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Abstract—Rapid advancements in 5G communication and the 

Internet of Things have prompted the development of cognitive 

radio sensing for spectrum monitoring and malicious attack 

detection. An end-to-end radio classification system is essential to 

realize efficient real-time monitoring at the edge. This work 

presents an end-to-end neuromorphic system enabled by an 

efficient spiking neural network (SNN) for radio classification. A 

novel hardware-efficient spiking encoding method is proposed 

leveraging the Sigma-Delta modulation mechanism in analog-to-

digital converters. It requires no additional hardware components, 

simplifies the system design, and helps reduce conversion latency. 

Following a designed hardware-emulating conversion process, the 

classification performance is verified on two benchmark radio 

modulation datasets. A comparable accuracy to an artificial 

neural network (ANN) baseline with a difference of 0.30% is 

achieved on the dataset RADIOML 2018 with more realistic 

conditions. Further analysis reveals that the proposed method 

requires less power-intensive computational operations, leading to 

22× lower computational energy consumption. Additionally, this 

method exhibits more than 99% accuracy on the dataset when the 

signal-to-noise ratio is above zero dB. The SNN-based 

classification module is realized on FPGA with a heterogeneous 

streaming architecture, achieving high throughput and low 

resource utilization. Therefore, this work demonstrates a 

promising solution for constructing an efficient high-performance 

end-to-end radio classification system. 

Impact Statement—With the rapid advancements of 5G 

networks, myriad wireless mobile devices are present in our 

society, which places enormous pressure on the radio spectrum. 

Spectrum monitoring on the edge is essential. Current solutions 

based on conventional deep learning models result in a complex 

monitoring system with excessive resource and energy waste, 

posing a great challenge for deploying them. This study applies an 

energy-efficient brain-inspired learning model to overcome the 

challenge. The proposed model is naturally compatible with the 

information representation in the data-converting module of the 

monitoring system. It greatly simplifies the design with negligible 

performance loss, while achieving 22× lower computational energy 

and 10× resource savings. These improvements ensure that an 

intelligent radio monitoring system is readily deployable on edge 

devices for real-time monitoring of wireless networks. The social 

impact of this advancement is the improved spectrum utilization, 

reduced risk of wireless interference, and enhanced 

communication security. 

Index Terms—Cognitive radio classification, IoT, spectrum 

monitoring, modulation recognition, deep learning, spiking neural 

network, sigma-delta modulation 

 

I. INTRODUCTION 

ith the rapid development of cyber-physical systems 

(CPS) and 5G communication, massive Internet of 

Things (IoT) edge devices have been deployed and the 

interaction between them becomes increasingly frequent. The 

increase in IoT devices brings convenience to human life but 

puts a significant amount of pressure on the radio spectrum [1, 

2]. Monitoring and understanding the spectrum is of paramount 

importance for efficient spectrum utilization, avoiding wireless 

interference, and preventing malicious attacks. To achieve this 

goal, radio signal classification capabilities are essential 

functions of cognitive radio systems nowadays [3]. They enable 

the system to automatically detect and identify the information 

of unknown wireless signals, such as transmission standards, 

modulation types and emitting devices, for various purposes. 

Modulation recognition techniques can eliminate the need for 

adding extra modulation information in the transmitted signal, 

leading to reduced spectrum traffic [4, 5]. It also helps a 

cognitive radio system to sense and detect the existence of the 

primary users and allows other users to transmit signals in the 

same band when it is idle, leading to better spectrum utilization 

and preventing interference [6, 7]. The coexistence of various 

heterogeneous wireless technologies on shared and unlicensed 

bands can cause cross-technology interference. To avoid this, 

wireless signal identification techniques enable a system to 

detect the wireless technologies and assess the feasibility of the 

communication channel for transmission [8, 9]. Additionally, 

wireless networks can be often subject to malicious attacks, 

such as signal jamming and covert channels. The ability to 

identify and prevent the jamming is particularly important in 

safety-critical applications such as self-driving cars [10]. 

Covert channels can be enabled by a hardware Trojan hidden 

inside the transmitter. When triggered, the hardware Trojan 

leaks sensitive and secret information, i.e., cipher keys, into the 

legitimate transmission signal in a way that the leakage is 

imperceptible by the inconspicuous nominal receiver as it does 

not incur any performance penalty in the communication [11-

13]. Monitoring the radio signals to detect covert channels is 

important to guarantee data confidentiality and trusted 

W 

This work was funded by the King Abdullah University of Science and 

Technology (KAUST) AI Initiative, Saudi Arabia. (Corresponding author: 

Khaled Nabil Salama) 

 Wenzhe Guo, Kuilian Yang and Khaled Nabil Salama are with the Division 
of Computer, Electrical and Mathematical Sciences and Engineering, King 

Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia 

(e-mail: {wenzhe.guo, kuilian.yang, khaled.salama}@kaust.edu.sa).  

Haralampos-G. Stratigopoulos and Hassan Aboushady are with the 

Sorbonne Université, CNRS, LIP6, 75005 Paris, France (e-mail: 

{haralampos.stratigopoulos, hassan.aboushady}@lip6.fr). 

mailto:khaled.salama%7d@kaust.edu.sa


2 

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 

communication overall. Radio classification also plays an 

important role in improving military surveillance, threat 

analysis and providing timely response to attempted attacks 

[14]. 

Cloud-based radio classification is not suitable for real-time 

sensing and spectrum management, as a large amount of data 

transfers are inevitable between sensor nodes and the cloud, 

causing data deluge and high latency [15]. Distributed sensing 

is a necessary measure to cover widespread communication 

networks and provide effective monitoring data. Directly 

integrating the classification module with the edge devices at 

the sensor nodes can resolve the data deluge issue and realize 

efficient real-time monitoring at the edge. Therefore, an end-to-

end cognitive radio classification system is essential to achieve 

high efficiency. 

The success of deep learning in various applications has led 

artificial neural networks (ANNs) to be the mainstream 

algorithms for cognitive radio classification. In recent years, 

various radio datasets and network models were developed. 

O’Shea et al. generated different radio datasets for modulation 

classification using GNU Radio software that simulated 

realistic channel effects [16-18]. These datasets have since been 

evaluated by various ANN models including convolutional 

neural networks (CNNs) [17-21], long short-term memory 

(LSTM) [22] and complex-values NNs [23]. CNNs 

outperformed conventional expert-based machine learning 

approaches by a significant margin[17]. LSTM and complex-

values models led to better performance at the cost of lengthy 

computational time and complex operations, thus they are not 

suitable for real-time deployment. 

