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Abstract. The slow adoption rate of machine learning-based methods
for novel attack detection by Security Operation Centers (SOC) ana-
lysts can be partly explained by their lack of data science expertise
and the insufficient explainability of the results provided by these ap-
proaches. In this paper, we present an anomaly-based detection method
that fuses events coming from heterogeneous sources into sets describ-
ing the same phenomenons and relies on a deep auto-encoder model to
highlight anomalies and their context. To implicate security analysts and
benefit from their expertise, we focus on limiting the need of data science
knowledge during the configuration phase. Results on a lab environment,
monitored using off-the-shelf tools, show good detection performances on
several attack scenarios (F1 score &~ 0.9), and eases the investigation of
anomalies by quickly finding similar anomalies through clustering.

Keywords: Anomaly Detection, Heterogeneous log analysis, Human-
automation cooperation, Intrusion Detection, Machine Learning

1 Introduction

Security monitoring of large information systems is often entrusted to Security
Operation Centres (SOC). Within a SOC, the activity of the monitored system
is recorded in the form of security events. These events can come from various
sources, including endpoint monitoring (e.g., process auditing, anti-viruses, file
integrity monitoring, etc.), network layer monitoring (e.g., network flow, network
intrusion detection system, etc.), as well as application logs (e.g., web server logs,
authentication logs, etc.). Security Information and Event Management (SIEM)
systems are often used to collect and analyse these events.

SOC analysts perform intrusion detection of monitored systems thanks to
automated real-time detection systems that recognize known attacks often rely-
ing on sets of correlation rules. Moreover, the threat hunting analysts uncover
unknown attack methodologies by exploring events in the search of potentially
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suspicious activities. The number of false alarms raised by the real-time detection
systems should be kept to a strict minimum in order to react as quickly as pos-
sible to known attacks and give threat hunters time to perform more thorough
analysis. However, due to the huge amount of data that needs to be analyzed and
pieced together to investigate anomalous (and potentially malicious) patterns,
the threat hunting process greatly benefits from automation tools.

In recent years, multiple anomaly detection methods have been applied to
security monitoring. One approach consists in prioritizing events so that the
most anomalous ones are presented first to the analysts. However, multiple lim-
itations still slows the adoption of these methods that are mainly based on
machine learning. First, most machine learning based methods require extract-
ing numerical metrics from the security events [6, 19]. This step can be tedious,
especially for security analysts that often lack the required data science knowl-
edge. While novel deep learning advances can partially alleviate this limitation
by being more flexible regarding the input data [7], the results they provide may
still be hard to interpret. This lack of explainability can be lowered by presenting
contextualized events to the analysts [16]. Recently, multiple approaches have
been applied to endpoint monitoring with interesting results such as information
flow tracking [10,2] and event causality [29]. However, in the context of a SOC,
it is unlikely to have access to the level of detail necessary to find causal links
between events, and we need to rely on approximations instead.

In this paper, we propose a method to detect traces of anomalous and po-
tentially malicious activity by analysing security events coming from multiple
sources (e.g., process auditing, network probes, web proxies, etc.). Our method
does not require specific information from logs, and can therefore be configured
for various monitoring strategies (i.e., ability to configure it for various sources
of events, and various levels of visibility). The first step of this method is to re-
group events into sets that describe the same action (e.g., a network connection
seen as an opened socket by the endpoint monitoring tool, and as a network
flow by network probes). To analyse these sets, we use an auto-encoder model,
a specific type of deep neural network that is particularly suited for anomaly
detection. We design the model so that it can analyse any attribute contained
in security events, and link information from all the events within each set to
detect anomalies based on the context (e.g., reading /etc/password at startup
is normal for a web server, but reading the same file when answering a request
might not be). The model can learn incrementally to adapt to the evolution of
the normal behaviour of a system. To account for changes in the monitoring
strategy, the structure of the model can be updated without requiring a com-
plete retraining (which is computationally intensive). Due to the large volumes
of events that needs to be analysed, whenever possible, we choose algorithms
that can benefit from parallel and distributed computing. We give a particular
attention to integrate easily into SOC analysts habits and capabilities. Specifi-
cally, the configuration step do not require advanced knowledge in data science,
and instead focuses on available expertise from SOC analysts. The first con-
tribution of our work is an event fusion method that can benefit from parallel



