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Abstract— Objective: The usage of Riemannian geometry for
Brain-computer interfaces (BCIs) has gained momentum in re-
cent years. Most of the machine learning techniques proposed
for Riemannian BCIs consider the data distribution on a man-
ifold to be unimodal. However, the distribution is likely to be
multimodal rather than unimodal since high-data variability is a
crucial limitation of electroencephalography (EEG). In this paper,
we propose a novel data modeling method for considering complex
data distributions on a Riemannian manifold of EEG covariance
matrices, aiming to improve BCI reliability. Methods: Our method,
Riemannian spectral clustering (RiSC), represents EEG covariance
matrix distribution on a manifold using a graph with proposed sim-
ilarity measurement based on geodesic distances, then clusters
the graph nodes through spectral clustering. This allows flexibility
to model both a unimodal and a multimodal distribution on a
manifold. RiSC can be used as a basis to design an outlier detector
named outlier detection Riemannian spectral clustering (oden-
RiSC) and a multimodal classifier named multimodal classifier
Riemannian spectral clustering (mcRiSC). All required parameters
of odenRiSC/mcRiSC are selected in data-driven manner. More-
over, there is no need to pre-set a threshold for outlier detection
and the number of modes for multimodal classification. Results:
The experimental evaluation revealed odenRiSC can detect EEG
outliers more accurately than existing methods and mcRiSC out-
performed the standard unimodal classifier, especially on high-
variability datasets. Conclusion: odenRiSC/mcRiSC are anticipated
to contribute to making real-life BCIs outside labs and neuroer-
gonomics applications more robust. Significance: RiSC can work
as a robust EEG outlier detector and multimodal classifier.

Index Terms— Brain-computer interface (BCI), electroen-
cephalography (EEG), multimodal distributions, outlier de-
tection, Riemannian geometry, spectral clustering

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) offer a direct communication
pathway between a user and a machine without requiring any mus-
cular engagement [1], [2]. Since the first BCI system was proposed
[3], BCI technology has diversified over the past several decades and
shown potential to revolutionize numerous applications. For instance,
it is promising as an assistive device for motor-impaired users’ life
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[4], [5], a new control device for gaming for the general public [6], [7]
and a detector for intraoperative awareness of general anesthesia [8].
Furthermore, the technology used to design BCIs can significantly
benefit in neuroergonomics [9], [10], which is the emerging science
of how human brain works in everyday life, such as a real-time
monitoring of pilot’s mental states [11].

To translate brain activity into meaningful computer commands,
first, brain activities are recorded typically by using electroen-
cephalography (EEG) [1]. Then, the user’s intent is identified ac-
cording to a pattern recognition pipeline, i.e., extracting features
from recorded EEG and classifying them using machine-learning
approaches. Recently, the use of Riemannian geometry has gained
prominence in the BCI pattern recognition pipeline, referred to as
Riemannian BCIs [12]–[14]. In this pipeline, features are extracted
by describing EEG signals as covariance matrices, and classified by
considering properties of the space where the covariance matrices
belong, called Riemannian manifold. Riemannian BCIs have shown
significant improvements for many subjects [15] and have won
multiple EEG classification competitions [13], [14], [16].

Despite their many potential applications and the efficacy of the use
of Riemannian geometry, most BCI studies are still confined to labo-
ratories and generally report about 20% of their participants failing to
operate BCIs, a phenomenon known as BCI illiteracy/deficiency [17],
[18]. There are still many issues that the BCI research community
needs to overcome for making BCIs practically useful to many users
in real-life settings. Among them, one can cite the issue of large intra-
user data variability [19]. This variability problem can be caused by
a variety of factors. In general, EEG recordings are very sensitive
to artifacts and label noises. Artifacts are often caused by the user’s
muscular activity [20], while label noises are caused when the user
performs a different task than the given instruction [21]. Also, EEG
are sensitive to changes in users’ cognitive states such as fatigue and
vigilance [22]. These factors can cause outliers in a dataset, and/or
make a data distribution more complex, and possibly multimodal. As
a result, this may impede a successful pattern recognition because
common Riemannian methods are based on unimodal distribution
modeling. Moreover, the variability issue can be even more crucial
when EEG are recorded in noisy environments in the real world.

As such, even though data variability remains a serious issue,
there has been less progress in Riemannian BCIs for developing
systems that can handle high data variability. Therefore, we have
suggested the need for adapting a traditional unimodal Riemannian
BCI classifier, i.e., Minimum Distance to Riemannian Mean (MDRM)
[23] to multimodal data distributions in [12]. To the best of our
knowledge, the present paper is the first work to tackle this open
research challenge. In this study, we propose a modeling method
of complex data distributions on a Riemannian manifold toward
improving BCI reliability. Our method, named Riemannian spectral
clustering (RiSC), captures a geometrical data distribution on a
manifold via a similarity graph and then performs spectral clustering
on this graph. This allows us to represent an EEG covariance matrices
distribution on a manifold as multimodal when the distribution has
multiple modes. This modeling can be used as a basis to design
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an outlier detector named outlier detection Riemannian spectral
clustering (odenRiSC) or a multimodal classifier named multimodal
classifier Riemannian spectral clustering (mcRiSC).

OdenRiSC allows detecting outliers without the need for a ref-
erence matrix and a threshold, which are traditionally required in
existing outlier detection methods for Riemannian BCIs [24], [25].
It should be mentioned that our preliminary results of odenRiSC
have been presented in a short conference paper [26] and confirmed
that odenRiSC could detect outliers significantly better than existing
methods on the real EEG data with artificial outliers. In the present
paper, we report further studies with this approach on real EEG
datasets including actual outliers.

McRiSC removes the need for prior mode number setting, which
is required for a geometrical probability-based multimodal classifier
[27]. The performance of mcRiSC was evaluated using a dataset
recorded inside a lab, in which data variability is expected to be low,
and with another dataset collected in actual flight condition, which
is expected to be noisy and with large data variability.

This paper is organized as follows: Section II presents the basis of
Riemannian geometry. Then, Section III describes existing methods
for outlier detection and mutimodal classification. Section IV de-
scribes the theoretical background and implementation of our method.
The data sets used for numerical experiments and the evaluation way
of the proposed method are described in Section V and VI. Then,
Section VII describes the results while Section VIII discusses them.
We also provide a guideline about how to apply our proposed methods
for practitioners in Section IX and conclude this paper in Section X.

II. RIEMANNIAN GEOMETRY FOR EEG COVARIANCE
MATRICES

In this section, we introduce the basic principles of Riemannian
geometry involved in EEG covariance matrices analysis.

