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Abstract— We propose and numerically evaluate a machine-

learning-based nonlinear interference spectrum estimator for a 

coherent optical network. The solution shows a root-mean-

squared error of about 0.13 dB compared with split-step Fourier 

simulation when estimating the nonlinear interference variance. 

Keywords—optical network, machine learning, fiber 

nonlinearity, nonlinear interference power spectral density 

I. INTRODUCTION  

Accurate prediction of the quality of transmission is critical 

for fine-tuning margins in monitoring-assisted optical 

networks. For this, several solutions are possible. One extreme 

is the split-step Fourier method (SSFM) [1] which allows 

accurate prediction of the waveform distortions and, 

consequently, the bit error ratio of a lightpath at the expense of 

high computational complexity. At the other extreme, the 

Gaussian noise model [2], in its simplest form, allows for a fast 

prediction of the nonlinear interference (NLI) variance at the 

price of a reduced accuracy when the main assumptions 

underlying the model are not met. Somewhere in between, the 

enhanced Gaussian noise (EGN) model [3] offers improved 

accuracy with an additional computational cost. At the same 

time, the technique discussed in [4] allows for a very fast 

assessment of the in-phase (IP) and quadrature (Q) NLI power 

spectral densities (PSDs), where the PSDs account for the fine 

impact of the receiver digital signal processing (DSP), most 

notably the carrier phase estimation (CPE).  

Nevertheless, the computational complexity of EGN remains 

prohibitive for real-time applications, while the fixed-channel 

loading calibration step required in [4] might be impractical, 

particularly for heterogeneous systems. As an alternative, [5] 

proposes a machine learning (ML) model to reduce complexity 

and improve the performance prediction accuracy, however, 

without spectral characterization capabilities. Moreover, in [6], 

ML has been used to get the signal waveform after propagation, 

yet requiring different training for every link. 

In this paper, to the best of our knowledge, we propose the first 

attempt using ML to achieve a low-complexity prediction of the 

NLI IP and Q PSDs with sparsely loaded spectra and a variety 

of transmission distances employing multi-polynomial 

regression [9]. Such an estimator is useful for typical scenarios 

of terrestrial optical networks. The paper is organized as 

follows: Section II reports the collection data phase and 

description of the adopted ML model. Section III will address 

the accuracy of this proposal for predicting the nonlinear 

spectrum shape and its variance. In Section IV, we investigate 

the ML proposal for short links with a few spans, and finally, 

in Section V, we draw our conclusion. 

 

II. METHODOLOGY AND DATA COLLECTION 

In the first part of this section, we will address the data 

collection phase to construct two labeled datasets for PSD 

components. Then, we will describe the ML model and the 

learning procedure in the last three subsections. Finally, we will 

draw comments on the accuracy and complexity of this ML 

proposal.  

A. Data Generation 

Fig. 1 shows the SSFM simulation setup we carried out 

during the data generation stage. We considered a grid of 21 

dual-pol QPSK channels at the transmitter (TX) with a fixed 

spacing ∆f of 37 GHz. We used the central channel as a channel 

under test (CUT), which was always kept "on." At the same 

time, the interfering channels are randomly switched "on", and 

"off" in each of the 𝑀 = 691 simulations. The launch power at 
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the span ingress was 0 dBm. The transmitted channels had a 

root-raised cosine spectral shaping with a roll-off of 0.01 

and a symbol rate of 32 GBd. The number of simulated symbols 

in each run was 576000, with 54 samples per symbol. We 

considered dispersion unmanaged links with 𝑁spans = 50 

different lengths. All the simulations propagated through 𝑁s 

spans for 𝑁𝑠 = 1, . . . , 𝑁spans of 100 km standard single-mode 

fiber and noiseless flat-gain amplifiers to focus on the NLI 

impairment. In the receiver (RX) section of Fig. 1 we first used 

a front end to down-convert the optical waveform of the CUT 

into the electric domain. Second, we applied a matched filter 

and an ideal chromatic dispersion compensation. We down- 

sampled to 1 sample per symbol and recovered the phase in a 

data-aided way, averaging over the transmitted sequence 

length. Third, we conducted a data-aided noise statistic 

evaluation to recover the imaginary and real parts of the 

variance, as explained in [7]. Finally, we applied the Welch 

modified periodogram method without overlap and a window 

length of 128 to evaluate the IP and Q components of the NLI 

PSD, thus obtaining two vectors 𝐲𝐐 and 𝐲IP with elements 𝑦𝑘  

for 𝑘 = 1, . . . , 𝑁 , with 𝑁 = 256  points. Finally, the total 

spectrum was recovered by summing up its two components. 

