ(zi)

))
ψ̃

+
10

Now, ψ̃+
nm is a forward Hermite-Gauss basis in coordinates

(x̃, z̃, θ̃). Therefore, modal decomposition coefficients are re-
lated to misalignment parameters by (4). We deduce the re-

flected beam shift δ x̃ = acos2φ(zi)+
k0w2

0α

2 sin2φ(zi) and tilt
δ θ̃ =− 2a

k0w2
0

sin2φ(zi)+α cos2φ(zi). In (x,θ ,z) coordinates,

this is a shift δx = δ x̃ and tilt δθ =−δ θ̃

Using some trigonometry, the Gouy phase shift (2) and
a =−ziα:

δx = acos2φ(zi)+
k0w2

0α

2
sin2φ(zi) = ziα =−a

δθ =−α

The reflected axis turns out to be symmetric to the input
one with respect to Oz (see figure 6), which we expected from
Snell-Descartes’ law (Oz being the normal to M at the entry
point) but was not reproduced with ϕcav-adaptation.

The reflected direction is independent of w0 or zi
(beam shape) and agrees with the limit of plane isophases
(w0 −→ +∞, zi −→ 0).

Consider now a misaligned beam sent in a cavity. Coeffi-
cients (13) to (16) should then be computed with the values
characterizing this cavity. However, for a qualitative discus-
sion we can write the coefficients in two specific cases: res-
onant and anti-resonant modes. Using (13) to (16), higher-
order mode coefficients are easily deduced from those of
TEM00 computed below.

(13) yields upon resonance (ϕcav ≡ 0[π])

rcav = ri−
t2
i re

1− rire

With re ∼ 1 and r2
a + t2

a ∼ 1 (lossless mirrors),

rcav =−1

Similarly using ti =
√

1− r2
i in (15) and (16),

c+cav =
iti

1− rire
−→
re→1

i

√
1+ ri

1− ri

c−cav = rec+cav −→
re→1

i

√
1+ ri

1− ri

(18)

On anti-resonance (e−i2ϕcav =−1), (13) reduces to

rcav = ri +
t2
i re

1+ rire
−→
re→1

1

As to the circulating field,

c+cav =
iti

1+ rire
−→
re→1

i

√
1− ri

1+ ri

c−cav =−rec+cav −→
re→1

−i

√
1− ri

1+ ri

(19)

The narrow bandwidth (high-finesse assumption) suggests
to consider all non-resonant frequencies as anti-resonant.
When TEM00 resonates, higher order modes are out of res-
onance (φ(z)-induced phase shift). Thus, we will discuss two
cases:

i Non-resonant beam: both modes anti-resonant.

ii Resonant beam: resonant TEM00, anti-resonant
TEM10.

Hopefully, most resonance conditions can be approximated
by (i) or (ii): take as example figure 7.
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Figure 7. Variation of amplitude (blue) and phase (red) of reflection
(top), forward-circulating (middle) and backward-circulating (bot-
tom) coefficients for TEM00 (left) and TEM10 (right), in a model
of VIRGO arm (finesse ∼ 450).

rcav goes indeed quickly to its anti-resonance value when
leaving the exact resonance. Our two cases cover most of the
spectrum.

Circulating coefficients, contrarily, exhibit a non-negligible
phase slope between two consecutive resonances. Information
regarding the phase should be treated with caution. Resonant
beams behave as (ii) for a Gouy phase 2φG ≃ π/2 (long cavity
or very curved mirrors), whereas non-resonant beams behave
as (i) when on the contrary 2φG −→ 0 (plane or very short
cavity). In VIRGO arms, 2φG ≃ π/4, recalling that

φG = arctan
2ze

kw2
0
− arctan

2zi

kw2
0

We now investigate the case of reflection on a cavity (basis
and frame now fixed without ambiguity).

In case (i) out of resonance, neither fundamental nor higher-
order modes resonate. We apply coefficients (19) to decom-
position (4) and obtain the reflected beam tilt and shift (20):

δx = acos2φ(zi)+
k0w2

0α

2
sin2φ(zi)

δθ =
2a

k0w2
0

sin2φ(zi)−α cos2φ(zi)
(20)

In general, no relation between a and α can be assumed
in order to simplify these expressions. Nevertheless, the dis-
placement on the input mirror verifies:

δx+ ziδθ = a+ ziα

Thus input and exit point of the anti-resonant beam on Mi
coincide. This is rather expected since the coefficients applied

are identical to a reflection by Mi (without cavity): the anti-
resonant beam is geometrically reflected by Mi.

In case (ii), coefficients (18) prescribe phase−1 for TEM00
(now resonant), ie a phase change of π compared to case (i),
while TEM10 is still anti-resonant. Therefore, with respect to
case (i), the relative amplitude between both modes changes
sign and, consequently, so do tilt and shift (21):

δx =−acos2φ(zi)−
k0w2

0α

2
sin2φ(zi)

δθ =− 2a
k0w2

0
sin2φ(zi)+α cos2φ(zi)

(21)

Computing δx+ ziδθ shows that the resonant reflected
beam’s exit point on Mi is symmetric to its entry point.

The same method applies to the field circulating within the
cavity, using (18) and (19). In the resonant beam case, the am-
plitude of TEM10 is suppressed by (1+ ri)/(1− ri) relative to
TEM00, so that both forward and backward beams practically
coincide with the cavity axis (since 1− ri ≪ 1). In the non-
resonant one, the relative amplitude (not phase) is conserved,
which gives a misalignment of the same order of magnitude
as the input one’s, although possibly quite a different mixing
of tilt and shift.

We notice that the anti-resonant, forward circulating beam
follows exactly the input beam axis, since C+

cav depend only
on ϕcav. However, this is only valid at small φG. We will
not draw conclusions from phase factors (giving the mix of
tilt and shift) on circulating fields, since we know them to be
hardly exploitable in our binary resonance/anti-resonance ap-
proximation.

We expect our order-1 approach to agree at small misalign-
ment with higher-order simulations. Indeed, comparisons
yielded a perfect match with Finesse24, a software also based
on Hermite-Gauss modal decomposition5, but also with the
other simulation tool OSCAR6 working on a different princi-
ple, confirming that our results are not an artefact of Gaussian
beam approaches.

To summarize, we derived a first-order expression of shift
and tilt for a misaligned beam reflected by a Fabry-Perot cav-
ity, conditioned by the input beam resonance state. This was
achieved by adapting the equivalent of reflection and trans-
mission coefficients, in plano-concave cavities, to a general
curved-mirror configuration. We applied this model to vari-
ous examples and found for instance that a non-resonant beam
is geometrically reflected by the input mirror, whereas a reso-
nant input beam and its reflection have on the input mirror dis-
tinct beam center, mutually symmetric with respect to the cav-
ity axis. Our first-order development approach may be com-
plementary to numerical simulations to interpret, in particular,
the relative misalignement between sidebands (non resonant)
and carrier (resonant) in gravitational-wave detectors, but also
in any optical setup using resonant Fabry-Perot cavities.
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