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23 rue du Loess, 67034 Strasbourg Cedex, France

(Dated: August 16, 2023)

Strain correlation functions in two-dimensional isotropic elastic bodies are shown both theoreti-
cally (using the general structure of isotropic tensor fields) and numerically (using a glass-forming
model system) to depend on the coordinates of the field variable (position vector r in real space or
wavevector q in reciprocal space) and thus on the direction of the field vector and the orientation of
the coordinate system. Since the fluctuations of the longitudinal and transverse components of the
strain field in reciprocal space are known in the long-wavelength limit from the equipartition theo-
rem, all components of the correlation function tensor field are imposed and no additional physical
assumptions are needed. An observed dependence on the field vector direction thus cannot be used
as an indication for anisotropy or for a plastic rearrangement. This dependence is different for the
associated strain response field containing also information on the localized stress perturbation.

I. INTRODUCTION

A. General background

A tensor field assigns a tensor to each point of the
mathematical space, in our case for simplicity a two-
dimensional Euclidean vector space with Cartesian co-
ordinates and an orthonormal tensor basis [1–4]. Tensor
fields are used in differential geometry [1], general rela-
tivity [5, 6], in the analysis of stress and strain in mate-
rials [7–9] and in numerous other applications in science
and engineering. Tensor fields are experimentally [10, 11]
or numerically [4, 12–32] probed by means of correla-
tion functions [33–35] of their components and, impor-
tantly, these correlation functions are themselves com-
ponents of tensor fields [4]. See Appendix A for a brief
review. Assuming translational invariance, correlation
functions are naturally best analyzed, both for theoreti-
cal [12–14, 17] and numerical [4, 18, 33] reasons, in a first
step as functions of the wavevector q in reciprocal space.
The dependence on the spatial field vector r in real space
can then be deduced (cf. Appendix B) in a second step
by inverse Fourier transformation (FT). This was done,
e.g., in our recent analysis [4] of the spatial correlations
of the (time-averaged) stress tensor fields in amorphous
glasses formed by polydisperse Lennard-Jones (pLJ) par-
ticles deep in the glass regime (cf. Sec. III A). It can thus
be shown that all stress correlation functions (both in
reciprocal as in real space) can be described by means
of one “Invariant Correlation Function” (ICF) in recip-
rocal space characterizing the typical ensemble fluctua-
tions of the quenched normal stress components in recip-
rocal space perpendicular to the wavevector q. Under
additional but rather general assumptions [4] this ICF is
given in the large-wavelength limit by a thermodynamic
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FIG. 1: Autocorrelation function c1212(r) of the strain field
component ε12(r) obtained from our colloidal glasses in two
dimensions: (a) Unrotated frame with coordinates (r1, r2),
(b) frame (r′1, r

′
2) rotated by an angle α = 30◦ (rotations

marked by “′”). Albeit the system is isotropic, the correlation
function is strongly angle dependent, revealing an octupolar
symmetry. While each pixel corresponds in (a) and (b) to the
same spatial position r, the correlation functions differ by the
angle α. c1212(r) is positive (red) along the axes and negative
(blue) along the bisection lines of the respective axes.

quantity, the equilibrium Young modulus of the system.

B. Investigated case study

As another example of the general procedure we shall
investigate in the present work the correlation functions
cαβγδ(r) = F−1[cαβγδ(q)] of the instantaneous strain
tensor field εαβ(r) in real space. These may be readily
obtained [33] from the components of the tensor field

cαβγδ(q) = 〈εαβ(q)εγδ(−q)〉 (1)

in reciprocal space with εαβ(q) = F [εαβ(r)] being the
Fourier transformed strain tensor field components. (The
average 〈. . .〉 will be specified below.) An example for
the autocorrelation function c1212(r) of the shear strain
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ε12(r) is given in Fig. 1 for the same two-dimensional
model system already used in Refs. [4, 18]. Interestingly,
the correlation function is seen to strongly depend both
on the orientation of the field vector r (panel (a)) and on
the rotation angle α of the coordinate system (panel (b)).
Since the simulated system can be shown to be perfectly
isotropic down to a few particle diameters [4, 18, 36–39],
these findings beg for an explanation. Expanding on our
recent work on stress correlations [4, 17, 18], this behavior
can be traced back to the fact that correlation functions
of tensor fields of isotropic systems must be components
of a generic isotropic tensor field (cf. Sec. II B). This
field is shown below (cf. Sec. III D) to be completely de-
scribed in terms of two ICFs cL(q) and cT(q) in reciprocal
space (q = |q| being the magnitude of the wavevector).
These ICFs characterize the independent fluctuations of
the longitudinal and transverse strain components εL(q)
and εT(q). Due to the equipartition theorem of statisti-
cal physics cL(q) and cT(q) are given by [7, 10, 11, 21]

βV cL(q)→ 1

λ+ 2µ
and βV cT(q)→ 1

4µ
for q → 0 (2)

in the large-wavelength limit with β = 1/kBT being the
inverse temperature, V the d-dimensional volume of the
system and λ and µ two macroscopic Lamé coefficients
[7, 8]. All strain correlation functions are thus imposed
on large scales. In turn this explains without any addi-
tional physical input the octupolar pattern1 observed in
Fig. 1 (cf. Sec. IV C and Appendix D) and shows that
strain correlations in elastic bodies must necessarily be
long-ranged. This is different for the closely related but
distinct tensorial response field being the tensorial prod-
uct of correlation functions and the imposed tensorial
perturbation. As emphasized in Sec. II E and Sec. V, the
response field thus contains additional information due
to the source term and its symmetry.

C. Outline

We begin in Sec. II with some general theoretical con-
siderations on isotropic tensor fields. Technical points
concerning the model system and the data production of
tensorial fields on discrete grids are discussed in Sec. III.
This is followed in Sec. IV by the presentation of our
main numerical results. The strain response due to an
imposed stress point source is discussed in Sec. V. A
summary and an outlook are given in Sec. VI. More
details may be found in the Appendix both on the the-
oretical background (cf. Appendices A and D) and on
computational issues (cf. Appendices B and C).

1 See, e.g., the wikipedia entries on quadrupoles and general mul-
tipolar expansions as used, say, in electrostatics. For the planar
harmonic basis functions cos(pθ) or sin(pθ) a monopole corre-
sponds to p = 0, a dipole to p = 1, a quadrupole to p = 2 and
an octupole to p = 4.

II. GENERAL CONSIDERATIONS

A. Isotropic tensors and tensor fields

Isotropic systems, such as generic isotropic elastic bod-
ies [7–9], simple and complex fluids [34, 40–42], amor-
phous metals and glasses [23–25, 27–32, 43], polymer net-
works and gels [40, 41], foams and emulsions [20, 22] or,
as a matter of fact, our entire universe [5] are described
at least on some scales by isotropic tensors and isotropic
tensor fields (cf. Appendix A 2) [1, 3, 9]. It is well known
[3, 9] that the components of isotropic tensors remain un-
changed under an orthogonal coordinate transformation
(including rotations and reflections). For instance,

E∗αβγδ = Eαβγδ (3)

for the forth-order elastic modulus tensor of an isotropic
body (cf. Appendix C 3) [8, 9] with “∗” marking an arbi-
trary orthogonal transformation (cf. Appendix A 1). This
implies (cf. Appendix A 4) that Eαβγδ is given by two
invariants, e.g., the two Lamé coefficients λ and µ. Im-
portantly, this does not hold for isotropic tensor fields
[3, 4, 17]. For instance, for a forth-order correlation func-
tion in reciprocal space the isotropy condition becomes

c∗αβγδ(q) = cαβγδ(q
∗) (4)

with q∗ being the “actively” transformed wavevector
(cf. Appendix A 2).

B. Structure of isotropic correlation functions

Assuming in addition the system to be achiral and two-
dimensional (cf. Appendix A 3) it can be shown [4] that
correlation functions of second-order tensor field compo-
nents must take the following mathematical structure

cαβγδ(q) = i1(q) δαβδγδ (5)

+ i2(q) [δαγδβδ + δαδδβγ ]

+ i3(q) [q̂αq̂βδγδ + q̂γ q̂δδαβ ]

+ i4(q) q̂αq̂β q̂γ q̂δ

in terms of four ICFs in(q), the coordinates q̂α of the
normalized wavevector q̂ and the Kronecker symbol δαβ .
Legitimate correlation functions of isotropic systems may
thus depend on q̂α and, hence, on the orientation of the
wavevector and of the coordinate system. While the
isotropy of the system may not be manifested by one
correlation function, it is crucial for the structure of the
complete set of all correlation functions given by Eq. (5).
We note finally that it is useful to express the above ICFs
in terms of an alternative set of ICFs cL(q), cT(q), c⊥(q)
and cN(q) given by

i1(q) = cN(q)− 2cT(q) (6)

i2(q) = cT(q)

i3(q) = c⊥(q)− cN(q) + 2cT(q)

i4(q) = cL(q) + cN(q)− 2c⊥(q)− 4cT(q).
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See Appendix A 4 for more details.