Despite their high accuracy, ANNs when accelerated on 

hardware suffer from large area and high energy consumption 

due to intensive matrix multiplication operations [21, 24]. 

Brain-inspired spiking neural networks (SNNs) are promising 

candidates for cognitive radio classification [25-27]. More 

specifically, in SNNs, information is coded into spikes 

emulating brain-like functionality. Neurons remain idle unless 

they process spikes. Given the sparsity of spikes, this event-

driven operation leads to orders of magnitude less energy 

consumption compared to ANNs as matrix multiplications are 

eliminated. With SNNs as the underlying network model, 

neuromorphic computing has triggered a paradigm shift in 

 

Fig. 1 An end-to-end cognitive radio classification system with different classification methods. The system consists of a data acquisition 

module, an encoding module, and a classification module. The data acquisition decomposes the received RF signal into in-phase (I) and 

quadrature phase (Q) components. (a) Conventional ANN-based classification. The analog I/Q component is converted to 𝑁b digital data by 

an ADC. After preprocessing, 𝑀b digital data are fed into an ANN. (b) Exisiting SNN-based classification with additional coding. A coding 

module is often necessary for converting the preprocessed ADC output into 1b spike events. (c) Proposed SNN-based classification. The ΣΔ 

modulator can effectively serve as a spiking encoding module for the SNN classification module. It eliminates the decimation filter, the 

preprocessing step, and the coding module, greatly simplifying the system. 
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computing architectures. Moreover, recent efforts have brought 

the classification performance of SNNs close to that of ANNs 

[28-30]. As a result, SNNs pave the way for a high-performance 

and efficient end-to-end radio classification system. Very few 

studies have demonstrated SNNs for radio signal classification 

[31, 32]. A single-layer SNN was applied to classify simple 

constellation diagrams of three different modulation schemes 

[31]. The network was trained by unsupervised spike-timing-

dependent plasticity (STDP). However, a shallow network with 

this training algorithm is not scalable or practical for complex 

applications. Khodamoradi et al. demonstrated two different 

spiking convolutional neural networks (SCNNs) for modulation 

classification [32]. This work used a constellation diagram-

based spike coding method to convert input samples. It fails to 

achieve good classification accuracy on a realistic dataset. It is 

also not suitable for hardware implementation, as it adds 

hardware overheads for implementing the coding method and 

its performance is susceptible to input data distribution. 

Therefore, an efficient SNN-based classification method is still 

missing. 

In this work, we target an efficient end-to-end radio 

classification system and propose an SNN-based classification 

method with a hardware-efficient spiking encoding method 

based on Sigma-Delta (ΣΔ)  modulation. ΣΔ  modulation is a 

widely used technique to realize the analog-to-digital 

conversion at the end of an RF receiver chain [33-35]. The ΣΔ 

modulated output is an oversampled 1b digital representation of 

the received analog signals, which can be fed into SNNs for 

classification. The proposed method requires no extra 

hardware. It also skips the decimation stage and reduces the 

conversion latency. Experiments and analysis have 

demonstrated the effectiveness and low computational energy 

consumption of the proposed SNN-based classification method. 

An FPGA implementation shows great potential in the SNN-

based classification module. The contributions of this work are 

summarized as follows. 

• An end-to-end neuromorphic radio classification 

system enabled by an efficient SNN for real-time 

spectrum monitoring at the edge. The SNN requires less 

power-intensive computational operations and leads to 

22× lower computational energy. 

• A hardware-efficient spike encoding method based on 

ΣΔ modulation that greatly simplifies the system design 

and reduces encoding latency. 

• A hardware-emulating process to convert radio datasets 

into event streams and verify the effectiveness of the 

proposed method. An accuracy difference of only 

0.30% from an ANN baseline is achieved on a realistic 

dataset. 

• A high-throughput and resource-efficient SNN-based 

FPGA implementation enabled by a streaming 

architecture. 

II. AN END-TO-END CLASSIFICATION SYSTEM 

An end-to-end cognitive radio classification system is 

desired for efficient spectrum monitoring. Fig. 1 illustrates 

different designs of an end-to-end radio classification system. 

This end-to-end system integrates data acquisition, encoding, 

and classification into one processing pipeline, which takes in 

the raw radio signals from the air and produces essential 

information about the signals for decision-making. A standard 

RF receiver integrates a data acquisition module with an ADC, 

performing the conversion of the raw signals into digital data. 

In the presented system diagram, we separate the acquisition 

module from the ADC and consider the ADC as a part of a data 

encoding module to better illustrate the proposed idea. Among 

many types of ADCs, the Sigma-Delta ADC (ΣΔ-ADC) stands 

out for low cost and power, and high resolution, which is the 

converter of choice for many radio signal processing systems 

[36]. So, the presented system targets the RF receiver based on 

ΣΔ-ADCs. The data acquisition module decomposes the radio 

signals into the in-phase (I) component and quadrature (Q) 

components. These components are sent to the encoding 

module after passing a low-pass filter (LPF). The encoding 

module carries out the conversion of analog signals into digital 

data. The classification is performed on the I and Q components 

and can be realized by different methods. The module can be 

implemented on a digital platform, on a single die integrating 

all three modules, or on an FPGA interfaced with the RF 

receiver chip. In the following, we discuss three classification 

methods. 

A. Conventional ANN-based classification 

Following the great success of deep learning, ANNs are 

widely used to classify radio signals [17-19]. The ANN 

classification module is placed after the ADC encoding module, 

as indicated in Fig. 1 (a). The ΣΔ-ADC is used to convert the 

analog form of the two signal components into digital data (e.g. 

12 bits). The scale, distribution, and representation of input data 

are important for network performance, so a preprocessing step 

is also necessary to transform the input data, such as 

normalization or conversion from the time domain to the 

frequency domain. The inputs to the classification module are 

constructed as two-channel (i.e., I and Q) arrays with the size 

of 2 × 𝐿, where the data is typical of 12 bits and 𝐿 is the number 

of samples in the I/Q component extracted from the ADC. 

 

Fig. 2 Spiking coding method based on constellation diagram 

conversion [32]. All samples in the two-channel input frame are 

normalized and quantized. The quantized I and Q values are taken 

as the x and y coordinates of events in the I/Q plane of the 

constellation diagram. Events within a certain temporal interval 

are accumulated into one plane. 
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B. Existing SNN-based classification with additional coding 

To perform classification in SNNs, a coding module is often 

necessary for converting multibit data into binary data [37]. An 

existing coding scheme used for radio classification is depicted 

in Fig. 1 (b) [32]. This coding scheme can be used to convert 

the preprocessed ADC outputs into spike events. However, it 

induces an overhead in area, latency, and power. 