DAEMON: Dynamic Auto-Encoders for security MONitoring 3

and distributed computing. The second is a neural network auto-encoder with
dynamic structure that can be trained continuously, can be adapted based on
the monitoring strategy of the system and can highlight anomalous behaviours
based on the sets of events that describe them.

In section 2, we present security monitoring related work. The method used
to regroup events into sets is explained in section 3, and the neural network that
is used to analyse these sets is described in section 4. We assess our method and
present results in section 5.

2 Related work

2.1 Anomaly detection and security log analysis

Security event analysis can be seen as a special case of log analysis. He et al. [11]
recently provided a comprehensive review of anomaly detection in logs. Essen-
tially, the anomalous activity identification process can be decomposed in three
major steps, namely, parsing the logs (i.e., going from unstructured logs to struc-
tured events), extracting interesting features and finally using an anomaly de-
tection algorithm. Most machine learning algorithms require these features to
be numerical [30, 15]. Authors have applied these methods to security log anal-
ysis [27,17,6] but the quality of the results are in these cases more dependant
on the quality of the feature extraction and transformation (for non numerical
features) processes, which can be hard to define for a security analyst with no
background in data science. Recently, Dey et al [5] proposed methods that ease
these processes by using deep learning method to be more flexible regarding the
input data. However this method lacks the context that is valuable for investi-
gating the alerts. Bertero et al. [1] and Du et al. [7] drew inspiration from natural
language processing to take into account the context of the events. Debnath et
al. [4] proposed a generic framework to automate the parsing phase of log analy-
sis. However, both approaches fail to analyze the attributes of the events which
make them less effective for security logs. For example, they would not detect
a connection to an automatically generated command and control domain be-
cause they would see a normal DNS request followed by an HTTP(S) connection
and would not see that the domain name looks weird. Pei et al. [21] proposed
to represent security events as a graph and identifies communities as potential
attacks. The features they use to weigh the edges between the events are learned
in a supervised manner from examples of attacks, and is therefore not applicable
in our unsupervised context. Liu et al. [14] chose to model users interactions
by using a complex set of rules. While the approach is relevant for the author’s
use-case (insider threat scenario), it is difficult to adapt for a SOC which moni-
tors multiple systems and where human resource is too scarce to fine-tune such
a method specifically for each of these systems.

We want to model all the relevant information contained in security events
as in [5], while taking the context of the log into consideration as in [1,7,4].
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2.2 Alert correlation

Alert correlation methods are already part of SOC tools. Valeur [26] described
extensively the correlation process, which can be decomposed into four major
steps, the normalization, the enrichment and the aggregation of events,
which consists in fusing similar alerts and correlating multiple steps of the attack
to detect known patterns. The last step is a global analysis of these events.
In our context, we analyze both events and alerts (i.e., every behaviour, not
only suspicious ones). This allows the detection of novel attacks, but also implies
that the volume of information to process is greatly more consequent than what
is processed by an alert correlation system. In this paper we do not focus on
the normalization and enrichment of events as these are already part of SOC
processes, and extensive public resources are already available for these (e.g.,
the Elastic Common Schema [8] and MITRE ATT&CK®) data sources [18]).
Instead we focus on the fusion part of the aggregation process to propose a
solution that can process the high volume of events in parallel. Solutions for
automatically identifying which events should be aggregated has already been
studied in previous work [24,28]. In our case, we adapt a model that is already
common for alert fusion, by aggregating events that are close in time and using
simple logic rules to separate unrelated events within these time windows.