A. EEG covariance matrix
Let X ∈ RM×T be a band-pass filtered EEG signal with M

channels and T time samples. The covariance matrix of X is defined
as: PX = 1

T−1XX
>. This estimated covariance matrix is known

to be empirically Symmetric Positive-Definite (SPD). Its diagonal
entries represent the variance of each channel, i.e., the band power
of each channel, while the off-diagonal terms contain the covariance
of each channel pair.

B. Geodesic distance on Riemannian manifold
The M × M SPD matrix belongs to a differentiable manifold
P(M), called Riemannian manifold, which is a smooth curved space
and equipped with a Riemannian metric [28]. The Affine Invariant
Riemannian Metric (AIRM) is a geodesic measurement that respects
the original curvature of a manifold [29]. The AIRM distance δr
between two SPD matrices P1 and P2 on manifold is defined as:

δr(P1, P2) = ‖log(P1
− 1

2P2P1
− 1

2 )‖F =

(
n∑
i=1

log2λi

)1/2

(1)

where λi are positive eigenvalues of P1
− 1

2P2P1
− 1

2 and ‖.‖F is the
Frobenius norm. We used the AIRM distance for similarity measures
and classification.

C. Riemannian basic classification: Minimum Distance to
Riemannian Mean (MDRM)

The most basic Riemannian classifier relies on the intra-class
means of SPD matrices, referred to as Minimum Distance to Rie-
mannian Mean (MDRM) [23].

Given n SPD matrices {P1, P2, . . . , Pn} for class c, the Rieman-
nian mean P c on a manifold P(M) is defined as:

P c (P1, P2, . . . , Pn) := arg min
P∈P(M)

n∑
k=1

δ2
r (P, Pk). (2)

where P c is typically estimated through an optimization algorithm
using training data [30]. Then, a new observation is classified
according to the shortest AIRM distance to each class mean P c,
i.e., ĉ = arg minc δr

(
P, P c

)
.

III. RELATED WORK

A. Outlier detection in Riemannian BCIs
1) Riemannian Potato: This is the first outlier detection method

for Riemannian BCIs, which was originally proposed for online EEG
signal quality monitoring [24]. The detection algorithm requires two
parameters: A reference matrix and a threshold. Samples whose
distances from a reference matrix are larger than the threshold are
rejected as outliers. The reference matrix is the Riemannian mean
of all samples. The threshold th to reject samples is estimated as
th = µ + 2.5σ, where µ and σ are the mean and the standard
deviation respectively of the Riemannian distances between each EEG
covariance matrix and the reference matrix. In the experimental eval-
uation with P300-based BCI, Riemannian Potato detected artifacts of
different origins, such as eye movements or electrodes movements.

2) Median-based Trimmed Averages: This is one of the geo-
metric trimmed average techniques that were proposed to improve
tangent point estimation for Tangent Space Mapping (TSM) based
Riemannian BCIs [25]. The tangent point for mapping was con-
ventionally set by using a plain geometric average derived from all
samples. However, this way of estimation is strongly affected by
outliers. Thus, to estimate a more robust tangent point, this approach
eliminated as outliers the d % (a user-specified threshold) of samples
that exhibited the largest Riemannian distance to the geometric
median of all samples. This showed higher classification accuracies
than the plain geometric average in TSM-based Riemannian BCIs.

However, both methods suffer from one main limitation. They need
a reference matrix to characterize the distribution of EEG covariance
matrices on a Riemannian manifold and a threshold to detect outliers.
Thus, an inappropriate value of such parameters may decrease their
outlier detection performance. In other words, there is a risk that
some true outliers may not be detected as outliers or that some non-
outlier samples may be erroneously rejected as outliers. In contrast,
our method, odenRiSC, is free from this limitation as it describes data
distributions using a graph and detects outliers by clustering nodes
of this graph.

B. Multimodal Riemannian EEG classification
Gaussian distributions and mixtures of Gaussian distributions were

generalized from an Euclidean space to a Riemannian manifold in
[31]. The probability density function of the Riemannian Gaussian
distribution can be written as:

f(P | P̄ , σ) =
1

ζ(σ)
exp

(
−δ

2
r (P, P̄ )

σ2

)
(3)

where ζ(σ) is a normalization function with P̄ ∈ P(M) and
σ > 0. Note that the maximum likelihood estimator of P̄ co-
incides with the center of mass P c. This density function can
be extended to mixtures of Riemannian Gaussian distribution by:
g(P ) =

∑H
h=1 whf

(
P | P̄h, σh

)
where H is the number of mixture

components, w1, . . . , wH are positive weights summing to 1. The
two parameters P̄h ∈ P(M) and σh > 0 are estimated by the
expectation-maximization algorithm.
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Zanini et al. [27] applied mixtures of Riemannian Gaussian
distribution to build a probabilistic Bayesian classifier, for EEG
classification to consider the shape of covariance matrix distributions
on a manifold. The classification accuracy of the best Bayesian
classifier was at least as accurate as the MDRM for all subjects.
Interestingly, the results also revealed the optimal number of modes
was different among subjects. This implies that, even if the BCI
experiment is common for every subject, the shapes and numbers
of data clouds are highly variable between individuals.

However, as a limitation, this method required to set the number of
mixture components in advance manually, even though it is difficult
to know how many modes there are in a given dataset in practice.
In contrast, mcRiSC, our proposed multimodal classification model,
does not need to handcraft the number of modes as it detects modes
in a data-driven manner using spectral clustering.

IV. METHODOLOGY

Our method models SPD matrices on a manifold as a set of clusters
through spectral clustering. Then, these clusters are utilized for outlier
detection and multimodal classification. Spectral clustering, a core
tool of our method, is a data clustering method relying on a graph
[32]. The relationships between data samples is represented via a
similarity graph. Then, the samples are grouped through calculation
of eigenvalues of the graph, i.e, the spectrum of the graph Laplacian.

In this section, we introduce the way to construct the graph, the two
different spectral clustering methods: unnormalized and normalized
spectral clustering from the graph partitioning problem point of view,
and finally, the detail of our data modeling method.

A. Graphs
Given a set of data points x1, x2, . . . , xn, an undirected graph
G is represented by two elements G = (V, E), where V =
{v1, v2, . . . , vn} denotes a set of nodes representing data points and
E denotes a set of edges connecting nodes. If two data points xi
and xj have some similarities, their nodes are connected by an edge
with a non-negative weight wij . The connectivity of each node is
represented by the adjacency matrix W whose entries are as follows:

W (i, j) =

{
wij if nodes i and j are connected
0 otherwise

(4)

Note that we constrain G to be undirected, i.e., wij = wji.
There are several popular methods to construct a similarity graph.

In this paper, we use two different methods: A fully connected graph
and a k-nearest neighbor (k-nn) graph. With a fully connected graph,
all pairs of nodes are connected with their similarity weights. With
the k-nn graph, the goal is to connect node vi with node vj if vj is
in the k-nn of vi. However, this definition leads to a directed graph,
as the neighborhood relationship is not symmetric. To satisfy the
undirected constraint, we ignore the directions of the edges, so that
vi and vj are connected with an undirected edge if vi is among the
k-nn of vj or if vj is among the k-nn of vi.