C. Planar harmonic basis functions

Instead of using the components q̂α one may, quite gen-
erally, express all isotropic tensor fields in two dimensions
in terms of the orthogonal planar harmonic basis func-
tions cos(pθ) and sin(pθ) with q̂1 = cos(θ) and q̂2 = sin(θ)
and p = 0, 2 and 4. (See Appendix D for more details.)
For instance, it follows from Eq. (5) that

c1212(q) = i2(q) +
i4(q)

8
− i4(q)

8
cos(4θ). (7)

Hence, if the invariant i4(q) is sufficiently large, c1212(q)
must reveal an octupolar pattern. Due to Eq. (B18) de-
rived in Appendix B 3, this alternative representation is
especially useful for performing the inverse FT to real
space. This also shows that the corresponding corre-
lation function cαβγδ(r) = F−1[cαβγδ(q)] in real space
must have the same mathematical properties.

D. Response to point source

Let us consider the second order tensor field Rαβ(q)
obtained by the contraction

Rαβ(q) =
1

V
cαβγδ(q)sγδ (8)

with a symmetric but not necessarily isotropic tensor sαβ
using the standard summation convention over repeated
indices [1, 3]. (For convenience we have introduced the
system volume V .) We shall call Rαβ(q) the “response
field” (in reciprocal space) and sαβ the “point source ten-
sor”. In fact, using Eq. (B4) and Eq. (B6) it is seen
that in real space the tensor sαβ/V corresponds to a
“point source” sαβδ(r) (using Dirac’s delta function) and
Rαβ(q) becomes

Rαβ(r) = F−1[Rαβ(q)] = cαβγδ(r)sγδ (9)

using cαβγδ(r) = F−1[cαβγδ(q)]. We shall say more
about the specific linear strain response in real space in
Sec. V but focus here on the generic response in recip-
rocal space. Being symmetric the source tensor may be
diagonalized by a rotation of the coordinate system where
s12 = s21 = 0 and s11 and s22 become the two (in general
not identical) eigenvalues. Hence,

Rαβ(q) =
1

V
[s11cαβ11(q) + s22cαβ22(q)] . (10)

We emphasize that the sum must be taken over all eigen-
values of the source tensor, i.e. two for the presented two-
dimensional case. (The failure to sum properly over all
tensorial contributions to Rαβ(q) leads to incorrect an-
gular dependences.) Importantly, Rαβ(q) thus contains
information over both the system, characterized by the
correlation functions, and the imposed source term.

E. Different types of source terms

If we now assume that not only cαβγδ(q) is an isotropic
tensor field but that, moreover, sαβ is isotropic, i.e.
s11 = s22, the product theorem Eq. (A7) discussed in Ap-
pendix A 2 implies that Rαβ(q) must also be an isotropic
tensor field. According to Eq. (A15) it is given by

Rαβ(q) = k1(q)δαβ + k2(q)q̂αq̂β (11)

in terms of two invariants k1(q) and k2(q) which can in
turn be expressed in terms of the invariants of cαβγδ(q)
and sαβ . Rαβ(q) can thus at most be quadrupolar (p =
2). Specifically,

R12(q) = k2(q)q̂1q̂2 ∝ sin(2θ) (12)

which is distinct from c1212(q), cf. Eq. (7). Impor-
tantly, in many physical situations the source is in fact
not isotropic and thus in turn the response field not con-
sistent with Eq. (11). We remind that according to a
popular model of localized plastic failure by means of
“shear transformation zones” [23, 44–47] two orthogonal
twin force dipoles of opposite signs may be imposed at the
origin.2 This suggests to consider the case s11 = −s22.
It follows then from Eq. (5) and Eq. (10) that

R12(q) ∝ i4(q) q̂1q̂2(q̂21 − q̂22) ∝ sin(4θ). (13)

The (non-isotropic) response field R12(q) thus is in this
case octupolar as the correlation field c1212(q), however,
shifted by an angle π/8. It is readily seen by inverse FT
that the same general behavior applies in real space.

III. TECHNICAL ISSUES

A. Algorithm, configurations and frames

We investigate amorphous glasses in two dimensions
formed by pLJ particles [4, 18, 36–39, 48] which are sam-
pled by means of Monte Carlo (MC) simulations [33].
See Appendix C for details (Hamiltonian, units, cooling
and equilibration procedure, data production, generation
and analysis of tensor fields on discrete grids). We focus
on systems containing n = 10000 and 40000 particles at
a working temperature T = 0.2. This is much lower
than the glass transition temperature Tg ≈ 0.26 [36],
i.e. for any computationally feasible production time the
systems behave as solid elastic bodies [38]. Nc = 200
completely independent configurations c are prepared us-
ing a mix of local and swap MC hopping moves [38, 49]

2 Let us impose in a rotated coordinate system at α = −π/4 a
symmetric source tensor with a finite “shear” s′12 = s and van-
ishing diagonal components s′11 = s′22 = 0. Using Eq. (A2) this
implies s11 = −s22 = s and s12 = 0 in the original coordinate
system at α = 0.
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FIG. 2: Two-dimensional (d = 2) square lattice with agrid
being the lattice constant and nL = L/agrid the number of
grid points in one spatial dimension. The filled circles indicate
microcells of the principal box, the open circles some periodic
images. The spatial position r of a microcell is either given
by the r1- and r2-coordinates (in the principal box) or by the
distance r = |r| from the origin (large circle) and the angle θ.

while the presented data are computed using local MC
moves only. For each c we store time-series containing
Nt = 10000 “frames” t computed using equidistant time
intervals. As described in Appendix C 3, the elastic mod-
ulus tensor Eαβγδ is isotropic and determined by the two
Lamé coefficients λ ≈ 38 and µ ≈ 14 [36, 38].

B. Sampled discrete tensorial fields

As shown in Fig. 2, a discrete square grid is used to
store and to manipulate the various fields needed for the
microscopic description. The standard lattice constant
for the grid in real space is agrid ≈ 0.2. The displace-
ment field u(r) in real space is determined for each frame
t using a standard method [10, 11, 21] from the displace-
ment vector of each particle using as reference position
the time-averaged particle position (cf. Appendix C 5).
We obtain then from the Fourier transformed displace-
ment field u(q) = F [u(r)] the strain tensor field [8, 17]

εαβ(q) =
i

2
(qβuα(q) + qαuβ(q)) (14)

in reciprocal space. Using the correlation function the-
orem for FTs (cf. Appendix B) the strain correlations
functions in reciprocal space are given by Eq. (1) where
the average is taken over all t and c. Both strain and cor-
relation function fields in reciprocal space are defined to
be dimensionless (cf. Appendix B 1). We emphasize by
a prime “′” all tensor field components obtained in a co-
ordinate system rotated by an angle α (with α = 0 being
the original unrotated system). Specifically, the correla-

tion functions c′αβγδ(q) = 〈ε′αβ(q)ε′γδ(−q)〉 are obtained

using the components u′α(r) and q′α in the rotated frame.

C. Natural Rotated Coordinates

All the tensorial fields introduced above depend on the
orientation of the coordinate system. Importantly, we
consider these properties in a first step in “Natural Ro-
tated Coordinates” (NRC) where for each wavevector q
the coordinate system is rotated until the 1-axis coin-
cides with the q-direction. We mark these new tensor
field components by “◦” to distinguish them from stan-
dard rotated tensor field components (marked by primes
“′”). Note that q◦α = qδ1α for all wavevectors q. Using
the components q◦α and u◦α(q) we obtain (as before) the
strain tensor ε◦αβ(q). Importantly,

q◦2 = 0 ⇒ ε◦22(q) = 0 (15)

in agreement with Eq. (14). We thus only have two in-
dependent components of the strain tensor field in NRC.
We alternatively write for convenience uL(q) ≡ u◦1(q),
uT(q) ≡ u◦2(q), εL(q) ≡ ε◦11(q) and εT(q) ≡ ε◦12(q) ≡
ε◦21(q) for the longitudinal and transverse components of
the displacement and strain tensor fields. Note that

ε◦11(q) ≡ εL(q) = iquL(q) and (16)

ε◦12(q) ≡ ε◦21(q) ≡ εT(q) = iquT(q)/2, (17)

i.e. displacement and strain fields in NRC contain essen-
tially the same information.

D. Correlation functions in NRC

The correlation functions c◦αβγδ(q) ≡ 〈ε◦αβ(q)ε◦γδ(−q)〉
may for finite Nc not only depend on q but also on q̂.
Consistently with Eq. (A18) and Refs. [4, 17, 18] we
thus operationally define the ICFs cL(q) ≡ 〈c◦1111(q)〉q̂,
cT(q) ≡ 〈c◦1212(q)〉q̂, cN(q) ≡ 〈c◦2222(q)〉q̂ and c⊥(q) ≡
〈c◦1122(q)〉q̂ by averaging over all wavevectors with |q| ≈
q. However, ε◦22(q) = 0 implies immediately that

c◦2222(q) = c◦1122(q) = cN(q) = c⊥(q) = 0 for ∀ q. (18)

The two remaining non-trivial ICFs cL(q) and cT(q)
are called, respectively, the “longitudinal ICF” and the
“transverse ICF”. As already noted in the Introduction,
according to the equipartition theorem cL(q) and cT(q)
are given for sufficiently large wavelengths by the Lamé
coefficients λ and µ. The stated Eq. (2) can be readily ob-
tained from published work [7, 10, 11, 21] using Eq. (16)
and Eq. (17) to substitute the displacement fields uL(q)
and uT(q) in NRC by the corresponding strain fields
εL(q) and εT(q).
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FIG. 3: Rescaled correlation functions in NRC and reciprocal
space. The bold dashed and solid lines indicate the expected
low-q limit Eq. (2). Inset: βV c◦1212(q) and βV c◦1111(q) vs. θ
for q ≈ 0.1. Main panel: Semi-logarithmic representation of
ICFs βV cT(q) and βV cL(q) vs. q.

