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Spatial beam self-cleaning, a manifestation of the Kerr
effect in graded-index multimode fibers, involves a non-
linear transfer of power among maodes, which leads to
robust bell-shaped output beams. The resulting mode power
distribution can be described by statistical mechanics argu-
ments. Although the spatial coherence of the output beam
was experimentally demonstrated, there is no direct study
of modal phase evolutions. Based on a holographic mode
decomposition method, we reveal that nonlinear spatial
phase-locking occurs between the fundamental and its neigh-
boring low-order modes, in agreement with theoretical
predictions. As such, our results dispel the current bhelief
that the spatial beam self-cleaning effect is the mere result
of a wave thermalization process. @ 2023 Optica Publishing
Group

In multimode optical structures, mode-locking is known to occur
via dissipative or nonlinear loss mechanisms. For example, in
lasers, the relative phase between longitudinal cavity modes may
get locked, so that a short pulse is formed, which experiences
reduced losses with respect to a quasi-CW composed by an
incoherent mode superposition [1]. By the same argument, in
lasers, mode-locking may also occur for transverse cavity modes
[2.2]. or both longitudinal and transverse modes [4-6].
However, phase-locking among a multiplicity of modes
may also appear in purely conservative parametric nonlinear
optical processes. The simplest case is provided by the non-
linear coupling between two orthogonal polarization modes
in birefringent optical fibers, where the slow mode remains
a stable eigenstate, even in the presence of strong Kerr
birefringence [7-9]. An example of higher complexity is
related to the inferaction of a number of waves with differ-
ent states of polarization, where phase-locked states emerge
as stable attractors [10]. In conservative nonlinear multimode
syslems, e.g., involving counlerpropagating waves of different
polarizations, meode-locking is of a topological nature, being

associated with a minimum of the interaction Hamiltonian of the
field [11].

In this work, we reveal that spatial beam self-cleaning (BSC)
in graded-index (GRIN) multimode optical fibers [12-15] is
a novel manifestation of complex mode-locking. where both
mode amplitudes and spatial nonlinear phases remain locked.
As a matter of fact, BSC fully preserves the spatial coherence
of laser beams [13], even when it is produced by two different
GRIN fibers [16]. This leads to an increase of the beam quality
or brightness of cleaned beams with respect to speckled beams,
a property of utmost importance for many applications, from
mode-locked fiber lasers [(] to beam delivery in high-resolution
nonlinear imaging [17], to name a few. BSC also leads to a mode
power redistribution at the fiber output, in favor of the funda-
mental mode. The resulting output mede power (or amplitude)
distribution can be well reproduced by means of a thermody-
namic approach to multimode optical systems, based on the
principle of entropy (§) maximization [18-20]. The latter can
be written as [21]

M
S:meA;-,. (1)
=

where K denotes the Boltzmann constant, A; is the amplitude
of the jth mode, and M is the number of guided fiber modes.
Entropy maximization occurs within the constraints of the con-
servation of the total power # = 7. A°, and the linear part of
the Hamiltonian reads H = 3; ﬁjﬂf, where f; is the propagation
constant of the jth mode [21]. According to the thermodynamic
approach, an equilibrium distribution of 4; is eventually reached
after a sufficiently long propagation distance z°, under the action
of weak nonlinearity [19,21,22]. Owing to the latter, the value of
z* is inversely proportional to %, so that BSC is usually demon-
strated by varying 7 at a fixed fiber length L. In particular, the
mode amplitude follows the Rayleigh—Jeans (RI) law, ie., the
mode amplitudes are fixed, according to [see Fig. 1{a)]
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Fig. 1. Spatial mode-locking in GRIN fibers. (a) Mode power
distribution according to RJ law [Eq. (2)] with T=0.11mm™',
u+ Bo=-51.06mm™". (b) Shapes of GRIN fiber mode patterns,
Laguerre-Gauss (LG) modes (,¢/"). The value of the index j for
each mode is overlapped to its pattern. (c) Three spatial phase
distributions for the first ten modes., (d) Corresponding output
beam intensities, using amplitudes A, in (a) and L = 3 m. The beam
quality, measured via the correlation between the intensity of the
fundamental beam and that of near-field images [26], is 85% (green),
919% (blue), and 97% (red), respectively.
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where T and yu denote temperature and chemical potential,
respectively. If T is expressed in the same units as the mode
propagation constant, then K, which is generally considered a
unitary factor, enables the units of 7" to be transformed to power
units.