3 Fusion of events in sets of meta-events

3.1 Events for security monitoring

The notion of data source From one IT system to another, the sensors that
are deployed are likely to be different. In fact, each system has its own set
of application (and the associated logs), its specific antivirus, NIDS, firewalls,
etc. This can prove to be challenging when adapting a monitoring tool to a
new IT system. However from the functionality point of view, there is often
a significant overlap between two different systems. For example, two different
IDSes still serve the same purpose, major OSes rely on a similar definition of
a process, etc. The normalization process is supported by distribution of events
into data sources. Data sources are categories of events often associated with a
non-exhaustive list of valuable pieces of information called attributes that can be
extracted from these events. Famous framework MITRE ATT&CK@®) proposes
a few examples of data sources [18]. In our case, each data source is associated
with a list of normalized attributes that are relevant for anomaly detection.
Definition of an event In an information system, activity is recorded by
sensors inside logs. Each action is recorded differently by the various sensors
(e.g., IDS will focus on information relevant for security, while application logs
aim at facilitating diagnosis) in the form of events, with the aim of providing an
audit trail that can be used by human analysts to better understand the activity
of the system. An event can be decomposed into attributes (e.g., an antivirus
log will contain information about the machine, the suspected file, the rule that
triggered the event, etc.), among which only a subset may have value for security
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monitoring. In essence, events can be seen as sets of key-value pairs that can be
understood by humans. Normalization of events attributes is performed thanks
to data sources attributes defined above.

Definition of a meta-event Among the events collected when monitoring
an information system, finding duplicated events is highly probable. This can
be attributed mostly to four facts. (1) The same action being performed several
times in a short period of time (e.g., a process spawning a pool of child processes).
Due to the asynchronous nature of modern computing, it is unlikely to have the
exact time-stamp of each events. (2) The sensor that registers the events or
the chosen attributes of these events might not provide enough information to
distinguish two similar but different actions (e.g., multiple threads connecting
to the same service in parallel will generate socket events that can be hard to
distinguish if the source port of the connection is not considered). (3) Redundant
sensors or multiple implementations of these sensors (e.g., two different IDSes)
for high availability. (4) For performance reason, the log shipping method of
a lot of modern monitoring solutions often follow the ”at least once” delivery
policy by default rather than the "exactly once” policy.

For this reason, we chose to consider a meta-event as a group of events
pertaining to the same data source during a predefined period of time and with
equal attributes®. As explained in Introduction, the proposed system aims to
leverage knowledge of SOC analysts. The definition of a meta-event therefore
depends on three choices, namely, the data sources, the size of the time window
inside which events can be grouped together, and the list of attributes that
needs to be equal for events to be grouped. As long as these choices remains in
the hands of analysts, the performance of our system depends on assignments
made. For the sake of this work, we define time window, data sources and event
attributes based on expert knowledge provided by SOC analysts.

3.2 Linking meta-events

When monitoring an information system, the various sensors will record events
differently (e.g., an endpoint audit mechanism may attribute network socket
opening to processes, while network probes will focus on analyzing the network
protocol). To extract as much information as possible from available logs, we
regroup all the events related to the same action and jointly analyze them. This
is known as the alert fusion step of the correlation process [26], and we extend
it to take both audit events and IDS alerts as inputs (instead of only alerts).

To leverage the available knowledge of current SOC analysts, we chose an
approach that is similar to what is actually done for alert fusion: first slicing the
time into small windows, and then using logic in the form of rules to separate
events describing different actions.

Group by time proximity While the asynchronous nature of modern com-
puting may render the strict ordering of the events via their time-stamps highly
improbable, the various sensors deployed inside the monitored system are likely

4 Timestamp excepted
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to react to the same action within a short period of time (at least if the whole
system is synchronized using the same time server, or if the log shipping system
is in charge of setting the time-stamps). Therefore, the first step we perform is to
regroup events appearing inside the same time window. The size of the window
is configurable as, depending on the tools available, the time between the first
event and the last event matching the same action can vary from milliseconds to
a few minutes (e.g., for NIDS that trigger alerts at the end of the connections).
Each slice of time can be handled completely in parallel.

