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COMPLIANT FORCE MODELLING FOR IMPACT ANALYSIS

Contact dynamics modeling remains an intensive area of research with new applications emerging in robotics, biomechanics and multibody dynamics areas. Many formulations for contact dynamics problem have been proposed. The two most prominent categories include the discrete approach, which employs the impulse-momentum relations, and the continuous approach, which requires integration of dynamics equations through the contact phase. A number of methods in the latter category are based on an explicit compliant model for the contact force. One such model was developed by Hunt and Crossley three decades ago who introduced a nonlinear damping term of the form into the contact force model. In addition to proposing the general form of this damping component of the contact force, Hunt and Crossley derived a simple expression for relating the damping coefficient λ to the coefficient of restitution e. This model gained considerable popularity due to its simplicity and realistic physics. It also spurred new research in the area, specifically on how to evaluate the damping coefficient λ. Subsequently, several authors put forward different approximations for λ, however, without clearly revealing the range of validity of their simplifying assumptions or the accuracy limitations of the resulting contact force models. The authors of this paper analyze the various approaches employed to derive the damping coefficient. We also evaluate and compare performance of the corresponding models by using a meaningful measure for their accuracy. A new derivation is proposed to calculate more precisely the damping coefficient for the nonlinear compliant contact model. Numerical results comparing all models are presented for a sphere dropping on a stationary surface. x x n & λ

INTRODUCTION

Many researchers have addressed contact dynamics modeling in the past several decades [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF][START_REF] Dubowsky | Dynamics analysis of mechanical systems with clearances ─-Part 1: Formation of dynamical model[END_REF][START_REF] Brach | Rigid body collisions[END_REF][START_REF] Stronge | Rigid body collisions with friction[END_REF][START_REF] Han | Multi-body impact motion with frictionanalysis, simulation and experimental validation[END_REF]. This fundamental area of research finds numerous applications including analysis of mechanical systems with clearance [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF][START_REF] Dubowsky | Dynamics analysis of mechanical systems with clearances ─-Part 1: Formation of dynamical model[END_REF][START_REF] Herbert | Shape and frequency composition of pulses from an impact pair[END_REF][START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF][START_REF] Rook | Dynamic analysis of a reverse-idler gear pair with concurrent clearances[END_REF][START_REF] Schwab | A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems[END_REF] and numerical simulation of impact in mechanisms [START_REF] Lankarani | A contact force model with hysteresis damping for impact analysis of multi-body systems[END_REF], dynamics simulation of space manipulators handling a payload [START_REF] Ma | Contact dynamics modelling for the simulation of the space station manipulators handling payloads[END_REF], dynamics modeling of legged robots [START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF][START_REF] Plestan | Stable walking of a 7-DOF biped robot[END_REF], response of airbag system sensors [START_REF] Pai | Dynamic analysis of a mechanical airbag system sensor[END_REF], space-docking mechanisms [START_REF] Chen | Research and dynamic simulation of docking locks with contact-impact[END_REF] and knee replacement simulation [START_REF] Fregly | A three-dimensional compliant contact model for dynamic simulation of total knee replacements[END_REF]. One approach to contact force modeling that has gained significant popularity is the compliant contact force model [START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF][START_REF] Fregly | A three-dimensional compliant contact model for dynamic simulation of total knee replacements[END_REF][START_REF] Howard | A minimum principle for the dynamics analysis of systems with frictional contacts[END_REF][START_REF] Mirza | Dynamic simulation of enveloping power grasps[END_REF]. Here, motivated by Hertz contact theory, the contact force between two objects is defined explicitly as a continuous function of local deformation. With the advent of multibody contact dynamics applications, where contact between two objects may occur at many locations, the term deformation has been replaced by penetration (also called interference distance in computational geometry circles). This is a fictitious kinematic measure that can be used in a penalty formulation to calculate the contact force when local deformation and the contact region are small relative to dimensions of the contacting bodies.