Now, the thermodynamic approach ignores temporal aspects,
and itdoes not take into account the relative phase among modes.
Hence, in this framework, thermalized beams are necessarily
incoherent. This is because thermodynamics only involves aver-
aged quantities: at variance with A;, whose average value is
nonzero, the average of the phase is equal to zero, since the latter
oscillates between — and x [21,23]. This means that thermody-
namics is inherently incapable of describing a main property of
BSC., specifically, the robust preservation of spatial coherence,
as well as the large beam quality or brightness improvement
[6.13,16]. These properties are intrinsically related to the exis-
tence of a fixed phase relationship among spatial modes. As a
consequence, purely thermodynamic considerations of nonlin-
ear beam propagation are unfit to describe BSC experiments
[24].

So one naturally wonders: how can we move beyond thermo-
dynamics, to provide an exhaustive theoretical understanding
of BSC? To answer this question, it is necessary to determine
the evolution of the nonlinear spatial phase (g;). henceforth
“phase.” which is a challenging task in experiments. Here we
do that, by theoretically and experimentally demonstrating that
BSC involves a mechanism of power-induced phase-locking
among the lowest-order modes, which carry most of the beam
power. First, by recalling the linear wave equation, we show
that mode amplitude locking leads to a locking of their phases
as well. Then, we propose a simple, and yet powerful, numer-
ical approach to determine the values of the mode phases in
the occurrence of BSC. All theoretical and numerical results are
validated by experiments based on a state-of-the-art holographic
mode decomposition (MD) method [25].

Let us first decompose the optical field (*F) in a GRIN fiber
as

W(z.0.r) = Z ¢ ()0, r)e 7, (3)

=1

where ¥/;(6, r) is the jth guided mode and ¢;(z) = A;(z)e* is its
associated Fourier coefficient. Fig. 1(b) depicts the fiber modes
in the LG base. Note that modes are displayed in a triangular
shape, to emphasize their degeneracy with respect to the propa-
gation constant 8; = 8, — (g; + 1)AB, where 8, = 8937.1 mm™',
AB = 55mm™, and ¢; + 1 = [(/1 + 8/ —1)/2] is the mode
degeneracy, [-] being the ceiling function. In Fig. 1(b), degener-
ate modes are shown in the same row. Note also that, according
to the RJ law [Eq. (2)]. degenerate modes have equal amplitudes
at thermal equilibrium [cf. bars with equal height in Fig. 1(a)].

To emphasize that mode phase-locking is a crucial ingredient
in BSC to increase the beam quality, in Fig. 1(c), we consider
three possible sets of values of {g;}. i.e.. ¢; = 0Vj (green dots),
experimental values of ¢;, as described in the following (red
dots), and intermediate values (blue dots). The intensity profile
at a distance z =L is calculated as | 3 ;e e |?, with A;
following the RJ law [Eq. (2)], and is shown in Fig. 1(d). As can
be seen, the highest beam quality is obtained for the experimental
values of g; (red framed image): poor spatial quality beams are
found otherwise (green and blue framed images).

To derive the mode phase-locking condition, we rely on the
Schrodinger equation, i.e., 3.V = —iHY, where H is the linear
Hamiltonian operator, which, under the hy pothesis of weak non-
linearity, simply propagates each mode with its own propagation
constant, i.e., Hy(6.r) = By;(6.r). Here, we neglect the non-
linear part of H, which is several orders of magnitude smaller
than the linear part of H for silica fibers when P is of the order
of tens of kilowatts, i.e., the typical experimental conditions
for BSC [18]. Nevertheless, nonlinearity is needed, in concert
with linear mode coupling, to enable wave thermalization to
the RJ distribution over a relatively short fiber length [27,28].
Hence, we impose the condition that the mode amplitudes reach
a steady-state value at z>z*, in agreement with Eq. (2): hence,

0A;=0 Vj at z>z". (4)