IV. MAIN NUMERICAL RESULTS

A. Measured longitudinal and transverse ICFs

We turn now to the numerical results of this work.
Figure 3 focuses on the two non-vanishing correlation
functions obtained in reciprocal space and NRC. All cor-
relation functions are rescaled by βV having thus the
dimension of an inverse modulus. As can be seen for
the two indicated particle numbers n, a data collapse
for different system sizes is observed, confirming the ex-
pected volume scaling. The inset presents the (not yet
spherically averaged) correlation functions βV c◦1212(q)
and βV c◦1111(q) as functions of the wavevector angle θ
for one small wavevector with q ≈ 0.1. As expected
for isotropic systems, these correlation functions are θ-
independent (apart from a small noise contribution due
to the finite number Nc of independent configurations).
The main panel presents the q̂-averaged longitudinal and
transverse ICFs βV cL(q) and βV cT(q) as functions of q.
The expected large-wavelength limit Eq. (2) is indicated
in both panels by bold horizontal lines. As can be seen
in the main panel, it is well confirmed for q � 1 over
at least one order of magnitude where we have used the
known values of λ and µ. We remind that Eq. (2) has
been used in various experimental and numerical studies
[10, 11, 21] to fit λ and µ. cL(q) and cT(q) character-
ize the typical length of the complex random variables
εL(q) and εT(q). Their distributions and correlations
will be discussed elsewhere [50]. We note finally that the
increase of the ICFs from the low-q asymptotics visible
for q > 1 correlates with the deviation of the total static
structure factor S(q) from its low-q plateau (cf. Fig. 6).

FIG. 4: Rescaled correlation function f(q) = βV c′1212(q)
for n = 40000. Main panel: Angle dependence of vertically
shifted f(q) for q ≈ 0.1. Data collapse is observed using the
reduced angle x = θ − α. The bold solid line indicates the
prediction, Eq. (20). Inset: Comparison of P [f, p](q) for p = 4
with the predicted low-q limit J1/8 (bold solid line).

B. Correlation functions in reciprocal space

While remaining in reciprocal space we consider next
coordinate frames which are either unrotated (α = 0) or
rotated as in Fig. 1(b) using the same angle α for all q.
According to Eq. (5) the correlation functions cαβγδ(q) of
isotropic achiral systems in two dimensions depend quite
generally on the four ICFs cL(q), cT(q), cN(q) and c⊥(q).
Due to Eq. (18) the last two of these ICFs must vanish
while cL(q) and cT(q) are given by Eq. (2). Let us intro-
duce for later convenience the two “creep compliances”

J1 ≡
1

µ
− 1

λ+ 2µ
and J2 ≡

2

λ+ 2µ
. (19)

This yields in the original coordinates

βV c1212(q) → J1
8

cos(4θ) + . . . (20)

βV c1122(q) → J1
8

cos(4θ) + . . . (21)

−βV
2

(c1111(q) + c2222(q)) → J1
8

cos(4θ) + . . . (22)

βV

2
(c1111(q)− c2222(q)) → J2

4
cos(2θ) (23)

for q → 0. The dots mark irrelevant constant contri-
butions.3 See Appendix D for more details. For corre-
lation functions c′αβγδ(q) in rotated coordinate systems
one merely needs to substitute θ by x = θ − α. These
relations are put to a test in Fig. 4 where we focus for

3 The omitted constant terms correspond to localized δ(r) contri-
butions to strain correlation functions in real space. For example,
such a contribution to c1212(r) is J1+J2

8β
δ(r).
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FIG. 5: P [f, p](r) for various correlation functions and modes
p for n = 40000. The bold solid line marks the prediction
J1/4πr

2 for the first three cases, the dashed line the prediction
J2/4πr

2 for the last one.

clarity on the reduced shear-strain autocorrelation func-
tion f(q) = βV c′1212(q) for n = 40000. The angular
dependences are presented in the main panel for one
wavevector in the low-q limit. Focusing on the first term
in Eq. (20) we have taken off the mean constant aver-
age over all θ (corresponding to the dots). Importantly,
all data for different α are seen to collapse when plotted
as a function of the scaling variable x. Obviously, this
simple scaling (without characteristic angle) would not
hold for anisotropic systems. To obtain a precise test of
the q-dependence of cαβγδ(q) we project out the angular
dependences using

P [f, p](q) ≡ 2× 1

2π

∫ 2π

0

dθ f(q, θ) cos(pθ) (24)

for p = 2 and p = 4. For convenience the prefac-
tor of the integral is chosen such that P [cos(2θ), 2] =
P [cos(4θ), 4] = 1. The result for the shear-stress auto-
correlation function with p = 4 is shown in the inset of
Fig. 4. In agreement with Eq. (20) the presented data is
given by J1/8 (solid line) for sufficiently small wavevec-
tors. Equivalent results have been obtained for the other
correlation functions mentioned above.

C. Correlation functions in real space

We turn finally to the correlation functions c′αβγδ(r) =

F−1[c′αβγδ(q)] in real space. As shown in Appendix D,
inverse FT implies

βc′1212(r) ' J1
4πr2

cos(4x) for r � 1 (25)

with x = θ−α being the difference of the angles θ and α
indicated in Fig. 1. The same large-r limit holds also for

βc′1122(r) and for −β(c′1111(r) + c′2222(r))/2. Moreover,

β(c′1111(r)− c′2222(r))/2 ' − J2
4πr2

cos(2x) (26)

for r � 1, i.e. a bi-polar symmetry is expected. A verifi-
cation of the r-dependence is obtained using again (now
in real space) the projection P [f, p](r), cf. Eq. (24). Fo-
cusing on n = 40000 several rescaled correlation func-
tions f(r) are presented in Fig. 5. In agreement with
Eq. (25) the indicated first three cases collapse for p = 4
and r & 20 on J1/4πr

2 (bold solid line). This con-
firms the octupolar symmetry of these correlation func-
tions. Confirming Eq. (26) the last case with f(r) =
−β(c1111(r)−c2222(r))/2 collapses onto J2/4πr

2 (dashed
line). p = 2 is used here in agreement with the predicted
quadrupolar symmetry of this correlation function. Sim-
ilar results are obtained for other particle numbers n.

V. LINEAR RESPONSE TO POINT STRESS

A. Time-dependent strain correlations

Correlation functions describe quite generally the lin-
ear response to a small imposed perturbation [7, 34, 35,
42]. Being tensorial fields, just like the correlation func-
tion fields, the response fields must in general depend
on the direction of the field vector and on the orienta-
tion of the coordinate system. As already emphasized in
Sec. II D and Sec. II E, the response fields contains infor-
mation of both the system and the imposed source and
the source term may either be isotropic or anisotropic.
We elaborate here this general point focusing, naturally,
on correlation functions of the instantaneous strain field
ε̂αβ(r) = εαβ(r, t). Extending very briefly our discussion
to the time domain, let us introduce the time-dependent
correlation functions

cαβγδ(q, t) = 〈εαβ(q, t)εγδ(−q, t = 0)〉 (27)

of the strain fields in reciprocal space with t being the
“time lag” [33]. Naturally, this reduces to Eq. (1) for
t→ 0. This definition allows us to take advantage of the
general “Fluctuation-dissipation theorem” (FDT) of sta-
tistical mechanics as stated, e.g., in Ref. [34, 35, 42]. We
thus anticipate immediate generalizations of the present
study for time-dependent tensorial correlation and re-
sponse fields which will be discussed elsewhere.

