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I. INTRODUCTION

Tensorial foundation of science and engineering. The fundamental laws of physics and the constitutive relations of engineering are formulated in terms of tensors and tensor fields (assigning a tensor to each point of the mathematical space) [START_REF] Mcconnell | Applications of Tensor Analysis[END_REF][START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Lambourne | Relativity, Gravitation, and Cosmology[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF] which by construction guarantees them to hold independently of the specific coordinate system used for their description. Moreover, also instabilities and failure in materials science and engineering, e.g., for granular piles and silos [START_REF] Nedderman | Statics and Kinematics of Granular Materials[END_REF] or plastic deformation in soft or glassy materials [START_REF] Argon | [END_REF][7][8][9][10], must be described by appropriate tensorial invariants of tensor fields and this should also be crucial in principle for mesoscopic computer models [11,12] of localized plastic failure of a broad range of systems.

Isotropic systems. Isotropic systems, such as generic isotropic elastic bodies [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Landau | Theory of Elasticity[END_REF], simple and complex fluids [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Rubinstein | Polymer Physics[END_REF], amorphous metals and glasses [START_REF] Donth | The Glass Transition: Relaxation dynamics in liquids and disordered materials[END_REF], polymer foams and networks [START_REF] Rubinstein | Polymer Physics[END_REF] or, as a matter of fact, our entire universe [START_REF] Lambourne | Relativity, Gravitation, and Cosmology[END_REF] are described (at least on some scales) by isotropic tensors and isotropic tensor fields [START_REF] Mcconnell | Applications of Tensor Analysis[END_REF][START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF]. Let us assume for simplicity that the system is not only isotropic but also spatially homogeneous [START_REF]Isotropy implies mathematically homogeneity[END_REF], achiral [START_REF] Landau | Theory of Elasticity[END_REF], stationary in time and embedded in a d-dimensional Euclidean vector space described by an orthonormal Cartesian tensor basis [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF]. A point in this vector space is either called r (real space) or q (reciprocal space). It is well known that the components of isotropic tensors remain unchanged under an orthogonal coordinate transformation [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF]. For instance, the component E 1212 of the forthorder elastic modulus tensor E αβγδ of an isotropic body [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Landau | Theory of Elasticity[END_REF] is always given by the shear modulus µ, i.e. an invariant material property. (See Sec. II D and Sec. V C for details.) Interestingly, this does in general not hold for the components of isotropic tensor fields [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF] frame (r 1 , r 2 ) rotated by an angle α = 30 • (rotations marked by " "). Albeit the system is isotropic, the correlation function is strongly angle dependent revealing an octupolar symmetry and depends, moreover, on the orientation of the coordinate system. While each pixel corresponds in (a) and (b) to the same spatial position r, the correlation functions differ by the angle α. c1212(r) is negative (blue) along the axes and positive (red) along the bisection lines of the respective axes. The theoretical prediction Eq. ( 1) is indicated by thin lines.

depend (in real space) not only on the length r of the field vector r but also on the (normalized) coordinate dependent components rα of its direction r = r/r. This implies that mathematically and physically legitimate isotropic tensor field components may depend on the orientation of the coordinate system and this, as we shall see, holds in a related manner both in real and in reciprocal space.

As we shall emphasize these angular dependencies differ from those of ordinary anisotropic systems with frameinvariant angular-dependent material functions, say for crystalline solids [START_REF] Landau | Theory of Elasticity[END_REF].

Invariant correlation functions. Tensor fields are probed experimentally or in computer simulations by means of correlation functions of some of their components. For instance, as shown in Fig. 1 for an isotropic elastic body discussed in more detail below, one may investigate the spatial correlations of the shear-stress component of the stress tensor field [8,[START_REF] Maier | [END_REF][19][20][21][22][23][24][25][26]. For isotropic systems such correlation functions must be isotropic tensor fields. They may thus depend on the orientation of the coordinate systems as demonstrated by the example given in panel (b) of Fig. 1. Another example of current interest are the correlations of strain tensor field components of a broad range of isotropic systems which have also been shown to reveal "anisotropic" correlation functions [8,[27][28][29][30][31][32][33]. Importantly, correlation functions of tensor components describe the linear response due to a small perturbation [START_REF] Hansen | Theory of simple liquids[END_REF], say an inclusion in an elastic body [START_REF] Eshelby | Proc. R. Soc. Lond. A[END_REF][START_REF] Eshelby | Proc. R. Soc. Lond. A[END_REF]. Such a tensorial response field may thus be angle-dependent for systems and source terms which are both perfectly isotropic. (See Sec. II G for a comparison of tensorial response fields and associated correlation fields in isotropic systems.) As we shall remind [22] and emphasize in this study, while the isotropy of the system may not be manifested by one correlation function of tensor field components it is nevertheless present in the general mathematical structure of the complete set of all correlation functions of the investigated tensor field. While this makes the interpretation of observed tensor field pattern, like the ones given in Fig. 1, more intricate, the good new is that this complete set of correlation functions is determined by a small number of "Invariant Correlation Functions" (ICFs) [19,21,22]. We emphasize here that theory and computational studies should focus on these ICFs and this in a first step in reciprocal space (cf. Appendix A). The real-space correlations are then obtained by inverse Fourier transformation (FT). Specific case considered. We demonstrate the general procedure by an analysis of stress field correlations in two-dimensional (d = 2) simulated isotropic elastic bodies [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Landau | Theory of Elasticity[END_REF]. While previous work characterizes correlations of the instantaneous stress field [START_REF] Maier | [END_REF][19][20][21][24][25][26] or of the stress field of the system's "inherent states" (local energy minima) [22,23], we rather compute the timeaveraged stress fields σαβ (q) in reciprocal space (q being the wavevector) for each independent configuration c and analyze their correlation functions cαβγδ (q). This is best done using "Natural Rotated Coordinates" (NRC) aligned with q allowing the precise determination of the ICFs characterizing the isotropic tensor field. Importantly, only one of these ICFs is shown in the hydrodynamic limit and for sufficiently large sampling times ∆τ to become a finite constant e > 0. This phenomenological constant characterizes the typical size of the frozen stress components normal to each wavevector q, i.e. it measures the (continuous) symmetry breaking of the stress field in reciprocal space for each independent configuration. This finding and a proper treatment of tensor field correlations reflecting the material isotropy directly imply that the stress correlations in real space must be long-ranged. For instance, the correlation function of the shear-stress field must decay as c 1212 (r) -e 4πr 2 cos[4(θ -α)]

(1)

for sufficiently large r = |r| with θ being the angle of the field vector r in the unrotated physical system, Fig. 1(a), and α the rotation angle of the coordinate system, Fig. 1(b). (Rotations of the coordinate system are marked by primes " ".) We thus confirm recent computer simulations on stress correlations in binary Lennard-Jones glasses [22,23,25,[START_REF] Lemaître | [END_REF]37] and more general theoretical considerations [START_REF] Maier | [END_REF][19][20][21] on supercooled liquids and amorphous elastic bodies.

Outline. We begin by reviewing in Sec. II general features of tensor fields relevant for isotropic and achiral systems [START_REF] Mcconnell | Applications of Tensor Analysis[END_REF][START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Schouten | Tensor Analysis for Physicists[END_REF]. The main computational points (model system, data production) are summarized in Sec. III before we turn in Sec. IV to our central numerical results. Taking advantage of recent theoretical studies [START_REF] Maier | [END_REF][19][20][21]25] we explain in Sec. V why the only phenomenological parameter e needed to fit our data should be similar to a thermodynamic quantity, the equilibrium Young modulus E. A summary of the presented work and an outlook are given in Sec. VI. Appendix A summarizes some properties of FTs [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF][START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF] while Appendix B addresses the FT of the relevant correlation functions in d = 2. More details on our simulation model and on the computation of the local stress fields are given in Appendix C and Appendix D.

II. REVIEW OF ISOTROPIC TENSOR FIELDS

A. Introduction

Generalities. Familiarity with the general ideas and notations of tensor algebra and analysis, as developed systematically in the standard textbooks [START_REF] Mcconnell | Applications of Tensor Analysis[END_REF][START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Schouten | Tensor Analysis for Physicists[END_REF], is taken for granted. We remind that a tensor field assigns a tensor to each point of the mathematical space, in our case a d-dimensional Euclidean vector space [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF]. An element of this vector space is denoted by the "spatial position" r in real space or by the "wavevector" q for the corresponding Fourier transformed reciprocal space. The relations for tensor fields are formulated below in reciprocal space since this is more convenient both on theoretical and numerical grounds due to the assumed spatial translational invariance. The properties of the corresponding real space tensor field are then obtained by inverse FT.

Tensor components and basis. We assume for simplicity Cartesian coordinates with an orthonormal basis {e 1 , . . . , e d } [START_REF] Mcconnell | Applications of Tensor Analysis[END_REF][START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF]. Greek letters α, β, . . . are used for the indices of the tensor (field) components. A twice repeated index α is summed over the values 1, . . . , d, e.g., q = q α e α with q α standing for the vector coordinates.

This work is chiefly concerned with tensors

T (o) = T α1...αo e α1 . . . e αo (2) 
of "order" (or "rank") o = 2 and o = 4 and their corresponding tensor fields with components depending either on r or q. As common we refer to a tensor (field) T (o) by indicating its components T α1...αo . The order of a component is given by the number of suffixes. Note that

T α1...αo (q) = F[T α1...αo (r)] (3) 
for the d o components in real and reciprocal space.

Transforms. We consider linear orthogonal coordinate transformations (marked by " * ") e * α = c αβ e β with matrix coefficients c αβ given by the direction cosine c αβ ≡ cos(e * α , e β ) [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF]. c αβ = δ αβ if nothing is changed. For a simple reflection of, say, the 1-axis and a rotation in the 12-plane by an angle θ we have, respectively, reflection :

c 1β = -δ 1β (4) rotation : c 11 = c 22 = cos(θ) c 12 = -c 21 = sin(θ) (5) 
and c αβ = δ αβ for all other indices. We remind that [2]

T * α1...αo (q) = c α1ν1 . . . c αoνo T ν1...νo (q) (6)
under a general orthogonal transform. For a reflection of the 1-axis we thus have, e.g.,

T * 12 (q) = -T 12 (q), T * 11 (q) = T 11 (q), (7) 
T * 1222 (q) = -T 1222 (q), T * 1221 (q) = T 1221 (q),
i.e. quite generally we have sign inversion for an odd number of indices α, β, . . . equal to the index of the inverted axis. Please note that the field vector q = q α e α = q * α e * α remains unchanged by these "passive" transforms albeit its coordinates change.

Outline. We come back to this issue in the next subsection, Sec. II B. The symmetries of tensors and tensor fields relevant for the present work are summarized in Sec. II C. Isotropic tensors are presented in Sec. II D, general isotropic tensor fields of order 1 ≤ o ≤ 4 in Sec. II E and, more specifically, forth-order isotropic tensor fields T αβγδ (q) for d = 2 in Sec. II F. Finally, Sec. II G outlines some general relations for second-order tensor fields R αβ (r) corresponding to the "linear response" caused by a point-like "source term" S αβ (r) = s αβ δ(r) in real space.

B. Isotropic tensors and tensor fields

Isotropic tensors. Isotropic systems are described by "isotropic tensors" and "isotropic tensor fields". Components of an isotropic tensor remain unchanged by any orthogonal coordinate transformation [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF], i.e.