Algebraically, a graph topology is formulated through a graph
Laplacian. There are several types of graph Laplacians. In this paper,
we only use an unnormalized graph Laplacian L [33], which are
defined as L = D −W where D is a diagonal matrix called degree
matrix whose diagonal elements are given as di =

∑n
j=1 wij . L

is symmetric positive semi-definite, i.e., all sorted eigenvalues are
non-negative and real-valued 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

B. Graph cut theory for spectral clustering
Spectral clustering algorithms are based on the solution of graph

cut problems. Its goal is to produce well-separated clusters, repre-
sented by h connected subgraphs. The two most common objective

functions for it are RatioCut [34] and Ncut [35]. Both functions try to
include sufficient samples in each cluster but it is achieved based on
different measures. RatioCut [34] solves the following optimization
problem to find the optimal h connected subgraphs A1, A2 . . . , Ah:

minimize 1
2

∑h
j=1

W(Aj ,Āj)
|Aj |

subject to A1, A2 . . . , Ah

(5)

where Āj is the complement of Aj , W
(
Aj , Āj

)
=∑

i∈Aj ,l∈Āj
wij with the shorthand notation i and l for the

set of nodes {i | vi ∈ Aj} and {l | vl ∈ Āj}, and the factor 1
2 is

for avoiding counting each edge twice in the cut. |A| denotes the
number of nodes to measure the size of subset A in G. RatioCut
tries to find the optimal clusters by balancing the size of clusters
according to their number of nodes.

Meanwhile, Ncut [35] defines the optimization problem as follows:

minimize 1
2

∑h
j=1

W(Aj ,Āj)
vol(Aj)

subject to A1, A2 . . . , Ah
(6)

where vol(Aj) is a sum of weights of all edges attached to nodes in
subset Aj . Ncut tries to find optimal clusters by balancing the cluster
according to the weight of edges.

Note that Eq. 5 and 6 are NP-hard combinatorial optimiza-
tion problems. They aim to find the optimal combination of sets
A1, A2, . . . , Ah by assigning a discrete value {−1, 1}, which in-
dicates a hard cluster membership, to each graph node. To make
the problems tractable, they are relaxed to be continuous real-valued
optimization problems: finding a real value between −1 and 1, i.e.,
[−1, 1] - i.e., a soft cluster membership. The optimal solution of this
continuous optimization is a matrix whose columns are h eigenvectors
of L for relaxed RatioCut and h generalized eigenvectors of L for
relaxed Ncut based on the Rayleigh-Ritz theorem [36, Section 5.5.2].

Finally, this real-valued solution is converted to a discrete partition
by applying k-means algorithms on rows of this optimal solution.
These methodology is so-called spectral clustering. Relaxing Ratio-
Cut is solved by unnormalized spectral clustering and relaxing Ncut
by normalized spectral clustering, respectively.

In this paper, we used these two different spectral clustering
methods based on an unnormalized graph Laplacian [35], which are
summarized in Algorithm 1. The difference between these methods
is only the eigenvalue decomposition method for L.

Algorithm 1 General spectral clustering algorithm
Input: A graph G = (V, E)
Output: Graph partitions C1, . . . , Ch

1: Compute an unnormalized Laplacian matrix L
2: For unnormalized spectral clustering:
Compute the first h eigenvectors u1, u2, ..., uh of L

For normalized spectral clustering:
Compute the first h generalized eigenvectors u1, u2, ..., uh of L
3: Let U ∈ Rn×h be the matrix containing h vectors u1, . . . , uh
as columns and let yi ∈ Rh be a vector corresponding to the ith

row of U for i = 1, . . . , n.
4: Cluster (yi)i=1,...,n into partitions C1, . . . , Ch applying the
k-means algorithm in the feature space Rh

C. RiSC: Riemannian spectral clustering
The geometrical relations between n EEG covariance matrices of

class c on a manifold are described by a similarity graph G = (V, E),
where V = {P1, P2, . . . , Pn} is a set of nodes, here EEG covariance
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matrices, and E is a set of edges connecting nodes in V . The similarity
graph is built for each class by either a fully connected graph or a
k-nn graph. To construct the k-nn graph, we select k = log(n), as
recommended in [32]. The edges are weighted by Gaussian similarity
wij based on a pairwise AIRM distance between Pi and Pj :

wij =

 exp
(
− δ

2
r (Pi,Pj)

2q2

)
i 6= j,

0 i = j,
(7)

where q ∈ [0, 1] controls the similarity between EEG covariance
matrices. In general, spectral clustering can be quite sensitive to q
values since the similarity topology can be changed according to this
parameter [32]. For instance, a too small q may lead to too small
similarity weights and wij would be very close to 0. As a result, all
nodes of the similarity graph would appear equally far away. To set
parameter q in data-driven manner, another graph Gq is built, which
has the same graph topology as G with the pairwise AIRM distance
δr(Pi, Pj) as edge weight. Then, the median of the edge lengths of
the minimum spanning tree (MST) of Gq was selected as q. This MST
has the same n nodes as Gq and all nodes are connected by a route
that minimizes the total edge weights without any cycle. We assume
the median of their length to be a reasonable radius of adjacency
among different distributions. Thus, this q magnifies the similarity
within a cluster and weaken it between clusters.

Another important point for spectral clustering is the choice of
the number of clusters h. In this study, the optimal h is selected
according to the eigengap heuristic [32]. The eigengap heuristic is
based on the spectral decomposition of the Laplacian of graph G. The
index of the ith eigenvalue λi which has the maximum gap is set
as suitable h, i.e., h = arg maxi(λi+1 − λi). After determining h
(at maximum h = 5), the spectral clustering algorithm is applied
on L as Algorithm 1. Depending on how the resulting clusters
are used, RiSC can act as an outlier detector named odenRiSC,
or as a multimodal classifier named mcRiSC. The RiSC algorithms
(odenRiSC and mcRiSC) were implemented with Matlab R2022b and
code are available at https://github.com/msyamamoto/RiSC.

1) odenRiSC – outlier detection Riemannian spectral clus-
tering: odenRiSC is an outlier detector working on a Riemannian
manifold of EEG covariance matrices. As illustrated in Fig. 1, all
resulting clusters of spectral clustering except the cluster with the
largest size are identified as outlier clusters. Thus, if there is no outlier
in a given dataset, a single cluster should be detected, and no data will
be rejected as outliers. This is in contrast to other existing methods,
which always reject data, even when there is no outlier.