B. Fluctuation-dissipation theorem

Let us switch on at time t = 0 a small perturbation

∆H = −
∫

dr δσαβ(r) ε̂αβ(r) for t ≥ 0 (28)

to the Hamiltonian H = H0 + ∆H of the system with
δσαβ(r) being an imposed external stress field. This
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is equivalent to the application of an appropriate ex-
ternal perturbative force field to each particle. For a
general “growth function” [42] in response to a sud-
den application of a step field, such as Eq. (28), the
relevant FDT relations are stated (for scalar fields) by
Eq. (3.65) and Eq. (3.67) of Ref. [42]. The mean strain
increment δεαβ(r, t) induced by this perturbation is then
given in real space by a convolution integral for the time-
dependent correlation functions cαβγδ(r, t) and the stress
perturbation δσαβ(r). Using Eq. (B6) this relation may
be written more compactly in reciprocal space as

δεαβ(q, t) = βV (29)

× [cαβγδ(q, t = 0)− cαβγδ(q, t)]δσγδ(q)

where the summation over repeated indices is essential
and cannot be omitted. Note that δεαβ(q, t) = 0 for
t ≤ 0 and that, since all cαβγδ(q, t) are continuous func-
tions of time, the creep response δεαβ(q, t) must also be
continuous, especially at t = 0 [40]. The time-dependent
creep is thus determined by the time-dependent correla-
tion functions and the imposed stress perturbation. We
are interested here only in the static equilibrium response
a long time after the perturbation is switched on. The
time-dependent strain correlation functions (computed
for the unperturbed Hamiltonian H = H0 at switched
off external perturbation ∆H) must, of course, vanish

cαβγδ(q, t)→ 0 for t→∞. (30)

Hence, Eq. (29) reduces to

δεαβ(q) = βV cαβγδ(q)δσγδ(q) for t→∞ (31)

with δεαβ(q) ≡ limt→∞ δεαβ(q, t) denoting the long-time
creep and cαβγδ(q) ≡ limt→0 cαβγδ(q, t) standing for the
spatial correlation function without time lag, Eq. (1), as
everywhere else in this paper.

C. Response to point source

Following the discussion at the end of Sec. II, we in-
vestigate now the long-time creep for a point source

δσαβ(r) = sαβδ(r) (32)

with sαβ being a symmetric 2 × 2 matrix (of dimension
“stress × volume = energy”). According to the FDT
relation Eq. (31) this implies

δεαβ(q) = βcαβγδ(q)sγδ for t→∞ (33)

and an equivalent relation in real space. As in Sec. II D it
is convenient to diagonalize sαβ by an appropriate rota-
tion of the coordinate system. The perturbation becomes
therefore equivalent to that of two small force dipoles [23]
oriented along the eigenvectors. The real-space analogue
of Eq. (10) is thus given by

δεαβ(r) = βcαβ11(r)s11 + βcαβ22(r)s22. (34)

Using in addition Eq. (D13) we may replace for isotropic
systems the real space correlation functions by the cor-
responding invariants ĩn(r) in real space. Introducing
the scalars s1 = sγγ/2 and s2 = r̂αsαβ r̂β/2 this may be
written quite generally

δεαβ(r) = 2
[̃
i1(r)s1 + ĩ3(r)s2

]
δαβ (35)

+ 2
[̃
i3(r)s1 + ĩ4(r)s2

]
r̂αr̂β

+ 2̃i2(r) sαβ .

Taking now advantage of the specific results for strain
correlations presented in Sec. IV C and in Appendix D
the invariants ĩn(r) are given by Eq. (D14), i.e. we may
quite generally express δεαβ(r) in terms of the two creep
compliances J1 and J2, cf. Eq. (19).

We also note that the term sαβ in the last line of
Eq. (35) must be isotropic, i.e. s1 = s11 = s22 = 2s2,
to obtain an isotropic second-order tensor field in agree-
ment with Eq. (A20). As expected from the more general
argument given in Sec. II, the shear strain increment

δε12(r)/s11 = − J2
4πr2

sin(2θ) for r > 0 (36)

becomes quadrupolar in this case.
As already emphasized in Sec. II E, the source ten-

sor need not necessarily be isotropic albeit the system is
isotropic. To be specific, let us consider the “shear trans-
formation zone” model for localized plastic failure involv-
ing two orthogonal force dipoles of opposite signs [23].
Hence, s11 = −s22 and s1 = 0 and s2 = s11(r̂21 − r̂22)/2.
Using Eq. (13) or Eq. (35) this yields

δε12(r)/s11 = − 2J1
4πr2

sin(4θ) for r > 0 (37)

for the shear strain response.
As one expects on general grounds, all reference to

statistical physics, i.e. the inverse temperature β, drops
out in both cases. Moreover, the shear strain response
naturally strongly depends on the type of source term
applied at the origin: for force dipoles of same sign it is
quadrupolar and proportional to J2 while for dipoles of
opposite sign it gets octupolar and proportional to J1.

VI. CONCLUSION

A. Summary

Strain correlation functions. The present work has fo-
cused on correlation functions of components of strain
tensor fields in two-dimensional, isotropic and achiral
elastic bodies. This was done theoretically using

• the general mathematical structure of isotropic ten-
sor fields as summarized in Sec. II B, cf. Eq. (5), and
in more detail in Appendix A and
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• the well-known equipartition theorem of statistical
physics for macroscopic strain fluctuations in recip-
rocal space, cf. Eq. (2).

Numerically we have tested our predictions by means of
glass-forming particles deep in the glass regime. This
shows that these correlation functions may depend on the
coordinates of the field variable (qα in reciprocal space
or rα in real space) and implies in turn that they de-
pend in general on the direction of the field vector and
on the orientation of the coordinate system. Scaling with
x = θ − α these angular dependencies are distinct from
those of ordinary anisotropic systems. Importantly, cor-
relation functions of strain tensor fields are components
of an isotropic forth-order tensor field, Eq. (5), being
characterized by the two ICFs cL(q) and cT(q). With
the asymptotic plateau values being given by two Lamé
coefficients, Eq. (2), all strain correlation functions are
determined and all (finite) real-space strain correlations
must be long-ranged decaying as 1/r2 (cf. Fig. 5). We
thus obtain similar results as in our recent study on cor-
relation functions of stress tensor fields [4]. Note that
time-averaged stress fields have been probed in the lat-
ter study while correlations of instantaneous strain fields
have been considered here. Our numerical findings do
agree with other studies of strain correlations [29, 30, 32]
being, however, now traced back to the isotropy of the
system and the tensor field nature of the probed corre-
lations. Importantly, we have given here a complete and
asymptotically exact description for the correlation func-
tions of strain tensor fields of isotropic elastic bodies. No
additional physical assumption is thus needed (for suffi-
ciently small wavevectors).

Response to tensorial point sources. We also dis-
cussed the associated linear response fields as defined
in general mathematical terms by the tensorial contrac-
tion of the correlation function tensor by means of a
source tensor and, more physically, by the FDT rela-
tion for the strain increment due to an imposed small
stress perturbation, cf. Eq. (28) and Eq. (29). Naturally,
the response must by definition contain information from
both the correlation functions, characterizing the system,
and from the imposed source tensor which may not be
isotropic. We have emphasized that the summation over
repeated indices must be properly performed, i.e. the
response field is not given by one correlation function
times a scalar but by the sum over all eigenvalues of the
source tensor. For this reason response and correlation
fields, albeit closely related, have in general different an-
gular dependences, e.g., the shear strain correlation func-
tion c1212(r) in an isotropic system must be octupolar,
cf. Eq. (25), while the shear strain response δε12(r) may
be either quadrupolar for an isotropic source, cf. Eq. (36),
or octupolar for an anisotropic source corresponding to
two force dipoles of opposite signs, cf. Eq. (37). Albeit
all contributing correlation functions are isotropic the re-
sponse field is anisotropic in the latter case due to the
source. It is thus important to not lump together corre-
lation functions and response fields. Mesoscopic elasto-

plastic models [45, 46] thus must specify not only the
correlation functions but also the source tensors charac-
terizing the local plastic events.

B. Outlook

Our work suggests several natural extensions:

• The general mathematical framework for isotropic
tensor fields and the discussed relations and numer-
ical procedure for correlation and response fields
naturally generalize to higher spatial dimensions,
especially for the three-dimensional case.

• The present work has focused on Euclidean spaces
and Cartesian coordinates. A generalization for
systems embedded in non-Euclidean spaces, say for
glasses on spheres [51, 52], and more general curvi-
linear coordinate systems [1, 5] may be worked out.

• The present work has focused on the large-
wavelength limit (q → 0). More generally, one may
express the longitudinal and transverse ICFs cL(q)
and cT(q) for finite q as

βV cL(q) =
1

L(q)
and βV cT(q) =

1

4G(q)
(38)

in terms of the generalized longitudinal and trans-
verse elastic moduli L(q) and G(q) (with L(q) →
λ + 2µ and G(q) → µ for small q) [17, 48, 50].4 It
can be shown [50] that both the isotropicity and
the harmonicity of the strain modes assumed in
the derivation of Eq. (38) are well justified for the
present model up to q ≈ 1 while deviations become
relevant for larger wavevectors, especially around
the main peak of the static structure factor S(q).

• A further generalization of the current work
concerns time-dependent correlation functions
cαβγδ(q, t) as defined in Eq. (27). These can
be again expressed via Eq. (5) in terms of (now
time-dependent) longitudinal and transverse ICFs
cL(q, t) and cT(q, t). These time-dependent ICFs
are given in turn by time-dependent creep compli-
ance material functions which can be related to the
two time-dependent material functions L(q, t) and

4 The elastic modulus tensor Eαβγδ(q) for isotropic bodies at fi-
nite wavevector q is not only characterized by the longitudi-
nal modulus L(q) and the shear modulus G(q) but also by a
third modulus M(q) called the “mixed modulus” [17]. Note that
E◦1111(q) = E◦2222(q) = L(q), E◦1212(q) = G(q) and E◦1122(q) =
M(q) for isotropic bodies in NRC. It is not possible to determine
M(q) solely using strain fluctuations. This requires the addi-
tional measurement of stress fields in NRC. M(q) may then be
obtained using either the appropriate stress-strain or stress-stress
correlation functions in reciprocal space [17, 50].
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G(q, t) [17]. Strain correlation functions may thus
reveal octupolar pattern whenever the invariant

|i4(q, t)| = |cL(q, t)− 4cT(q, t)| (39)

is sufficiently large. Since i4(q, t) must become q-
independent for small q, a long-range decay with

cαβγδ(r, t) ' 1/rd (40)

is generally expected for the time-dependent corre-
lation functions in isotropic d-dimensional systems.
Using Eq. (29) similar long-range relations are pre-
dicted for the associated dynamical response fields.