One recent study designed a coding process that converted  

radio samples into a temporal constellation diagram (CD), 

which was then fed into an SNN for classification [32]. The 

conversion process is presented in Fig. 2. Datasets generally 

have long tail distribution. First, all samples in the I/Q 

components are clipped into certain ranges, [−𝐼𝑚, 𝐼𝑚]  and 

[−𝑄𝑚, 𝑄𝑚], respectively. 𝐼𝑚 and 𝑄𝑚 are determined from the 

data distribution to ensure that samples are well distributed in 

the range. All I/Q samples are then normalized into the range, 

[-1, 1]. The range is quantized and each sample is rounded to 

the nearest quantile. At each time step, an I/Q plane (i.e., CD) 

is constructed. The rounded I and Q values are taken as the x 

and y coordinates of events in the I/Q plane. The size of the I/Q 

plane depends on the quantization, for example, 32 × 32 for 5b 

quantization. The selection of 𝐼𝑚  and 𝑄𝑚  is critical to the 

quantization and CD plane construction. If they are too large, 

most of samples are concentrated in the center of the CD plane. 

If they are too small, many samples are clipped, causing 

information loss. This method converts one signal frame into a 

3D temporal CD where only one event is present in each CD.  

Since the number of time steps in each frame is large (i.e., 128 

or 1024), processing one event per time step is inefficient. So, 

we accumulate all the CDs within an interval Δ𝑡 into one CD, 

leading to lower simulation latency. A conventional SCNN can 

be employed for classification. We will refer to this 

classification method as SNN-CD hereafter. 

C. Proposed SNN-based classification 

1b ΣΔ modulators have been widely adopted in ADCs, for 

they can achieve high-resolution conversion and simplify 

circuit implementation [38]. The ΣΔ  modulated output is an 

oversampled 1b digital representation of the received analog 

signals. Thanks to this property, the ΣΔ  modulation can 

effectively serve as a spiking encoding method. Therefore, we 

propose to apply the SNN classification module to directly 

classify the outputs from the ΣΔ modulator, as depicted in Fig. 

1 (c). The proposed method eliminates the decimation, 

preprocessing, and coding stages, leading to the lowest 

encoding latency and largely simplifying the whole system. The 

modulated output streams encode information from the radio 

samples. The ΣΔ  modulation is thus proposed as a novel 

encoding scheme that directly transforms the analog inputs into 

spike events, where 1 denotes a spike and -1 no spike. While 

the function of ΣΔ modulation is noise reshaping, it can also 

serve as an effective encoding scheme. 

 Radio signals are generally oversampled before being sent 

to the modulator for lower in-band noise. The modulated 

outputs have the size of (2, 𝑓𝑠𝑇0), where 𝑓𝑠  is the sampling 

frequency, and 𝑇0 is the sampling time. 𝑓𝑠𝑇0 means the number 

of data samples in each channel in an input frame. 𝑓𝑠  can be 

expressed as 𝑂𝑆𝑅 × 𝑓𝑁, where 𝑓𝑁 is the Nyquist rate and OSR 

is the oversampling ratio. But SNNs process time-varying event 

streams. To feed the modulated outputs into SNNs, we reshape 

the two-dimensional outputs with the size of (2, 𝑂𝑆𝑅 × 𝑓𝑁𝑇0) 

into three-dimensional temporal event streams with the size of 

(𝑇, 2, 𝐿) by adding a temporal dimension, where 𝑇 = 𝑂𝑆𝑅 and 

𝐿 = 𝑓𝑁𝑇0,  as illustrated in Fig. 3. Each event stream in one 

channel corresponds to a local region in the original radio 

sample before oversampling. For demonstration, a five-layer 

SCNN is adopted for classification, consisting of three 

convolutional layers and two fully connected (FC) layers. We 

will refer to this classification method as SNN-ΣΔ hereafter.  

III.  EXPERIMENTAL DESIGN AND SETTINGS 

 To verify the effectiveness of the proposed SNN-based 

classification method with ΣΔ encoding, we applied two radio 

datasets to train the networks and designed a conversion method 

that emulated the data acquisition and encoding process on 

hardware. 

 

Fig. 3 Illustration of the proposed SNN-based classification method. Modulated signals are reshaped into two-channel event streams. A five-

layer spiking convolutional neural network is constructed for classification. Conv, MP, FC, and LIF represent convolutional, max pooling, 

fully connected, and leaky integrate-and-fire model, respectively. 𝑓𝑁 is the Nyquist rate and OSR is the oversampling ratio. 𝑇0 is the sampling 

time. 
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A. Datasets 

Experimental demonstrations were performed on two 

widely used radio datasets for modulation classification, 

namely RADIOML 2016A [17] and RADIOML 2018 [18]. 

RADIOML 2016A was synthesized from GNU Radio software 

that simulated realistic channel effects. It consists of 11 

modulation classes, of which eight are digital schemes and three 

are analog schemes. The digital schemes are Binary Phase Shift 

Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Eight 

Phase Shift Keying (8PSK), 16 Quadrature Amplitude 

Modulation (16QAM), 64 Quadrature Amplitude Modulation 

(64QAM), Continuous Phase Frequency Shift Keying 

(CPFSK), Gaussian Frequency Shift Keying (GFSK), and 4-

Pulse Amplitude Modulation (4PAM). The analog schemes are 

Wide Band Frequency Modulation (WBFM), Amplitude 

Modulation Double Side Band (AM-DSB), and Amplitude 

Modulation Single Side Band (AM-SSB). Each modulation 

class has signal-to-noise ratios (SNRs) distributed in the range 

from -20 to 18 dB. Each sample is of the size 2 × 128, where 2 

indicates the I and Q components and 128 is the number of 

samples. RADIOML 2018 is a more complex and realistic 

dataset than RADIOML 2016A, which was generated with both 

synthetic channel effects and over-the-air recordings. The 

normal version of this dataset was used, containing 11 

modulation classes with SNRs ranging from -20 to 18 dB. The 

signal length is increased to 1024. 

B. Sigma-delta-based conversion scheme 

A ΣΔ-based conversion scheme was designed to transform 

the samples from the datasets into events by emulating the data 

acquisition and encoding on hardware, as depicted in Fig. 4. 

Samples in original datasets are in full precision floating point 

representation. They are passed to an oversampling and low-

pass filtering stage. The oversampling function is realized by 

upsampling the input samples with zeros, which introduces 

high-frequency components. A finite impulse response (FIR) 

filter is applied to attenuate these high-frequency components. 