It has to be noted that Eq. (4), as well as Eq. (2). properly
holds for mode amplitudes, which are averaged over a statistical
ensemble. Nevertheless, here we identify the average value of A;
with its value within a single experimental realization (e.g., by
averaging over the pulse profile). This hypothesis is supported by
the fact that BSC experiments are carried out with mode-locked
lasers, whose pulses have very little pulse-to-pulse variance. Our
method would not hold, instead, for demonstrations of beam
cleanup which involve averaging over several realizations with
highly different initial conditions, such as in Baudin er al. [29].
Whenever nonlinearity can be neglected, locking of the mode
amplitude [Eq. (4)] is associated with the locking of its phase
as well (this is straightforward to demonstrate, by replacing
the derivative of the field [Eq. (3)] with respect to z in the
wave equation), i.e., d.¢; = 0Vj. This means that, for sufficiently
long propagation distances, each mode acquires a z-independent
phase, so that, eventually, all modes are locked in phase, i.e.,

Ag-0)=0 Yk (5)

Note that such a mathematical derivation does not permit the
evaluation of actual steady-state values of the modal phases.
These, however, can be determined by recalling some aspects
of the thermodynamic theory of BSC. Specifically, we refer to
the values of the beam temperature T, which has to be signifi-
cantly low, to ensure that a sufficiently large amount of the optical
power is stored in the fundamental mode at thermal equilibrium.
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Fig. 2. Thermodynamic parameters for multimode systems at
thermal equilibrium, i.e., whenever the mode power distribution
obeys a RJ law [19]; input power is set to unity. All plots are as
a function of temperature, and for a given GRIN fiber (length and
transverse size). (a) Chemical potential. (b) Internal energy. (c)
Power fraction of fundamental mode.

Indeed, as a general rule, the lower the temperature, the larger
the occupancy of the fundamental mode, i.e., the “cleaner” the
beam will be at the fiber output. Indeed, T = 0 corresponds to
a limit case, which separates the cleanest beams (7 — 0*) from
the most speckled beams (7— 07), i.e., beams whose occu-
pancy of the higher-order modes (HOMs) is dominant [30,31].
To picture the difference between positive and negative temper-
atures, in Figs. 2(a) to 2(c), we plot the theoretical dependence
of u, S, and A}/P, respectively, on T [21]. As can be seen,
when T approaches zero from the right, x tends toward the con-
stant valve u = —p, [see Fig. 2(a)]. Correspondingly, entropy
S attains its minimum value, in agreement with the third law
of thermodynamics [see Fig. 2(b)]. Finally, as can be seen in
Fig. 2(c). the occupancy of the fundamental mode steeply grows
toward 1 as T— 07, whereas, as T'— 07, the occupancy of the
fundamental mode tends to vanish. Therefore, BSC is associated
with a wave thermalization process at low (and positive) tem-
peratures. Indeed. former BSC experiments have shown that the
fundamental mode occupancy is always well above 50%. In this
case, according to Fig. 2(c), the beam temperature 7<0.5 mm™'.
This value is comparable to that indicated in Aschieri er al. [23]
and Baudin er al. [29] as the threshold for wave condensation.

Such a result is crucial, since it allows us to rely on a varia-
tional approach to determine the modal phases at the occurrence
of BSC. Indeed, one can reasonably assume that, at 77 =~ 07, the
field ¥ is close to the sole fundamental mode ,. Hence, we
may treat mode phases as a finite set of variables (ansatz) to
be determined. with the constraint that mode amplitudes obey
the RJ law [Eq. (2)]. to minimize the difference (&) between the
fundamental mode intensity and the output intensity profiles of
the total field W(0.r). i.e.,

min {¢} = min {1#@.NF =P - lw@.r)f}.  (6)