A number of compliant contact force models have been employed by researchers. One example is the linear springdamper model where the contact force is defined as:
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(1) with x as the local deformation at the contact point. This model is attractive because of its simplicity; however, it suffers from a number of deficiencies, such as discontinuity of the contact force upon impact, the sticking effect and the fact that for a particular damping coefficient b, the effective coefficient of restitution is independent of impact velocity [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF][START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF].

In this paper, our focus is on a nonlinear compliant model, originally introduced by Hunt and Crossley [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF]. Their contact force model was encapsulated in the equation of motion of a compact solid body with mass m interacting with a massive surface as follows:
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where k is a constant stiffness coefficient presumed to match the force-deformation law, n is the power dependent on the contact scenario and λ is a damping coefficient. Using a commonly adopted approximation for the coefficient of restitution e as a function of initial impact velocity v i [START_REF] Goldsmith | Impact: The Theory and Physical Behavior of Colliding Solids[END_REF],
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(3) and by making additional assumptions on the influence of damping on the impact process, Hunt and Crossley obtained the following expression for the coefficient of damping:
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In Eq. ( 3), α is obtained from a linear fit of the experimental data for the coefficient of restitution as a function of impact velocity. Equation ( 4) effectively relates the damping constant of Hunt and Crossley's model to the coefficient of restitution -the latter is the standard measure of energy dissipation in contact processes and is traditionally employed in discrete formulations of contact dynamics.

The nonlinear contact force model proposed in [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF] maintains great simplicity while overcoming several deficiencies of the compliant linear spring-damper model and rigid body contact models [START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF]. This nonlinear model has been applied in various domains [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF][START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF][START_REF] Pai | Dynamic analysis of a mechanical airbag system sensor[END_REF][START_REF] Lankarani | Continuous contact force models for impact analysis in multibody systems[END_REF][START_REF] Bauchau | Modeling of unilateral contact conditions with application to aerospace systems involving backlash, freeplay and friction[END_REF][START_REF] Bottasso | Multibody modeling of engage and disengage of the helicopter rotors[END_REF][START_REF] Cole | The dynamic behavior of a rolling element auxiliary bearing following rotor impact[END_REF] and has also spurred much new research on compliant contact force modeling [START_REF] Herbert | Shape and frequency composition of pulses from an impact pair[END_REF][START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF][START_REF] Lankarani | A contact force model with hysteresis damping for impact analysis of multi-body systems[END_REF][START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF][START_REF] Lankarani | Continuous contact force models for impact analysis in multibody systems[END_REF]. Since k and n can be obtained experimentally or from Hertzian theory with the knowledge of the geometric and material properties of contacting bodies, much attention has focused in the literature on how to determine λ, and more specifically, how to relate λ to the coefficient of restitution e.

A more precise evaluation of λ in terms of the coefficient of restitution has been hindered by the fact that Eq. ( 2) is a nonlinear differential equation which cannot be solved analytically for the local deformation x as a function of time t.

A number of researchers have employed approximate methods to determine the damping coefficient in the compliant contact model and to establish approximate relationships between λ and e [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF][START_REF] Herbert | Shape and frequency composition of pulses from an impact pair[END_REF][START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF][START_REF] Lankarani | A contact force model with hysteresis damping for impact analysis of multi-body systems[END_REF][START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF][START_REF] Lankarani | Continuous contact force models for impact analysis in multibody systems[END_REF]. In Section 2 of this paper, five such approaches are reviewed, where we focus specifically on the nature of approximations and resulting errors in the contact modeling. These are demonstrated numerically in Section 3. Section 4 contains the main contribution of this paper -a new model for the damping coefficient and numerical validation of its accuracy. Then a comprehensive numerical comparison of the characteristics of existing nonlinear compliant models for the contact force is presented in Section 5. The results presented include simulated responses of a sphere released from a height above a massive surface.

EXISTING MODELS FOR DAMPING COEFFICIENT

The various methods employed in literature to evaluate the damping coefficient can be categorized in two groups. Those in the first category are best described as "energy-based" approaches, such as Hunt and Crossley's [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF] and Lankarani and Nikravesh's [START_REF] Lankarani | A contact force model with hysteresis damping for impact analysis of multi-body systems[END_REF][START_REF] Lankarani | Continuous contact force models for impact analysis in multibody systems[END_REF], and are characterized by the application of the work-energy principle in their derivation. Methods in the second group directly tackle the differential equation ( 2) and include the approximate solutions by Herbert and McWhannell [6], Lee and Wang [START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF] and Marhefka and Orin [START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF]. Each of these, in turn, is characterized by an approximation strategy employed to solve the equation of motion. We introduce the five aforementioned approaches in the chronological order below.