A ΣΔ modulator with a 1b quantizer modulates the oversampled 

signals into binary outputs, which are the inputs to the SNN 

classification module. The ΣΔ modulator is simulated by the 

Delta-Sigma toolbox provided in MATLAB [38, 39]. It is 

configured in the well-known cascade of resonators with 

distributed feedback (CRFB) structure. 

 

Fig. 4 Dataset conversion based on sigma-delta modulation. 𝑁𝑠 is the 

number of samples in the dataset. 𝐿  is the signal length of each 

component. 

C. Simulation settings for classification 

Classification simulations were performed in the Pytorch 

framework. A mean squared error (MSE) loss function and the 

momentum-based stochastic gradient descent (SGD) method 

were used for weight updates. The dropout technique was 

adopted for regularization. Accuracy results were obtained after 

100 training epochs and averaged over three runs. The learning 

rate was reduced by a factor of 5 every 40 epochs. 

For SNNs, a leaky integrate-and-fire (LIF) neuron model 

was used and the backpropagation through time (BPTT) 

algorithm was applied to train the networks. The details of 

neural models and the training algorithm used in this work can 

be found in [40]. For the SNN-CD, the I and Q axes were 

uniformly quantized into 5 bits, resulting in a 32×32 event 

frame at each time step. The accumulation interval was set to 4 

and 32 for these two datasets, respectively. The time window 

size was thus 32. An SCNN with the same architecture as 

LeNet5 was employed for classification [41]. For the SNN-ΣΔ, 

the SCNN architecture is presented in Fig. 3. The time constant 

and threshold in the LIF model were set as 0.5 and 0.3, 

respectively. The modulated outputs were reshaped to (𝑇, 2, 𝐿), 

where 𝑇 = 𝑂𝑆𝑅  and 𝐿  is the number of samples in the I/Q 

component. For the SNN-CD, the size of the spiking LeNet5 

was adjusted so that the total number of trainable parameters is 

similar to that of the SCNN applied for the SNN-ΣΔ.  

An ANN of the same architecture presented in Fig. 3 was 

applied as a baseline for comparison. The ANN was trained on 

both datasets without conversion. 

 

Fig. 5 Frequency response of the original sample (blue), the 

oversampled and filtered output (black), and the modulated output 

(red). The modulation class of the original sample is QPSK and the 

SNR is 18. Only the in-phase component of the sample is presented. 

IV. CLASSIFICATION RESULTS 

This section discusses the results obtained from the 

conversion process and the simulations of the SCNNs. 

A. Sigma-delta-based conversion scheme 

The designed conversion process presented in Fig. 4 is 

verified here. A sample with QPSK class and an SNR of 18 is 

taken from RADIOML 2016A dataset. The original sample, the 

oversampled and filtered output, and the modulated output are 

compared in the frequency domain, as presented in Fig. 5. The 

OSR is set as 32 and a third-order ΣΔ modulator is applied. In 



6 

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 

the low-frequency region (i.e. the band of interest), both the 

oversampled output and the modulated output exhibit a good 

match with the original sample, suggesting that the input 

information is well-preserved in the low-frequency region. The 

high-frequency components in the oversampled output are 

attenuated by a low-pass filter. Due to the noise-shaping 

property, the modulator introduces high-frequency noise in the 

output. Fig. 6 presents the frequency response of the modulated 

outputs by the ΣΔ modulator of various orders. A good match 

with the original sample can be observed for all the orders 

within the band of interest. Higher orders lead to lower in-band 

noise, but higher out-of-band noise. We can conclude from 

these results that the designed conversion process well 

preserves input information in the low-frequency region. The 

following section demonstrates that high-frequency noise has 

no significant impact on classification performance. 

 

Fig. 6 Frequency response of the modulated outputs by the ΣΔ 

modulator of different orders. The modulation class of the 

original sample is QPSK and the SNR is 18. Only the in-phase 

component of the sample is presented. 

 

B. Classification results and performance analysis 

TABLE 1  

CLASSIFICATION ACCURACY (%) COMPARISON ON TWO RADIO 

DATASETS. FOR SNN-ΣΔ, THE OSR IS 32. 

Dataset ANN SNN-CD 

SNN-ΣΔ with different 

orders 

1 2 3 4 

RADIOML 

2016A 
56.98 56.67 56.58 56.69 56.55 56.47 

RADIOML 

2018 
64.59 60.86 63.93 64.09 64.29 63.59 

 

Classification experiments are performed on two radio 

datasets. Three methods are compared, namely an ANN 

baseline, the SNN-CD [32], and the proposed SNN-ΣΔ. The 

ANN has the same network architecture and hence the same 

number of trainable parameters as the SNN-ΣΔ. The network 

size of the SNN-CD is chosen to be close to that of the SNN-

ΣΔ for a fair comparison. The SNN-CD has around 84K and 

627K trainable parameters for classifying RADIOML 2016A 

and 2018, respectively, while the SNN-ΣΔ has around 83K and 

542K trainable parameters. TABLE 1 presents a classification 

accuracy comparison among the three methods. For SNN-ΣΔ, 

the OSR is set to 32. The order of the ΣΔ modulator affects the 

accuracy, which could be attributed to the tradeoff between 

low-frequency noise and high-frequency noise as displayed in 

Fig. 6. The best accuracy results are achieved by the ANN in 

both cases, though small differences exist between the ANN 

and our method. The SNN-ΣΔ achieves 3.23% higher accuracy 

than the SNN-CD with fewer trainable network parameters on 

the more realistic dataset, RADIOML 2018. It is only 0.30% 

lower than that of the ANN. This reflects that the strong high-

frequency noise in the ΣΔ  modulated outputs does not 

significantly degrade the accuracy. It can be attributed to the 

low-pass filtering effect of the LIF neuron model in SNNs [42-

45]. Moreover, decreasing the OSR from 32 to 8 at the third 

order only causes a 0.45% accuracy loss on RADIOML 2018, 

but it significantly reduces the time window and improves the 

runtime. 

The samples from the datasets have various SNR levels 

ranging from -20 to 18 dB. Since the SNR of radio signals 

generally varies from application to application, it is important 

to examine how the SNR affects classification accuracy. Fig. 7 

presents the breakdown of the classification accuracy across the 

SNR range for both datasets. Very high accuracy is achieved in 

the range of SNR > 0 dB. In the case of RADIOML 2018, more 

than 99% accuracy is achieved. By contrast, random guesses 

happen in the range of SNR < -15 dB. A small difference 

between the ANN and SNN-ΣΔ is observed at all SNRs for both 

datasets. 