T * α1...αo = T α1...αo . (8) 
As noted at the end of Sec. II A the sign of tensor components change for a reflection of one axis if the number of indices equal to the inverted axis is odd. Consistency with Eq. ( 8) implies that all tensor components with an odd number of equal indices must vanish, e.g.,

T 12 = T 1112 = T 1222 = T 1234 = T 1344 = 0. (9) 
Isotropic tensor fields. The corresponding isotropy condition for tensor fields is given by [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF] T * α1...αo (q 1 , . . . , q d ) = T α1...αo (q * 1 , . . . , q * d ) (10) which reduces to Eq. ( 8) for q = 0. Please note that the fields on the left hand side of Eq. ( 10) are evaluated with the original coordinates while the fields on the right hand side are evaluated with the transformed coordinates. Another way to state this is to say that the left hand fields are computed at the original vector q = (q 1 , . . . , q d ) while the right hand fields are computed at the "actively transformed" vector q * = (q * 1 , . . . , q * d ). It is for this reason that Eq. ( 9) does not hold in general for tensor fields, i.e. finite components with an odd number of equal indices, e.g., T 1222 (q) = 0, are possible in principle for finite wavevectors.

Natural Rotated Coordinates. Fortunately, there are convenient coordinates, called "Natural Rotated Coordinates" (NRC), where the nice symmetry Eq. ( 9) for isotropic tensors can be also used for tensor fields. Let us assume that the wavevector q points into the direction of one of the axes, say, q = qδ 1β with q = |q|. (This may be achieved by a first rotation of the coordinate system.) Let us denote by "¬" arbitrary inversions of axes in this frame. We may thus rewrite Eq. (10) as T ¬ α1...αo (q 1 ) = T α1...αo (q ¬ 1 ) since q 2 = q ¬ 2 = . . . = q d = q ¬ d = 0. If we now assume in addition that T α1...αo (q) is an even function of its field variable q this becomes T ¬ α1...αo (q) = T α1...αo (q), (

i.e. both sides only depend on the same scalar parameter. We may thus use for each q the same reasoning as for tensor components.

Product theorem for isotropic tensor fields. Let us state a useful theorem for a general tensor field C(q) = A(q) ⊗ B(q) with A(q) and B(q) being two isotropic tensor fields and ⊗ standing either for an outer product, e.g. C αβγδ (q) = A αβ (q)B γδ (q), or an inner product, e.g. C αβγδ (q) = A αβγν (q)B νδ (q). Hence,

C * (q) = (A(q) ⊗ B(q)) * = A * (q) ⊗ B * (q) = A(q * ) ⊗ B(q * ) = C(q * ) ( 12 
)
using in the second step a general property of tensor (field) products, due to Eq. ( 6), and in the third step Eq. ( 10) for the fields A(q) and B(q) where q * stands for the "actively" transformed field position. We have thus demonstrated that C(q) is also an isotropic tensor field. This theorem allows to construct isotropic tensor fields from known isotropic tensor fields A(q) and B(q).

Multilinear forms. Alternatively, isotropic tensor fields may be constructed using multilinear forms [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF] L(v 1 , . . . , v o ; q) = T α1...αo (q) v 1 α1 . . . v o αo [START_REF] Landau | Theory of Elasticity[END_REF] of order o where L stands for a linear and (first order) homogeneous functional of a d-dimensional vector space [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF] and v 1 , . . . , v o are o arbitrary vectors of this vector space (with superscripts exceptionally used here for the numbering of these vectors). For tensor fields this functional also depends on the tensor field vector q. The goal is then to construct generic isotropic tensor fields associated with multilinear forms. This is done in a first step by means of additive terms of all possible scalars formed with the vectors v 1 , . . . , v o and q, e.g., inner products

v 1 • v 2 , v 1 • q or q • q or triple products such as [v 1 v 2 q].
In a second step all contributions are eliminated which are yet incompatible with Eq. ( 10) and other imposed symmetries. We shall illustrate this below in Sec. II E. Kronecker and Levi-Civita tensors. We note for later convenience that the Kronecker symbol δ αβ is an invariant tensor, δ * αβ = δ αβ , for any orthogonal transform [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF]. As a consequence, any tensor field, only containing additive terms such as i(q)δ αβ δ γδ with i(q) being an invariant scalar, is an isotropic tensor field. The same applies for tensor fields with terms containing one or several factors qα since in agreement with Eq. (10) this implies, e.g, (i(q)q α qβ δ γδ )

* = i(q)q * α q * β δ γδ (14) 
where Eq. ( 6) was used. The situation is more intricate for terms containing the Levi-Civita ("permutation") tensor ε αβγ [START_REF] Mcconnell | Applications of Tensor Analysis[END_REF] which is only invariant for the rotation subgroup but in general not for reflections [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF].

C. Assumed symmetries

All second-order tensors in this work are symmetric, T αβ = T βα , and the same applies for the corresponding tensor fields in either ror q-space. This is, e.g., the case for the stress fields σ αβ (q). We assume for all forth-order tensor fields that T αβγδ (q) = T βαγδ (q) = T αβδγ (q) (15) T αβγδ (q) = T γδαβ (q) and ( 16)

T αβγδ (q) = T αβγδ (-q). ( 17 
)
Let us remind that forth-order tensor fields are often constructed by taking outer products [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF] of second-order tensor fields. We consider, e.g., correlation functions T αβγδ (q) = Tαβ (q) Tγδ (-q) [START_REF] Maier | [END_REF] with Tαβ (q) being an instantaneous (not ensembleaveraged) second-order tensor field. Eq. ( 15) then follows from the symmetry of the second-order tensor fields. Evenness, Eq. ( 17), is a necessary condition for achiral systems. It implies that T αβγδ (q) is real if T αβγδ (r) is real and, moreover, Eq. ( 16) for correlation functions since Tαβ (q) Tγδ (-q) = Tγδ (q) Tαβ (-q) . As already emphasized, it is assumed that all our systems are isotropic. This implies that Eqs. (8)(9)(10) must hold for the ensembleaveraged tensor fields. Since our systems are also achiral, Eq. ( 11) applies and tensor field components with an odd number of equal indices must vanish if one axis points into the direction of the wavevector. We consider in the following subsections isotropic tensors and tensor fields respecting the above symmetries.

D. Isotropic tensors

Isotropic tensors of different order are discussed, e.g., in Sec. 2.5.6 of Ref. [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF]. While all tensors of odd order must vanish, we have

T αβ = k 1 δ αβ , (19) 
T αβγδ = i 1 δ αβ δ γδ + i 2 (δ αγ δ βδ + δ αδ δ βγ ) ( 20 
)
where k 1 , i 1 and i 2 are invariant scalars. Please note that all symmetries stated above hold, especially also Eq. ( 9). An example for an isotropic second-order tensor is the isotropic stress tensor σ αβ = -P δ αβ (with P being the average normal pressure) which is assumed in the present work. Note that the symmetry Eq. ( 15) was used for the second relation, Eq. (20). Importantly, this implies that only two coefficients are needed for a forthorder isotropic tensor. As further discussed in Sec. V C, the elastic modulus tensor E αβγδ is thus completely described by two elastic moduli, say λ and µ, and the stress relaxation modulus tensor E αβγδ (τ ) by two relaxation functions, say the "mixed relaxation function" M (τ ) and the "shear-stress relaxation function" G(τ ) [START_REF]Discrete time is denoted by t, continuous time by τ[END_REF].

E. Tensor fields for isotropic achiral systems

We begin by summarizing the relevant isotropic tensor fields for 1 ≤ o ≤ 4 compatible with the assumed symmetries (cf. Sec. II C). With l n (q), k n (q), j n (q) and i n (q) being invariant scalar functions of q we have T α (q) = l 1 (q) q α (21) T αβ (q) = k 1 (q) δ αβ + k 2 (q) q α q β (22) T αβγ (q) = j 1 (q) q α δ βγ + j 2 (q) q β δ αγ + j 3 (q) q γ δ αβ + j 4 (q) q α q β q γ (23) T αβγδ (q) = i 1 (q) δ αβ δ γδ (24) + i 2 (q) (δ αγ δ βδ + δ αδ δ βγ ) + i 3 (q) (q α q β δ γδ + q γ q δ δ αβ ) + i 4 (q) q α q β q γ q δ + i 5 (q) (q α q γ δ βδ + q α q δ δ βγ + q β q γ δ αδ + q β q δ δ αγ ) with q α ≡ q • e α . Let us first check that the stated relations are reasonable. All relations reduce (continuously) for q → 0 to the isotropic tensors stated in Sec. II D; all are, according to the discussion in the last paragraph of Sec. II B, isotropic tensor fields consistent with Eq. ( 10) and all symmetries stated in Sec. II C for the second-and forth-order tensor fields are satisfied. All tensor fields of even (odd) order are even (odd) with respect to q. Hence, tensor fields of odd order vanish for q → 0 consistently with Sec. II D. Note that the terms due to the invariants k 1 (q), i 1 (q) and i 2 (q) are strictly isotropic and, hence, independent of the coordinate system. All other terms depend on the components q α and thus on the coordinate system. Following Refs. [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF][START_REF] Forster | Hydrodynamic Fluctuations, Broken Symmertry, and Correlation Functions[END_REF] let us first show that Eq. ( 22) holds. According to Eq. ( 13) one may represent a general second-order tensor field by a bilinear form L(u, v; q). Invariant with respect to orthogonal transformations are the scalars q • q = q 2 , q • u, q • v and, additionally, the triple product [uvq] for three-dimensional systems. We obtain thus the general bilinear form

L(u, v; q) = k 1 u • v + k 2 (q • u)(q • v) + k 3 [uvq] = T αβ (q)u α v β with T αβ (q) = k 1 δ αβ + k 2 q α q β + k 3 ε αβγ q γ ( 25 
)
with k 1 , k 2 and k 3 being scalar coefficients. While the first two terms of T αβ (q) are fine with respect to Eq. ( 10), the last term must be eliminated since ε αβγ changes sign for a reflection at one axis [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF].

The indicated relations for the other fields are obtained in a similar manner [START_REF] Schultz-Piszachich | Mathematik 11: Tensoralgebra und -analysis[END_REF]. Note that using the product theorem, Eq. ( 12), one may obtain the isotropic tensor fields of third and forth order as sums of products of lower-order isotropic tensor fields. For instance, let A αβ (q) and B αβ (q) be two second-order isotropic tensor fields according to Eq. (22). It is readily seen that A αβ (q)B γδ (q) + A γδ (q)B αβ (q) immediately implies the first four terms of Eq. ( 24), i.e. i 5 (q) = 0 if T αβγδ (q) is only constructed from two isotropic second-order tensors. For the indicated more general isotropic forth-order tensors Eq. ( 24) with i 5 (q) = 0 we have included contributions due to products T α (q)T βγδ (q) of isotropic firstand third-order tensor fields.

Let us check that terms containing the Levi-Civita tensor ε αβγ cannot contribute additional terms to a forthorder tensor field T αβγδ (q) obeying the assumed symmetries. The forth-order multilinear form L(u, v, s, t; q) = T αβγδ (q)u α v β s γ t δ may indeed apriori contain in d = 3 terms of products of invariants such as

(u • v) [stq] = δ αβ ε γδν q ν u α v β s γ t δ , (26) 
[uvq] [stq] = ε αβν ε γδµ q ν q µ u α v β s γ t δ . ( 27 
)
Terms of the first type are disallowed for the same reason as argued for the second-order isotropic tensor, Eq. ( 25).

Note also that such terms would not be compatible with Eq. ( 17). Terms of the the second type, Eq. ( 27), can be expressed using Sarrus' law as ε αβν ε γδµ q ν q µ = δ αγ δ βδ q 2 + δ αδ q β q γ + δ βγ q α q δ -δ αδ δ βγ q 2 -δ αγ q β q δ -δ βδ q α q γ . This is, however, in conflict with Eq. ( 15) and Eq. ( 16).