Hunt and Crossley

Hunt and Crossley [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF] obtained their expression for the damping coefficient λ by using the work-energy principle.

Three approximations were made in their derivation. First, the term of the order α 2 v i 2 was ignored in the kinetic energy of the mass m with "acceptable accuracy" [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF]. Although not explicitly stated, the second approximation was made when calculating the normal velocity during impact by ignoring the damping force, thereby attributing the loss of kinetic energy fully to the spring force . The resulting kinetic energy loss was set equal to the work done by the damping force. Finally, when predicting the impact profile, Hunt and Crossley assumed that the area of the velocity loop in the velocity-displacement plot is shared sufficiently equally between "approach" and "rebound" trajectories, to simplify the calculation of the work done by the damping force.

x & n x k
The above three approximations may be acceptable when the coefficient of restitution is close to unity but will result in considerable errors otherwise. The reason is that the smaller the coefficient of restitution, the greater the influence of the damping force on the kinetic energy loss and the greater the difference between approach and rebound trajectories.

Herbert and McWhannell

Herbert and McWhannell [START_REF] Herbert | Shape and frequency composition of pulses from an impact pair[END_REF] employed a more direct method to determine λ. To obtain exit velocity right after impact in terms of the initial velocity at impact, they solved a similar equation of motion to Eq. ( 2) by using a three-term logarithmic expansion. Equating the ratio of the resulting exit velocity to initial velocity of the impact with the coefficient of restitution, they obtained
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Substituting for the coefficient of restitution from Eq. (3), the above expression for λ can be rewritten in a form more suited for comparison to other models:
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The accuracy of this model for λ is limited by the logarithmic expansion approximation.

Lee and Wang

Similarly to Hunt and Crossley, Lee and Wang [START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF] chose a simpler form of Eq. (2) by setting . They obtained the solution of the motion equation by employing a polynomial approximation to derive the velocity as a function of time. By comparing the coefficients of like powers of v 

where t e is the duration of the impact, they derived
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Because of the approximations made, the model is also of limited accuracy. Moreover, the reasoning behind approximation in Eq. ( 7) was not stated.

Lankarani and Nikravesh

Although not immediately apparent, Lankarani and Nikravesh's derivation [START_REF] Lankarani | A contact force model with hysteresis damping for impact analysis of multi-body systems[END_REF][START_REF] Lankarani | Continuous contact force models for impact analysis in multibody systems[END_REF] is implicitly based on the same two assumptions as made by Hunt and Crossley (the last two as stated in Section 2.1). Lankarani and Nikravesh compared the dissipated kinetic energy with the work done by the damping force to obtain the damping coefficient as
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Again, substituting for e from Eq. ( 3), we rewrite Eq. ( 9) for later use as:
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Marhefka and Orin

Marhefka and Orin [START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF] obtained an explicit relationship between normal velocity and deflection x by analytical integration of equation of motion [START_REF] Dubowsky | Dynamics analysis of mechanical systems with clearances ─-Part 1: Formation of dynamical model[END_REF]. Then by Taylor Series expansion, they calculated an identical damping coefficient to that determined by Hunt and Crossley. The justifications for the low-loss approximation [START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF] and the Taylor Series expansion are questionable.