B. Labeled Datasets Generation 

We generate two different datasets, one for the IP and the 

other for the Q component. Let us introduce some notation first. 

The cross-channel NLI variance induced by an interfering 

channel to the CUT is approximately inversely proportional to 

the frequency spacing between the interferer and the CUT [8]. 

Following this idea, we define 𝜌 = (𝐰 ⋅ 𝐜)/‖𝐰‖ where 𝐰 =
 [1/10 ,··· 1/2 ,1,0,1,1/2,··· 1/10]/∆ 𝑓  is the weight vector, 

and 𝐜 = [c1, ⋯ , c𝑚, ⋯ , c21]  is the binary vector representing 

the transmitted channel allocation with c𝑚 = 1  for "channel 

on" and c𝑚 = 0  for "channel off", where 𝑚 = 1, . . . ,21 . 

Therefore, the variable ρ describes the importance of the NLI 

due to the channel allocation, i.e., higher 𝜌  corresponds to 

higher NLI. In addition, we define a normalized span number 

𝑛𝑠 = 𝑁𝑠/𝑁spans − 1 to have the input data in the same range 

for the ML algorithm. We define the input features vector 𝐱 =
 [𝜌, 𝑛𝑠, (𝑛𝑠)2,··· (𝑛𝑠)𝑑] , where 𝑑  is the polynomial degree. 

Meanwhile, we normalized the two collected IP and Q PSDs by 

the cube of the CUT transmitted power referred to in the 

following as normalized PSD with the unit of measure of 

dB(mW−2/Hz). This procedure permits us to have one PSD 

describing all the possible spectra with different CUT power 

levels. Finally, we construct two datasets, one for IP and one 

for Q labeling all the input vectors to the corresponding PSD in 

the natural logarithm scale. Therefore, the first dataset is 

formed by the pairs (𝐱, 𝐲Q) , and the second one is formed by 

(𝐱, 𝐲IP). 

C. Model 

We used a different multi-polynomial regressor [9] for each 

of the N frequency bins representing the PSD. Hence, we 

assume that there is polynomial relation between 𝐱 and 𝑦𝑘  for 

each 𝑘 = 1, . . . , 𝑁, given by the equation 𝑦𝑘 = 𝑏𝑘,0 + 𝑏𝑘,1𝜌 +

𝑏𝑘,2𝑛𝑠 + 𝑏𝑘,3𝑛𝑠
2 + ⋯ + 𝑏𝑘,𝑑+1𝑛𝑠

𝑑  where 𝑏𝑘,0  is the intercept 

and 𝑏𝑘,𝑖   are the regression coefficients with 𝑖 =  1, … , 𝑑 + 1. 

We applied this model for both datasets since their inputs and 

outputs have similar relations. 

D. Training Stage 

We trained with 80% of the database, i.e., 552 simulations 

drawn randomly from all the simulations. In the learning stage 

we estimate the �̂�𝑘,0  and the �̂�𝑘,𝑖  regression coefficients for 

each PSD frequency bin at fixed 𝑑, that best fit the data in terms 

of mean squared error. For each PSD component, we repeat this 

stage for twenty datasets with different polynomial degrees for 

𝑑 = 1, . . . ,20. 

E. Test Stage 

We utilized the remaining 20% of the data for the testing 

phase and measured their prediction accuracy. To this end, we 

used the L2 norm defined as L2 = [∑ (𝑦𝑘 − �̂�𝑘)2𝑁
𝑘=1 ]1/2 where 

𝑦𝑘  is the bin frequency PSD evaluated with SSFM and �̂�𝑘 =

 �̂�𝑘,0 + �̂�𝑘,1𝜌 + �̂�𝑘,2𝑛𝑠 + �̂�𝑘,3𝑛𝑠
2 + ⋯ + �̂�𝑘,𝑑+1𝑛𝑠

𝑑  is the one 

predicted through ML. As reported in the next section, we 

repeat this accuracy investigation for all degrees to find the 

optimum 𝑑 giving the lowest distance.  

Fig. 2 illustrates how we use a test set sample to predict the NLI 

PSDs. The upper part of Fig. 2 shows the feeding process of the 

same input features vector into all regressors that give a vector 

of points in the natural logarithmic scale, and we pass it to the 

dB scale to obtain the �̂�Q and �̂�IP PSDs. 