To enforce, e.g., the α ↔ β-symmetry the multilinear form must also contain a term [vuq] [stq] which is equal to -[uvq] [stq]. All contributions of the second type needed for symmetry reasons thus exactly cancel. Finally, let us note that for physical reasons it is useful to rewrite for finite wavevectors (q = 0) the isotropic forth-order tensor field Eq. ( 24) in terms of the components qα = q • e α of the normalized wavevector q. It is thus convenient to bring in factors of q and to redefine i 3 (q) → i 3 (q)/q 2 , i 4 (q) → i 4 (q)/q 4 and i 5 (q) → i 5 (q)/q 2 . We thus rewrite Eq. ( 24) as

T αβγδ (q) = i 1 (q) δ αβ δ γδ (28) + i 2 (q) (δ αγ δ βδ + δ αδ δ βγ ) + i 3 (q) (q α qβ δ γδ + qγ qδ δ αβ ) + i 4 (q) qα qβ qγ qδ + i 5 (q) (q α qγ δ βδ + qα qδ δ βγ + qβ qγ δ αδ + qβ qδ δ αγ ) .
Now all i n (q) have the same physical units. As we shall see, the i n (q) become often constant, i n (q) → i n , or negligibly tiny for sufficiently small (but finite) q.

F. Isotropic T αβγδ (q) in two dimensions

We have stated in Eq. ( 28) the general form of forthorder tensor fields consistent with the assumed symmetries. As shown here, not all indicated terms are needed for the two-dimensional systems studied numerically in this work. To see this let us, following the discussion in Sec. II B, rotate the coordinate system such that the 1axis points into the direction of q, i.e. q α = qδ 1α with the prime " " marking the rotated frame. Using this coordinate system we define the four functions [21] 

c L (q) ≡ T 1111 (q) c N (q) ≡ T 2222 (q) c ⊥ (q) ≡ T 1122 (q) c T (q) ≡ T 1212 (q)      for q α = qδ 1α . ( 29 
)
Since the system is isotropic, these functions depend on the wavelength q but not on the direction q of the wavector q. In other words, they are invariant under rotation and they do not change either (being only dependent on q) if one of the coordinate axes is inverted. Importantly, all other components T αβγδ (q) are either by Eq. ( 15) and Eq. ( 16) identical to these invariants or must vanish for an odd number of equal indices due to Eq. ( 11) as discussed in Sec. II B. The d o = 16 components T αβγδ (q) are thus completely determined by the four invariants and this for any q. The tensor field T αβγδ (q) in the original frame may then be obtained by the inverse rotation of T αβγδ (q) to the original unrotated frame using Eq. ( 6). Let us define the coefficients i n (q) using

c L (q) = i 1 (q) + 2i 2 (q) + 2i 3 (q) + i 4 (q) c N (q) = i 1 (q) + 2i 2 (q) c ⊥ (q) = i 1 (q) + i 3 (q) c T (q) = i 2 (q) ( 30 
)
which is equivalent to the inverse relations

i 1 (q) = c N (q) -2c T (q) (31) i 2 (q) = c T (q) i 3 (q) = c ⊥ (q) -c N (q) + 2c T (q) i 4 (q) = c L (q) + c N (q) -2c ⊥ (q) -4c T (q).
Consistently with Ref. [21] it is then seen that

T αβγδ (q) = i 1 (q) δ αβ δ γδ (32) + i 2 (q) (δ αγ δ βδ + δ αδ δ βγ ) + i 3 (q) (q α qβ δ γδ + qγ qδ δ αβ ) + i 4 (q) qα qβ qγ qδ
which agrees with Eq. ( 28) if we set i 5 (q) ≡ 0.

G. Response to point sources

Isotropic tensor fields may also be constructed by taking the (inner or outer) product of a tensor field and a (constant) tensor. We focus here on the second-order tensor field

R αβ (q) = 1 V C αβγδ (q) s γδ (33) 
obtained from a forth-order tensor field C αβγδ (q) and a second-order tensor s αβ and where (as always) summation over repeated indices is implied. For later convenience we have introduced the volume V of the system. The results presented below are readily generalized for different types of products of tensor fields and tensors and for dimensions other than d = 2. If both C αβγδ (q) and s αβ are isotropic, the product theorem Eq. ( 12) discussed in Sec. II B implies that R αβ (q) must also be an isotropic tensor field. Under the additional assumptions stated in Sec. II C R αβ (q) is then given by Eq. ( 22) in terms of two invariants k 1 (q) and k 2 (q). These invariants can in turn be expressed in terms of the invariants of C αβγδ (q) and s αβ . It is important to emphasize that albeit being closely related R αβ (q) and C αβγδ (q) have in general different angular dependences. This may be readily seen by focusing on the specific cases R 12 (q) and C 1212 (q). It follows from Eq. ( 22) that R 12 (q) ∝ q1 q2 ∝ sin(2θ) with q1 = cos(θ) and q2 = sin(θ) and from Eq. ( 32) that

C 1212 (q) = i 2 (q) + i 4 (q)q 2 1 q2
2 is given by an angularindependent scalar plus a term proportional to cos(4θ). In other words, R 12 (q) is a quadrupolar field whereas C 1212 (q) is octupolar [START_REF]the wikipedia entries on quadrupoles and general multipolar expansions as used, say[END_REF]. Both fields thus reveal distinct angular patterns.

For reasons which will become obvious below we shall call R αβ (q) the "response", C αβγδ (q) the "correlation function" or "propagator" and s γδ the "source" or "perturbation". Up to now we have not used that the field vector q refers to the wavevector characterizing fields in reciprocal space. Using Eq. (A5) it is seen that the tensor s αβ /V in reciprocal space corresponds to a "point source" S αβ (r) = s αβ δ(r) in real space where we have used Dirac's delta function. The response R αβ (r) = F -1 [R αβ (q)] in real space is then given by R αβ (r) = C αβγδ (r)s γδ [START_REF] Eshelby | Proc. R. Soc. Lond. A[END_REF] using the correlation function

C αβγδ (r) = F -1 [C αβγδ (q)]
in real space. For a more general source term S αβ (r) we have of course a convolution relation

R αβ (r) = 1 V dr C αβγδ (r -r ) S γδ (r ) (35) 
which reduces to Eq. ( 34) for a point source. Importantly, all statements made above for the reciprocal space remain valid in real space, i.e. that R αβ (r) is an isotropic tensor field if C αβγδ (r) and S αβ (r) are isotropic and, more specifically, that R 12 (r) is a quadrupolar field while C 1212 (r) is octupolar. Importantly, in many physical situations the source is in fact not isotropic and thus in turn the response field not consistent with Eq. (22). We remind that, e.g., the mechanical response of amorphous solids under loading proceeds from local and irreversible rearrangements, resetting disorder locally thus generating a highly nontrivial mechanical noise ("shear transformation zones") [6-8, 11, 12]. According to a popular model of localized plastic failure two orthogonal twin force dipoles of opposite signs may be imposed at the origin [8]. This suggests to relax the isotropy condition for s αβ . Since the source tensor is still symmetric it may be diagonalized by an appropriate rotation of the coordinate system where s 12 = s 21 = 0 and s 11 and s 22 become the two (in general not identical) eigenvalues. Hence,

R αβ (q) = s 11 C αβ11 (q) + s 22 C αβ22 (q)
with the isotropic correlation tensor field still being given by Eq. (32). Specifically, this implies

R 12 (q) = q1 q2 i 3 (q)(s 11 + s 22 ) + i 4 (q)(s 11 q2 1 + s 22 q2 
2 ) .

For s 11 = s 22 the underlined term becomes a constant and we recover the isotropic and quadrupolar response field discussed above. Interestingly, for eigenvalues of opposite sign, s 11 = -s 22 , we obtain

R 12 (q) = s 11 i 4 (q) q1 q2 (q 2 1 -q2 2 ) ∝ sin(4θ). (36) 
The (non-isotropic) response field R 12 (q) thus has in this case the same multipole pattern as the (isotropic) correlation field C 1212 (q) albeit shifted by an angle π/8 [START_REF]the wikipedia entries on quadrupoles and general multipolar expansions as used, say[END_REF].

It is readily seen by inverse FT that the same behavior applies in real space. In summary, two different types of angular dependence of a response field must be distinguished. If the angular dependence is consistent with Eq. ( 22), this behavior should not be called "anisotropy" since the angle dependence is basically a trivial consequence of the fact that tensor field components are measured. If on the other hand R αβ (q) is not consistent with Eq. ( 22) this suggests that either the correlation tensor field C αβγδ (q) and/or the source tensor s αβ are not isotropic. In many physical situations this is in fact expected for the source term while the correlation fields may be assumed to be isotropic. The physical behavior of response and correlation fields, albeit closely related, then differ and should thus not be lumped together.

III. COMPUTATIONAL ISSUES

Algorithm and systems. We present below numerical data obtained for amorphous glasses formed by polydisperse Lennard-Jones (pLJ) particles [25,[START_REF] George | [END_REF] simulated by means of Monte Carlo (MC) simulations [START_REF] Allen | Computer Simulation of Liquids[END_REF]. See Appendix C for details (Hamiltonian, units, configuration preparation, data averaging). We focus on systems containing n = 10000 particles at a working temperature T = 0.2 much lower than the glass transition temperature T g ≈ 0.26, i.e. for our largest sampling time ∆τ = 10 7 the systems behave as solid elastic bodies and all stochastic processes are stationary [START_REF] George | [END_REF]. Importantly, all N c = 200 completely independent configurations c are quenched and tempered by means of a mix of local and swap MC hopping moves [START_REF] George | [END_REF][START_REF] Ninarello | [END_REF] (being thus effectively kept adiabatically at thermal equilibrium) while the data production runs are sampled only using local MC moves. For each c we store several time-series containing each N t = 10000 frames t.

Data sampling and analysis. In a first step various instantaneous properties are computed for each t which are then "t-averaged" over the correlated t and finally "c-averaged" over the independent c. We thus characterize, e.g., the elastic modulus tensor E αβγδ by means of the stress-fluctuation formalism [47][48][49][50][51][52] from which a finite Young modulus E ≈ 45 is obtained (cf. Sec. V C). Similarly, we compute in turn

• for each c and t the stress tensor field σ αβ (r, t)| c (cf.

Appendix D) using a regular square grid as shown in Fig. 2 with a lattice constant a grid ≈ 0.2,

• the t-averaged fields σαβ (r)| c ,

• by Fast-Fourier transform the corresponding stress fields σαβ (q • the correlation functions cαβγδ (q)| c in reciprocal space for each configuration c, cf. Eq. (C2),

)| c = F[σ αβ (r)| c ] in reciprocal space,
• the c-average cαβγδ (q), cf. Eq. (C3),

• and finally by inverse FT cαβγδ (r) = F -1 [c αβγδ (q)] the correlation functions in real space.

To obtain the correlation functions in rotated coordinates we rotate first σαβ (q)| c → σ αβ (q)| c and perform then all the subsequent steps as before. We note finally that real and reciprocal space correlation functions have the same dimension due to our FT convention (cf. Appendix A).

IV. MAIN NUMERICAL RESULTS

Determination of ICFs in NRC. Before we shall have a closer look at cαβγδ (q) in standard unrotated or rotated coordinates let us first characterize the correlations in NRC, i.e. for each wavevector q the coordinate system is rotated until the 1-axis coincides with the qdirection. We mark these new tensor field components by "•" to distinguish them from standard rotated tensor field components (marked by primes " ") using the same rotation for all q. Note that q • α = qδ 1α . The ICFs c• αβγδ (q) = σ• αβ (q)σ • γδ (-q) are thus obtained using the "Invariant Stress Fields" (ISFs) σ• αβ (q)| c rotated differently for each q. Importantly, for strictly isotropic systems c• αβγδ (q) only depends on the magnitude q of q but not on its direction q. Consistently with Eq. ( 29) and FIG. 3: ICFs cN(q), cL(q), c⊥ (q) and cT(q) for a large sampling time ∆τ = 10 7 and n = 10000 particles. Horizontal solid lines indicate the phenomenological constant e ≈ 45. Inset: c• 2222 (q, θ) does not depend on θ while c1212(q, θ) is well described by Eq. (43) (dashed line). Main panel: cL(q), c⊥ (q) and cT(q) vanish while βV cN(q) e > 0 for q 1. A thin solid line emphasizes the peak of cN(q) at q ≈ 6.5.

following Ref. [21], we define

cL (q) ≡ c• 1111 (q) q , (37) 
cN (q) ≡ c• 2222 (q) q , c⊥ (q) ≡ c• 1122 (q) q and cT (q) ≡ c• 1212 (q) q where we average over all q with |q| ≈ q (using a bin width similar to the lattice spacing of the grid in reciprocal space). The q-averaged four ICFs are shown in the main panel of Fig. 3 for our largest sampling time ∆τ . The central observation is that cL (q), c⊥ (q) and cT (q) vanish for sufficiently large ∆τ while cN (q) remains finite. Moreover, as emphasized by the bold solid line in the main panel βV cN (q) e ≈ 45 for q 1 [START_REF] Schouten | Tensor Analysis for Physicists[END_REF] with β = 1/T being the inverse temperature, V the system volume and e a phenomenological constant characterizing the plateau in the hydrodynamic limit. As shown in the inset of Fig. 3 for c• 2222 (q, θ) and α = 0 • , we have checked for several tensor field components c• αβγδ (q, θ) that the expected θ-independence for isotropic systems holds (within statistical accuracy).