ERROR COMPARISON OF EXISTING MODELS FOR λ

From the discussion in Section 2, we can see that several approximate methods have been employed to define the damping coefficient λ in the nonlinear compliant contact model. We now evaluate the validity of these methods by using the observed error in the coefficient of restitution as a measure of their accuracy. 
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Four different expressions for the damping coefficient λ were derived based on the five approaches discussed in Section 2, as summarized in Table 1. From the analytical standpoint, all "models" for λ appear reasonable as they all generate qualitatively similar velocity and force responses. Comparing their values quantitatively, one can obtain the following ordering: Clearly, depending on the assumptions made in their derivations, the four models for λ are of varying degrees of accuracy. Furthermore, the nonlinear nature of the compliant force model precludes one from making a priori conclusions on the relative accuracy of these models. To compare the performance of the four models, we propose to use the "observed" value of the coefficient of restitution as a measure of model accuracy. We therefore present the error in e calculated as % difference between the value obtained after numerical simulation of Eq. ( 2) and the value used to define λ , as per Equations ( 4), ( 5), ( 8) and ( 9). The former is calculated according to the classical definition of the coefficient of restitution as the ratio of (simulated) departure velocity to initial (impact) velocity.

LW λ < LN λ < HC λ < HM λ ( 
For our numerical test case, we select the following parameters to approximately represent an aluminum sphere impacting a massive surface: m =1kg, k =5×10 9 N/m, n =1, and α =0.4s/m. The error curves for the coefficient of restitution as a function of impact velocity are shown in Fig. 1, while Fig. 2 plots the same as a function of the coefficient of restitution. Both figures display the results predicted with the four models. For this test case, Lee and Wang's model produces the largest error (92% at 1.5m/s) while Herbert and McWhannell's model, with the highest value of λ, gives the best accuracy (38% at 1.5m/s). Indeed the ordering of curves in Figures 1 and2 follows in reverse the ordering of λ's as per Eq. ( 11).

These results demonstrate the inaccuracies of the four models, depending on the impact velocity or the coefficient of restitution. The qualitative implication of the observed error in the coefficient of restitution is that when the normal velocity during impact reaches -ev i and theoretically, the impact phase should terminate, the impact forces predicted with these approximate models do not vanish at this instant.

NEW MODEL FOR λ

We now derive a new model for λ based on Hunt and Crossley's nonlinear model repeated below:
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(12) It is worth to point out that the above equation of motion neglects all external forces, such as gravity, implying that the contact force dominates the impact process. This practice was followed in Refs. [START_REF] Hunt | Coefficient of restitution interpreted as damping in vibroimpact[END_REF][START_REF] Herbert | Shape and frequency composition of pulses from an impact pair[END_REF][START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF][START_REF] Lankarani | A contact force model with hysteresis damping for impact analysis of multi-body systems[END_REF][START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF][START_REF] Marhefka | A compliant contact model with nonlinear damping for simulation of robotic systems[END_REF][START_REF] Lankarani | Continuous contact force models for impact analysis in multibody systems[END_REF] and will also be adhered to in the following derivation.

Letting , Eq. ( 12) can be rewritten as where c is the integration constant. The variables z and x must satisfy two "boundary" conditions at the beginning and end of impact respectively:
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Using the above as initial conditions for the differential equation ( 13) produces two solutions for c: , we obtain ( )
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The above represents an "exact" implicit model for λ which can be used to calculate λ numerically for a given set of impact conditions, as defined by v i , and the specified values of k and α (or equivalently e). The model is exact in the present context only, i.e., within the validity of the approximation for e (linear as in Eq. ( 3) or other [START_REF] Herbert | Shape and frequency composition of pulses from an impact pair[END_REF][START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF]) and the underlying equation of motion [START_REF] Marhefka | Simulation of contact using a nonlinear damping model[END_REF]. Using the same numerical example as in Section 3, we have verified that our model for λ produces no error in the simulated value of e, as shown in Fig. 3. Although we have not demonstrated analytically the ordering of λ New relative to previous definitions for λ, numerical comparisons for a range of v i 0-1.5m/s indicate that > , that is, the exact derivation yields the highest value for λ. In Fig. 4, we show the relation between impact forces and deformation for different models. The area surrounded by the curve generated with the new model is the largest while that of Lee and Wang's model is the smallest. As expected, the new model predicts the highest energy dissipation.