 

Fig. 7 Classification accuracy at different signal-to-noise ratios (SNRs) 

for the ANN (dashed) and SNN-ΣΔ (solid). For the SNN-ΣΔ, the order 

is set to two on the RADIOML (RML) 2016A dataset and three on 

RADIOML 2018 dataset. The OSR is 32. 
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To understand the difficulty of predicting different 

modulation classes, a confusion matrix is generated at SNR = 

0, as displayed in Fig. 8. The main confusion exists between 

QAM16 and QAM64, WBFM and AM-DSB, as the two pairs 

of modulation classes are very similar. The same confusion was 

also observed in the ANN [20, 21]. 

C. Computational energy analysis 

This section estimates floating point operations (FLOPs) 

and energy consumption resulting from computations in both 

ANNs and SNNs on a general digital hardware system. While 

the ANN method can achieve higher accuracy, the SNN-based 

solutions have lower computational energy consumption. For 

the ANN, the number of FLOPs approximately equals the 

number of additions (ADD) and multiplications (MUL) 

required by multiply-accumulate (MAC) operations. For SNNs, 

thanks to the input binary spikes, the multiplications are 

eliminated and only additions contribute to FLOPs. The spike 

sparsity reduces the number of additions. Computational energy 

consumption for the ANN and SNN is estimated by 

𝐸𝐴𝑁𝑁 = #𝐴𝐷𝐷 × 𝐸𝐴𝐷𝐷 + #𝑀𝑈𝐿 × 𝐸𝑀𝑈𝐿                (1) 

𝐸𝑆𝑁𝑁 = #𝐴𝐷𝐷 × 𝐸𝐴𝐷𝐷 × 𝑇                            (2) 

where  𝐸𝐴𝐷𝐷 is the energy required for one addition and 𝐸𝑀𝑈𝐿 

is the energy for one multiplication. Reference values for 𝐸𝐴𝐷𝐷 

and 𝐸𝑀𝑈𝐿 are taken as 0.1 pJ and 3.1 pJ for 32-b fixed point 

operations based on a 45 nm CMOS process [46]. It is 

noteworthy that this analysis gives an insight into the superior 

energy efficiency of SNNs if we aim to implement them on an 

optimized neuromorphic hardware system, such as Intel’s Loihi 

[47]. 

TABLE 2 

COMPUTATIONAL OPERATIONS AND ENERGY COMPARISON ON 

RADIOML 2018.  

Method # ADD (M) # MUL (M) Energy (μJ) 

ANN 9.64 9.64 30.85 

SNN-CD 0.51 0 1.63 

SNN-ΣΔ 1.70 0 1.36 

 

TABLE 2 presents the comparison of computational cost 

and energy among the three methods on RADIOML 2018. The 

number of FLOPs is calculated per iteration (i.e., per time step 

for SNNs). Energy estimation is made for one inference step. 

The SNN-CD uses 32 time steps, while the SNN- ΣΔ  can 

perform inference with 8 time steps. Due to the spike sparsity, 

SNNs need to do much fewer additions. While SNNs require a 

temporal window to finish one inference step, they still lead to 

up to 22× lower energy consumption compared with the ANN. 

We observed that the spike sparsity resulting from the SNN-CD 

is higher in the layers where the majority of FLOPs take place. 

Thanks to the high spike sparsity, the SNN-CD consumed 

similar energy to the SNN-ΣΔ. It is worth noting that the ANN 

requires a preprocessing stage, such as normalization, causing 

additional overhead. The SNN-CD also requires a conversion 

stage, consisting of normalization, quantization, and 

accumulation steps, as shown in Fig. 2. These facts make SNN-

ΣΔ the most attractive solution, as no additional encoding step 

is needed.  

D. Comparison 

The previous subsections have analyzed the classification 

performance and computational energy consumption of the 

three methods. While the ANN produces the best accuracy 

results, it also requires intensive multiplications and incurs the 

highest computational energy consumption. The SNN-CD 

exhibits the lowest accuracy on both datasets. More 

importantly, the classification performance of the SNN-CD 

heavily relies on the data distribution of a dataset. Before 

converting the samples into event constellation diagrams, this 

method normalizes all the samples in the dataset based on the 

data distribution of the dataset, as explained in II.B. 

Experimentally, we found that a slight change in the 

normalization constants can cause a severe accuracy drop. So, 

the dependency renders this method impractical for real-time 

testing, as the distribution of the real samples is generally not 

readily known. Moreover, implementing the encoding process 

introduces hardware overheads in area, latency, and power. The 

proposed SNN- ΣΔ  achieves comparable accuracy on 

RADIOML 2018 to the ANN and consumes much lower 

computational energy. No extra coding module is required for 

implementation. The decimation stage in the ADC and data 

preprocessing stage are also skipped.  

V. FPGA IMPLEMENTATION 

Radio applications generally require high-throughput and 

low-latency hardware. Due to very high sample rates of radio 

signals, a fast and highly specialized inference neural network 

accelerator is desired. In this section, we present an FPGA 

implementation of the proposed SNN classification module 

targeting radio signal classification. We will show a comparison 

between the ANN-based and SNN-based implementations for 

the classification module and demonstrate the advantages of the 

 

Fig. 8 Confusion matrix for classifying RADIOML 2016A with 

the SNN-ΣΔ method. The order is set to two and the OSR is 32. 
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SNN-based implementation in resources and throughput 

resulting from a specific architecture.  

Various FPGA architectures have been reported to realize 

SNNs for different applications [32, 48-52]. Among them, a 

promising hardware accelerator design is the open-source FINN 

framework from Xilinx [53-55] for its fast inference speed, 

which adopts a streaming architecture dataflow. FINN is 

designed for implementing quantized neural networks and is 

written in C++ in Xilinx High-Level Synthesis (HLS) tools. 

Data are transferred between computing units as streams 

through first-in-first-out (FIFO) channels. The throughput of 

the whole system is linearly scalable with the number of parallel 

processing elements. The FINN framework was adopted to 

accelerate SNNs for radio classification [32]. This work 

demonstrated that the FINN-based streaming SNN 

implementation provides high throughputs and better memory 

utilization. While it is not specialized for low-energy SNN 

implementations, its linearly scalable throughput mitigates the 

temporal processing drawback of SNNs, making it practical for 

radio classification. Therefore, we adapt this framework to 

implement the proposed SNN classification module with the 

ΣΔ-modulated event inputs. In the following, we describe the 

FINN-based streaming SNN architecture in detail. 