Outlier 
Outlier 

Outlier 
… Covariance matrix of class c
… Detected outlier cluster

Fig. 1. Illustration of odenRiSC idea

2) mcRiSC – multimodal classification Riemannian spectral
clustering: mcRiSC allows MDRM to be multimodal thanks to
RiSC. To train a classifier, first, the data are clustered through RiSC
per each class. Then, the clusters with only one node are removed as
outlier cluster. Next, the cluster centroids of the remaining B clusters
for all classes combined {P (1)

, · · · , P (B)} are estimated using the
Riemannian mean. Then, for applying the classifier to test set, the

AIRM distances from a new observation P to those cluster centroids
are computed. As illustrated in Fig. 2, the prediction b̂ is provided
according to the class to which the nearest cluster belongs, i.e.,

b̂ = arg min
b∈{1,...,B}

δr
(
P, P

(b)
)

(8)

The distinctive point compared to the geometrical probability-
based classifier based on mixtures of Riemannian Gaussian distri-
bution, which needs manually selection of the number of modes,
is that RiSC can select the number of modes in a fully data-driven
way by using spectral clustering. Another advantage of our automatic
mode number selection is that if the data does not have well-
separated modes, RiSC can theoretically detects a single big cluster,
and mcRiSC will thus act as a unimodal classifier. Thus, mcRiSC
could be used flexibly without prior knowledge on whether the data
has a unimodal or multimodal distribution. It is also important to note
that even though the current paper focuses on MDRM, it is possible
to combine mcRiSC with other classifiers such as k-nn by assigning
the majority class among the k-nearest cluster centroids.

… Covariance matrix of class 1 

… New observation 
… Cluster centroid 

Class1

Class2Outlier 

Minimum 
distance

Outlier 

Outlier 

… Covariance matrix of class 2 

Fig. 2. Illustration of mcRiSC idea

V. EXPERIMENTS FOR OUTLIER DETECTION

A. Data description for outlier detection experiment

To evaluate RiSC, we conducted two numerical experiments: with
EEG dataset with artificial outliers or with actual motion outliers.
The dataset with artificial outliers were generated based on real EEG
data and concatenated to the real EEG dataset. This enabled us to
have a ground truth to assess objectively how well each method
detects outliers. The concatenated original EEG data may still contain
some outliers, which we assume here are mostly not substantial
because the data was recorded in careful laboratory conditions. For
the experiment with actual motion outliers, we used a public dataset
whose EEG epochs were contaminated by motion artifacts. Those
artifacts locations were labeled. This provided us with a ground truth
to assess outlier detection performance.

1) Real EEG data for artificial outlier generation: In order to
create contaminated dataset with artificial outliers, we used dataset
IIa from BCI competition IV, provided by TU Graz, Austria [37].
This set comprises EEG signals from nine subjects who performed
left hand, right hand, both feet, and tongue Motor Imagery (MI).
EEG signals were recorded using 22 EEG channels. The presence
of ocular artifacts, i.e., eye movement artifacts was marked. Usually,
eye movement affect frequency bands lower than 7 Hz [20]. Here,
EEG signals were band-pass filtered in the 7–30 Hz, using a 4th

order Butterworth filter, thus, ocular artifacts should not affect the
resulting EEG covariance matrices much. Training and testing sets
are available for each subject. Both sets contain 72 trials for each
class. Each trial lasts for 7 sec and subjects performed MI within
t = 3 to 6 sec. In this work, we only used training data of left hand
MI from subjects A01, A02, A03, and A07 because these datasets
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contain the fewest ocular artifacts. For computing EEG covariance
matrices, EEG signals from the whole MI interval was used.

2) Contamination scenario of artificial outliers: Contaminated
datasets were generated by adding artificial artifacts to reference EEG
trials by following the reference paper about probability modeling for
time series additive outliers [38]. In actual EEG, outliers are often
generated due to artifacts affecting specific channels and time periods.
For instance, a common artifact type is facial muscle artifacts (e.g.,
from frowning), which affect frontal channels EEG [20]. Thus, once
the reference EEG trials were randomly selected from the real dataset,
contaminated EEG, i.e. outliers were generated, by adding artifacts to
frontal channels (Fz, FC3, FC1, FCz, FC2, & FC4), for a fixed time
interval, to the reference EEG trials. Based on these trials, z outlier
trials Y ∈ RM×N were generated. The contaminated EEG signal
Y

(m)
t for channel m and time instance t is formulated as Y (m)

t =

x
(m)
t + γtvt, where x(m)

t is a reference trial signal and γt ∈ {0, 1}
controls the proportion of time points to which we add artifacts. The
simulated artifact vt is added (i.e. γt = 1) with probabilities ε. vt is
drown from a multivariate normal distribution vt ∼ N(µ, 2σ2I) in
which N(·) is a normal distribution with mean µ and variance σ2

of a reference channel selected randomly from each reference EEG
trial. In this study, three different outlier numbers z = 5, 10, 25 and
outlier strength ε = 0.10, 0.30, 0.50 were set. For each generating
condition, 30 datasets were randomly generated, for a total of 270
datasets per subject.

3) Real EEG datasets with motion artifact labels: To evaluate
whether outlier removal does really remove true outliers and only
outliers, each trial should be ideally labeled as outlier/non-outlier.
For this, we used the motion artifact contaminated EEG public
dataset by Sweeney et al. [39]. This dataset was collected to serve
as a benchmark for artifact removal techniques. EEG signals were
recorded from six subjects who did not perform any activity and kept
their eyes closed to limit the number of artifacts. In addition, users’
head position was maintained stationary throughout the experiment
to avoid head motion. EEG signals were recorded from two frontal
channels (FPz and FP1h using 10–5 system). There are 23 trials
totally, each lasting 9 min, with motion-induced artefacts to one of the
electrodes at regular 2 min intervals for 1 min long. This artifact was
induced by mechanically pulling the connecting lead of the electrode.

In our experiment, EEG signals were band-pass filtered in the 0.5–
30 Hz, using a 4th order Butterworth filter. The first 59 sec of each
alternating clean and contaminated time period were epoched, and 4
epochs were extracted for each time period in one initial trial. Thus,
a total of 92 trials were created for clean data and 92 trials for outlier
data, from 23 initial trials. Then, 3 different quantities of outliers (5,
10, and 25) were randomly selected from the created outlier dataset.
For each outlier number condition, 30 datasets were generated.

B. Evaluation for outlier detection

The performance of odenRiSC was compared with Riemannian
Potato (RP) and Median-Based Trimming (MBT) that were intro-
duced in Section III-A. Regarding odenRiSC, we used 2 different
models: odenRiSC with a fully connected graph with either unnor-
malized spectral clustering (unnormalized odenRiSC) or normalized
spectral clustering (normalized odenRiSC). For MBT, we used 95%
trimming as a common threshold for statistical outlier detection.