Correlation of meta-events Linking security events based on causal de-
pendencies can ease the investigation process [29]. Indeed, each action inside an
IS, such as attacks, is observed from various sensors. Each one records different
pieces of information about the root action. We hence aim to uncover the root
action through event correlation (cf. Section 2.2) of given groups of events. This
correlation is based on two assumptions: (1) Regardless of the data source, two
events coming from the same origin (e.g., same process, same host, same user,
etc.) and within a short period of time are more likely to share a common cause.
Indeed two correlated events can be either causally linked, caused by the same
cause or a coincidence. The probability of a coincidence is lower when analyzing
finer grained events (e.g., endpoint monitoring, syscall auditing, etc.). (2) Some
event attributes are common to multiple data sources [13,21], which enables us
to regroup events from heterogeneous sensors. For instance, an endpoint audit-
ing mechanism can log sockets opened by processes which can be linked with
NIDS logs using the source IP address, and other endpoint logs using the process
identifier. For some tools, some attributes are specifically designed to link events
together (e.g., the zeek network probe [20] events have attributes that are meant
to link each analyzers results to the original network flow).

Meta-events with attributes indicating the same origin are therefore pieced
together. The list of such attributes is called a correlation rule. This regrouping
operation is designed to be both associative and commutative (i.e., the processing
order do not impact the result) and can therefore be considered as a reduction
operator, which can be handled in parallel.

4 Anomaly score computation using dynamic
auto-encoders

Grouping together events in sets of meta-events offer a better understanding
of observed phenomenon. We go further by prioritizing sets of meta-events with
neural network-based anomaly detection system by computing an anomaly score
for each set and the meta-events that compose it. Fig. 1 provides a functional
overview of the model, which is described in the following section.

4.1 Basics on neural networks and auto-encoders

A neural network is a composition of functions with trainable parameters. These
functions are called the neurons of the network. A neural network is trained to



DAEMON: Dynamic Auto-Encoders for security MONitoring 7

. T g0
[ —~ Q oo
3 Ty 2 £9
QO p—< —_—] O o o
= ‘aeEen o on
w ; o
N N
-y N
@
[
o
P — o
@ VoY [} ]
B see 8 @
Q < e o 2]
f=4 - @
S aes 2
> — >
) =
(% M
S [— 3
8 aeses 8
8 f—s 5 3 2w
S "aeee k] £9
\ J L 0
> > > Q
— —/ wun

Encoded
Average

Attributes
Scores

Fig. 1: Overview of the anomaly scoring for a set of meta-events

minimize an objective function, which often contains at least a measure of the
divergence between the expected output and the one effectively predicted by the
network. To solve this minimisation problem, the most used algorithms derives
from the gradient back-propagation method [23], which requires the gradient
of the objective function for each parameter of the network. Therefore, in this
paper, we generalize the neural network definition to a composition of differen-
tiable functions, where parameters are trained using any variant of the gradient
back-propagation method.

Historically, neural networks have been used to map vectors from high-
dimensional space (e.g., the pixels of an image, complex set of extracted fea-
tures, etc.) into more easily comprehensible values (e.g., a class, a small vector,
etc.). With the rise of deep learning, researchers moved from using only fully
connected layers of formal neurons to incorporating layers specifically adapted
to the structure of the data provided as input to the model (e.g., 2-D convo-
lution for images, recurrent networks for text, etc.). For tasks that require the
network to output in a high dimensional space (e.g., image or text generation),
the structure of the network is often organised in two parts, an encoder which
maps inputs into a latent representation, and a decoder which takes the latent
representation as input and outputs value into the expected vector space. The
auto-encoder is a special Encoder-Decoder model for which the output space is
the same as the input space. Such a structure can be adapted to detect anomalies
in security events [5].