• It may be also of interest to characterize correla-
tions of tensor fields of different order. For instance,
the forth-order elastic modulus field Eαβγδ(r) [26,
53] may be characterized by a correlation function
tensor of order eight [53]. Strong angular depen-
dencies are expected based on our formalism. For
isotropic systems these correlation functions must
again adopt a general mathematical structure in
terms of a small finite number of ICFs. Once these
ICFs are characterized (theoretically or numerically
using NRC) in the low-q limit all correlation func-
tions are again determined.
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Appendix A: Summary of isotropic tensor fields

1. Background

Isotropic systems are described by “isotropic tensors”
and “isotropic tensor fields”. We give here a brief re-
cap of various useful aspects already presented elsewhere
[3, 4]. Quite generally, a tensor field assigns a tensor to
each point of the mathematical space, in our case a d-
dimensional Euclidean vector space [3]. We denote an
element of this vector space by the “spatial position”
r (real space) or by the “wavevector” q for the corre-
sponding reciprocal space. The relations for tensor fields
are formulated in reciprocal space since this is more con-
venient both on theoretical and numerical grounds due
to the assumed spatial homogeneity (“translational in-
variance”). The corresponding real space tensor field is
finally obtained by inverse FT.

For simplicity we assume Cartesian coordinates with
an orthonormal basis {e1, . . . , ed} [1, 3, 9]. Greek letters

α, β, . . . are used for the indices of the tensor (field) com-
ponents. A twice repeated index α is summed over the
values 1, . . . , d, e.g., q = qαeα with qα standing for the
vector coordinates. This work is chiefly concerned with

tensors T(o) = Tα1...αo
eα1

. . . eαo
of “order” o = 2 and

o = 4 and their corresponding tensor fields with compo-
nents depending either on r or q. The order of a compo-
nent is given by the number of indices. Note that

Tα1...αo
(q) = F [Tα1...αo

(r)] (A1)

for the do coordinates in real and reciprocal space (with
F [. . .] denoting the FT as discussed in Appendix B).

We consider linear orthogonal coordinate transforma-
tions (marked by “∗”) e∗α = cαβeβ with matrix coeffi-
cients cαβ given by the direction cosine cαβ ≡ cos(e∗α, eβ)
[3]. We remind that [3]

T ∗α1...αo
(q) = cα1ν1 . . . cαoνoTν1...νo(q) (A2)

under a general orthogonal transform. For a reflection of
the 1-axis we thus have, e.g.,

T ∗1222(q) = −T1222(q), T ∗1221(q) = T1221(q), (A3)

i.e. we have sign inversion for an odd number of indices
equal to the index of the inverted axis. The field vector
q = qαeα = q∗αe∗α remains unchanged by these “passive”
transforms albeit its coordinates change.

2. Definitions, properties and construction of
general isotropic tensors and tensor fields

Isotropic tensors. Components of an isotropic tensor
remain unchanged by any orthogonal coordinate trans-
formation [3, 9], i.e.

T ∗α1...αo
= Tα1...αo

. (A4)

As noted at the end of Sec. A 1 the sign of tensor com-
ponents change for a reflection at one axis if the number
of indices equal to the inverted axis is odd. Consistency
with Eq. (A4) implies that all tensor components with an
odd number of equal indices must vanish, e.g.,

T12 = T1112 = T1222 = 0. (A5)

Isotropic tensor fields. The corresponding isotropy
condition for tensor fields is given by [3]

T ∗α1...αo
(q1, . . . , qd) = Tα1...αo

(q∗1 , . . . , q
∗
d) (A6)

with q∗α = cαβqβ which reduces to Eq. (A4) for q = 0.
Please note that the fields on the left handside of Eq. (A6)
are evaluated with the original coordinates of the vec-
tor field variable q while the fields on the right handside
are evaluated with the transformed coordinates. Another
way to state this is to say that the left hand fields are
computed at the original vector q = (q1, . . . , qd) while
the right hand fields are computed at the “actively trans-
formed” vector q∗ = (q∗1 , . . . , q

∗
d). It is for this reason that

finite components with an odd number of equal indices,
e.g., T1222(q) 6= 0, are possible in principle for finite q.
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Natural Rotated Coordinates. Fortunately, there is a
convenient coordinate system where the nice symme-
try Eq. (A5) for isotropic tensors can be also used for
isotropic tensor fields. In these “Natural Rotated Coor-
dinates” (NRC) the coordinate system for each wavevec-
tor q is rotated until the 1-axis coincides with the q-
direction, i.e. q◦α = qδ1α with q = |q|. These tensor
field components in NRC are marked by “◦” to distin-
guish them from standard rotated tensor fields (marked
by primes “′”) where the same rotation is used for all q.
If in addition T ◦α1...αo

(q) is an even function of its field
variable q (as in the case of achiral systems for even or-
der o) it can be shown [4] that all tensor field components
with an odd number of equal indices must vanish.

Product theorem for isotropic tensor fields. Let us
consider a tensor field C(q) = A(q) ⊗ B(q) with A(q)
and B(q) being two isotropic tensor fields and ⊗ stand-
ing either for an outer product, e.g. Cαβγδ(q) =
Aαβ(q)Bγδ(q), or an inner product, e.g. Cαβγδ(q) =
Aαβγν(q)Bνδ(q). Hence,

C∗(q) = (A(q)⊗B(q))
∗

= A∗(q)⊗B∗(q)

= A(q∗)⊗B(q∗) = C(q∗) (A7)

using in the second step a general property of tensor
(field) products, due to Eq. (A2), and in the third step
Eq. (A6) for the fields A(q) and B(q) where q∗ stands
for the “actively” transformed field variable. C(q) is thus
also an isotropic tensor field. One may use this theorem
to construct isotropic tensor fields from known isotropic
tensor fields A(q) and B(q).

3. Summary of assumed symmetries

All second-order tensors in this work are symmetric,
Tαβ = Tβα, and the same applies for the corresponding
tensor fields in either r- or q-space. This is, e.g., the case
for the strain field εαβ(q) = F [εαβ(r)], cf. Eq. (14), or the
source tensor sαβ needed for a response field, cf. Eq. (8).
We assume for all forth-order tensor fields that

Tαβγδ(q) = Tβαγδ(q) = Tαβδγ(q) (A8)

Tαβγδ(q) = Tγδαβ(q) and (A9)

Tαβγδ(q) = Tαβγδ(−q). (A10)

Note that Eq. (A10) is necessarily valid both for achi-
ral and chiral two-dimensional isotropic systems. Forth-
order tensor fields are often constructed by taking outer
products [9] of second-order tensor fields. We con-

sider, e.g., correlation functions 〈T̂αβ(q)T̂γδ(−q)〉 with

T̂αβ(q) being an instantaneous second-order tensor field.
Eq. (A8) then follows from the symmetry of the second-
order tensor fields. The evenness of forth-order tensor
fields, Eq. (A10), is a necessary condition for achiral sys-
tems. It implies that Tαβγδ(q) is real if Tαβγδ(r) is real
and, moreover, Eq. (A9) for correlation functions since

〈T̂αβ(q)T̂γδ(−q)〉 = 〈T̂γδ(q)T̂αβ(−q)〉. (A11)

As already emphasized, all our systems are assumed to be
isotropic, i.e., Eq. (A6) must hold for ensemble-averaged
tensor fields.

4. General mathematical structure

General structure of tensors. Isotropic tensors of dif-
ferent order are discussed, e.g., in Sec. 2.5.6 of Ref. [9].
Due to Eq. (A5) all such tensors of odd order must van-
ish. The finite isotropic tensors of lowest order are thus

Tαβ = k1δαβ , (A12)

Tαβγδ = i1δαβδγδ + i2 (δαγδβδ + δαδδβγ) (A13)

with k1, i1 and i2 being invariant scalars. Please note
that all symmetries stated above hold, especially also
Eq. (A5). Note that the symmetry Eq. (A8) was used for
the second relation, Eq. (A13). Importantly, this implies
that only two coefficients are needed for a forth-order
isotropic tensor. As a consequence, the elastic modulus
tensor Eαβγδ is completely described by two elastic mod-
uli (cf. Sec. C 3).