A. Architecture overview. 

Different from systolic implementations, this architecture is 

a heterogeneous system of data processing units. Each layer of 

a neural network is treated as an individual computing array 

with its local on-chip memory, as shown in Fig. 9. A FIFO 

channel is used to stream spikes between layers. Multiple input 

buffers are allocated to store the input stream converted from 

the ΣΔ modulator. A convolutional layer consists of a sliding 

window unit (SWU) and a matrix-vector threshold unit 

(MVTU), while a linear layer only requires an MVTU. 

Convolutional operations are lowered to matrix-matrix 

multiplications [56]. The SWU converts a multi-channel input 

tensor into a matrix through a frame-to-column algorithm. 

Matrix operations are accelerated in the MVTU where multiple 

processing elements (PEs) with single instruction multiple data 

(SIMD) lanes are implemented. Each PE contains a spiking LIF 

neuron that generates an output spike stream. A prediction of 

the input class is generated from the final classifier layer. 

 

Fig. 10 Input buffer design for ΣΔ modulated input streams. Each 

buffer saves one group of interleaved consecutive input streams from 

the two channels. All the data at the same time stamp (e.g., 𝑡0) are then 

streamed out to the first layer through a FIFO channel. 

B. Input buffer design 

As illustrated in Fig. 3, the modulated signals are reshaped 

into two-channel event streams that are fed into the SNN. The 

modulated signals in each channel are divided into 𝐿 groups of 

consecutive binary data. Each group is treated as an input spike 

stream with a temporal window, 𝑇 = 𝑂𝑆𝑅. As depicted in Fig. 

 

Fig. 9 Overview of the FINN-based streaming architecture for the SNN-based classification module. The system receives two-channel (i.e., 

I and Q) binary inputs produced from the ΣΔ modulator and saves them in multiple input buffers. Multiple layers are implemented on the 

same FPGA board to form the high-throughput streaming architecture. Each convolutional layer has a sliding window unit (SWU) and a 

matrix-vector threshold unit (MVTU). The SWU converts high-dimension input data into a 2D matrix by using multiple buffers to achieve 

streaming conversion in a circular fashion. The MVTU contains parallel processing elements (PEs) with single instruction multiple data 

(SIMD) lanes to accelerate matrix operations. A spiking neuron is implemented in each PE for spike generation. The output of the system is 

a prediction of the input class. 
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10, we allocate 𝐿 buffers to temporally hold these inputs until 

the network finishes an inference pass. Each buffer receives one 

group of data from two channels and has a size of 2𝑇 bits. The 

two-channel data are interleaved and arranged in a temporal 

order where the earlier data are stored in the less significant bits. 

All the data at the same time stamp (e.g., 𝑡0) are then streamed 

out to the first layer through a FIFO channel. The design can 

stream out the whole channel data every clock cycle. 

 

Fig. 11 The frame-to-column algorithm performed in the SWU. The 

data in all channels located in one convolutional kernel are flattened to 

a vector. 

C. Sliding window unit 

The SWU executes a frame-to-column algorithm that 

converts a multi-channel input tensor into a 2D matrix, as 

illustrated in Fig. 11. The convolutional kernel slides over the 

input tensor. The data in all channels located in one 

convolutional kernel are flattened to a vector. As illustrated in 

Fig. 9, the SWU uses multiple buffers to achieve streaming 

conversion in a circular fashion. The number of buffers equals 

𝑘 𝑠⁄ + 1, where 𝑘 is the kernel size in the vertical dimension 

and 𝑠 is the corresponding stride size. One buffer holds 𝑠 rows 

of input data in all channels. In the example illustrated by Fig. 

9 and Fig. 11, if we assume that 𝑘 = 2 and 𝑠 = 1, two buffers 

(i.e., 1 and 2) are used to hold all the input data required to 

output all the converted column vectors when the convolutional 

kernel slides horizontally. The additional buffer (i.e., 3) reads 

in the next row of input data, while the converted column 

vectors are streamed out from the SWU. Once the convolutional 

kernel finishes horizontal sliding, the first buffer (i.e., 1) is 

cleared and becomes the receiving buffer (i.e., 3) for the next 

row of input data. The other buffers (i.e., 2 and 3) become 

buffers 1 and 2, respectively, which are then used to stream out 

the converted column vectors. The role of the buffers shifts 

circularly. The process is repeated until the whole input tensor 

is converted. 

 

Fig. 12 Convolutional filter weights flattening and tiling. The weights 

associated with an output channel are flattened to a column vector. The 

resulting 2D matrix is partitioned into multiple tiles according to the 

number of PEs and the length of SIMD lanes in the MVTU. 

D. Matrix-vector threshold unit 

The MVTU receives the converted column vectors from the 

SWU and uses multiple parallel PEs with SIMD lanes to 

accelerate matrix operations proportionally. Each PE contains a 

spiking neuron for spike generation. 

1) Parallel matrix operation: As illustrated in Fig. 12, the 

multidimensional convolutional filter weight matrix is 

converted to a 2D matrix. The weights associated with an output 

channel are flattened to a column vector. The resulting 2D 

matrix is partitioned into multiple tiles according to the number 

of PEs and the length of SIMD lanes in the MVTU. The SIMD 

lane receives multiple data in one input channel and the PEs 

computes the accumulations for multiple output channels. The 

MVTU accesses one tile of the matrix and distributes the 

weights across all PEs at every iteration. Upon receiving input 

data, all the MAC operations associated with the tile can be 

TABLE 3 

 FPGA IMPLEMENTATION RESULTS OF VARIOUS METHODS APPLIED TO IMPLEMENT THE RADIO SIGNAL CLASSIFICATION MODULE. ANN-LUT AND 

ANN-DSP ARE THE ANN-BASED IMPLEMENTATIONS THAT USE LUTS AND DSP BLOCKS FOR MULTIPLIER IMPLEMENTATION, RESPECTIVELY. 

THE THROUGHPUT IS MEASURED AS THE NUMBER OF INPUT I/Q SIGNAL SAMPLES PROCESSED PER SECOND, RESPECTIVELY. THE INPUT SAMPLES 

ARE TAKEN FROM RADIOML 2016. 𝐹𝑚𝑎𝑥  IS THE MAXIMUM OPERATING FREQUENCY. IN OUR IMPLEMENTATIONS, TWO FPGA MODELS WITH 

DIFFERENT CAPACITY ARE USED. 