Sampling time dependence and symmetry breaking. The dependence of the ICFs on ∆τ is summarized in Fig. 4. Let us first note that the (t-averaged) force ḡα (r) = ∂ β σαβ (r) acting on each material element becomes in reciprocal space

ḡ• α (q) = iq • β σ• αβ (q) ( 39 
)
using NRC. Since q • 1 = q is finite (for q = 0), finite σ• 11 (q) and σ• 12 (q) correspond to finite forces ḡ• α (q) which in turn FIG. 4: ∆τ -dependence in reciprocal space using NRC and q ≈ 0.06. Main panel: ∆τ -dependence of ICFs demonstrating that cN(q, ∆τ ) remains finite while all other ICFs decay inversely with ∆τ . Inset: σ• 11 (q, ∆τ ), σ• 12 (q, ∆τ ) and σ•

22 (q, ∆τ ) in the complex plane (horizontal axis for real part, vertical axis for imaginary part) as a function of ∆τ (using a logarithmic scale for the data points) for one q and one c. σ• 11 (q, ∆τ ) and σ• 12 (q, ∆τ ) vanish for large ∆τ , i.e. converge to the origin of the complex plane, while σ• 22 (q, ∆τ ) has a finite attractor σ•q 22 (q). generate fluxes. Finite σ• 11 (q, ∆τ ) and σ• 12 (q, ∆τ ) must thus rapidly vanish, as seen from the corresponding trajectories in the inset of Fig. 4, and therefore cL (q, ∆τ ), c⊥ (q, ∆τ ) and cT (q, ∆τ ) also vanish for large ∆τ (main panel) [25]. Since q • 2 = 0 for all q the normal stress σ• 22 (q, ∆τ ) may be finite without violating static mechanical equilibrium. As shown in the inset, the σ• 22 (q, ∆τ ) thus have in general finite attractors σ•q 22 (q). As emphasized by the superscript "q", these are for realistic ∆τ essentially quenched stresses. (Only for ∆τ of order of the α-relaxation time τ α these attractors become weakly time-dependent diffusively decaying for symmetry reasons towards the origin of the complex plane. Note that ∆τ τ α for T = 0.2.) Since the large-∆τ limit of cN (q, ∆τ ) is the typical squared magnitude of the σ•q 22 (q) in the complex plane, this implies e = βV σ•q 22 (q)σ •q 22 (-q) .

This means that e is a finite ∆τ -independent static property characterizing the typical size of the (continuous) symmetry breaking associated with the stress components normal to the wavevectors for each configuration c. Note that e does thus not depend on whether we use, e.g., a momentum conserving or an overdamped simulation scheme [START_REF] Allen | Computer Simulation of Liquids[END_REF]. In general, it is a fitting parameter depending on the distribution of the σ•q 22 (q) caused by the preparation history. Interestingly, it is observed that e is similar to the Young modulus E. This result is in fact expected from recent studies on equilibrium viscoelastic fluids (including supercooled liquids and glasses) [21,25] showing that the ICFs may be expressed in the small-q limit in terms of invariant macroscopic relaxation func- tions [START_REF] Rubinstein | Polymer Physics[END_REF][START_REF] Maier | [END_REF][19][20][21]25]. Naturally, this requires additional assumptions the crucial point being here that the systems must be at thermal equilibrium. See Sec. V for more details.

Reciprocal space correlation functions. We turn now to a coordinate system rotated as in Fig. 1(b) by the same angle α for all q. As shown in Sec. II F and using the form-invariance of isotropic tensor fields, cf. Eq. ( 10), the four ICFs determine in d = 2 the isotropic forth-order tensor field [21] 

c αβγδ (q) = [c N -2c T ] δ αβ δ γδ (41) + cT (δ αγ δ βδ + δ αδ δ βγ ) + [c ⊥ -cN + 2c T ] q α q β δ γδ + q γ q δ δ αβ + [c L + cN -2c ⊥ -4c T ]
q α q β q γ q δ with q α being the α-component of q = q in rotated coordinates. The α-rotation changes the terms in the last two lines of Eq. ( 41). (Minor generalizations are needed for d > 2.) Using the known values of the ICFs of our system Eq. ( 41) reduces to

βV c αβγδ (q) e × (42) 
(δ αβ δ γδ -q α q β δ γδ -q γ q δ δ αβ + q α q β q γ q δ ) for q 1 and large ∆τ . According to Eq. ( 42) we thus obtain, e.g., for the shear-stress autocorrelation function

8βV c 1212 (q) = e (1 -cos[4(θ -α)]) (43) 
for all α. As seen from the inset of Fig. 3 for α = 0 • , this prediction (bold dashed line) agrees perfectly with our data (triangles).

Real space correlation functions. We return now to the correlations c αβγδ (r) = F -1 [c αβγδ (q)] in real space. As already stated in the Introduction, cf. Eq. ( 1), inverse Fourier transformation (cf. Appendix B) implies with θ being the angle indicated in Fig. 1(a). The same large-∆τ limit holds for -βc 1122 (r) and for β(c 1111 (r) + c 2222 (r))/2. Moreover,

-βc 1212 (r) e 4πr 2 cos[4(θ -α)] for r 1 ( 44 
)
β(c 1111 (r) -c 2222 (r))/2 2 e 4πr 2 cos[2(θ -α)] (45) for r
1 and for large ∆τ . The angle dependence for the shear-stress autocorrelation function in real space is investigated in Fig. 5 where we plot using linear coordinates βc 1212 (r, θ)r 2 as a function of x = θ-α for different r and α. The data compare well with the prediction, Eq. ( 44). Naturally, the statistics deteriorates with increasing r.

Asymptotic r-dependence. A more precise check of the r-dependence is obtained using the θ-average

P [f, p](r) ≡ 2 π π 0 dθ f (r, θ) cos(pθ) (46) 
for p = 2 and p = 4. For convenience the prefactor of the integral is chosen such that P [cos(2θ), 2] = P [cos(4θ), 4] = 1. (On the discrete grid the integral is replaced by the sum over all grid points in a distance interval [r -δr/2, r + δr/2] which is finally normalized by half the number of grid points.) All correlation functions f (r) presented in Fig. 6 are rescaled to make their projections collapse on the same power law e/4πr 2 (bold solid lines). The main panel presents different correlation functions for n = 10000. The negative signs for c1212 and c1122 are implied by Eq. ( 44). Consistently with Eq. ( 45) the projection for (c 1111 -c 2222 )/2 is additionally rescaled with a prefactor β/2. Focusing on f (r) = -βc 1212 (r) and p = 4 we verify in the inset the system-size independence of these results. Data for a broad range of particle numbers n are presented. As can be seen, all data nicely collapse on e/4πr 2 , confirming thus the predicted long-range correlations for asymptotically large simulation boxes. Similar results (not shown) have been found for the projections of other cαβγδ (r).

V. WHY AND WHEN e ≈ E HOLDS A. Introduction

The phenomenological parameter e was defined in Sec. IV by the limit Eq. [START_REF] Schouten | Tensor Analysis for Physicists[END_REF]. Note that e has the same dimension energy/volume as the stress or an elastic modulus. We have verified (cf. Fig. 4) that e indeed becomes ∆τ -independent for sufficiently large sampling times ∆τ for our pLJ particle glasses. Having fitted the value e ≈ 45 and using that the ICFs cL (q), c⊥ (q) and cT (q) vanish, all numerical results for sufficiently large ∆τ , small q or large r can be explained without any additional physical insight. We have observed, however, that e is similar to the (equilibrium static) Young modulus E. Albeit not strictly necessary for the main thrust of this work, a demonstration that both constants should be similar or even equal -under to be specified assumptions and approximations -must be an important finding allowing to estimate apriori the angular dependence of the correlation functions. This can indeed be done following Refs. [21,25] and in agreement with a different and complementary approach developed in Refs. [START_REF] Maier | [END_REF][19][20]. Naturally, this requires additional physical input. We remind first in Sec. V B how the correlation functions c(∆τ ) of time-averaged fields, the focus of the present work, are related to the correlation functions c(τ ) of instantaneous fields under the assumption that the relevant stochastic processes are stationary [START_REF]Discrete time is denoted by t, continuous time by τ[END_REF]. A short recap of linear viscoelasticity is given in Sec. V C. Using the general theoretical predictions for the ICFs of instantaneous stress fields [21,25], reminded in Sec. V D, it is shown (cf. Sec. V E) that e ≈ E for equilibrated viscoelastic fluids with a sufficiently broad elastic plateau.

B. Instantaneous and time-averaged fields

General connection for stationary processes. We discuss in this work spatial correlation functions c (both in real and reciprocal space) of time-averaged stress fields computed over N t = ∆τ /δτ instantaneous configurations. The various correlation functions thus depend in principle on the sampling time ∆τ as we have seen in Fig. 4. As shown elsewhere [START_REF] George | [END_REF] assuming a stationary stochastic process (both for global properties as for fields) the ∆τ -dependence of c(∆τ ) can be traced back via

c(∆τ ) = 2 ∆τ 2 ∆τ 0 dτ (∆τ -τ ) c(τ ) ( 47 
)
to the time dependence of the corresponding correlation function c(τ ) of the instantaneous fields. Please note that Eq. ( 47) is closely related to the equivalence of the Einstein relation, corresponding to c(∆τ ), and the Green-Kubo relation, corresponding to c(τ ), for transport coefficients [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] George | [END_REF][START_REF] Allen | Computer Simulation of Liquids[END_REF]. We thus study in this work correlations within the Einstein picture. This has the advantage that the integral Eq. ( 47) filters irrelevant high frequencies, i.e. c(∆τ ) is a natural smoothing function of the instantaneous field correlation function c(τ ) on which previous work has focused on [18-26, 36, 37, 53]. Plateau values and asymptotic behavior. Obviously, Eq. ( 47) implies that c(τ ) is constant iff c(∆τ ) is constant and both constants are equal. Importantly, this even holds if c(τ ) and c(∆τ ) are only constant for a finite but sufficiently large time window [START_REF] George | [END_REF]. Hence, if c(τ ) becomes constant in the large-time limit c(∆τ ) as well becomes constant, i.e.

lim τ →∞ c(τ ) = lim ∆τ →∞ c(∆τ ) ≡ c ∞ (48) 
with c ∞ being the common asymptote [START_REF]much larger than τ1 but many orders of magnitude smaller than τ2[END_REF]. Thus, cL (q, ∆τ ) ≈ c⊥ (q, ∆τ ) ≈ cT (q, ∆τ ) 0 for large ∆τ implies c L (q, τ ) ≈ c ⊥ (q, τ ) ≈ c T (q, τ ) 0 for large τ and visa versa. Similarily, βV c N (q, τ ) e ⇔ βV cN (q, ∆τ ) e (49) for the ICFs of the transverse normal stresses in the low-q limit for, respectively, τ → ∞ and ∆τ → ∞ [START_REF]much larger than τ1 but many orders of magnitude smaller than τ2[END_REF].