From mechanism designers' point of view, the maximum impact force and the force profile during impact are the most relevant concerns since they play an important role in evaluating stresses of machine parts. From Fig. 4, we can observe the maximum impact forces and dynamic load profiles during the given impact. In the present case, the maximum impact forces predicted by the five models follow a decreasing trend starting with the new model (6.91×10 4 N) and followed by Herbert and McWhannell's, Hunt and Crossley's (Marhefka and Orin's), Lee and Wang's, and Lankarani and Nikravesh's (6.68×10 4 N). This conclusion is different from that made previously by Lee and Wang, who stated that their model produced "a dynamic load profile between Hunt's and Herbert's models" [START_REF] Lee | On the dynamics of intermittent-motion mechanisms, Part 1: Dynamic model and response[END_REF]. Further simulations with different sets of parameter values v i , α and k have shown that the sequence of dynamic load profiles and the maximum impact forces predicted by these models may change. In Fig. 5 velocity versus penetration curves are plotted. We can see clearly that the separating velocities evaluated by the models other than the new model deviate substantially from (maximum deviation is 38.8%). We also observe that Lee and Wang's model yields the largest displacement while the new model predicts the smallest. This is consistent with the fact that the new model predicts the largest energy dissipation. The observed ordering of maximum displacements can be also supported analytically and remains the same irrespective of parameter values. Substituting c and letting
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in Eq. ( 14) allows us to solve for the maximum displacement as follows:
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Therefore, based on the inequalities in [START_REF] Ma | Contact dynamics modelling for the simulation of the space station manipulators handling payloads[END_REF] and > , the sequence of the maximum displacements predicted by all five models is:
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x ˆHC x ˆLN x ˆLW x Ît is interesting to compare the ratios of area of the approach trajectory to that of the rebound trajectory generated by the five models. For the example considered here, the new model tops with the ratio at 1.55, followed in a decreasing sequence by Herbert and McWhannell's (1.44), Hunt and Crossley's (1.35), Lankarani and Nikravesh's (1.27) and Lee and Wang's model (1.17).

Simulated Response of Sphere Falling on Massive Surface

Results presented in the previous section show the performance of different models in a single impact process for a homogeneous system. In this section, we present a simulated response for multiple impacts scenario in the presence of gravity. Our test case is a sphere of radius r and mass m released from height h onto a massive stationary surface. The same parameter values are used as in Section 3 with the additional data: r = 0.0254m and h = 0.15m. Note in this case, the initial impact velocity for the first impact is v i = 1.5635m/s.

Five simulations were carried out with the respective compliant force models (Eqs. ( 4), ( 5), ( 8), ( 9), ( 17)) used to define the contact force at the surface. The damping coefficients prescribed by these models, which in turn were derived with gravity force neglected, are now employed in the governing equation of motion for the sphere with gravity included. For conciseness, results are presented for three models only: the two "bounding" models (Lee and Wang's and Herbert and McWhannell's) and the new model described in Section 4. The position of the sphere's center of mass vs. time is plotted in Fig. 6 for the three models. As expected, the new model predicts the shortest duration of bouncing with the time corresponding to 98% reduction of initial height equal to 0.66s. The corresponding times for Herbert and McWhannell's and Lee and Wang's responses are 0.88s and 2.06s respectively.

The simulated response obtained with the new model is now compared to the analytical solution for the motion of the sphere, the latter obtained by applying the impulse-momentum principle to resolve the impact [START_REF] Han | Multi-body impact motion with frictionanalysis, simulation and experimental validation[END_REF]. This discrete approach assumes the impact takes place instantaneously and employs the coefficient of restitution calculated with Eq. (3) to predict the rebound velocity after each impact. In Fig. 7, we display the position of the sphere and a zoom on the portion of the responses to reveal the small differences between them. The difference is explained by the fact that gravity is neglected in our derivation of the damping coefficient, as well as the fact that impact takes a finite, albeit very short time, when modeled with the compliant force model. Figures 8a-8c depict the impact forces evaluated by the three selected models considered in Fig. 6. The maximum impact force predicted by the new model for the first impact is 12.6% higher than the corresponding value obtained with Herbert and McWhannell model. The new model also results in a fast reduction of the impact forces between impacts, in accordance with fast energy dissipation leading to fast termination of bouncing.
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