Method FPGA LUT FF BRAM DSP Power (W) Throughput (MS/s) 𝑭𝒎𝒂𝒙 (MHz) FoM 
Emad’2021, 4-ANN, [21] ZCU104 89512 57726 - 1116 0.254 4.78 70 0.114 
Khodamoradi’2021, 6-SNN-CD, [32] ZCU111 102067 34022 1059 42 - 33.33 - - 
5-ANN-LUT Virtex 709 293591 89432 166 0 4.722 6.96 81 4.788 
5-ANN-DSP Virtex 709 49164 72150 178 865 1.472 6.96 81 0.250 
5-SNN-ΣΔ (This work) Virtex 709 31049 45828 122 0 2.063 12.54 150 0.123 
5-ANN-LUT PYNQ 38664 52616 58 0 0.561 0.48 84 1.086 
5-ANN-DSP PYNQ 33295 65861 83 217 0.668 1.74 84 0.307 
5-SNN-ΣΔ (This work) PYNQ 31735 50934 122 0 1.667 11.45 137 0.111 
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completed in one cycle. The number of tiles determines the 

throughput of the layer. Since this is a heterogenous streaming 

architecture, the slowest layer determines the throughput of the 

system. The number of tiles in each layer should be designed to 

match the throughput of all other layers to avoid stalling. 

2) Spiking neuron unit: It implements a LIF neuron model. 

Due to the binary nature of a spike, a MAC operation is 

simplified as a multiplexing-and-accumulate operation, as 

illustrated in Fig. 9. Multipliers are avoided. The membrane 

potential is updated with its decayed previous state and the 

accumulated synaptic inputs. The multiplication between the 

decay constant, 𝜏, and the potential can be replaced by shift 

operations. A spike is generated once the potential exceeds the 

threshold, 𝑢𝑡ℎ and the potential is reset by subtracting 𝑢𝑡ℎ. 

E. Pooling unit 

The pooling unit implements the max-pooling function. 

Since it is placed after the MVTU, the inputs are binary spikes. 

The max function can be realized by the Boolean OR operator, 

as 

𝑀𝑎𝑥{𝑠0, 𝑠1, 𝑠2, 𝑠3} = 𝑠0||𝑠1||𝑠2||𝑠3 (3) 

where 𝑠 is the input spike and || is the OR operator. 

F. Implementation results 

The hardware architecture was designed in Xilinx Vitis HLS 

tool and implemented in Vivado Design Suite. 16 bits were used 

for representing the network weights. Following the same FINN 

framework, ANNs were also implemented for comparisons. For 

ANNs, both look-up tables (LUTs) and digital signal process 

(DSP) blocks can be used to implement multipliers. Since 

SNNs do not need multipliers, we conducted two 

implementations for ANNs, which used only LUTs (ANN-

LUT) and DSPs (ANN-DSP) for multipliers, respectively. The 

five-layer CNN presented in Fig. 3 was adopted. Two Xilinx 

FPGA boards of different sizes were used to conduct 

comparisons under different constraints, namely the Virtex 709 

and PYNQ development boards. For both ANNs and SNNs, the 

number of weight tiles in the MVTU at each layer was adjusted 

to balance the throughput of all layers. 

The implementation results of various methods applied for 

implementing the radio signal classification module are 

presented in TABLE 3. FPGA resources are measured, 

including LUTs, flip flops (FFs), block random-access 

memories (BRAMs), and DSPs. Power consumption is 

estimated post routing using the power analysis tool in Vivado 

Design Suite that provides a detailed analysis and accurate 

estimation [57]. The throughput is measured as the number of 

input I/Q signal samples processed per second (S/s). For all the 

Virtex 709-based implementations, the same settings for tiling 

the weight matrix at each layer were applied. This means that 

all the designs accelerate the matrix operations at the same rate. 

Additionally, we propose a figure of merit (FoM) to provide an 

overall comparison, which considers resource utilization, 

power consumption, and throughput. It is defined as 

𝐹𝑜𝑀 = #𝐿𝑈𝑇 ∗
𝑃𝑜𝑤𝑒𝑟

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
                       (4) 

where all the terms are normalized to the maximum values. 

LUTs are generally more crucial logic elements, so they are 

used to account for the resource factor. The smaller the FoM is, 

the better overall performance the system achieves.  

1) Comparison with prior works: Two prior works are 

included for comparison. Emad et al. presented an FPGA 

implementation of a four-layer CNN [21]. The network was 

trained to classify RADIOML 2016 with an accuracy of 

54.38%. Many DSPs are used to perform convolutional 

operations. It operates at a very low frequency (𝐹𝑚𝑎𝑥) and has 

the lowest throughput. Khodamoradi et al. adapted the FINN 

framework for SNNs and implemented a six-layer SCNN [32]. 

The CD-based coding method as described in Section II.B was 

proposed to convert RF signal samples to spike events without 

the accumulation step. At each time step, only one input sample 

is processed. This implementation benefits from the large 

sparsity induced by the coding method and achieves the highest 

throughput. Many LUTs are also consumed. However, with this 

method, the system illustrated in Fig. 1 (b) has to be employed, 

where ADCs, preprocessing, and coding modules are 

necessary. On the other hand, as discussed in section IV.D, the 

classification performance relies on the data distribution of 

input samples, making it impractical for real-time applications. 

It can not achieve competitive performance on RADIOML 

2018, as displayed in TABLE 1. Our SNN-𝛴𝛥 implementation 

consumes the fewest LUTs and is free of DSPs. It operates at 

the highest frequency and achieves a good throughput. The best 

FoM is achieved for the PYNQ-based implementation, though 

a small difference exists between our implementations and 

Emad’s work. 

2) Comparison with the same-sized FINN-based ANN 

implementations: The ANN-LUT and ANN-DSP implement 

the same network architecture as the SNN-𝛴𝛥 and follows the 

same FINN framework. Due to the higher operation frequency, 

the SNN-𝛴𝛥 solution achieves 1.8× as high throughput as the 

ANNs. The ANN-LUT consumes around 9.5× LUTs, 2× FFs, 

and 2.3× power as the SNN-𝛴𝛥 solution. No DSP blocks are 

needed for the SNN-𝛴𝛥. Replacing LUTs with the dedicated 

DSP blocks for multiplier implementation, the ANN-DSP 

lowers both resource utilization and power consumption, as 

DSP blocks are the dedicated circuits optimized for 

multiplication. It is worth noting that this streaming architecture 

aims for high throughput and hence is not optimized for SNNs 

to achieve low power. Also due to the higher 𝐹𝑚𝑎𝑥 , we do not 

observe that the SNN-𝛴𝛥 solution leads to lower power than the 

ANN-DSP. So, under the same resource constraint without 

DSPs, the SNN-𝛴𝛥  solution can save a lot more resources, 

consume lower power, and achieve higher sample throughput, 

leading to the best FoM. 

Moreover, the PYNQ development board has a much 

smaller size than the Virtex 709 board. We used it to test the 

performance of both ANN and SNN-based implementations 

classifying RADIOML 2016 under limited resources. Due to 

the resource constraint, all the designs have different 

acceleration factors for matrix operations at each layer. 