Generalized Maxwell model. It follows directly from Eq. ( 47) for c(τ ) = c p exp(-τ /τ p ) that [START_REF] George | [END_REF] c(∆τ ) = c p D(∆τ /τ p ) with

D(x) = 2[exp(-x) -1 + x]/x 2 (50) 
being the "Debye function" well known in polymer science [START_REF] Rubinstein | Polymer Physics[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. For systems with overdamped dynamics, such as for our MC simulations, one expects the relaxation dynamics to be described by a linear superposition of exponentially decaying Maxwell modes [START_REF] Rubinstein | Polymer Physics[END_REF][START_REF] Ferry | Viscoelastic properties of polymers[END_REF]. For such a "Generalized Maxwell model" Eq. ( 50) generalizes to the superposition [START_REF] George | [END_REF] c(∆τ

) = c ∞ + pmax p=1 c p D(∆τ /τ p ) (51) 
with c p being the amplitude and τ p (with 0 < τ p < ∞) the relaxation time of a mode p. Note that c ∞ corresponds to the modes with virtually infinite relaxation times. We remind that given a sufficiently high number of modes p (or a distribution of modes) it is in principle always possible to fit any reasonable c(∆τ ) using the standard numerical techniques [25,[START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Provencher | [END_REF]. In any case, for ∆τ τ with τ = τ 1 being the largest (Maxwell) relaxation time Eq. ( 51) leads to

c(∆τ ) c ∞ + 2 ∆τ pmax p=1 c p τ p , (52) 
i.e. c(∆τ )-c ∞ ultimately decays inversely with ∆τ . This decay is emphasized by the dashed-dotted line in Fig. 4. 

C. Linear elasticity and viscoelasticity

Static elastic moduli. Consistently with Sec. II D, the elastic modulus tensor E αβγδ for isotropic systems is completely described by two invariants, say the two Lamé moduli λ and µ. Using Eq. ( 20) E αβγδ may thus be written as [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Landau | Theory of Elasticity[END_REF] 

E αβγδ = λδ αβ δ γδ + µ (δ αγ δ βδ + δ αδ δ βγ ) . ( 53 
)
We have determined λ and µ by means of the stressfluctuation formalism described elsewhere [47][48][49][50][51][52]. This shows that for our pLJ particle systems at T = 0.2 we have λ ≈ 39 and µ ≈ 14. The latter value is indicated by the bold horizontal line in Fig. 7. (We have verified that the fluctuations of λ and µ between different independent configurations c are negligible.) Alternatively, one may describe the elastic response of a body by means of the creep compliance tensor J αβγδ being the inverse of the elastic modulus tensor:

J αβγδ E γδα β = 1 2 (δ αα δ ββ + δ αβ δ α β ) . ( 54 
)
For isotropic bodies [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Landau | Theory of Elasticity[END_REF]]

J αβγδ = 1 + ν 2E (δ αγ δ βδ + δ αδ δ βγ ) - ν E δ αβ δ γδ ( 55 
)
with E being the Young modulus and ν Poisson's ratio. Consistently with Eq. ( 54) the two sets of invariants 58) for the c-averages λ and µ.

Stress relaxation tensor for isotropic systems. The static elastic modulus tensor E αβγδ can be generalized in the time domain as discussed systematically and in more detail in the literature [START_REF] Rubinstein | Polymer Physics[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Balucani | Dynamics of the Liquid State[END_REF][START_REF] Evans | Statistical mechanics of nonequilibrium liquids[END_REF]. This is important in general for viscoelastic fluids but also for the dynamical response of (crystalline or amorphous) solid bodies. The forth-order stress relaxation tensor E αβγδ (τ ) characterizes the time-dependence of the stress increment δσ αβ (τ ) as a function of an imposed strain αβ (τ ) [START_REF]Discrete time is denoted by t, continuous time by τ[END_REF]. Generalizing Eq. ( 53) for isotropic systems we may write

E αβγδ (τ ) = M (τ ) δ αβ δ γδ + G(τ ) (δ αγ δ βδ + δ αδ δ βγ ) (59) 
with M (τ ) being the "mixed relaxation modulus" and G(τ ) the "shear-stress relaxation modulus". The macroscopic linear response tensor is thus fully determined by (again) two invariant response functions. It is useful to additionally introduce the "longitudinal relaxation modulus" L(τ

) = M (τ ) + 2G(τ ). Note that G(τ ) = E 1212 (τ ), M (τ ) = E 1122 (τ ) and L(τ ) = E 1111 (τ ) = E 2222 (τ ).
The relaxation modulus E αβγδ (τ ) reduces (continuously) to the static modulus E αβγδ for large times, i.e. the invariant relaxation functions become

L(τ ) → λ + 2µ, G(τ ) → µ, M (τ ) → λ for τ → ∞ (60)
with λ and µ being the known Lamé moduli. That this is the case can be seen for G(τ ) in Fig. 7 for two different MC variants. As expected for equilibrium liquids the shear modulus vanishes, µ = 0, for the variant with swap MC hopping moves (squares) used for the equilibration of our systems. The total ensemble of independent configurations c thus corresponds to a liquid system while each configuration c being confined in a metabasin if only local moves are included is an (isotropic) elastic body. We note for later convenience that, hence,

L(τ ) - M (τ ) 2 L(τ ) → λ + 2µ - λ λ + 2µ = 4µ λ + µ λ + 2µ , (61) 
being due to Eq. ( 58) equal to the Young modulus E in two dimension.

Experimental relevant time scales. Strictly speaking, µ = E = 0 holds for all systems including amorphous glasses or even standard solids, if the mathematical limit "τ → ∞" is read "for times much larger than any instrinsic relaxation time of the system" [START_REF] Rubinstein | Polymer Physics[END_REF]. In practice, the largest "terminal" relaxation time τ (for glasses called "α-relaxation time" [START_REF] Ferry | Viscoelastic properties of polymers[END_REF]) for many viscoelastic systems is commonly much larger than any reasonable typical experimental or computational measurement time τ exp . Moreover, for many viscoelastic systems the relaxation moduli are approximatively constant over many orders of magnitude in a time window τ 1 τ τ 2 . This means especially that the system can support a finite shear stress in this time window. It is common that τ 1 is given by the time τ A needed to relax the "affine strains" applied at τ = 0 or by the relaxation time τ b within a meta-basin in glassy materials [25,[START_REF] George | [END_REF][49][50][51][52] and τ 2 by the already mentioned terminal relaxation time τ . (Obviously, much more complicated scenarios exist [START_REF] Rubinstein | Polymer Physics[END_REF][START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Balucani | Dynamics of the Liquid State[END_REF].) We assume in the following for the simplicity of the discussion that this intermediate plateau regime becomes very broad such that τ 2 ≈ τ exceeds τ exp by many orders of magnitude. This is indeed the case, e.g., for the shear-stress relaxation modulus G(τ ) shown in Fig. 7 for local MC moves (circles). The meaning of "τ → ∞" is thus (here as elsewhere in this work) "for times much larger than τ 1 but yet much smaller than τ 2 ". In this sense Eq. ( 60) and Eq. ( 61) are still valid with λ, µ or E referring now to the (finite) plateau values. It is these plateau values which are computed by means of out-of-equilibrium methods or by means of stress or strain fluctuation formulae [START_REF] Allen | Computer Simulation of Liquids[END_REF] using times series with sampling times τ 1 ∆τ τ 2 .

D. Key relations for overdamped motion

Previous studies [START_REF] Maier | [END_REF][19][20][21]25] have focused on the correlation functions c • αβγδ (q, τ ) of the instantaneous "Invariant Stress Fields" (ISFs) σ• αβ (q, τ ) in NRC. Importantly, it has been shown [21] that the four "Invariant Correlation Functions" (ICFs)

c L (q, τ ) ≡ c • 1111 (q, τ ) q , c ⊥ (q, τ ) ≡ c • 1122 (q, τ ) q , c T (q, τ ) ≡ c • 1212 (q, τ ) q and c N (q, τ ) ≡ c • 2222 (q, τ ) q , ( 62 
)
averaged over all q of similar magnitude q (within a given bin width δq), can be expressed for small wavevectors in terms of two independent invariant relaxation functions ("material functions") [21] characterizing the system. Naturally, these relations are formulated in Fourier-Laplace space. As in Ref. [25] we use here the modified Laplace transform

f (s) = L[f (τ )] = s ∞ 0 dτ f (τ )e -τ s , (63) 
called "s-transform" [25] or "Laplace-Carson transform" [START_REF] Rubinstein | Partial differential equations in classical mathematical physics[END_REF], for which due to the prefactor s the original function f (τ ) and its Laplace transform f (s) have the same dimension. We note by

L(s) = L[L(τ )] = M (s) + 2G(s), M (s) = L[M (τ )] and G(s) = L[G(τ )]
the Laplace transforms of the invariant relaxation moduli introduced in Sec. V C. In the present work MC simulations have been used, i.e. not a momentum conserving dynamics as assumed in Refs. [21,25] but an overdamped simulation dynamics where the drift velocity of particles is proportional to the imposed body force. Due to this the slightly modified relations become

βV c L (q, s) = sL(s) s + q 2 L(s)/ζ (64) 
βV c ⊥ (q, s) = sM (s) s + q 2 L(s)/ζ (65) 
βV c T (q, s) = sG(s) s + q 2 G(s)/ζ (66) 
βV c N (q, s) = L(s) - q 2 M (s) 2 /ζ s + q 2 L(s)/ζ (67) 
with ζ being the friction constant of the overdamped dynamics [61]. All relations hold for momentum conserving dynamics if ζ is substituted by the term ρs due to inertia with ρ being the mass density. For momentum conserving dynamics, Eq. ( 66) is well-established [START_REF] Balucani | Dynamics of the Liquid State[END_REF][START_REF] Evans | Statistical mechanics of nonequilibrium liquids[END_REF]; its derivation based on the "Fluctuation-Dissipation Theorem" (FDT) [START_REF] Forster | Hydrodynamic Fluctuations, Broken Symmertry, and Correlation Functions[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Evans | Statistical mechanics of nonequilibrium liquids[END_REF][START_REF] Chaikin | Principles of condensed matter physics[END_REF] is given in Ref. [START_REF] Semenov | [END_REF] in the context of viscoelastic hydrodynamic interactions in polymer liquids. The first relation Eq. ( 64) was already mentioned in Ref. [64]. We note finally that these findings agree (where a comparison is possible) with an independent and complementary approach to long-wavelength stresscorrelations in viscoelastic fluids at equilibrium based on the Zwanzig-Mori projection operator formalism [START_REF] Maier | [END_REF][19][20].

E. Long-time limit for viscoelastic plateau Asymptotic limit. As noted in Sec. V C we focus on the long-time limit of the four key relations where in a large time window τ 1 τ τ 2 all relaxation moduli are approximatively constant. Due to the Laplace-Carson transform, Eq. ( 63), Eq. ( 60) implies

L(s) → λ + 2µ, G(s) → µ, M (s) → λ (68) 
for small s (with τ 1 1/|s| τ 2 ). Using the final-value theorem of Laplace transforms we get

c L (q, τ ) ≈ c ⊥ (q, τ ) ≈ c T (q, τ ) 0 ( 69 
)
βV c N (q, τ ) → L(τ ) - M (τ ) 2 L(τ ) E (70) 
FIG. 8: Scaling of ICFs cL(q, ∆τ ), cN(q, ∆τ ), c⊥ (q, ∆τ ) and cT(q, ∆τ ) for large ∆τ . We present the rescaled ICFs y = βV cL/(λ + 2µ), (βV cN -E)/λν and βV c⊥ /λ vs. x = ∆τ /τL and y = βV cT/µ vs. x = ∆τ /τT assuming ζ = 900 for q = qmin and q ≈ 0.18 (filled symbols). The bold dashed line indicates the Debye relation, the dashed-dotted line shows the expected asymptotic power-law decay.

for small q and large τ [START_REF]much larger than τ1 but many orders of magnitude smaller than τ2[END_REF]. (Eq. ( 61) was used in the last step of Eq. ( 70).) Using in addition Eq. ( 48) or Eq. ( 49) we have thus demonstrated that for general viscoelastic fluids at thermal equilibrium the phenomenological parameter e, cf. Eq. ( 38), is indeed given by the Young modulus E in two dimensions. As mentioned above (cf. Sec. IV), these results are qualitatively understood by the facts that finite cL (q), c⊥ (q) and cT (q) for large ∆τ would violate mechanical equilibrium while a finite cN (q) is possible since a finite transverse normal ISF σ• 22 (q) cannot induce a force on a volume element -due to Eq. ( 39) and q • 2 = 0 in NRC for all q -and, hence, no deterministic flux.