The performance of each method was evaluated by Hit-False
Difference (HFD) [40]. The HFD is a single metric to quantify
the performance of a detection algorithm, which is calculated by
subtracting the False Positive Rate (FPR) from the True Positive Rate
(TPR). Here, the FPR is the percentage of non-outliers that were
detected as outliers whereas the TPR is the percentage of actual

outliers that were detected as outliers. In this sense, a larger HFD
means the model detects true outliers more accurately and precisely.

To compare each method detection performances by the outlier
strengths or numbers, we used a three-way ANOVA for repeated
measures with factors Method (unnormalized odenRiSC, normalized
odenRiSC, RP, MBT (95%)), Outlier Strength (10%, 30% or 50%),
and Outlier Number (5, 10 or 25) for the artificial outliers dataset.
For the actual motion outliers dataset, we performed a two-way
ANOVA for repeated measures with two factors: Method (unnormal-
ized odenRiSC, normalized odenRiSC, RP, MBT (95%) and Outlier
Number, (5, 10 or 25). Sphericity was confirmed using Mauchly’s
sphericity test, and corrected using Greenhouse-Geisser if needed.
When statistical significance was observed, a post-hoc analysis was
performed using Tukey’s honestly significant difference test.

VI. EXPERIMENTS FOR MULTIMODAL CLASSIFICATION

A. Data description for multimodal classification model
To evaluate mcRiSC, we conducted experiments under 2 different

data variability conditions. One is EEG data recorded under a
laboratory setting. This well-controlled experimental environment
allows to record mostly clean EEG data, thus we assume that it has
low variability. The other dataset was recorded in actual flight and
is expected to be particularly contamined by several artifacts such as
electromagnetic interferences (e.g., GPS antenna, radio communica-
tion), vibrations (e.g., engines), and pilots’ muscular activity. Thus,
we assumed this dataset to have many outliers and higher variability.

1) Inside-the-lab data: We used our two EEG datasets [41], [42],
which consist of EEG signals recorded while subjects performed right
and left-hand MI tasks. We used 56 subjects data with 27 channels
(Fz, FCz, Cz, CPz, Pz, C1, C3, C5, C2, C4, C6, F4, FC2, FC4, FC6,
CP2, CP4, CP6, P4, F3, FC1, FC3, FC5, CP1, CP3, CP5 & P3 sites)
from [41], and 20 subjects with 30 channels (C6, CP4, CPz, CP3,
P5, P3, P1, Pz, P2, P4, P6, PO7, PO8, Oz, F3, Fz, F4, FT8, FC6,
FC4, FCz, FC3, FC5, FT7, C5, C3, C1, Cz, C2 & C4 sites) from
[42] for our analysis, thus totally 76 subjects. The dataset from [41]
consists of 6 runs and each run includes 20 trials for each class. The
EEG signals were filtered by using a 4th order Butterworth filter in
a frequency band selected for each user according to the algorithm
proposed in [43]. The dataset from [42] contains 5 runs and each run
includes 20 trials per class. The EEG signals were filtered between
8–30 Hz, using a 4th order Butterworth filter. In both datasets, a
single time window was extracted in each trial from 0.5 to 2.5 sec
after the MI instruction cue. The first two runs were used as training
sets and the remaining runs were used as test sets.

2) Out-of-the-lab dataset: We used the dataset collected in real
flight conditions [44]. Twenty-two pilots equipped with the 6 dry-
electrode Enobio Neuroelectrics system (Fz, Cz, Pz, Oz, P3 & P4
sites) had to perform one low load and one high load navigation
task (i.e. traffic pattern) along with a passive auditory oddball in a
real single-engine aircraft. In the low load condition (∼ 8min), the
volunteers had to monitor the flight path handled by the safety pilot
while in the high load condition (∼ 8min), they had to operate the
aircraft under the supervision of the flight instructor. Each traffic
pattern lasted almost eight minutes in each workload condition.

Two hundred and thirty five epochs were extracted from successive
and non overlapping epochs of 2 seconds for each flying condition.
Each epoch was then band-pass filtered in the theta (4–7 Hz) and
alpha (8–12 Hz) bands, using FIR filter with the filter order 450.
These two frequency bands were chosen because they are known to be
collaboratively associated with mental workload changes [44]. Next,
EEG covariance matrices were estimated for each frequency band.
Then, those theta-band and alpha-band covariance matrices were
arranged diagonally as block matrices in a big covariance matrix.
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B. Evaluation for multimodal classification

The performance of mcRiSC was compared with a standard
unimodal classifier i.e., MDRM [23]. Those method were evaluated
in term of classification accuracy on the test set. The original train-
test split (as performed in the original online experiment [41]) for
the inside-of-the-lab dataset and 5-fold cross-validation for the out-
of-the-lab dataset were used. The 4 different mcRiSC models were
set; unnormalized mcRiSC with a k-nn graph, normalized mcRiSC
with a k-nn graph, unnormalized mcRiSC with a fully connected
graph and normalized mcRiSC with a fully connected graph.

To investigate statistical differences, we first examined the nor-
mality of the results using the Shapiro-Wilk test. If they were not
normally distributed, the Friedman test was performed. Otherwise,
sphericity was then confirmed using Mauchly’s sphericity test, cor-
rected using Greenhouse-Geisser if needed, and finally, a one-way
ANOVA for repeated measures was performed. When statistical
significance was observed, a post-hoc analysis was performed using
Tukey’s honestly significant difference test.

VII. RESULTS

A. Outlier detection results for artificial outliers

Average HFDs for each contaminated condition are summarized
in Table I. As we see diagonally the table from the top left to the
bottom right (5 outliers with 10% to 25 outliers with 25%), when
contamination became more severe, unnormalized and normalized
odenRiSC performed better while existing methods worsened.

Three-way ANOVA for repeated measure with sphericity cor-
rections revealed main effects of “Method” [F (2.26, 267.43) =
277; p < 0.001], “Outlier Strength” [F (1.85, 220.74) = 1177; p <
0.001], and “Outlier Number” [F (1.82, 216.13) = 173; p <
0.001]. It also revealed interactions for “Method X Outlier Strength”
[F (3.19, 380.05) = 434; p < 0.001], and “Method X Outlier Num-
ber” [F (3.27, 388.80) = 4011; p < 0.001] and “Method X Outlier
Strength X Outlier Number” [F (4.88, 581.00) = 161; p < 0.001].
Post-hoc analyses of “Method” showed unnormalized odenRiSC was
significantly better than normalized odenRiSC [MD = 8.40; p <
0.001], RP [MD = 12.5; p < 0.001] and MBT (95%) [MD =
8.74; p < 0.001]. Normalized odenRiSC was significantly better than
RP [MD = 4.06; p < 0.001] but did not show significant difference
with MBT (95%) [MD = 0.35; p = 0.751]. Fig. 3 shows the distri-
butions of HFDs for each method, outlier strength and outlier number.
In term of outlier strength, HFDs with unnormalized and normalized
odenRiSC increased as outlier strength increased, while RP and MBT
(95%) did not show substantial change according to outlier strength.
In term of outlier numbers, HFDs of unnormalized and normalized
odenRiSC increased overall as outlier numbers increased. Meanwhile,
RP and MBT (95%) worsened with increasing outlier numbers.