4.2 Dynamic structure with coherent encoded representation

For each data source, an encoder and a decoder is initialized at the beginning
of the training phase. One of the limitations highlighted in [5] was that the
compressed representation of the events was not comparable from one source to
another. Besides, each source of events needs its own model, which can be difficult
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to manage once the number of sources grows too high. We propose to alleviate
these limitations using a dynamic network structure combined with a penalty
added to the objective function. It encourages the encoder to encode meta-events
appearing frequently in the same sets into close vectors in the encoded space.

For each set of meta-events, we select the encoder-decoder pairs correspond-
ing to each data source in the set and build an auto-encoder out of them. In
addition to the reconstruction error (i.e., the difference between the original
input and the output of the network), we compute the distance between the en-
coded representation of each meta-event of the set and the average value of these
encoded representations for the whole set. We derive the context score from
this distance, and minimizing it is added as an objective for the encoder, which
encourages it to compute an encoded representation that is close for meta-events
that frequently happen in the same context (e.g., an HTTP request is often ac-
companied by a DNS query).

4.3 Computing anomaly score

Attribute score The reproduction error of the auto-encoder (difference be-
tween the input and the output) will be higher for anomalous data. To guide
the investigation of anomalies, it is interesting to determine which attributes
are likely to be the cause of the anomaly. The problem is that the reproduc-
tion error from one attribute to another cannot be trivially compared. In [5] a
Gaussian Mixture Model was used as an approximation of the distribution of
the loss. The cumulative distribution function (CDF) of the Gaussian with the
highest mean value was then used to compute an anomaly score between 0 and
1 for every attribute. However, in cases where the variance of the loss is close
to 0, this method provides unsatisfactory results (i.e., high score for all events
or low score even for anomalies). Besides, the GMM parameters cannot be ap-
proximated accurately within the network (i.e., using gradient descent), which
forces a calibration phase after training the auto-encoder, and to maintain an
additional model. In our case, we propose to use a logistic distribution instead
of the Gaussian mixture, and train its parameters directly within the network
(Eq. 2). In our case, we want to have a score that is close to 0 for most of the
normal events, while still being close to 1 when the attribute is anomalous . One
possibility would be to set u (the point at which the logistic CDF is 0.5) to be
the highest value on the (supposedly normal) data. To do so, we constraint the
parameters of the logistic distribution (Eq. 4).

Meta-event score The score of a meta-event is the weighted mean of the
score of all its attributes. The weight w; of each attribute z; is computed by
a small neural network that takes as input the average value of the encoded
representation for a set of meta-event. Minimizing the standard deviation of
the weight vector is added as an objective to discourage the weighting neural
network to amplify or attenuate excessively some attributes.

Set score The score of a set is the weighted mean of the scores of all the

meta-events that constitutes it. The weight ¢; for a meta-event is ¢; = '~
727

with s; the score of the it meta-event in the set.
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Fig.2: (2) Cumulative distribution function for a logistic distribution. A controls
the steepness of the curve and p the symmetry point f(u) = 0.5. (3) Constraint
added to the u parameter of the attribute scoring function. The lower « is,
the closer to the maximal input value p will be. X is the average value of the
reproduction error for a batch of data. (4) Constraint for the whole scoring
function. The last term is needed to avoid A being negative (which would cause
the score to be higher for normal values than anomalous ones)