Compared with the ANN-DSP, the SNN-ΣΔ solution has lower 

logic resource utilization and achieves 6.6 ×  throughput. It 
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achieves 24×  throughput as the ANN-LUT but with 3×  as 

much power consumption. Because of limited resources, the 

ANNs are constrained with low throughput. The SNN- ΣΔ 

solution achieves a much better FoM. 

In summary, the SNN-ΣΔ implementation achieves the best 

overall hardware performance. It does not need DSP blocks. It 

operates at the highest clock frequency and leads to significant 

resource savings and high sample throughput. Under the 

condition of limited resources (no DSPs), the SNN- ΣΔ 

implementation can achieve a much higher throughput. Since 

DSP blocks are generally large and expensive to design, the 

SNN-ΣΔ  implementation is promising for area-efficient and 

high-throughput application-specific integrated circuit (ASIC) 

implementation. Additionally, it is worth noting that the 

comparisons are made only for the implementation of the 

classification module. Compared with the SNN- ΣΔ 

implementation, the other methods (i.e., ANNs or SNN-CD) 

still have the overhead resulting from implementing the 

decimation filters, preprocessing modules, or coding modules. 

VI. DISCUSSIONS AND FUTURE PERSPECTIVES 

We have presented an SNN with a ΣΔ  spike encoding 

method to realize an efficient end-to-end classification system. 

It has been demonstrated to exhibit competitive classification 

performance on two benchmark datasets and consume the 

lowest energy when only computational operations are 

considered on a general digital platform. However, the existing 

radio datasets for modulation classification are still based on 

software simulation due to the challenge of collecting a large 

number of radio samples from the real world. More realistic and 

practical datasets are required to train the proposed SNN for 

real-time deployment. These datasets would pose a great 

challenge in classification due to nonideal conditions, such as 

harsh channel effects and environmental noise. A much deeper 

network architecture may be necessary for the task. An efficient 

training algorithm for deep SNNs is still unavailable. Thus, 

limited performance and increased algorithmic complexity 

could hinder the scalability of the proposed system.  One future 

work direction is dedicated to tackling this challenge.  

The recurrence and temporal processing ability of SNNs 

could be beneficial for reducing the network size and 

computational complexity without sacrificing accuracy. 

Several studies have explored recurrent connections in SNNs, 

which can be trained in both unsupervised and supervised ways. 

They have demonstrated that recurrent SNNs can reduce the 

number of layers and neurons to produce comparable 

performance to other state-of-the-art methods for various tasks 
[58-60]. Particularly, recurrent SNNs are competent for 

processing temporal signals [61]. Therefore, we believe that it 

is worth exploring recurrent SNNs in the context of radio signal 

classification. 

Additionally, the proposed classification system is not 

limited to modulation classification but also promising for 

performing many other classification tasks, such as the 

detection of wireless interference [9], transmission mode [62], 

RF jamming attack [63] and covert channels [11-13]. 

We would like to point out that the analysis about energy 

and power consumption in TABLE 2 and TABLE 3 is 

conducted for different underlying hardware architectures, i.e., 

neuromorphic hardware and FPGA-based accelerator, 

respectively, that are designed for different purposes, such as 

better energy efficiency or higher throughput. The energy 

consumption in TABLE 2 is estimated only for floating 

operations on a general digital platform. This estimation 

provides a good insight if we aim to implement SNNs on an 

optimized neuromorphic hardware system, such as Intel’s 

Loihi. Such neuromorphic hardware is specifically designed to 

perform spike-based computations and fully explore the spike 

sparsity and multiplier-less operations. Thus, much lower 

energy consumption can be achieved [64, 65]. In contrast, the 

power consumption in TABLE 3 is measured in the adapted 

FINN streaming architecture on FPGA. This architecture aims 

for high throughput and hence is not optimized for SNNs to 

achieve low power. Radio signal classification generally 

requires high throughput due to high sample rates. Future work 

will include testing the application on true neuromorphic 

hardware. 

The presented streaming hardware architecture enables the 

SNN classification module to achieve high sample throughput. 

Thanks to the binary nature of spikes, the SNN-based 

implementation leads to significant resource savings. These 

features make it promising to deploy SNNs on edge devices for 

real-time applications. The throughput of the system can be 

further improved by fully exploring the parallelism in the 

architecture. For example, we can increase the number of 

streaming channels and add a third degree of parallelism to 

process multiple output positions in the MVTU [55]. However, 

the streaming architecture is not optimized for SNNs. It does 

not explore the spike sparsity for data movement between 

computing units. The constant signal propagation in FIFO 

channels−0s are transferred most of the time−contributes to a 

large portion of the total power consumption, undermining the 

advantage of SNNs. While it is not specialized for low-power 

SNN implementations, its linearly scalable throughput 

mitigates the temporal processing drawback of SNNs, making 

it practical for radio classification. Thus, a sparsity-aware 

streaming architecture would be of future interest to reduce 

power consumption.  

VII. CONCLUSION 

The rapid development of 5G networks has ushered in the 

era of deploying myriad mobile devices and massive IoT 

sensors, which are wirelessly connected through the radio 

spectrum. It has thus become increasingly important to monitor 

the radio spectrum to optimize spectrum utilization and prevent 

interference and malicious attacks. This work proposed a 

hardware-efficient spiking encoding method based on a ΣΔ 

modulator and demonstrated an efficient SNN to realize an end-

to-end radio classification system. In the method, an SNN 

directly received spikes from the output of a ΣΔ modulator in 

the ADC. We designed a conversion scheme that emulates the 

data acquisition and encoding on hardware and verified the 

correctness of the frequency response of the ΣΔ  encoded 

outputs. An SNN with the ΣΔ encoding method was evaluated 
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on two benchmark datasets for modulation classification. On 

the more realistic dataset, our method outperformed one 

previous spiking encoding method by 3.23% and produced 

comparable accuracy to an ANN baseline within a 0.30% 

margin. Furthermore, thanks to the event-driven multiplication-

less synaptic operations, our method led to 22 ×  lower 

computational energy consumption than the ANN. Analyses 

revealed that more than 99% accuracy was achieved on 

RADIOML 2018 in the range of SNR > 0 dB. Additionally, a 

streaming hardware architecture was demonstrated to realize 

the proposed SNN classification module. The SNN-based 

implementation achieved high throughput and led to significant 

resource savings. Therefore, this work has demonstrated great 

potential in realizing an efficient high-performance end-to-end 

radio classification system. 
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