General structure of tensor fields. We restate now the
most general isotropic tensor fields for 1 ≤ o ≤ 4 and
focusing on two-dimensional systems (d = 2) compati-
ble with the symmetries stated in Sec. A 3. With ln(q),
kn(q), jn(q) and in(q) being invariant scalar functions of
q = |q| we have [3, 4]

Tα(q) = l1(q) q̂α (A14)

Tαβ(q) = k1(q) δαβ + k2(q) q̂αq̂β (A15)

Tαβγ(q) = j1(q) q̂αδβγ + j2(q) q̂βδαγ

+ j3(q) q̂γδαβ + j4(q) q̂αq̂β q̂γ (A16)

Tαβγδ(q) = i1(q) δαβδγδ (A17)

+ i2(q) (δαγδβδ + δαδδβγ)

+ i3(q) (q̂αq̂βδγδ + q̂γ q̂δδαβ)

+ i4(q) q̂αq̂β q̂γ q̂δ

for finite wavevectors q. See Ref. [4] for a derivation,
generalizations for d > 2 and a discussion of the limit
q → 0. Terms due to the invariants k1(q), i1(q) and
i2(q) are independent of the coordinate system. All other
terms depend on the components q̂α of the normalized
wavevector q̂ and thus on the orientations of the field
vector and of the coordinate system.

Alternative representation for forth-order tensor fields.
It is convenient to define the four functions

cL(q) ≡ T ◦1111(q)
cT(q) ≡ T ◦1212(q)
cN(q) ≡ T ◦2222(q)
c⊥(q) ≡ T ◦1122(q)

 for q◦α = qδ1α (A18)

using NRC. For an isotropic system these four functions
can only depend on the wavenumber q but not on the
direction q̂ of the wavevector q. Importantly, all other
components T ◦αβγδ(q) are either by Eq. (A8) and Eq. (A9)
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identical to these invariants or must vanish for an odd
number of equal indices as reminded in Sec. A 2. The
d4 = 16 components T ◦αβγδ(q) are thus completely deter-

mined by the four invariants and this for any q. Tαβγδ(q)
is then obtained by the inverse rotation to the original
unrotated frame using Eq. (A2). It is readily seen that

cL(q) = i1(q) + 2i2(q) + 2i3(q) + i4(q)

cN(q) = i1(q) + 2i2(q)

c⊥(q) = i1(q) + i3(q)

cT(q) = i2(q) (A19)

being consistent with Eq. (6).
Isotropic tensor fields in real space. We have formu-

lated above all tensor fields in terms of the wavevector q
and its components since it is most convenient to start the
analysis in reciprocal space. The above results also hold,
however, in real space. This implies, e.g., for isotropic
(and achiral) fields in two dimensions that

Tαβ(r) = k̃1(r) δαβ + k̃2(r) r̂αr̂β (A20)

Tαβγδ(r) = ĩ1(r) δαβδγδ (A21)

+ ĩ2(r) [δαγδβδ + δαδδβγ ]

+ ĩ3(r) [r̂αr̂βδγδ + r̂γ r̂δδαβ ]

+ ĩ4(r) r̂αr̂β r̂γ r̂δ

for r > 0 with k̃n(r) and ĩn(r) denoting the invariants
in real space and r̂α = rα/r components of the normal-
ized vector r̂ = r/r. As already stated, Eq. (A1), the
tensor field components in real and reciprocal space are
related by FT. Note that k̃n(r) and ĩn(r) are in general
not the FTs of, respectively, kn(q) and in(q). For the im-
portant case that the invariants in reciprocal space are
q-independent constants it follows quite generally that

4πr2 k̃1(r) = 2k2 (A22)

4πr2 k̃2(r) = −4k2

4πr2 ĩ1(r) = 4i3 + 5i4

4πr2 ĩ2(r) = −i4
4πr2 ĩ3(r) = −4i3 − 6i4

4πr2 ĩ4(r) = 8i4

for r > 0. (Additional δ(r)-terms arise at the origin.
The constant invariants k1, i1 and i2 only contribute to
these terms.) That this holds can be readily shown using
relations put forward in Appendix B and Appendix D.

Appendix B: Useful Fourier transformations

1. Continuous Fourier transform

We consider real-valued functions f(r) in d dimen-
sions. As in Refs. [4, 18, 54] the Fourier transform (FT)

f(q) = F [f(r)] from “real space” (variable r) to “recip-
rocal space” (variable q) is defined by

f(q) =
1

V

∫
dr f(r) exp(−iq · r) (B1)

with V being the volume of the system. The inverse FT
is then given by

f(r) = F−1[f(q)] =
V

(2π)d

∫
dq f(q) exp(iq · r). (B2)

Note that f(r) and f(q) have the same dimension.
For notational simplicity the function names remain un-
changed. We remind the FTs

F
[
∂

∂rα
f(r)

]
= iqαf(q) (B3)

F [δ(r− v)] =
1

V
exp(−iq · v) (B4)

with δ(r) being Dirac’s delta function. Let us consider
the spatial convolution function

f(r) =
1

V

∫
dr′g(r− r′)h(r′) (B5)

in real space. With g(q) = F [g(r)] and h(q) = F [h(r)]
this implies according to the “convolution theorem” [55]

f(q) = F [f(r)] = g(q)h(q). (B6)

We also remind for completeness that the spatial corre-
lation function

c(r) =
1

V

∫
dr′g(r + r′)h(r′) (B7)

of real-valued fields g(r) and h(r) becomes according to
the “correlation theorem” [55]

c(q) = g(q)h?(q) = g(q)h(−q) (B8)

with ? marking the conjugate complex. For auto-
correlation functions, i.e. for g(r) = h(r), this simplifies
to (“Wiener-Khinchin theorem”)

c(q) = g(q)g?(q) = |g(q)|2, (B9)

i.e. the Fourier transformed auto-correlation functions
are real and ≥ 0 for all q. Moreover, we shall consider
correlation functions c(r), Eq. (B7), being even in real
space, c(r) = c(−r), and thus also in reciprocal space,
c(q) = c(−q) = c?(q), i.e. c(q) is real.

2. Discrete Fourier transform on microcell grid

All fields f(r) are stored on a regular equidistant d-
dimensional grid as shown in Fig. 2 for d = 2. Periodic
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boundary conditions are assumed [33]. The discrete FT
and its inverse become

f(q) =
1

nV

∑
r
f(r) exp(−iq · r) (B10)

f(r) =
∑
q
f(q) exp(iq · r) (B11)

with
∑

r and
∑

q being discrete sums over nV = ndL =

V/adgrid grid points in, respectively, real or reciprocal
space. As shown in Fig. 2 we label the grid points in
real and reciprocal space using

rα
agrid

= nα and qαagrid =
2π

nL
nα (B12)

with nα = −nL
2

+ 1, . . . , 0, 1, . . . ,
nL
2
.

To take advantage of the Fast-Fourier transform (FFT)
routines [55] the number of grid points in each spatial
direction nL = L/agrid is an integer-power of 2.

3. Fourier transform of planar harmonic functions

As discussed in the main part, all correlation functions
in reciprocal space become in the large-wavelength limit
independent of the magnitude q of the wavevector q but
depend on its angle θq (and, more generally, on the angle
difference θq−α for rotated coordinate frames). As noted
in Sec. II C, these angular dependencies can be uniquely
expressed in terms of the planar harmonic basis functions
cos(pθq) and sin(pθq) with p being an integer. We denote
these orthogonal basis functions by bp(θq). We thus need
to compute the inverse FTs of f(q) = bp(θq)/V . More
specifically, we are interested in modes with p = 2 and
p = 4. Additional constant terms (p = 0), such as the
ones indicated by dots in Eqs. (20-22), are irrelevant lead-
ing merely to δ(r)-contributions at the origin. For d = 2
Eq. (B2) becomes

f(r) =
1

4π2

∫ ∞
0

dq q ×∫ 2π

0

dθq bp(θq) exp[iqr cos(θq − θr)] (B13)

with θr being the angle of r̂ = (cos(θr), sin(θr)). We
make now the substitution θ = θq − θr and use that [56]

cos(pθ + pθr) + cos(−pθ + pθr) = 2 cos(pθ) cos(pθr)

sin(pθ + pθr) + sin(−pθ + pθr) = 2 cos(pθ) sin(pθr).

We remind that following Eq. (9.1.21) of Ref. [56] the
integer Bessel function Jp(z) may be written

Jp(z) =
i−p

π

∫ π

0

dθ cos(pθ) exp[iz cos(θ)] (B14)

which leads to

f(r) =
ip

2π
bp(θr)

∫ ∞
0

dq q Jp(rq). (B15)

For finite r we may rewrite this as

f(r) =
ipp

2πr2
bp(θr)× lim

t→∞
Ip(t) for r > 0 (B16)

where we have set Ip(t) ≡
∫ t
0

dt′t′Jp(t
′)/p. As may be

seen from Eq. (11.4.16) of Ref. [56] the latter integral
becomes5

Ip(t)→ 1 for t→∞ and p > −2 (B17)

from which we obtain the final result

f(r) =
ipp

2πr2
bp(θr) for r > 0. (B18)

Note that f(r) = f(−r) and that f(r) is real for even p.
Generalizing the above argument it is seen that f(r) ∝
1/rd for higher dimensions d.