4.4 Handling concept drift

Normal behavior of an IT system is bound to evolve with time, as new be-
haviours appear and old one cease to manifest. Indeed, new users are added, old
ones are removed, software are updated, etc. In data science, this phenomenon
is called concept drift and is handled by updating the model. In the context
of security monitoring this phenomenon can manifest in different ways. First,
correlations between variables evolves (e.g., a known user started using a known
command) and/or the correlation rules used for regrouping events into sets of
meta-events (data sources do not change, only the composition of the sets) need
to be changed. In this case, only the model weights needs to be updated, and as
neural networks learn incrementally by nature, it is only a matter of performing
a few training steps on data containing the new behaviors. The second mani-
festation of concept drift is a modification of the input space which requires a
modification of the pre-processing functions parameters (e.g., a new user, a new
software deployed, etc.). Finally, in some cases the data sources schema must
be updated (e.g., new type of sensor deployed, modification of the analyzed at-
tributes, etc.). By combining the neural networks capacity to learn incrementally
and the design in functional blocks (for each attribute of each datasource), we
can handle concept drift without requiring a costly complete retraining of the
model. Kirkpatrick et al.[12] proposed the Elastic Weight Consolidation (EWC)
algorithm in order to attenuate catastrophic forgetting of neural networks, i.e.,
the network completely forgets older normal behaviors too quickly. EWC consists
in adding penalties and constraints on the network’s weight during training to
avoid modifying weights that are essential to solve the previously learned tasks.
Authors have also proposed the use of small sample of previous data either as
a small knowledge base constituted during training and used during inference
(episodic memory) [3,25], or simply by selecting a sample of past experiences
when training on new data (experience replay) [22]. We chose this second ap-
proach as it is simpler (computationally speaking) than episodic memory, and
it also applicable to the adjusting of the transformation function parameters
(EWC is only useful for network weights).
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5 Approach Assessment

5.1 The evaluation dataset

Assessing the performance of an anomaly-based security log analysis method
requires the collection of enough logs to model the normal behaviour of the
experimental monitored system. For confidentiality reasons, it is not possible to
use production data, so the data needs to be collected from a lab environment
and user interaction with this environment must be simulated. As accounting for
every possible cases of a real IT system is impossible, this simulation is bound
to be biased. However, considering that each user action is done by human
operators as it would be done on a production environment, the collected logs
will be similar to the ones collected on a production system.

In order to increase signification of collected events (e.g., admin tasks should
not be performed from user workstations), the monitored system’s architecture
is intended to be reasonably secure (well separated infrastructure, administra-
tor and user zones, controlled outgoing and incoming traffic, updated software
and antivirus, etc.). Six simulated users perform various office tasks (documents
writing, mail, web browsing, etc.) across Linux and Windows workstations while
an administrator maintains the infrastructure of the system and sometimes con-
nects to the users endpoints to install software or update configurations.

The first two days of the dataset serves as a baseline of "normality” (i.e.,
without any attack traces) that is required for anomaly detection system train-
ing. The presence of attack traces inside the training data would prevent de-
tection of said attack, but attacks employing different techniques would still be
detected. The first attack scenario (day 3) emulates an attacker with custom
tooling (to avoid detection by antivirus), but is noisy (multiple IDS alerts, a few
antivirus alerts, more trial and errors, etc.). The day after (day 4), a new soft-
ware is deployed on a Centos machine. The second scenario (day 5) reemploys
the same tooling as the first scenario, but is more subtle (generates less IDS
alerts, no antivirus alerts, actions are more precise, etc.). During the attack, the
administrator diagnoses a problem on windows machines (and therefore generate
unusual activity). After this (day 6), a new sensor (Sysmon) is enabled on the
user endpoints, and is expected to generate a large amount of false positives. The
last scenario (day 7) is much more discreet than the previous ones and relies on
new tools. The attacker limits its activity to a minimum to avoid generating too
much events. This scenario aims at emulating a more advanced threat actor.

The dataset contains 4.2 million events, over a period of 7 working day.
These events come from typical monitoring tools commonly found inside IT
systems (i.e., Sysmon, Auditd, Windows Audit Logs, Windows Defender, Zeek
IDS, Suricata IDS and Squid HTTP Proxy). We configure these tools to record
a higher volume of information than what is usually deployed on IT systems
(e.g., all available IDS rules, process monitoring with windows audit, socket
monitoring with Sysmon and auditd, etc.). This enables us to test various levels
of verbosity for assessing our method without regenerating a datasets.