 

 

 
Fig. 1: SSFM simulations setup with different sparse channel 

allocation and link lengths used to collect the IP and Q PSDs. 
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Fig. 2: Different N regressors to predict the NLI PSDs from an 

input feature vector 𝐱 describing the channel allocation and 

the number of spans. 
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III. NONLINEAR SPECTRUM PREDICTION AND VARIANCE 

ESTIMATION 

In the first part of this section, we present an analysis of the 

shape of the PSD with two representative examples, and we 

assess the prediction accuracy as a function of the link length. 

In the second part, we report an investigation on the estimation 

of NLI variance. 

A. Nonlinear Power Spectral Density Prediction 

We provide two representative examples to show the 

prediction capabilities of this approach. Fig. 3(a) depicts a case 

in the test set of a link with one span, and 𝜌 = 0.43. The x-axis 

represents the frequency, while the y-axis reports the 

normalized PSD values. On the left-hand side, we show the 

total PSD, where the solid line is the one evaluated with SSFM 

and the dashed line is the ML prediction, while on the right-

hand side, we show the IP and Q PSDs. For the example of Fig. 

3(a), the error is mainly found either at the edges or in the center 

of the spectrum. With the same structure we report in Fig. 3(b), 

an example of the PSD prediction for ρ = 0.43 and fifty spans. 

The error in the second example is less important than in the 

first example and lies mainly in the central frequency. 

We train and test the N regressors with different polynomial 

degrees 𝑑 to find the one that leads to the lowest L2 norm, as 

mentioned in the previous section. Fig. 4(a) depicts the average 

distance for the IP (solid line) and Q (dashed line) components 

as a function of the polynomial degree. The different 

polynomial degrees are reported on the x-axis, while the y-axis 

represents the average L2 norm over the whole test set. We 

notice a decreasing behavior for both situations, with the lowest 

average L2 obtained for the Q component. In particular, the 

average distances associated with IP and Q reach a plateau at 

𝑑 = 16, respectively, around 2.30 dB and 2.19 dB. 

At this fixed degree 𝑑 = 16, we investigate the average error 

distances as a function of link lengths to highlight the difference 

displayed in the previous examples of the prediction. To this 

end, we divided the test set into fifty subsets, i.e., one for each 

span number. Fig. 4 (b) depicts the average L2 norm over all 

the 𝜌 in each subgroup representing the IP and Q PSD link 

length. The left y-axis represents the average distance over 𝜌, 

while the number of spans is reported on the x-axis. We obtain 

a larger distance for the first spans and a plateau after the tenth, 

which can be translated into two working regimes. The first one 

below or equal to ten spans has a decreasing average distance. 

The average L2 for IP PSD in this region has a maximum of 

5.75 dB and a minimum of 2.38 dB, while 6.7 dB and 2.22 dB 

can be found for the Q component. A second regime above the 

tenth span, with a plateau around 2 dB and 1.84 dB, 

respectively, for the IP and Q PSD, with both minima located 

in the twenty-fourth span. Since it may not be evident how the 

differences in terms of L2 impact performance, in the following 

subsection, we study the impact of this ML proposal on the 

estimation of the nonlinear variance. 

B. Nonlinear Variance Estimation 

To understand the accuracy of PSD prediction, discussed in 

the previous Subsection III.A we show the error for estimating 

the 𝑎𝑁𝐿, i.e., the integral of total normalized PSD. 

Fig. 5(a) illustrates with a dashed line the root-mean-square-

error (RMSE) and, with a solid one, the maximum absolute 

error (MAE) as a function of the number of spans. As before, 

we evaluated the two error metrics over the different 𝜌 of the 

test database to have an error as a function of the number of 

spans. Both RMSE and MAE capture the mismatch between 

𝑎𝑁𝐿  evaluated from SSFM and �̂�𝑁𝐿  calculated integrating the 

predicted PSD. Also, in this case, we found two working 

regimes. For the RMSE, we have a decreasing relation from 

0.39 dB down to 0.11 dB in the first regime, i.e., for less or 

equal than ten spans. In the second one, there is slightly 

 

 
Fig. 3: (a) illustrates an example of PSD prediction for a link 

with ρ=0.43 for 𝑵𝒔 = 𝟏 span and (b) with 𝑵𝒔 = 𝟓𝟎 spans. 

Solid lines represent the PSDs evaluated through SSFM and 

dashed lines represent PSDs predicted by ML. Total PSDs 

(IP+Q) are reported on the left side, while the IP and Q PSDs 

are illustrated on the right. 