Appendix C: Computational details

1. Simulation model

We consider systems of polydisperse Lennard-Jones
(pLJ) particles in d = 2 dimensions where two parti-
cles i and j of diameter Di and Dj interact by means of
a central pair potential [4, 18, 36–39, 48]

u(s) = 4ε

(
1

s12
− 1

s6

)
with s =

r

(Di +Dj)/2
(C1)

being the reduced distance according to the Lorentz rule
[34]. This potential is truncated and shifted [4, 33] with
a cutoff scut = 2smin given by the minimum smin of u(s).
Lennard-Jones units [33] are used throughout this study,
i.e. ε = 1 and the average particle diameter is set to
unity. The diameters are uniformly distributed between
0.8 and 1.2. We also set Boltzmann’s constant kB = 1

5 The infinite integral Eq. (11.4.16) of Ref. [56] is expressed in
terms of two coefficients µ and ν which in our case take the (real)
values µ = 1 and ν = p. It is stated that Eq. (11.4.16) holds
for <(µ + ν) > −1, being consistent with the condition p > −2
noted in Eq. (B17), but also that <µ < 1/2, being at first sight in
conflict with µ = 1. However, the integral divergence for t→∞
for µ > 1/2 is fictitious as, e.g., discussed in the Wikipedia entry
on “Oscillatory integrals” where it is noted that ”Oscillatory
integrals make rigorous many arguments that, on a naive level,
appear to use divergent integrals.” Note that Eq. (B18) also holds
for p = 0 and finite r > 0 which follows from the fact that the
FT of a constant is zero everywhere except at the origin. See
Ref. [4] for an alternative more straight-forward but also more
lengthy derivation of Eq. (B18) using the asymptotic behavior of
the confluent hypergeometric Kummer function M(a, b, z).
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and assume that all particles have the same mass m = 1.
The last point is irrelevant for the presented Monte Carlo
(MC) simulations [33]. Time is measured in units of MC
steps (MCS) throughout this work.

2. Parameters and configuration ensembles

We focus on systems with n = 10000 and n = 40000
particles. We first equilibrate Nc = 200 independent con-
figurations c at a high temperature T = 0.55 in the liq-
uid limit. These configurations are adiabatically cooled
down using a combination of local MC moves [33] and
swap MC moves exchanging the sizes of pairs of parti-
cles [38, 49]. In addition, an MC barostat [33] imposes
an average normal stress P = 2 [36, 38]. At the work-
ing temperature T = 0.2 we first thoroughly temper over
∆τ = 107 all configurations with switched-on local, swap
and barostat MC moves and then again over ∆τ = 107

with switched-on local and swap moves and switched-off
barostat moves. The final production runs are carried
out at constant volume V only keeping local MC moves.
Under these conditions, T = 0.2 is well below the glass
transition temperature Tg ≈ 0.26 determined in previous
work [36, 38]. Due to the barostat used for the cooling
the box volume V = Ld differs slightly between different
configurations c while V is identical for all frames t of the
time-series of the same configuration c. In all cases the
number density is of order unity. For each particle num-
ber n and each of the Nc independent configurations c
we store ensembles of time series containing Nt = 10000
instantaneous “frames” t. These are obtained using the
equidistant time intervals δτ = 1000 for n = 10000 and
δτ = 100 for the other system sizes.

3. Macroscopic linear elastic properties

The amorphous glasses formed by pLJ particle sys-
tems at a pressure P = 2 and a temperature T = 0.2�
Tg ≈ 0.26 are for sampling (production) times ∆τ ≤ 107

MCS reversible linear elastic bodies whose plastic rear-
rangements can be neglected for all practical purposes
[18, 21, 36, 38, 57, 58]. Moreover, these systems can be
shown to be isotropic above distances corresponding to a
couple of particle diameters [18, 38]. Following Eq. (A13)
the forth-order elastic modulus tensor Eαβγδ for isotropic
systems may be written [8, 9]

Eαβγδ = λδαβδγδ + µ (δαγδβδ + δαδδβγ) (C2)

in terms of the two isothermic Lamé moduli λ and µ. As
described in detail elsewhere [21, 36, 57–60] we have de-
termined λ and µ either by means of strain fluctuations,
e.g., by letting the box volume V fluctuate at imposed
pressure P [57], or using the stress-fluctuation formalism
at fixed volume and shape of the simulation box [59, 60].
This shows that λ ≈ 38 and µ ≈ 14. We have verified

FIG. 6: Rescaled transverse ICF βV cT(q) for different grid
constants agrid as indicated. The open symbols have been ob-
tained using Eq. (C4), the thin solid line using Eq. (C5) and
nL = 2048. Importantly, we obtain the same results in all
cases where qurms � 1 and qagrid � 1. Even a rather coarse
grid, say for nL = 64, is sufficient to confirm the expected
large-wavelength limit (horizontal dashed line). The total
static structure factor S(q) is shown for comparison (solid
line). The “dip” of S(q) around q ≈ 4 is caused by the poly-
dispersity of the particles as emphasized elsewhere [48]. S(q)
and βV cT(q), at least for sufficiently small agrid, have both a
strong peak located similarly at q ≈ 6.5 (arrow).

especially that similar values are obtained for n ≥ 5000
and using different components, say E1111 and E2222 for
λ+ 2µ, and that the fluctuations of Eαβγδ|c for indepen-
dent configurations c become negligible for n ≥ 5000.

4. Discrete fields on square grid

We turn now to the relevant microscopic tensor fields
as functions of either the spatial position r (real space) or
the wavevector q (reciprocal space). The different fields
are stored on equidistant discrete grids as sketched in
Fig. 2. The same nL is used for both spatial directions
and for all configurations and frames of a given parti-
cle number n. As already mentioned, the box volume
V = L2 fluctuates slightly between different configura-
tions c (at same n) due to the barostat used for the cool-
ing, tempering and equilibration of the systems. Accord-
ingly, agrid also differs between different configurations c.
These fluctuations become small, however, with increas-
ing system size. If nothing else is mentioned we report
data obtained using a lattice constant agrid ≈ 0.2. As
shown in Fig. 6 for the rescaled transverse ICF βV cT(q)
plotted using a double-logarithmic representation, there
is no need to further decrease agrid. Even the very large
grid constant agrid ≈ 3.2 gives, apparently, the correct
large-wavelength asymptote βcT(q) ≈ 1/4µ indicated by
the dashed horizontal line.
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5. Displacement fields

As in previous experimental and numerical studies
[10, 11, 21] the displacement field u(r) is constructed
from the instantaneous spatial positions ra of the par-
ticles a with respect to their reference positions r̃a. As
reference position r̃a we have used either the average par-
ticle position determined using a long trajectory or the
particle position after a rapid quench to T = 0. Having
not observed any significant quantitative difference be-
tween both methods we only report here data computed
using the first one. We thus get first the displacement
vector ua = ra − r̃a for each a. By construction the
average displacement vector 〈ua〉 must vanish. We find

urms ≡
〈
u2
a

〉1/2 ≈ 0.13 (C3)

for the root-mean-squared average urms (sampled over all
particles, frames and configurations). The instantaneous
displacement field may then be defined by [10, 11, 21]

u(r) =
1

n/V

∑
a

uaδ(r− r̃a) (C4)

assuming for the moment an infinitessimal fine grid, i.e.
agrid → 0. (Different prefactors have been used in
Refs. [10, 11, 21].) We remind that the δ(r)-function has
the dimension “1/volume”. By definition u(r) has thus
the same dimension “length” as the displacement vector
ua. Following the common definition of the particle flux
density [34], the reference position r̃a in the δ-function
may be replaced by the time-dependent position ra, i.e.
the displacement field may alternatively be defined by

u(r) =
1

n/V

∑
a

uaδ(r− ra). (C5)

Both operational definitions are compared for the trans-
verse ICF βV cT(q) in Fig. 6 where data obtained using
Eq. (C4) are indicated by open symbols. In reciprocal
space we obtain

u(q) =
1

n

∑
a

ua exp(−iq · r̃a). (C6)

for Eq. (C4) and similarly for Eq. (C5) with ra replacing
r̃a. Since ra = r̃a + ua we have to leading order

exp(−iq · ra) ≈ exp(−iq · r̃a) (1− iq · ua . . .) (C7)

for q|u(q)| � 1. Both operational definitions Eq. (C4)
and Eq. (C5) thus become equivalent for qurms � 1.
Due to the small typical (root-mean-squared) displace-
ment urms, Eq. (C3), this holds for all sampled q as may
be seen from the data presented in Fig. 6. Due to the
center-of-mass convention for all particle displacements
the volume integral over u(r) must vanish and, equiv-
alently, we have u(q = 0) = 0 in reciprocal space for
each instantaneous field. We also remind that the two

coordinates of the displacement field in NRC are the lon-
gitudinal component uL(q) ≡ u◦1(q) and the transverse
component uT(q) ≡ u◦2(q).