Predictions for leading deviations. Importantly, the limits Eq. ( 69) and Eq. ( 70) do not depend (to leading order) on the simulation dynamics, e.g. of whether we have used a momentum conserving or overdamped dynamics. As emphasized by the dash-dotted line in Fig. 4 cL (∆τ ), c⊥ (∆τ ) and cT (∆τ ) vanish inversely with ∆τ as one expects for uncorrelated fluctuations. We show in the remainder of this subsection that these leading deviations for finite ∆τ are quantitatively described using Eqs. (64)[START_REF]-like response of a liquid probed by local strain responses to a localized plastic event (particle rearrangements)[END_REF][START_REF] Vest | [END_REF](67). To do this let us introduce the characteristic times

τ L ≡ ζ/q 2 (λ + 2µ) and τ T ≡ ζ/q 2 µ (71) 
characterizing, respectively, the longitudinal and the transverse overdamped relaxation. Using Eq. ( 68) this leads to

βV c L (q, s) (λ + 2µ) s s + 1/τ L (72) βV c ⊥ (q, s) λ s s + 1/τ L (73) βV c T (q, s) µ s s + 1/τ T (74) βV c N (q, s) -E λν s s + 1/τ L . ( 75 
)
The Laplace-Carson transformation L[exp(-t/τ )] = s/(s + 1/τ ) thus gives

βV c L (q, t) (λ + 2µ) exp(-t/τ L ) (76) βV c ⊥ (q, t) λ exp(-t/τ L ) (77) βV c T (q, t) µ exp(-t/τ T ) (78) βV c N (q, t) -E λν exp(-t/τ L ). ( 79 
)
for the ICFs of the instantaneous ISFs. Hence, Eq. ( 50) leads to

βV cL (q, ∆τ ) (λ + 2µ) D(∆τ /τ L ) (80) βV c⊥ (q, ∆τ ) λ D(∆τ /τ L ) (81) βV cT (q, ∆τ ) µ D(∆τ /τ T ) (82) βV cN (q, ∆τ ) -E λνD(∆τ /τ L ) (83) 
for the ICFs of the time-averaged ISFs. Numerical test of predicted deviations. These relations should allow a reasonable fit for large ∆τ while additional modes may be relevant in general. We test in Fig. 8 the suggested scaling for q = q min ≈ 0.06 and q ≈ 0.18. The scaling variable x of the horizontal axis is ∆τ /τ L for cL , cN and c⊥ and ∆τ /τ T for cT . For the scaling of cN we have to subtract E and, unfortunately, the scaling function y = (βV cN -E)/λν (circles) is less accurate than the scaling functions of the other three ICFs. Using the known elastic moduli of our systems and fitting for only one parameter, the friction coefficient ζ ≈ 900, we obtain for sufficiently large x and small q a good data collapse on the Debye function (bold dashed line). Due to the limited system size we have only achieved good data collapse for q min ≤ q < 0.2. Larger system sizes are clearly warranted in future work to verify over more than a decade the expected q-dependence of the relaxation times τ L,T ∝ 1/q 2 . See Ref. [25] for the discussion of other possible caveats leading to small deviations.

VI. CONCLUSION

Summary. After presenting in Sec. II a survey of general useful mathematical relations for isotropic tensor fields we have focused in Sec. IV on the numerical description of spatial correlations of stress tensor fields in isotropic pLJ particle systems as described in Sec. III and Appendix C. The phenomenological parameter e was related to the Young modulus E in Sec. V. Several general results deserve to be emphasized.

Angular dependences. As demonstrated by our computational example, correlation functions of tensor field components of perfectly isotropic systems must generally depend on the components of the field vector and not only on its magnitude, cf. Eq. ( 41). They thus depend both on the direction of this vector in the physical system (angle θ) and on the orientation of the coordinate system (angle α) as shown in Fig. 1. Importantly, the angular dependence of all correlation functions boils down to a dependence on the difference θ -α for all θ and α as shown in panel (b) of Fig. 1 and Fig. 5. Obviously, this simple scaling (without characteristic angles) cannot hold for true anisotropic systems which have material functions depending explicitly on the direction of the field vector. Unfortunately, many recent studies do not clarify, e.g., simply by rotating the coordinate system or equivalently the orientations of the experimental devices measuring the local tensor field components, which of these two mathematically and physically very different types of "anisotropy" is involved.

Invariant correlation functions. Just as the invariance of a tensor under orthogonal transformations is only revealed by the full set of tensor components, one component of the correlation tensor field may appear to be inconsistent with the assumed isotropy which becomes only manifested for the total set of correlation functions. Fortunately, this set is completely characterized by a few (4 in d = 2 and 5 in d > 2) ICFs, cf. Eq. (24). Only if a measured subset of correlation functions cannot be consistently expressed by ICFs a legitimate claim of "anisotropy" can be made. As we have seen, these ICFs are best described both theoretically and numerically (cf. Fig. 3) in reciprocal space using NRC. The investigated system was deliberately simple since only one ICF, namely the normal stress ICF cN (q), remains finite for large ∆τ and, moreover, constant for sufficiently small q, Eq. [START_REF] Schouten | Tensor Analysis for Physicists[END_REF]. This plateau in reciprocal space explains directly (cf. Appendix B) the long-ranged 1/r 2 -decay of the stress correlations in real space demonstrated in Fig. 6 [START_REF]-like response of a liquid probed by local strain responses to a localized plastic event (particle rearrangements)[END_REF]. Only one phenomenological parameter e is needed for the fitting of our data in the large-∆τ limit, cf. Eq. [START_REF] Schouten | Tensor Analysis for Physicists[END_REF].

Time-averaged stress fields. We have studied in this work correlation functions cαβγδ (q, ∆τ ) of time-averaged stress fields σαβ (q, ∆τ ) and not the correlation functions c αβγδ (q, t) of instantaneous fields σ αβ (q, t). As reminded in Sec. V B, for stationary processes cαβγδ (q, ∆τ ) and c αβγδ (q, t) are closely related, cf. Eq. ( 47), and both correlation functions have the same asymptote for large (sampling) times, cf. Eq. ( 48), i.e. the same static properties are probed. From the numerical side cαβγδ (q, ∆τ ) basically has the advantage that irrelevant high frequencies are filtered off (as it is usually the case for Einstein relations compared to Green-Kubo relations [START_REF] Allen | Computer Simulation of Liquids[END_REF]). Compared with the common method to determine the system's inherent quenched stresses by quenching to the local energy minima [22,23] this has the advantage that we measure the relevant stresses at the given finite tem-perature and not at a different thermodynamic state. We believe that this method is therefore not only simpler (no additional quench required) but thermodynamically and conceptionally better defined. The technical downside is that time-series of many frames need to be stored.

Symmetry breaking. The main physical reason for focusing on t-averaged stress fields σαβ (q, ∆τ ) is, however, that the systematic time-averaging naturally allows to focus on the quenched stresses σ q αβ (q) for each independent configuration c by projecting out the trivial instantaneous thermal stress fluctuations using that σαβ (q, ∆τ ) → σ q αβ (q) for large ∆τ . Importantly, the parameter e is set by Eq. ( 40) in terms of the typical size of the quenched normal stresses σ•q 22 (q) in reciprocal space using NRC. Due to Eq. ( 39) these stresses may be finite without violating static mechanical equilibrium as shown by the finite attractor in Fig. 4.

Connection to thermodynamic response properties. Interestingly, e was found to be numerically similar to the macroscopic Young modulus E at thermal equilibrium in d = 2. As discussed in Sec. V, this finding was theoretically anticipated [25] since the predictions for equilibrium viscoelastic fluids, must hold approximatively for our glasses due to the swap MC moves used for the system preparation. (The same identification is obtained by an independent and complementary approach to long-wavelength stress-correlations in glass-forming liquids based on the Zwanzig-Mori projection operator formalism [START_REF] Maier | [END_REF][19][20].) Altogether this implies

E = e βV σ•q 22 (q)σ •q 22 (-q) (84) 
for sufficiently small wavevectors. The existence of a finite equilibrium Young modulus E (and, hence, of a finite shear modulus µ) and the broken (continuous) symmetry of the stress field in reciprocal space, characterized by the typical size of the quenched stresses σ•q 22 (q), are thus intimately connected.

Outlook. The presented work suggests several natural extensions:

• The given tensor fields relations for isotropic systems naturally generalize to higher spatial dimensions, to tensor fields of different order and to crosscorrelation functions of different tensorial fields (say, between stress and strain fields) for which the major suffix symmetry Eq. ( 16) may not hold (which merely introduces one additional ICF).

• We have focused in the present work on Euclidean spaces and Carthesian coordinates. It is possible to generalize our relations for systems embedded in non-Euclidean spaces, say for glasses on spheres [START_REF] Vest | [END_REF]67], and more general curvilinear coordinate systems [START_REF] Mcconnell | Applications of Tensor Analysis[END_REF][START_REF] Lambourne | Relativity, Gravitation, and Cosmology[END_REF]. Assuming the system to be locally isotropic the goal is always to construct from the available correlation functions the local (tangent) isotropic invariants and to check whether this can be done consistently with all available data sets.

• The proposed methodology could, e.g., also be used for irreversibly crosslinked polymer networks [START_REF] Rubinstein | Polymer Physics[END_REF] or active non-equilibrium systems [68,69] which are both isotropic and highly viscous or even jammed.

e is in such cases just a fitting parameter characterizing the typical size of the quenched stresses.

• The presented work is also of relevance for the correlations of strain tensor fields [28,32,33] and for the characterization of plastic deformations [9,10,[START_REF]-like response of a liquid probed by local strain responses to a localized plastic event (particle rearrangements)[END_REF]. It can be shown that the strain correlations of any isotropic elastic body are characterized by two ICFs which are, moreover, set by means of the general equipartition theorem [START_REF] Chaikin | Principles of condensed matter physics[END_REF] in the largewavelength limit by the Lamé coefficients λ and µ. This leads again to an octupolar correlation field pattern as seen in Fig. 1 for the stress.