(b)

(a)

 
Fig. 4:(a) represents the average L2 norm over all the 

simulations test sets as a function of the polynomial 

degree. (b) depicts the average L2 norm over all different 

𝝆 in the test set as a function of the number of spans at 

𝒅 = 𝟏𝟔. 

(a) (b)
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increasing behavior towards the last span from a minimum of 

0.08 dB for the twentieth span up to 0.12 dB.  

Meanwhile, the MAE goes from 1.28 dB down to 0.36 dB in 

the first regime. The second regime shows a slightly increasing 

trend up to the 0.42 dB corresponding to the fiftieth span. These 

two curves help us clarify the link between the average distance 

for the PSDs components and the total nonlinear variance 

estimation error. For instance, in this specific case, a distance 

L2 of approximately 6 dB for the first span can be translated 

into an average 𝑎𝑁𝐿  estimation error of 0.4 dB, while we 

neglect here the impact of the carrier phase estimation on the 

NLI quadrature component [4].  

To have a complete picture of the error statistics, we report in 

Fig. 5(b) the histogram of the 𝑎𝑁𝐿 estimation error for all the 

simulations in the test set. The x-axis reports the estimation 

error, i.e., Δ𝑎𝑁𝐿 = 𝑎𝑁𝐿  − �̂�𝑁𝐿., while the y-axis represents the 

number of times this error occurs. The dashed line denotes the 

average error of -0.007 dB. Meanwhile, the standard deviation 

is 0.13 dB (solid line) over all spans and 𝜌 of the test dataset. 

The estimation error can reach a maximum value larger than 

1dB due to the shorter link lengths, as shown in Fig. 5(a).  

C. Comments on the Accuracy and Complexity  

These two previous investigations into the accuracy of this 

technique show two working regimes, the first relating to the 

first ten spans and the second to larger distances. In the first 

regime, we obtained a prediction worse than the second with an 

MAE less than 1.2 dB in the estimate of the variance of the NLI. 

On the contrary, we got an MAE below 0.42 dB in the second 

regime for the fiftieth span. 

In terms of complexity, the main advantage of the polynomial 

regression strategy is that it only requires the computation of a 

simple polynomial for each frequency bin N of the PSD. This 

leads to a computation time of milliseconds for each link type, 

making it suitable for real-time applications. On the contrary, 

in the traditional EGN model, it is not possible to reach such 

low computational time since it has to calculate nested integrals 

to obtain the PSD of the NLI. 

 

IV. INVESTIGATION OF THE PREDICTION FOR SHORT LINKS AND 

THE IMPACT OF THE TRAINING DATASET 

In Section III, we observe two working regimes, one below 

or equal to the tenth span and another above it. The results 

showed a larger average distance on the first regime with the 

higher value positioned in the first span. This can be translated 

into an RMSE of 0.4 dB for estimating the 𝑎𝑁𝐿 coefficient from 

the total PSD. 

Hence, this behavior raises a question of how we can reduce the 

error for a small number of spans. In this section, we describe a 

simple strategy we adopt to see if it is possible to decrease this 

error. We compare three datasets with different maximum span 

lengths without changing the ML algorithm. 

We construct two smaller datasets with 𝑁𝑠𝑝𝑎𝑛𝑠 equal to 10 and 

20 from the entire dataset. Therefore, we select the samples 

with desired maximum span length to obtain two smaller ones, 

respectively, the dataset with 𝑁𝑠𝑝𝑎𝑛𝑠 = 10 and 𝑁𝑠𝑝𝑎𝑛𝑠 = 20. 

Before looking at the accuracy results, we first found the 

convergence degree for these new datasets. Fig. 6(a) illustrates 

the average distance for the IP (solid line) and Q (dashed line) 

components as a function of the polynomial degree. The y-axis 

represents the average L2 norm overall test set with 𝑁𝑠𝑝𝑎𝑛𝑠  = 

10, while the x-axis describes the different polynomial degrees.  

We notice the same descending behavior for both PSD 

components, with the lowest average L2 obtained for the IP 

component. In particular, the average distances associated with 

IP and Q reach a plateau at 𝑑 =7, respectively, around 3.2 dB 

and 3 dB. Meanwhile, Fig. 6(b), with the same structure, reports 

the average L2 distance over the test set with 𝑁𝑠𝑝𝑎𝑛𝑠  = 20. In 

this case, the two components converge at 𝑑 =9, around 2.7 dB 

for IP and 2.67 dB for Q. 

