Presentation # 61

ASSESSING THE RELIABILITY OF A PHYSICS-BASED MODEL FOR THE CONVECTIVE DRYING OF YACÓN (Smallanthus sonchifolius)

Bianca Cristine Marques, Artemio Plana-Fattori , Denis Flick, Carmen Cecilia Tadini

Yacón?

MOTIVATION

COMPOSITION

Yacón is rich in water and soluble fiber, mainly FOS and inulin.

PROCESSING

Drying and pretreatments can hydrolyze the fiber into simple sugars.

WHAT CAN BE DONE?

References: [5] and [6]

1

Estimate what cannot be measured directly without disturbing the drying process

SPECIFIC OBJECTIVES

2 Verify how susceptible the model is to parameter changes

STAGE 1

Pilot-scale drying experiments Preliminar caracterization **PROJECT** STAGES

STAGE 3

Modeling and validation

60

50

40

30

20

STAGE 1

Pilot-scale drying experiments Preliminar caracterization PROJE(STAGE

EXECUTION

orstruction

List of get

PREVIOUS EXPERIMENTAL WORK

PREVIOUS EXPERIMENTAL WORK

Drying conditions:			
50 °C, 20 % RH	50 °C, 30 % RH		
60 °C, 20 % RH	60 °C, 30 % RH		

1 Shaping

2 Blanching

3 Positioning

4 Drying

PREVIOUS EXPERIMENTAL WORK

Drying conditions:			
50 °C, 20 % RH	50 °C, 30 % RH		
60 °C, 20 % RH	60 °C, 30 % RH		

1 Shaping

2 Blanching

3 Positioning

4 Drying

SHRINKAGE

MODEL DEVELPOMENT

MODEL DEVELPOMENT

SHRINKAGE IS IMPORTANT!

Yacón loses up to 90% in volume when dried.

Described with experimental data in different directions.

Large variations in moisture are described by the Maroulis et al. (2001) model. [7]

WATER MOVES, COUPLED HEAT & MASS TRANSFER

Energy transfers occurs due to conduction inside the matrix and due to convection on the surface.

Based on empirical data

SOLIDS DON'T

Water follows moisture gradient, solids stay in their cells

ПП R

DESCRIBING THE WATER DIFFUSIVITY

$$D_w \{X_w, T\} = \frac{1}{1 + X_w} D_{w,dry} \{T\} + \frac{X_w}{1 + X_w} D_{w,wet} \{T\}$$
$$D_{w,dry} \{T\} = D_{dry} \exp\left(-\frac{E_{dry}}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right)$$
$$D_{w,wet} \{T\} = D_{wet} \exp\left(-\frac{E_{wet}}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right) .$$

DESCRIBING THE WATER DIFFUSIVITY

$$D_w \{X_w, T\} = \frac{1}{1 + X_w} D_{w,dry} \{T\} + \frac{X_w}{1 + X_w} D_{w,wet} \{T\}$$
$$D_{w,dry} \{T\} = D_{dry} \exp\left(-\frac{E_{dry}}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right)$$
$$D_{w,wet} \{T\} = D_{wet} \exp\left(-\frac{E_{wet}}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right)$$
.

DESCRIBING THE WATER DIFFUSIVITY

$$D_w\{X_w, T\} = \frac{1}{1+X_w} D_{w,dry}\{T\} + \frac{X_w}{1+X_w} D_{w,wet}\{T\}$$
$$D_{w,dry}\{T\} = D_{dry} \exp\left(-\frac{E_{dry}}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right)$$
$$D_{w,wet}\{T\} = D_{wet} \exp\left(-\frac{E_{wet}}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right)$$
.

Initi	al	Va	lues

Slice temperature	20 °C
Slice water content	11 kg water/ kg dry matte
Slice half-height	0.0035 m
Slice radius	0.02 m

Dry matter properties

Density	1590 kg/m³
Heat capacity	1620 J/kg K
Thermal conductivity	0.250W/m K

Discretization

Mesh Timestep J=5 lines; I=30 columns 0.01 s

RESULTS

Subdivision 2

400 410 380

393

SIMULATION

System	Windows 10 Enterprise v.20H2, 64-bit				
	Intel® Core [™] i5-6600 CPU @ 3.30 GHz 16.0 GB RAM				
Environment	Spyder (Python 3.7.6)				
Runtime	1.81 10 ⁴ s				