B. Outlier detection results for actual motion outliers

The average HFDs for each outlier number are summarized in Ta-
ble II. Unnormalized odenRiSC showed constantly higher HFD than
other methods. Two-way ANOVA for repeated measure with spheric-
ity correction revealed main effects of “Method” [F (1.90, 55.09) =
505; p < 0.001] and “Outlier Number” [F (1.57, 45.64) = 240; p <
0.001]. It also revealed interactions for “Method X Outlier Num-
ber” [F (2.73, 79.07) = 158; p < 0.001]. Post-hoc analyses of
“Method” showed unnormalized odenRiSC was significantly better
than normalized odenRiSC [MD = 7.40; p < 0.001], RP [MD =
44.77; p < 0.001] and MBT (95%) [MD = 38.71; p < 0.001].
Also, normalized odenRiSC was significantly better than RP [MD =
37.38; p < 0.001] and MBT (95%) [MD = 31.31; p < 0.001]. Fig.

TABLE I
AVERAGE HFD FOR EACH CONTAMINATED CONDITION OF ARTIFICIAL

OUTLIERS [%]

Method Outlier Number Outlier Strength

10% 30% 50%

odenRiSC
(unnormalized)

5 outliers 1.33± 8.10 38.7± 33.9 63.0± 19.5
10 outliers 0.25± 2.03 57.8± 23.3 74.6± 11.3
25 outliers 72.3± 19.3 87.5± 2.96 90.5± 2.94

odenRiSC
(normalized)

5 outliers 0.00± 0.00 0.00± 0.00 4.83± 18.7
10 outliers 0.00± 0.00 68.8± 23.1 77.8± 6.88
25 outliers 80.7± 11.6 87.7± 2.63 90.5± 2.75

RP
5 outliers 54.2± 16.2 64.5± 11.1 67.5± 10.4

10 outliers 38.8± 9.00 47.2± 5.53 49.4± 6.39
25 outliers 17.3± 3.48 17.2± 3.10 17.6± 2.51

MBT(95%)
5 outliers 68.9± 14.7 78.6± 5.36 80.0± 0.00

10 outliers 39.7± 1.79 40.0± 0.00 40.0± 0.00
25 outliers 20.0± 0.00 20.0± 0.00 20.0± 0.00

TABLE II
AVERAGE HFDS FOR EACH OUTLIER NUMBER IN REAL EEG DATASET

WITH ACTUAL MOTION OUTLIERS [%]

Method Outlier Number

5 outliers 10 outliers 25 outliers
odenRiSC (unnormalized) 93.9± 3.45 90.1± 8.99 92.7± 3.11

odenRiSC (normalized) 80.1± 16.9 83.0± 13.3 91.5± 4.02
RP 82.6± 16.0 48.7± 10.4 11.2± 3.99

MBT(95%) 86.6± 13.0 50.0± 0.00 24.0± 0.00

5 compares the HFD for each outlier detection method and each
outlier number. HFDs of both odenRiSC models were constantly
high, regardless of the amount of outliers. In contrast, performances
of RP and MBT (95%) decreased with increasing outlier numbers.

C. Multimodal classification results - inside-the-lab condition
The average accuracies for each method are summarized in Table

IV. As the accuracies were not normally distributed, a non-parametric
Friedman test was performed: significant differences were not ob-
served (p = 0.468). Normalized mcRiSC with a fully connected
graph showed slightly better accuracy among mcRiSC models. This
is achieved by detecting several modes for only two subjects, which
increased accuracy for both subjects (mean gain: 5.84± 3.34%).

D. Multimodal classification results - out-of-the-lab condition
The average classification accuracies of each method are summa-

rized in the second row in Table IV. As shown in the table, normalized
mcRiSC with k-nn graph achieved the highest average accuracy.

As the accuracy of each method were normally distributed, the one-
way ANOVA for repeated measure was applied. The result revealed
a main effect of “Method” [F (1.43, 24.31) = 8.42; p = 0.004]
with sphericity corrections. Only normalized mcRiSC with a k-nn
graph showed significantly better accuracy than unimodal MDRM
[MD = 4.27; p = 0.028], while other mcRiSC models did not
show statistical improvement. Within mcRiSC, normalized mcRiSC
with a k-nn graph was significantly better than unnormalized mcRiSC
with a fully connected graph [MD = 4.40; p = 0.019]. In terms of
individual subjects, normalized mcRiSC with a k-nn graph showed
the highest accuracy in 13 out of 18 subjects. From those results,
normalized mcRiSC with a k-nn graph was the best model for the
high-variability dataset recorded outside-the-lab.

E. Complexity of the multimodal classifier
Table III presents the running times of each mcRiSC model for the

inside-the-lab and the out-of-the-lab datasets. They were measured
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Fig. 3. HFD distribution for each method, according to outlier strength and outlier number of artificial outliers.

Fig. 4. Visualization of unnormalized odenRiSC modeling result for real
EEG dataset with 10 outliers. The plot was generated by first projecting
all data points on a tangent space using pyRiemann(v0.4) [45] and then
applying principal component analysis (PCA) from Scikit-learn (v1.2.2)
[46] to keep two components. For the tangent space mapping, the
Riemannian mean of all data points was selected as the tangent point.

on an Intel Core i5 2GHz CPU with Matlab R2022b. Note that we
report the average time over 10 iterations with its standard deviation.
All mcRiSC models were computationally more expensive than a
unimodal classifier. However, it was still very fast, requiring less than
one second and a half for training and less than a millisecond per
trial for testing. Among mcRiSC, the models with fully connected
graph were faster than the ones with k-nn graph overall.

VIII. DISCUSSION

A. Outlier detection
1) Overview of odenRiSC: The aim of this outlier detection

study was to assess the performance under different contamination
conditions. In practice, when analyzing EEG dataset, we cannot know
how many and how strong outliers exist in advance. Overall, our
proposed method showed accurate performance when the dataset was
highly contaminated in term of either outlier strength or number. This
fact was clearly demonstrated with the dataset with actual motion
outliers. Fig. 4 represents one of the modeling results of unnormalized
odenRiSC for that dataset. RiSC detected some data labeled to be
clean as outliers, but which exhibited outlier-like behavior (i.e., the
purple circles without a red cross in the figure). Based on these
results, if the user suspects there may be moderate or strong outliers
in the dataset, it makes sense to use odenRiSC to clean it up. The
downside of the current odenRiSC is that we can only use it offline,
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Fig. 5. HFDs distribution for each outlier number in the real EEG dataset
with actual motion outliers.