• The low-q limit e(∆τ ) of βV cN (q, ∆τ ) becomes only a strictly ∆τ -independent constant for permanently quenched invariant stress fields σ•q 22 (q), e.g., for permanent polymer networks [START_REF] Rubinstein | Polymer Physics[END_REF]. By contrast, the quenched attractors σ•q 22 (q) of low-temperature glasses become for ∆τ similar to the α-relaxation time slow ∆τ -dependent fields σ •s 22 (q, ∆τ ). This is, e.g., of relevance for higher temperatures T of the presented pLJ particle model where after a transient plateau e(∆τ ) ultimately vanishes, i.e. the long-range stress correlations disappear [25]. Future work should focus on the distributions of the σ• αβ (q, ∆τ, T ) as a direct means to systematically project out fast relaxation modes independently of the coordinate system. with r and q being discrete sums over n V = V /a d grid grid points in, respectively, real or reciprocal space. With n L being the number of grid points in each spatial direction α, i.e. n V = n d L and L = n L a grid , we have

r α a grid = n α and q α a grid = 2π n L n α (A14)
with integers n α = 0, 1, . . . , n L -1. To take advantage of the implemented Fast-Fourier transform (FFT) routines [START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF] n L is an integer-power of 2. The real space correlation function c(r) on the discrete grid is

c(r) = 1 n V r g(r + r )h(r ) -gh (A15)
being an operation of order O(n 2 V ). Importantly, the periodicity of all fields must be taken into account. It is obviously much more efficient to first FFT the discrete fields g(r) and h(r) or g(r) and h(r) and to apply then Eq. (A8) [START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF][START_REF] Allen | Computer Simulation of Liquids[END_REF]. In this manner c(q) is automatically periodic in all spatial directions of the simulation box and the same applies to the correlation function c(r) = F -1 [c(q)] in real space computed using Eq. (A13).

Appendix B: Fourier transforms in two dimensions

Correlation functions in reciprocal space. As shown in Fig. 3 all four ICFs in d = 2 become constant in reciprocal space for sufficiently small wavevectors q and large sampling times ∆τ , but only βV cN (q) e remains finite. According to Eq. (31) of Sec. II F we thus have βV cαβγδ (q) e × (B1) (δ αβ δ γδ -qα qβ δ γδ -qγ qδ δ αβ + qα qβ qγ qδ ) for the correlation functions in the "old" (unrotated) reference frame. Hence, we have, e.g.,

βV c1212 (q) = βV c1122 (q) e q2 1 q2 2 (B2) βV c1111 (q) e 1 -2q 2 1 + q4 1 = eq 4 2 (B3) βV c2222 (q) e 1 -2q 2 2 + q4 2 = eq 4 1 (B4) βV c1112 (q) -e q1 q3 2 (B5) βV c2221 (q) -e q3 1 q2 . (B6)
Let us rewrite these cases in terms of the angle θ q of the normalized wavevector q = (cos(θ q ), sin(θ q )). Using standard trigonometric relations it is readily seen that -βV c1212 (q) = -βV c1122 (q) e 8 (cos(4θ q ) -1) (B7)

βV (c 1111 (q) + c2222 (q))/2 e 8 (cos(4θ q ) + 3) (B8)

βV (c 1111 (q) -c2222 (q))/2 -e 2 cos(2θ q ) (B9)

βV (c 1112 (q) + c2221 (q))/2 -e 4 sin(2θ q ) (B10)

βV (c 1112 (q) -c2221 (q))/2 e 8 sin(4θ q ) (B11) in the above-mentioned limits. More generally, all correlation functions in two dimensions can be expressed by a linear superposition of the orthogonal basis functions cos(pθ q ) and sin(pθ q ) with p = 0, 2 and 4.

Inverse Fourier transform. To obtain the correlation functions in real space we thus have to compute the inverse FT in d = 2 dimensions for

f (q) = 1 V v(q) b p (θ q ) (B12)
with b p (θ q ) standing for the basis functions cos(pθ q ) or sin(pθ q ) with p = 2 and 4. The constant terms (p = 0) in Eq. (B7) and Eq. (B8) are irrelevant for our considerations leading merely to δ-contributions at r = 0. The yet unspecified auxiliary function v(q), with v(q) → e for q → 0, will be chosen below in a convenient manner to take advantage of special mathematical functions [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. Hence, using Eq. (A2) we have

f (r) = 1 4π 2 dq qv(q) × 2π 0 dθ q b p (θ q ) exp[iqr cos(θ q -θ r )] (B13)
with θ r being the angle of r = (cos(θ r ), sin(θ r )). We make now the substitution θ = θ q -θ r and use that [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] cos(pθ + pθ r ) + cos(-pθ + pθ r ) = 2 cos(pθ) cos(pθ r ) sin(pθ + pθ r ) + sin(-pθ + pθ r ) = 2 cos(pθ) sin(pθ r ).

We remind that following Eq. (9.1.21) of Ref. [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] the integer Bessel function J p (z) may be written

J p (z) = i -p π π 0 dθ cos(pθ) exp[iz cos(θ)]. ( B14 
)
This leads to

f (r) = i p 2π b p (θ r ) dq qv(q) J p (rq). ( B15 
)
We use next Eq. (11.4.28) of Ref. [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] ∞

0 e -(at) 2 t µ-1 J ν (bt)dt = Γ[(ν + µ)/2] (b/2a) ν 2a µ Γ(ν + 1) × M [(ν + µ)/2, ν + 1, -(b/2a) 2 ] (B16)
for (µ+ν) > 0 and (a 2 ) > 0 relating the general Bessel function J ν (bt) to the confluent hypergeometric Kummer function M (a, b, z). (Γ(x) denotes the standard Gamma function [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF].) To take advantage of Eq. (B16) we finally set v(q) = e exp[-(aq) 2 ]. Note that v(q) → e for aq → 0, i.e. the auxiliary variable a becomes irrelevant for small q. We thus rewrite Eq. (B15) as

f (r) = e i p 2π Γ(p/2 + 1)(r/2a) p 2a 2 Γ(p + 1) b p (θ r ) × M [p/2 + 1, p + 1, -(r/2a) 2 ] (B17)
in terms of Kummer's function M . Following Eq. (13.1.5) of Ref. [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] M

(a, b, z) = Γ(b) Γ(b -a) (-z) -a 1 + O(|z| -1 (B18)
for a real part (z) < 0. Using this expansion in Eq. (B17) finally leads to

f (r) e i p p 2πr 2 b p (θ r ) (B19)
for sufficiently large r and p > 0. We note that the auxiliary variable a indeed drops out, that f (r) = f (-r) and that f (r) is real for even p.

Correlation functions in real space. Using Eq. (B19) we can finally restate Eqs. (B7-B11) in real space as for r > 0 and ∆τ → ∞. Some of these relations are shown in Fig. 5 and Fig. 6 in the main part of this work.

-βc 1122 (r) = -βc 1212 (r) = β (c 1111 (r) + c2222 (r)) /2 e 4πr 2 cos(4θ r ) (B20)
Appendix C: Additional computational details Simulation model. We consider systems of polydisperse Lennard-Jones (pLJ) particles in d = 2 dimensions where two particles i and j of diameter D i and D j interact by means of a central pair potential [25,[START_REF] George | [END_REF]49,[71][72][73] 

u(s) = 4 1 s 12 - 1 s 6 with s = r (D i + D j )/2 (C1)
being the reduced distance according to the Lorentz rule [START_REF] Hansen | Theory of simple liquids[END_REF]. This potential is truncated and shifted [START_REF] Allen | Computer Simulation of Liquids[END_REF] with a cutoff s cut = 2s min given by the minimum s min of u(s).

Lennard-Jones units [START_REF] Allen | Computer Simulation of Liquids[END_REF] are used throughout this study, i.e. = 1 and the average particle diameter is set to unity. The diameters are uniformly distributed between 0.8 and 1.2. We also set Boltzmann's constant k B = 1 and assume that all particles have the same mass m = 1. The last point is irrelevant for the presented Monte Carlo (MC) simulations [START_REF] Allen | Computer Simulation of Liquids[END_REF]. Time is measured in units of MC cycles throughout this work.

Operational parameters. We focus in the present work on configurations with n = 10000 particles albeit we have sampled a broad range of particle numbers n between n = 100 and n = 160000 (cf. inset of Fig. 6). N c = 200 independent configurations c have been obtained by quenching configurations equilibrated at a high temperature T = 0.55 in the liquid limit. This is done using a combination of local MC moves [START_REF] Allen | Computer Simulation of Liquids[END_REF] and swap MC moves exchanging the sizes of pairs of particles [START_REF] George | [END_REF][START_REF] Ninarello | [END_REF]. In addition an MC barostat [START_REF] Allen | Computer Simulation of Liquids[END_REF] imposes an average normal stress P = 2 [START_REF] George | [END_REF]49].

Working temperature. At the working temperature T = 0.2 we first thoroughly temper over ∆τ = 10 7 all configurations with switched-on local, swap and barostat MC moves and then again over ∆τ = 10 7 with switchedon local and swap moves and switched-off barostat moves. The shear-stress relaxation function G(τ ) [25,[START_REF] George | [END_REF]51,52] for this tempering run is shown in Fig. 7. As can be seen (squares), G(τ ) rapidly decays to a shear modulus µ = 0 (dashed line) as expected for an equilibrium liquid. The final production runs are carried out at constant volume V only keeping the slow local moves. Importantly, T = 0.2 is well below the known glass transition temperature T g ≈ 0.26 assuming only local MC hopping moves [START_REF] George | [END_REF]49]. As shown by the circles in Fig. 7 only keeping the local moves essentially traps the (equilibrated) configurations in local metabasins where they behave as elastic bodies with a finite shear modulus µ ≈ 14 (solid line). Due to the barostat used for the quenching of the configuration the box volume V = L d differs slightly between different configurations c while V is identical for all (correlated) configurations t of the time-series of the same independent configuration c. In all cases the number density is of order unity, i.e. the particle number n and the volume V are similar. This implies that the ideal pressure P id = T n/V ≈ 0.2 is much smaller than the imposed total pressure P = P id + P ex = 2. As shown elsewhere [25,[START_REF] George | [END_REF][71][72][73] our systems are homogeneous and isotropic and crystallization is irrelevant.

Data sampling. For each of the N c = 200 independent configurations c we sample and store four ensembles of time series containing each N t = 10000 instantaneous "frames" t. These are obtained using the equidistant time intervals δτ = 1, 10, 100 and 1000 [START_REF]Discrete time is denoted by t, continuous time by τ[END_REF]. This implies for each time series a largest sampling time ∆τ = N t δτ , i.e. ∆τ = 10 7 for the largest time interval. This was chiefly done to check that all correlation functions cαβγδ (r) become indeed ∆τ -independent as shown in Fig. 4 and Fig. 8. The time-averaged stress tensors σαβ | c and stress tensor fields σαβ (r)| c are obtained by averaging over the corresponding instantaneous σ αβ (t)| c and σ αβ (r, t)| c using each frame t of a time-series. We stress fields in reciprocal space to obtain the correlation functions, Eq. (A11), this is the most direct method and a useful exercise to test less direct definitions and approximations. Unfortunately, this is numerically not the most efficient procedure since it evolves n d L × n V 2 operations. It is computationally much faster to first obtain the stress fields in real space with a number of operations of order n ∝ V and then to FFT transform with a number of operations of order V log(V ).

Stress tensor fields in real space. We thus need to state the corresponding relations in real space. Inverse Fourier transformation yields for Eq. (D7) being a line integral between the two particle positions r a and r b of the interaction l. This relation has an old history going at least back to the work by Kirkwood and Buff [75] for the layer-resolved slabs of microcells [START_REF] Allen | Computer Simulation of Liquids[END_REF].