In numerical practice, the continuous field vector r of
Eq. (C4) and Eq. (C5) corresponds to the discrete point
on the grid, Eq. (B12), closest (using the minimal image
convention) to, respectively, the reference position r̃a or
the particle position ra. Strictly speaking, we thus ob-
tain by means of Eq. (B10) the FT with respect to their
respective closest grid points. (In principle one could di-
rectly without approximation compute the displacement
field u(q) using Eq. (C6) in reciprocal space. Unfortu-
nately, this leads to an additional loop over all n par-
ticles for each wavevector q.) The differences between
these definitions become neglible for qagrid � 1. That
this holds can be clearly seen from Fig. 6 where we have
varied agrid over more than one order of magnitude.

6. Linear strain fields

Using the displacement field u(r) the linear (“small”)
strain tensor field is defined by [8, 9]

εαβ(r) ≡ 1

2

(
∂uα(r)

∂rβ
+
∂uβ(r)

∂rα

)
. (C8)

Due to Eq. (B3) this becomes

εαβ(q) =
i

2
(qβuα(q) + qαuβ(q)) (C9)

in reciprocal space as already stated in Sec. III B. (Ob-
viously, εαβ = εβα for any r in real space and any q
in reciprocal space.) Note that both εαβ(r) and its FT
εαβ(q), cf. Eq. (B1), are dimensionless fields. Due to
our definitions and conventions the macroscopic strain
εαβ(q = 0) is assumed to vanish. Using Eq. (C9) we
numerically determine the three relevant components of
the (symmetric) strain tensor field εαβ(q) from the two
components of the displacement field uα(q) stored on the
reciprocal space grid (cf. Fig. 2) and the wavevector qα
according to Eq. (B12). As noted in Sec. III B, in NRC
there are only two non-vanishing strain fields, namely the
longitudinal and transverse strain fields εL(q) and εT(q)
linearly related to the corresponding displacement fields
uL(q) and uT(q), cf. Eq. (16) and Eq. (17).

7. Correlation function fields

Using the strain tensor fields εαβ(q) in reciprocal
space computed according to Eq. (C9) for each c
and t we obtain the correlation functions cαβγδ(q) =
〈εαβ(q)εγδ(−q)〉 averaged over all c and t. For the re-
ported correlation functions c′αβγδ(q) = 〈ε′αβ(q)ε′γδ(−q)〉
in a coordinate system turned by an angle α we first com-
pute the new components u′α(r) and q′α of displacement
field and wavevector. (Alternatively, one may also rotate
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εγδ(q).) For the ICFs cL(q) and cT(q) obtained using
NRC we first get the longitudinal and transverse dis-
placement fields uL(q) and uT(q) in NRC and from those
using Eq. (16) and Eq. (17) the longitudinal and trans-
verse strains εL(q) and εT(q). cL(q) = 〈εL(q)εL(−q)〉q̂
and cT(q) = 〈εT(q)εT(−q)〉q̂ are computed by averaging
over all c and t and all wavevectors q with magnitude |q|
within a chosen bin around q. The correlation functions
cαβγδ(r) in real space (either for unrotated or α-rotated
coordinate systems) are finally obtained by inverse FFT.

Appendix D: From cL(q) and cT(q) to cαβγδ(r)

As shown in Appendix A 4, a forth-order tensor field
describing an isotropic achiral system in two dimensions
is given by Eq. (A17) in terms of four invariants in(q).
In turn these invariants are expressed in terms of the al-
ternative set of invariants cL(q), cT(q), cN(q) and cT(q).
Due to Eq. (18) we have cN(q) = c⊥(q) = 0 for strain cor-
relations. The correlation function cαβγδ(q) in reciprocal
space are thus given by the invariants

− i1(q)

2
=
i3(q)

2
= i2(q) = cT(q) and (D1)

i4(q) = cL(q)− 4cT(q). (D2)

More specifically, this implies

c1111(q) = c4cL(q) + 4s2c2cT(q)

c2222(q) = s4cL(q) + 4s2c2cT(q)

c1122(q) = c2s2cL(q)− 4s2c2cT(q)

c1212(q) = c2s2cL(q) + (c2 − s2)2cT(q)

c1112(q) = c3scL(q)− 2sc(c2 − s2)cT(q)

c1222(q) = cs3cL(q) + 2sc(c2 − s2)cT(q) (D3)

with c = cos(θ) = q̂1 and s = sin(θ) = q̂2 being coeffi-
cients depending only on the wavevector angle θ. Alter-
natively, the six relations Eq. (D3) may also be obtained
using that the components εαβ(q) in the original coordi-
nate frame can be expressed as

ε11(q) = c2 ε◦11(q) + s2 ε◦22(q)− 2sc ε◦12(q)

= c2 εL(q)− 2sc εT(q) (D4)

ε22(q) = s2 ε◦11(q) + c2 ε◦22(q) + 2sc ε◦12(q)

= s2 εL(q) + 2sc εT(q) (D5)

ε12(q) = sc ε◦11(q)− sc ε◦22(q) + (c2 − s2) ε◦12(q)

= cs εL(q) + (c2 − s2) εT(q) (D6)

in terms of the longitudinal and transverse strains εL(q)
and εT(q) and the fact that εL(q) and εT(q) fluctuate
independently. For the correlation functions c′αβγδ(q) in
rotated coordinate systems one simply replaces θ by x =
θ−α. Note also that c′1112(q) and c′1222(q) do in general
not vanish for all x in standard (unrotated or rotated)
coordinates. The values for NRC are obtained by setting

x = 0, i.e. s = 0 and c = 1. We expand the angle-
dependent coefficients before cL(q) and cT(q) in terms of
the planar harmonic functions cos(pθ) and sin(pθ) with
p being integers using standard trigonometric relations
[56]. This implies for example

c1212 =
1

8
[(4cT − cL) cos(4θ) + (4cT + cL)]

c1122 =
1

8
[(4cT − cL) cos(4θ)− (4cT − cL)]

c1111 + c2222
2

=
1

8
[− (4cT − cL) cos(4θ) + 3cL + 4cT]

c1111 − c2222
2

=
1

4
(2cL) cos(2θ)

where we have omitted the arguments q on the l.h.s. and
q on the r.h.s. The prefactor of cos(4θ) and sin(4θ) is al-
ways proportional to i4(q). Having in mind the equipar-
tition relation Eq. (2) and using the creep compliances
J1 and J2 introduced in Eq. (19) one sees that

βV [4cT(q)− cL(q)] → J1 ≡
1

µ
− 1

λ+ 2µ
, (D7)

βV [2cL(q)] → J2 ≡
2

λ+ 2µ
(D8)

in the low-q limit. We thus get in reciprocal space

βV c1212(q) → J1
8

cos(4θ) + . . .

βV c1122(q) → J1
8

cos(4θ) + . . .

βV
c1111(q) + c2222(q)

2
→ −J1

8
cos(4θ) + . . .

βV
c1111(q)− c2222(q)

2
→ J2

4
cos(2θ)

where the dots mark constant terms. These terms are ir-
relevant for the inverse FT, only leading to contributions
at the origin r = 0.

We may thus take advantage of the analytical result
for the inverse FT Eq. (B18). This leads to

βc1212(r) → J1
4πr2

cos(4θ) (D9)

βc1122(r) → J1
4πr2

cos(4θ) (D10)

β
c1111(r) + c2222(r)

2
→ − J1

4πr2
cos(4θ) (D11)

β
c1111(r)− c2222(r)

2
→ − J2

4πr2
cos(2θ) (D12)

with θ denoting the polar angle of the field vector r. The
correlation functions c′αβγδ(r) in rotated coordinate sys-
tems generalize the above equations by substituting θ
with the angle difference x = θ − α. These results can
be rewritten compactly using the general form expected
from Eq. (A21) for a manifest two-dimensional, isotropic
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FIG. 7: Rescaled shear-strain autocorrelation function
βc′1212(r, θ)4πr2 in real space as a function of x = θ−α com-
paring data for different r-intervals and rotation angles α with
the prediction (bold solid line).

and achiral forth-order tensor field in real space yielding

βc′αβγδ(r) = ĩ1(r) δαβδγδ (D13)

+ ĩ2(r) [δαγδβδ + δαδδβγ ]

+ ĩ3(r)
[
r̂′αr̂
′
βδγδ + r̂′γ r̂

′
δδαβ

]
+ ĩ4(r) r̂′αr̂

′
β r̂
′
γ r̂
′
δ

where the invariants ĩn(r) in real space are given by

4πr2 ĩ1(r) = J2 − 3J1, (D14)

4πr2 ĩ2(r) = J1,

4πr2 ĩ3(r) = 4J1 − J2 and

4πr2 ĩ4(r) = −8J1.

Since i1 = −(2J1 + J2)/4, i2 = (2J1 + J2)/8, i3 = (2J1 +
J2)/4 and i4 = −J1, this is consistent with the more
general relation Eq. (A22).

The angle dependence for the shear-strain autocorrela-
tion function in real space is investigated in Fig. 7 where
we plot using linear coordinates βc′1212(r, θ)4πr2 as a
function of x for different r and α. (To obtain sufficiently
high statistics we need to average over the indicated finite
r-bins. This is done by weighting each data entry for a
bin with the proper factor 4πr2.) The data compare well
with the prediction, Eq. (D9), confirming thus especially
the scaling with angle difference x = θ − α. Naturally,
the statistics deteriorates with increasing r due to the
faster decay of the correlations as compared to the noise.
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