Fig. 6. Visualization of normalized mcRiSC(w/ k-nn graph) modeling
result for out-of-the-lab dataset. The plot was made the same way as
Fig. 4 using only training data from a CV-fold of a single subject.

as outlier detection is based on building a graph using all data points.
The generalization to online setups will be tackled in the future.

2) Comparison between odenRiSC models: Among our pro-
posed methods, unnormalized odenRiSC showed the best perfor-
mance for both artificial outliers and actual motion outliers. For
the artificial outliers, performances of unnormalized and normalized
odenRiSC both increased as contamination became more severe,
whereas existing methods decreased. However, HFDs were low for
datasets more weakly contaminated. Notably, normalized odenRiSC
did not detect any outlier for 5 outliers with 10%, 30% strength
nor for 10 outliers with 10% strength. This may be due to EEG
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TABLE III
AVERAGE RUNNING-TIMES [S] FOR LOW AND HIGH VARIABILITY DATASETS (INSIDE OR OUTSIDE THE LAB) OVER 10 ITERATIONS

Method

unimodal knn+unnorm knn+norm full+unnorm full+norm

inside-the-lab
(27-30 ch)

train (80 trials) 0.08± 0.02 0.40± 0.06 0.41± 0.05 0.28± 0.03 0.28± 0.02
test (per trial) (3.3± 0.2)× 10−4 (7.3± 2.6)× 10−4 (7.3± 2.8)× 10−4 (3.4± 0.1)× 10−4 (3.4± 0.3)× 10−4

out-of-the-lab
(4 ch)

train (376 trials) 0.10± 0.05 1.34± 0.08 1.31± 0.05 0.87± 0.06 0.88± 0.05
test (per trial) (5.8± 0.6)× 10−5 (16± 5.3)× 10−5 (17± 5.3)× 10−5 (6.4± 2.4)× 10−5 (7.2± 2.7)× 10−5

covariance matrices being based on the variance computation of EEG
signal. Indeed, when estimating variance of the EEG signal over a
long time window, short artifacts may have a small impact on the
resulting overall variance. In other words, if artifacts affect a small
proportion of EEG signals, the resulting EEG covariance matrices
may be rather similar to non-outlier EEG covariance matrices. Thus,
those weakly contaminated covariance matrices may locate near the
boundary of the non-outlier cluster on a manifold.

For the real data with artifact labels, unnormalized and normalized
odenRiSC both showed overall higher performance. In this experi-
ment, the entire time periods used to estimate covariance matrices
were contaminated by motion artifacts. Thus, those outliers were
highly contaminated. The observed results were thus consistent with
the experimental results on artificial outliers with high-contamination.
The HFD of normalized odenRiSC was lower than unnormalized
odenRiSC as non-outlier data was also divided into several clusters,
which led to the high FPR (i.e., higher ratio of erroneous rejection of
clean data). Normalized spectral clustering is widely known to work
better than unnormalized one in general clustering problem [47]. This
may explain why normalized spectral clustering tended to capture not
only the difference between non-outliers and outliers, but also the
difference among non-outliers. This needs to be further investigated
in future dedicated experiments.

3) Comparison with existing methods: The HFD of RP de-
creased with increasing outlier numbers in both the artificial outliers
dataset and the actual motion outliers dataset. This may be because
as the number of outliers increases, standard deviation, one of the
parameters defining the rejection threshold in RP, increases. This led
to a larger rejection threshold and decreased the amount of detected
outliers. MBT (95%) did not differ in the removal ability by changing
the outlier strength in the artificial outliers dataset. This is because
MBT (95%) determines outliers as a fixed percentage of data. In the
artificial outliers dataset, RP and MBT (95%) both showed better
performance than unnormalized and normalized odenRiSC for low-
contamination datasets. This may be because they both estimate
the location of each EEG covariance matrix using their distance
from a reference matrix and then detect outliers with a threshold.
Therefore, they can handle “weak” outliers interspersed near non-
outliers. However, this may carry the risk of rejecting non-outliers as
outliers. There is need of the further investigation to assess the risk
of removing weak outliers on classification accuracy.

B. Multimodal classification

1) Overview of mcRiSC: The performance was evaluated by
comparing our multimodal mcRiSC classifier to the unimodal MDRM
classifier using two different datasets, one recorded inside a lab and
one recorded outside a lab, where the degree of data variability
is expected to be different. Results suggested mcRiSC, especially
normalized mcRiSC with a k-nn graph, may be useful to improve
BCI for highly contaminated and variable datasets. Fig. 6 shows one
representative subject results for normalized mcRiSC with a k-nn

graph, for the out-of-the-lab dataset. We can see that mcRiSC detected
two different dense areas (i.e., cluster 1 and cluster 2) in class 1. If
a unimodal classifier had been used, the class centroid would have
been estimated somewhere in the middle of those two parts, i.e., in
an area with fewer actual data points, which is not representative
of the actual distribution. Theoretically, mcRiSC can be utilized for
both online and offline BCI setups. For online setups, the training
and testing times should meet the constraints of practical BCI use.
While mcRiSC was computationally costlier than MDRM, it was still
largely fast enough for real-time BCIs, needing less than one second
and a half for training and less than a millisecond per trial for testing.

The strength of mcRiSC is its flexibility to adapt to both uni-
modal and multimodal distributions. In general, if data distribution
is multimodal, a multimodal classifier is more representative than a
unimodal classifier. However, a multimodal classifier may memorize
too precisely the training data characteristics and is thus more likely
to be influenced by spurious patterns or noises, i.e., overfitting.
Ideally, the learning model should be balanced between underfitting
and overfitting, in other words, rich enough to express underlying
structure of data and simple enough to avoid learning spurious
patterns, so called bias-variance trade-off [48]. Overfitting was not
particularly observed in our experiments, which may be because
mcRiSC removed outlier clusters from class centroid estimation,
as illustrated in Fig.2, and because there was a constrain for the
maximum cluster number. We will continue our investigation to see
if our model balance well between underfitting and overfitting with
different types of EEG data.

2) Low variability dataset (inside-the-lab): We could not ob-
serve a statistically significant difference in average classification
accuracy between the unimodal classifier i.e. MDRM, and our
multimodal classifiers i.e. mcRiSC. In fact, all mcRiSC models
did not detect multiple modes for most subjects, in other words,
mcRiSC worked as a unimodal classifier. This may be due to the
experimental conditions of this EEG dataset. In this MI-BCI experi-
ment, experimenters asked users to perform one fixed kinesthetic MI
strategy during the calibration runs, which is expected to lead to low
variability. McRiSC was applied to these calibration runs, which is
probably why a single mode was detected in most cases.