Various rediscoveries, reformulations and generalizations (e.g., for multibody potentials and constraint dynamics) of the inverse Fourier transform Eq. (D14) are discussed elsewhere [START_REF] Lemaître | [END_REF][74][75][START_REF] Tadmor | Modeling Materials[END_REF][START_REF] Noll | [END_REF][78][79][80][81]. If we use instead the approximation Eq. (D11) the line integral is replaced by

I l (r) ≈ δ(r -m l ). ( D15 
)
We emphasize that this coarse-grained expression is completely sufficient for most applications. (The δ-functions in Eq. (D14) or Eq. (D11) are sometimes "blurred" using more general weighting distributions [START_REF] Lemaître | [END_REF].) Please note that for all stated expressions the volume averages are identical to the macroscopic relation, i.e. hold exactly without approximation. Discrete grid implementations. The numerical calculation of the above continuous space relations on a discrete grid of linear length n L (cf. Fig. 2) is obvious for the ideal contributions, Eq. (D8) and Eq. (D13), and also for the excess contribution Eq. (D10) in reciprocal FIG. 9: Rescaled ICF βV cN(q) comparing different methods and a grid = L/nL. The method "qA" uses Eq. (D10) directly in reciprocal space (solid line), the method "rA" the line integration Eq. (D14) in real space (open symbols), the method "rB" the coarse-graining approximation Eq. (D15) in real space (filled symbols). The same result is obtained in all cases for sufficiently small q. The position of the peak of βV cN(q) at q ≈ 6.5 is very similar to the position of the main peak of the structure factor S(q) as shown in Ref. [73].

space or the coarse-graining approximations Eq. (D11) or Eq. (D15). Slightly less trivial is the implementation of the line integral Eq. (D14). Different variants exist for distributing the information of an interaction l on the grid as discussed in the literature [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Tadmor | Modeling Materials[END_REF]. In our view this issue is not crucial since the corresponding small wavelengths have no universal physical meaning being due to an artificial computer model and are, moreover, readily renormalized away as shown by Eq. (D11). An important technical point is only that any reasonable method must strictly obey Eq. (D17), i.e. that the contributions to all grid points from the line integral must be properly weighted. We use a simple numerical rendering of Eq. (D14) on the grid: for each of k equidistant points on the continuous line between r a and r b the closest grid point is incremented by w l αβ /k. We do not care if sometimes a grid point gets several or even all contributions (which happens if a grid is large) or none (which happens especially if the grid is too fine). All data presented in other parts of this work have been obtained using Eq. (D12) and Eq. (D14) with k = 20 and a grid spacing a grid ≈ 0.2. Different variants are compared in Fig. 9 where we focus on the rescaled ICF βV cN (q). We compare results obtained with • method "qA" using Eq. (D8) and Eq. (D10),

• method "rA" using Eq. (D13) and Eq. (D14),

• method "rB" using Eq. (D13) and Eq. (D15) for different grid constants a grid = L/n L as indicated. Method qA (n L = 128, solid line) required a month of computation on a local workstation cluster with 64 nodes while all other examples were computed within a couple of hours on the same cluster. Most importantly, all methods are seen to yield similar results for small q and the differences are minor for wavevectors up to q ≈ 1. The observed differences between the exact relation Eq. (D10) and the coarse-graining approximation are naturally expected for q of order unity and larger if a grid spacing a grid much smaller than the typical interaction range between particles is used.

FIG. 1 :

 1 FIG.1: Autocorrelation function c1212(r) of time-averaged shear-stress fields σ12(r) of a two-dimensional isotropic elastic body: (a) Unrotated frame with coordinates (r1, r2), (b) frame (r 1 , r 2 ) rotated by an angle α = 30 • (rotations marked by " "). Albeit the system is isotropic, the correlation function is strongly angle dependent revealing an octupolar symmetry and depends, moreover, on the orientation of the coordinate system. While each pixel corresponds in (a) and (b) to the same spatial position r, the correlation functions differ by the angle α. c1212(r) is negative (blue) along the axes and positive (red) along the bisection lines of the respective axes. The theoretical prediction Eq. (1) is indicated by thin lines.

1 FIG. 2 :

 12 FIG.2: Two-dimensional (d = 2) square lattice with a grid being the lattice constant and nL = L/a grid the number of grid points in one spatial dimension. The filled circles indicate microcells of the principal box, the open circles some periodic images. The spatial position r of a microcell is either given by the r1-and r2-coordinates (in the principal box) or by the distance r = |r| from the origin (large circle) and the angle θ.

FIG. 5 :

 5 FIG. 5: Rescaled shear-stress autocorrelation function βc 1212 (r, θ)r 2 as a function of x = θ -α comparing data for different r and α with the prediction (bold solid line).

FIG. 6 :

 6 FIG. 6: P [f (r), p](r) for rescaled correlation functions f (r) and mode number p as indicated (α = 0 • ). A doublelogarithmic representation is used. Only data for 1 < r < L/2 are given. The bold solid lines represent e/4πr 2 . Main panel: Various projections for n = 10000. Inset: Projection for f (r) = -βc1212(r) and p = 4 for different particle numbers n.

FIG. 7 :

 7 FIG.7: Comparison of the standard MC algorithm only including local hopping moves (circles)[49] with the dramatically more efficient variant including swap MC hopping moves (squares)[START_REF] George | [END_REF][START_REF] Ninarello | [END_REF] for pLJ systems with n = 10000 particles focusing on the shear-stress relaxation function G(τ ) at T = 0.2. G(τ ) is computed using the shear-stress autocorrelation function and an additive constant[25,[START_REF] George | [END_REF]51,52]. G(τ ) ≈ µ ≈ 14 for τ 10 3 (solid horizontal line) if only local moves are used while G(τ ) → 0 (dashed horizontal line) if the unphysical swap MC moves are added. Including swap MC moves for the quenching and tempering of the systems thus allows to bring the systems close to (liquid) equilibrium at T = 0.2. The final production runs are sampled only using local moves.

  (λ, µ) and (E, ν) are related in d dimensions byν = λ 2µ + λ(d -1)(56)E = λ + 2µ -(d -1)λν. (57)For d = 3 the usual formulae given in the standard textbooks[START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Landau | Theory of Elasticity[END_REF] are recovered whileν = λ λ + 2µ and E = 4µ λ + µ λ + 2µ for d = 2. (58)Using the known values for λ and µ for our pLJ particle systems at T = 0.2 this implies E ≈ 45 and ν ≈ 0.6. Please note that the values λ c and µ c obtained for each independent configuration c only differ very weakly for n > 2000 from the c-ensemble averages λ = c λ c /N c and µ = c µ c /N c . We may thus determine E either by first obtaining for each c a Young modulus E c using λ c and µ c and from this E = c E c /N c or by directly applying Eq. (

β

  (c 1111 (r) -c2222 (r)) /2 e 2πr 2 cos(2θ r ) (B21) β (c 1112 (r) + c2221 (r)) /2 e 4πr 2 sin(2θ r ) (B22) β (c 1112 (r) -c2221 (r)) /2 e 4πr 2 sin(4θ r ) (B23)

1 0

 1 preaveraged ideal stress, Eq. (D8), σid αβ (r) = -T δ αβ n a=1 δ(r -r a ). (D13) One confirms using Eq. (A6) that Eq. (D9) becomes σex αβ (r) = l w l αβ I l (r) with (D14) I l (r) = ds δ(r -(r a + r l s))
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Appendix A: Fourier transformation Continuous Fourier transform. Following Refs. [25,70] but at variance with Ref. [21] we define in this work the Fourier transform (FT) f (q) = F[f (r)] of a (realvalued) function f (r) in real space by

with V being the volume of the system and q a wavevector commensurate with the simulation box. The inverse FT is then given by

Note that f (r) and f (q) have the same dimension. For notational simplicity the function names remain unchanged. Let us denote by f without argument the macroscopic field average. Due to Eq. (A1) we thus have the "sum rule"

We note for later convenience the FTs

with δ(r) being Dirac's delta function. Let us consider the spatial correlation function

where the fields g(r) and h(r) are assumed to be real. According to the "correlation theorem" [START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF] this becomes c(q) = g(q)h (q) = g(q)h(-q) (A8) in reciprocal space (with marking the complex conjugate). For auto-correlation functions, i.e. for g(r) = h(r), this simplifies to ("Wiener-Khinchin theorem")

i.e. the Fourier transformed auto-correlation functions are real and ≥ 0 for all q. Moreover, we shall consider correlation functions c(r), Eq. (A7), being even in real space, c(r) = c(-r), and thus also in reciprocal space, c(q) = c(-q) = c (q), i.e. c(q) is real. For many reasons it is convenient to consider correlation functions c(r) which vanish for large r = |r|. This is achieved here by replacing in Eq. (A7) g(r) by g(r) = g(r) -g and h(r) by h(r) = h(r) -h with g and h being field averages according to Eq. (A3). We thus probe in this work correlation functions

using a real offset gh. Eq. (A8) thus becomes c(q) = g(q) h(-q) = g(q)h(-q) for q = 0 0 for q = 0 (A11)

where we have used that g = g(q = 0) and h = h(q = 0). Discrete FT on microcell grid. Numerically, all fields f (r) are stored on a regular equidistant grid as shown in Fig. 2. Periodic boundary conditions are assumed [START_REF] Allen | Computer Simulation of Liquids[END_REF]. The discrete FT and its inverse become

for each c according to Eq. (A11), take then the c-average

and perform finally the inverse FFT to real space

Appendix D: Construction of stress field Macroscopic stresses. Carets "â" mark here instantaneous properties and the argument t is dropped. Let us first remind the Irving-Kirkwood formula for the total macroscopic (q = 0) stress tensor σαβ [START_REF] Allen | Computer Simulation of Liquids[END_REF]74]. Note that the total system Hamiltonian is the sum of an ideal contribution, depending only on the momenta, and an excess contribution, depending only on the particle positions. This implies [START_REF] Allen | Computer Simulation of Liquids[END_REF] that the total stress tensor σαβ = σid αβ + σex αβ is a sum of an ideal stress σid αβ and an excess stress σex αβ . The ideal contribution is [START_REF] Allen | Computer Simulation of Liquids[END_REF] 

with p a α being the α-component of the momentum of particle a. This contribution is naturally not accessible in an MC simulation. Since we want anyway ultimately to time-average all instantaneous stresses, Eq. (D1) may be replaced without loss of information by its ensemble average σid αβ = -P id δ αβ with P id = T n/V [START_REF] Allen | Computer Simulation of Liquids[END_REF]. The excess contribution is given by the sum σex αβ = l w l αβ /V over all interacting pairs l of particles a < b. Let us denote by r l = r br a the vector from the position r a of a to the position r b of b, by r l = |r l | its length and by rl α a component of its unit vector. The contribution w l αβ of the interaction l to the excess stress is then [START_REF] Allen | Computer Simulation of Liquids[END_REF] 

with u (r) being the first derivative of the pair potential.

Stress tensor fields in reciprocal space. The corresponding stress tensor field σαβ (q) = σid αβ (q) + σex αβ (q) in reciprocal space may be directly obtained from the local momentum equation [START_REF] Landau | Theory of Elasticity[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF] 

as shown long ago [START_REF] Hansen | Theory of simple liquids[END_REF]47]. Note that the momentum density Pα (r) is defined by [START_REF] Hansen | Theory of simple liquids[END_REF] Pα

in terms of the individual particle momenta and positions. Rewritten in Fourier space Eq. (D3) becomes

The first term in the previous relation gives the ideal stress contribution [START_REF] Hansen | Theory of simple liquids[END_REF]47] σid

As before for the macroscopic ideal stress we may integrate out the momenta {p} and replace Eq. (D7) by

which is used for our MC simulations. Using Newton's second law for ṗa α and a total potential energy given by pair interactions such as Eq. (C1) the excess stress in reciprocal space is obtained from the second term in Eq. (D6) as shown in Refs. [START_REF] Hansen | Theory of simple liquids[END_REF]47]. This gives

Let us define m l = (r a + r b )/2 and h l = (r br a )/2. As noted by Lemaître [START_REF] Lemaître | [END_REF] the previous relation may be rewritten more conveniently as

We remark first that σid αβ (q) and σex αβ (q) reduce properly for q → 0 to the macroscopic stress contributions noted above. Note also that the term sin(x)/x → 1 for x = q • h l 1, i.e. for wavelengths 2π/q larger than the typical interaction range of order unity in the present model. In this limit Eq. (D10) further simplifies to

i.e. only the mean position m l of two particles matters, not their relative orientation. Since this study anyway focuses on the universal large-wavelength limit, the approximation Eq. (D11) should be sufficient.

Computation in reciprocal space. Using Eq. (D8) and Eq. (D10) or Eq. (D11) one may directly compute σαβ (q) for a given configuration using a discrete grid of linear length n L as shown in Fig. 2. Since we anyway need the