DAEMON: Dynamic Auto-Encoders for security MONitoring 11

5.2 Defining the assessment strategy

While commonly used quantitative metrics (e.g., False/True Positives Rates,
F1 score, etc.) can provide valuable information regarding the performance of a
detection method, they only give a partial view of the usefulness of the detection
system. For instance, missing 50 out of 100 failed connection attempt to a service
in a brute force attack would not prevent analysts from finding out the source
and the target of the attack, while increasing the False Negative Rate (FNR).
On the other hand, missing a single event that characterizes an attack would
not have a major impact on the FNR, while greatly reducing the quality of the
detection.

We alleviate this limitation with an alternative definition of a False Negative
that is more inline with analysts practices. In fact, we know every actions that
are performed by the attacker, but annotating individually the thousands of
events that can be attributed to these actions would be time consuming and
error prone. Instead, we start from a high threshold above which we consider a
set of meta-events as an anomaly, and we lower it until we can find anomalies
characterising every step of the attack (i.e., what is the machine impacted, the
technique employed, etc.). Any set below this threshold that is a consequence
of malicious activity will not be considered as a False Negative, as it will not
add useful information to characterise the attack. Empirically, we find that a
threshold of 0.4 is a good choice for the three scenario we have. However, this
threshold is not optimal as multiple legitimate actions can have a score higher
than it. Therefore, we gradually increase this threshold and we compute the
precision (proportion of True Positive in all the anomalies), recall (proportion
of the attack accurately detected) and F1 score (harmonic mean of precision
and recall) to quantify the performance. For all these metrics, a value close to 0
implies a useless anomaly detection while a score of 1 is synonym of a good one.
We consider the optimal threshold to be the one that maximizes the F1 score.

We mitigate the impact of a lucky (or unlucky) initialisation of the model
training 10 models with different initialisation of the parameters on the first two
days of normal data. This data is randomly splitted for each model, with 90%
used for training the model and 10% to control that the model is not over-fitting
the training data (often called validation set). We test the performance of each
of these models on the first scenario. After that, we keep only one model and
use it as the base for incremental learning and evaluating the performance on
the other two scenarios.

5.3 Results

For each of the 10 randomly initialized models, we record the best F1 score on
the first attack scenario. The average value of this score is 0.88 with the lowest
value at 0.85 and highest at 0.91. The figure 3 has been generated using the best
model (F1: 0.91, recall: 0.93 and precision: 0.88). The dashed black line shows
the number of anomalies per hour detected during a single day without attack.
On the opposite, red line shows number of anomalies per hour produced when an
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Fig.3: Aggregated number of meta-event sets with a score above 0.5 per hour
for scenario 1.

attack occurred. As expected, we can see that the number of anomalies increases
as the attack progresses. The maximum number of anomalies is reached when
most of the machines are compromised, and especially the domain controller. The
cleanup phase is accompanied by a decreasing number of anomalies as machines
progressively stop exhibiting attack behaviours. This scenario shows that our
system can be used as intrusion detection system as it detects attack-related
events and because it does not report more than fifty anomalies per hour from
an initial number of events of approximately 20000 per hour.
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Fig.4: Aggregated number of meta-event sets with a score above 0.5 per hour,

for scenario 2 (top) and 3 (bottom)

For the second scenario, we use the false positives from the first scenario and
the fourth day of the collected dataset as the input to incrementally update the
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anomaly detection model. We reach a F1 score of 0.97 with a recall of 0.99 and
a precision of 0.95. Similarly, for the third scenario, we reach an F1 score of 0.92
with a precision of 0.86 and a recall of 0.98. Without retraining (i.e., using the
same model used for scenario 1), the best F1 score drops below 0.3 for both
scenarios. To highlight the effectiveness of the retraining, in Figure 4, we add
the plot (orange dot-dashed line) of the same normal day than the black dashed
plot, but this time analysed by the outdated model.