We can draw two observations on the average distance with two 

different datasets from these two plots. First, we obtained a 

slightly larger average distance for both new datasets 

concerning the entire one. Second, the degree of the polynomial 

decreases with the reduction of the dataset, so we have a 

different multi-polynomial regression for each dataset. With 

these polynomial degrees, we evaluate the average distance for 

the PSD (Q) and the estimation error of the 𝑎𝑁𝐿 . 

 

 
Fig. 6: (a) average L2 norm over all the simulations test 

datasets with 𝑵𝒔𝒑𝒂𝒏𝒔  = 10 as a function of the polynomial 

degree. (b) larger test dataset with 𝑵𝒔𝒑𝒂𝒏𝒔  = 20. 

(b)(a)

 

 
Fig. 5: (a) The y axis reports RMSE for 𝒂𝐍𝐋 estimation versus 

different link lengths. (b) illustrates the histogram of the 𝒂𝐍𝐋 

estimation error for all the simulations in the test set. 

(b)

6  

(a)
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Fig. 7(a) shows the average L2 distance over different 𝜌 in the 

three different datasets as a function of the number of spans. 

The y-axis represents the average L2 distance, while the x axis 

reports the number of spans in the log scale. The solid line 

reports the average L2 evaluated over the entire dataset, as 

before. The novelties are the dotted and the dashed lines, 

representing the average distance for the dataset with 𝑁𝑠𝑝𝑎𝑛𝑠 

equal to 10 and 20. The first thing that can be noticed is that 

decreasing the datasets produces a lower average distance for a 

low number of spans. This reduction is more prominent for the 

first span, in which we can gain a 1.3 dB between the dataset 

with 𝑁𝑠𝑝𝑎𝑛𝑠 = 10 and the one with 𝑁𝑠𝑝𝑎𝑛𝑠 =50. However, this 

affirmation is no longer valid for the last spans of the smaller 

datasets, where we observe an average L2 distance comparable 

to (or larger than) the one for the entire dataset. 

Moreover, we report the estimation error variance for the 

different datasets to have a complete vision of the ML proposal 

accuracy. Fig. 7(b) depicts the RMSE over all the 𝜌  in 

estimating 𝑎𝑁𝐿 for three different datasets as a function of the 

number of spans. The y-axis describes RMSE over 𝜌, while the 

x-axis represents the number of spans in the log scale. This 

shows a decrease in RMSE with a smaller dataset for the first 

spans, as observed for the average distance L2 in Fig. 7(a). This 

illustration helps to connect a large gain obtained for distance 

to one slight improvement in the RMSE for estimating the 𝑎𝑁𝐿. 

For instance, in the first span, the gain of 1.3 dB in the average 

distance can be translated into an improvement of 0.1 dB in the 

estimation of the 𝑎𝑁𝐿.  

At first glance, it seems rather counterintuitive that we have 

obtained an improvement in the error prediction with a decrease 

in the dataset size. However, we could have expected this 

behavior since we applied a polynomial regression. The 

reduction of the database allows a tailored fitting for the first 

spans. In fact, we have found different convergence polynomial 

degrees for two smaller datasets. To tackle the disparities in 

these two working regimes, for future work, we must consider 

alternative ML approaches and address an ample parameter 

space for the dataset to approximate a real network scenario. 

 

V. CONCLUSION 

In this paper, we propose and numerically assess an ML-

based multi-polynomial regression estimation for Q and IP NLI 

PSD vectors to have a fast and accurate assessment of the 

performance that allows decoupling the line from the influence 

of receiver DSP. We demonstrated PSD estimation capability 

and assessed by reporting, against SSFM, the average L2 

distance and, more conventionally, the NLI variance estimation 

characterization for sparsely allocated optical links of various 

lengths. For longer links above the tenth span, we report an 

average L2 distance over the different channel allocations of 

less than 2 dB for both the IP and Q PSD components while an 

RMSE on the NLI variance below 0.12 dB. Instead, the 

accuracy is worse for shorter links, with an average L2 below 

6.7 dB and RMSE less than 0.39 dB. We also discuss the option 

of improving accuracy by considering a dataset with less spans 

a suitable  option for networks with shorter links. 
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Fig. 7: (a) average distance over the different 𝝆 of the three 

datasets, respectively 𝑵𝒔𝒑𝒂𝒏𝒔 equal to 10,20, and 50. (b) 

RMSE over all the 𝝆 in the different datasets. 

(b)(a)