WATER CONTENT

TEMPERATURE

WATER ACTIVITY

WATER DIFFUSIVITY

ABSOLUTE ERROR

Tair = 60° C and RHair = 20%

Simulation	T _{air} (°C)	RH _{air} (%)	h (W/m²K)	Mesh (Jxl)	Timestep (s)	X _w (t=6h, average) (kg/kg dry matter)	RMSE(-)
А	60	20	33	5 X 30	0.01	0.173	1.96 10 ⁻²
В	60	20	33-10%	5 X 30	0.01	0.193	3.50 10-2
С	60	20	33+10%	5 X 30	0.01	0.160	2.22 10 ⁻²
D	60	20	33	4 X 24	0.01	0.171	1.91 10 ⁻²
E	60	20	33	6 X 36	0.01	0.175	1.99 10 ⁻²
F	60	20	33	5 X 30	0.01/5	0.173	1.96 10 ⁻²
G	60	20	33	5 X 30	0.01 X 5	0.202	1.90 10-2
Н	60	30	37	5 X 30	0.01	0.192	4.17 10-2
I	50	20	31	5 X 30	0.01	0.376	2.76 10-2
J	50	30	35	5 X 30	0.01	0.407	3.18 10-2

cases A, B and C (sensitivity to heat transfer coeff.)

cases A, B and C (sensitivity to heat transfer coeff.)

cases A, D and E (sensitivity to mesh resolution)

6

cases A, F and G (sensitivity to time step)

cases A, F and G (sensitivity to time step)

IN CLOSING

FINAL NOTES

These results represent the first efforts in displaying how the water **diffusivity** and water **activity** evolve throughout a food **matrix** exposed to convective drying.

Special attention must be given to the final hours of drying.

Refining the **timestep** or **mesh** would not give significantly better results, but a larger timestep is not recommended.

Our model is particularly **sensitive** to variations in the **heat transfer coefficient**.

REFERENCES

[1] Seminario;, J., Valderrama;, M., & Romero, J. (2004). Variabilidad morfologica y distribuicion geografica del yacon, Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson, en el norte peruano. Arnaldoa : revista del Herbario HAO., 11(1), 139–160.

 [2] Santana, I., & Cardoso, M. H. (2008). Raiz tuberosa de yacon (Smallanthus sonchifolius):
Potencialidade de cultivo, aspectos tecnológicos e nutricionais. Ciencia Rural, 38(3), 898– 905. https://doi.org/10.1590/S0103-84782008000300050

[3] Hermann, M., Freire, I., & Pazos, C. (1998). Compositional Diversity of the Yacon Storage Root. CIP Program Report, 425–432.

[4] Hermann, M., & Heller, J. (1997). Andean roots and tubers: Ahipa, arracacha, maca and yacon. Promoting the conservation and use of underutilized and neglected crops. 21. Roma: Institute of Plant Genetics and Crop Plant Research.

(some more) REFERENCES

[5] Ribeiro, J. D. A. (2008). Estudos químico e bioquímico do yacon (Smallanthus sonchifolius) in natura e processado e influência do seu consumo sobre níveis glicêmicos. Universidade Federal de Lavras.

[6] Scher, C. F., Rios, A. O., & Noreña, C. P. Z. (2009). Hot air drying of yacon (Smallanthus sonchifolius) and its effect on sugar concentrations. International Journal of Food Science and Technology, 44(11), 2169–2175. <u>https://doi.org/10.1111/j.1365-2621.2009.02056.x</u>

[7] Maroulis, Z.B., Saravacos, G.D., Panagiotou, N.M., Krokida, M.K.: Moisture diffusivity data compilation for foodstuffs: Effect of material moisture content and temperature. International Journal of Food Properties 4, 225–237 (2001). https://doi.org/10.1081/JFP-100105189

IMAGE CREDITS

Slide template by Slidesgo

Icons by Freepik and FlyClipart

Images by Wayhomestudio and Pressfoto in Freepik; Vlad Bagacian on Pexel, and Fimbee.com

[1] https://g1.globo.com/sp/presidente-prudente-regiao/blog/nutricao-pratica/post/voce-conhece-batata-yacon.html

[2] http://www.ksbig.com.br/produtos/batata-yacon

[3] https://produto.mercadolivre.com.br/MLB-1905948962-batata-yacon-1-kg-livre-de-aqrotoxicos-_ JM#&qid=1&pid=1

[4] https://www.cultivariable.com/instructions/andean-roots-tubers/how-to-grow-yacon/

ASSESSING THE RELIABILITY OF A PHYSICS-BASED MODEL FOR THE CONVECTIVE DRYING OF YACON (Smallanthus sonchifolius)

OR CONTACT US

biancacm1@usp.br catadini@usp.br artemio.planafattori@agroparistech.fr