The numerical minimization [Eq. (6)] readily leads to a unique
solution, as long as the first few modes are considered: we took
the first three degenerate groups, containing the six lowest-order
modes, which carry most of the power at thermal equilibrium
[see Fig. 1(a)]. whereas our numerical routine did not converge
when a larger number of modes was taken into account. To
compare the predictions of theory with experiments, we used a
holographic MD setup, as described by Gervaziev eral. [25]. The
latter allowed us to retrieve both the mode amplitude and phase
of the 78 lowest-order modes, i.e., those belonging to the first 10
groups. Experiments were conducted with an ultra-short pulse
laser system pumped by a femtosecond Yb-based laser generat-
ing 174 fs pulses with 100 kHz repetition rate at A = 1030 nm,
with a nearly Gaussian beam shape (M*=1.3). The laser beam
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Fig. 3. (a) Experimental beam intensity profile when increas-
ing P. (b) Comparison of corresponding mode power distribution
with RJ law. (c), (d) Comparison between experimental data (left)
and predictions of Eq. (2) and [Eq. (6)] for the mode amplitude
and phase, respectively. (e) Experimental (dots) and numeri-
cal (dashedlines) values of modal phase as a function of beam
temperature.

was injected at the center of a GRIN fiber with adiameterat 1 /&*
of peak intensity of 30 um. We used a 3 m long standard 50/125
GRIN fiber: its core radius, core refractive index along the
axis, relative core-cladding index difference, numerical aperture,
and fundamental mode radius at 4 = 1030nm are r. = 25 um,
n, = 1.472, A = 0.0103, NA = 0.2, and ry, = 6.33 um, respec-
tively. At the fiber output, as usual for BSC, the beam was
bandpass filtered at 1030 + 5 nm, to avoid any loss of coherence
owing to spectral broadening. Moreover, as the MD method is
based on a spatial light modulator that is polarization sensi-
tive, the beam was projected onto a linear state of polarization
by means of a half-wave plate and a polarizer. In this sense,
although early works have shown that the state of polarization
may drastically change during BSC [32], here we did not analyze
the role of light polarization during BSC in a thermodynamic
framework. Preliminary results in this regard may be found in
Ferraro er al. [33].

The experimental results are shown in Fig. 3. We retrieve the
mode amplitudes and phases for six different values of the laser
pulse peak power. The corresponding beam profiles at the fiber
output are shown in Fig. 3(a). As can be seen, at low powers, the
output beam is speckled, meaning that thermal equilibrium was



not yet reached, whereas at >23 kW, speckles transform into
a bell shape, and the output beam acquires higher brightness
and spatial quality. For the sake of readability, in Fig. 3(b) we
report the measured values of the average mode powers (AfP) in
each mode degeneracy group as a function of the group index ¢;,
for only three values of P, i.e., 12.6 kW, 20.3kW, and 30.4 kW.
As can be seen, it is only at the highest power value that the
experimental mode powers (bars) agree with the RJ law for T =
0.11 mm™" and 4 + B, = —=51.06 mm™' (dashed line): in this case,
about 60% of the total beam power is carried by the fundamental
mode. The values of T and u were calculated as described in
Wu er al. [34] and Mangini er al. [19].

In Figs. 3(c) and 3(d). we compare experimental measure-
ments of AP and g; as a function of # (dots in left panels)
with the predictions of Egs. (2) and (6) (bars in right panels),
respectively. As evidenced by the dashed lines, which are a
guide for the eye, we found an excellent agreement. Note that
modes belonging to the same group, which have almost the same
amplitude according to mode power equipartition [23], are nev-
ertheless associated with different phases [cf. the histograms in
Figs. 3(c) and 3(d)]. Moreover, it can be noted that the equilib-
rium values of both A; and ¢; are progressively reached, as P
grows larger. Indeed, we observed that low-order modes reach a
steady phase at lower values of , when compared with HOMs.
Finally, we verified the temperature range of validity of the
minimization of & [Eq. (6)]. We found an excellent agreement
between experiments and numerical predictions [see Fig. 3(e)]
for7T <0.2mm™.

In conclusion, we ex perimentally demonstrated that the coher-
ent nature of spatial BSC in GRIN multimode optical fibers is
associated with phase-locking between the fundamental mode
and its immediate neighboring low-order modes. The mode
phases could be retrieved, along with the relative mode powers,
thanks to a holographic MD method based on a phase-only spa-
tial light modulator. Our results conciliate the thermodynamic
theory of incoherent wave thermalization with the experimental
observation of the preservation of beam spatial coherence in the
occurrence of BSC. We envisage that our findings will have arel-
evant impact on the various potential technological applications
of the BSC effect. Specifically, we expect that mode-locking
will be strongly reinforced when combining self-cleaning with
a dissipative setting, such as in a multimode fiber laser cavity.
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