3) High variability dataset (out-of-the-lab): We observed statis-
tically significant differences between methods, with notably normal-
ized mcRiSC with a k-nn graph showing the highest improvement
from the unimodal classifier. This dataset was recorded in a real
aircraft, which is particularly noisy in terms of electromagnetic
interferences, vibrations and muscular activity. Thus, it is expected
in this context that the computed covariance matrices have high
variability on the manifold. Within mcRiSC, normalized mcRiSC
with a k-nn graph showed the best performance, while a fully
connected graph showed better performance than a k-nn graph for
low variability dataset. This is because a k-nn graph can break into
several disconnected components if there are high density regions
which are reasonably far away from each other. Thus, a k-nn graph
can capture different density parts and divide them precisely.
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TABLE IV
AVERAGE CLASSIFICATION ACCURACY OF LOW AND HIGH VARIABILITY DATASET (INSIDE AND OUTSIDE THE LAB)

Experimental condition Method

unimodal knn+unnorm knn+norm full+unnorm full+norm

inside-the-lab 64.0± 14.4 62.3± 13.6 62.6± 13.4 64.1± 14.5 64.2± 14.3
out-of-the-lab 68.8± 11.4 72.3± 11.3 73.1± 12.0 68.7± 11.4 69.6± 11.0

IX. PRACTICAL RECOMMENDATIONS FOR USING
ODENRISC AND MCRISC MODEL ON YOUR PROBLEM

Our modeling method is modular, so we can easily substitute differ-
ent choices, e.g., choose different graph and spectral clustering meth-
ods. However, this leads to the question “which odenRiSC/mcRiSC
model is optimal for our purpose?”. Before concluding this paper, we
provide a guideline for this question with a posterior analysis result.

Regarding the similarity graph choice, we recommend using a
fully connected graph for odenRiSC, i.e., outlier removal, and a k-nn
graph for mcRiSC, i.e., multimodal classification. From a theoretical
point of view, generally, a fully connected graph connects all nodes
regardless of the distribution density of the nodes. In contrast, a k-nn
graph forms a graph separating the dense regions that are reasonably
far from each other. As odenRiSC detects all clusters as outliers
except the one with the maximum size, if we use a k-nn graph while
clean samples are spread over multiple density regions, there is a risk
of accidentally removing some of them as outliers. On the other hand,
for multimodal classification, it is desirable to separate precisely high-
density regions that are reasonably separated for estimating multiple
centroids. Fig. 7 shows the posterior analysis results with the high
variability dataset, in order to investigate how the average accuracy
change from k-nn with small k-value to fully connection in mcRiSC.
As we can see clearly, the average accuracy over subjects tended to
globally decrease as the number of neighbors increased.

Another important point is the selection of k value for constructing
a similarity graph. Indeed, we learned that the general heuristic used
in our main experiments did not provide us with an optimal k-value in
hindsight from the posterior analysis result (Fig. 7). Thus, the reader
may want to build a k-nn graph by using the general heuristic provide
but it is also worth trying different k-values around that given value.

Regarding the spectral clustering choice, unormalized spectral
clustering is a safer choice for outlier removal. This is because if
an outlier is an isolated point on a manifold, the denominator of Eq.
6 turns to be zero and consequently the objective function does not
converge. In multimodal classification, normalized spectral clustering
is more reasonable because the spectral clustering technique is used
more like a general clustering problem and it generally performs
better than unnormalized one for many clustering problems [47].

X. CONCLUSION

In this paper, we have proposed modeling multimodal distributions
based on clustering EEG covariance matrices on a Riemannian
manifold using spectral clustering. Our modeling method, RiSC,
can be used as a basis for outlier detection or for multimodal
classification model design. As an outlier detector named odenRiSC,
we successfully removed the necessity of setting two parameters: a
reference matrix and a threshold which were required in existing
methods. Instead of setting those parameters, odenRiSC clustered
EEG covariance matrices into a non-outlier cluster and outlier clusters
according to their geometrical similarity on a manifold. As a multi-
modal classification model, we tackled the open research challenge
mentioned in [12], which is the need for MDRM with multiple modes
per class. Our method, named mcRiSC, estimated multiple modes per
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Fig. 7. Fluctuation of average classification accuracy over all subjects
according to k-value in k-nn mcRiSC for the high variability dataset. The
dotted lines indicate results of mcRiSC with fully connected graph.

class in a data-driven way and classified a new observation according
to the nearest class centroid among multiple choices. This enabled
us to consider the actual shape of covariance matrix distributions on
a manifold for classification. Experimental evaluations revealed the
superiority of odenRiSC and mcRiSC compared to existing methods.
OdenRiSC could detect EEG outliers more accurately than existing
Riemannian EEG outlier detection methods especially for the more
contaminated data. This suggests that odenRiSC may contribute to
build more robust classifiers by appropriately removing outliers from
training dataset in the future, when the dataset is highly contaminated.
Also, odenRiSC may contribute for EEG data screening in neu-
roscience study. McRiSC showed significantly higher classification
accuracy than MDRM (i.e., a unimodal Riemannian classifier) for the
high variability dataset. From those aforementioned main results, we
anticipate odenRiSC and mcRiSC will both help to lead BCIs outside
laboratories, e.g., for neuroergonomics applications [49], which are
expected to suffer from various artifacts and variability sources.

As future works, first, we will continue investigating mcRiSC
performance, especially under inside-the-lab conditions. The inside-
the-lab dataset we used might have a unimodal distribution due to
the constraint of one fixed kinesthetic MI strategy during the training
data recording. However, even if the dataset is recorded inside a
lab, data variability can be large, such as dataset with no fixed
kinesthetic MI strategies or dataset recorded cross-days. Thus, we
will test if mcRiSC can detect multiple modes appropriately and
contribute to improving classification accuracy for those datasets.
We will also investigate alternative metrics for similarity measures.
Here, we only used the AIRM distance, but it could be worth trying
different Riemannian metrics such as the Log-Euclidean distance.
Furthermore, we will explore the way to adapt odenRiSC for online
BCI setups, for single-trial outlier detection in real-time. In addition,
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as odenRiSC and mcRiSC are both generic approaches for any type
of EEG signal, we will test our methods with Steady-State Visual
Evoked Potentials, Event-Related Potentials, Sleep EEG, etc. As
more general challenge, we are eager to collect new EEG datasets
specialized for data variability study. We need a ground truth to
understand what factors cause different modes on a manifold and
to evaluate whether mcRiSC appropriately detects modes related to
different variability sources. Those ground truth datasets will help us
to identify what needs to be solved for the variability issue to make
BCIs more reliable.
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