Similarly to the first scenario, there is an increasing number of anomalies
reported during the attack process of the scenario 2. We see lower numbers
of anomalies, which is expected considering the attack a bit less noisy. As the
third scenario is designed to be as discreet as possible, we see far less anomalies.
Nevertheless, meta-events raised by our system are sufficient for an analyst in
order to recognize the attack pattern. The orange line shows the necessity of the
incremental learning process for our anomaly based detection system.

The latent representation provided by the model enables the use of standard
clustering algorithms to cluster meta-event groups. Most of the time, new be-
haviours reappear regularly. Thus, the manifestation of these new behaviours in
the log should form clusters of similar activity. In our case, we use the DBSCAN
algorithm [9] to perform this clustering and we find that the discovered cluster
permits to reduce the annotation time. Fig. 5 shows two anomalous meta-event
groups that are found to be similar. The first one corresponds to the events gener-
ated when the attacker enumerated local users and groups and the second to the
enumeration of domain users and groups. Preliminary results are encouraging,
but a more in depth evaluation of the clustering performance is still required.
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groups belong to the same cluster in

Even though these results are promising, some limitations can be highlighted.
In fact, it still relies on parameters that needs to be defined by an expert. More
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precisely, an inadequate choice of attributes for the datasources, i.e., missing
important attributes or adding useless ones, can lead to unsatisfactory results.
Although the redundancy of the datasources limits the effect of missing features,
and the weighting system of the anomaly scorer lowers the impact of useless ones,
we think that the scoring system still requires some adjustments to improve the
tolerance to human error. For instance, with the current scoring system, a data-
source with more than 10 attributes will rarely cause alerts because most of the
attributes would seem normal and dilute the score of anomalous attributes. In
addition to that, the chosen time-window can have an impact on the quality of
the fusion step. Indeed, during testing, we realised that a time-window below 120
seconds lead to a significant amount of missed fusion opportunity between data-
sources that have different ways of setting the timestamp (e.g., a network probe
often emits an event at the end of a connection, while an endpoint monitor-
ing would do so at its beginning). Symmetrically, we found that a time-window
above 300 seconds would lead spurious correlations between meta-events.

6 Conclusion

Modern SOCs handle alerts based on attack patterns or signatures in order
to perform intrusion detection. However, to detect unknown threats, gaining
a deeper visibility of the system is required. This is done by analysing both
events and alerts (and not only alerts), in search for anomalies. Consequently, a
significant growth in the volume of information that needs to be analysed and
the number of false positives occurs. While machine learning based approaches
can help analysts detect novel attacks, their adoptions into SOC have been slow.
Part of the explanation for this is the lack of explainability and the need for
data science expertise (that is scarce in SOC teams).

We therefore proposed a new anomaly detection approach that takes advan-
tage from available security analysts expertise to highlight and contextualise
anomalies in security logs. This approach is based on the fusion of fine-grained
events into sets of meta-events, and on an autoencoder neural network with dy-
namic structure to compute an anomaly score for each of these sets. Our system
is designed to adapt to new behaviours (concept drift) by learning incrementally
while not forgetting old behaviours too quickly. For validation purpose, we per-
formed several scenario-based evaluations on a lab environment monitored using
tools often deployed on production systems. The results show that our system
reports a low number of anomalies per hour and that this number is correlated
with the progress of the attack scenarios. For all of our evaluation scenario, the
system reports enough information to completely reconstruct the attack.

Future work includes publishing the dataset used for experimentation along-
side additional results, as well as correcting some identified limitations of the
method. Specifically, while the involvement of security experts in the configura-
tion of the system allows for results that are more understandable to them, it
also exposes the system to human error which could degrade its performance.
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Our focus will be on diminishing the impact of these errors and reinforcing the
transparency of the system for human operators.
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