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Sophia Antipolis, France

amelie.gruel@univ-cotedazur.fr

Jean Martinet
i3S / CNRS

Université Côte d’Azur
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Abstract—The combined use of spiking neural networks and
event cameras is gaining momentum in the field of embedded
computer vision as they promise to reduce latency and compu-
tational resource requests. However, state-of-the-art embedded
neuromorphic models show little interest in modifying input
data to optimise model performance, memory usage, latency,
and power consumption. This work addresses this optimisation
trade-off by implementing a neuromorphic model of salient
selection, which simultaneously outputs multiple segregated ob-
jects of interest detected in an event-based scene. This work
extends previous ones and identifies regions of interest as those
corresponding to a high spatiotemporal density of events. Without
any training and with a limited number of neurons, the proposed
model is able to simultaneously detect different objects with a
delay of only 14ms at most, and filtered objects maintain 73%
of the original data’s classification performance. We are thus
confident that the method proposed in this paper will allow
for improving the subsequent neuromorphic processing of event
data on embedded systems. To the best of our knowledge, it
is the first neuromorphic model able to simultaneously select
multiple objects of interest. Our code can be found here:
github.com/amygruel/FoveationStakes_DVS/.

Index Terms—Visual attention, Spiking neural network, Event
camera, Saliency, Neuromorphic

I. INTRODUCTION

Spiking neural networks (SNNs) [1] are bio-inspired artifi-
cial neural networks aiming to mimic the dynamics of biolog-
ical neuronal circuits by receiving and processing information
in the form of spike trains (see Fig. 1B). Event cameras [2]
are increasingly popular for capturing fine-grained dynamics
of a scene, with a native SNN-friendly encoding. Instead of
measuring the intensity of every pixel in a fixed time interval
like standard cameras, they generate events of significant
pixel intensity changes (see Fig. 1A). Every such event is
represented by its position, sign of change, and time-stamp,
accurate to the microsecond. Because of their asynchronous
operation principle, they are a natural match for SNNs. Their
combined use is of such high interest from the point of view
of biological inspiration, energy savings, decision latency, and
memory use that it is gaining momentum in the field of
embedded computer vision [3].
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However, embedded systems and even early realised neu-
romorphic embedded processors are quite limited in terms
of memory bandwidth. Although event cameras produce less
heavy data with less redundant information than a conventional
RGB camera, the visual scene may in some cases of fast
motion and highly textured objects produce a flow of events
too dense to be correctly processed by the state-of-the-art low-
power embedded system [6]. The latter is likely to saturate
and drop incoming events thus missing potentially relevant
information, without any human control. In such cases, it is
thus important to focus the treatment on relevant information
to fasten and better it. We believe this comes from reducing
the size of the input data while maintaining the quality of
the information conveyed in order to optimise the embedded
system performance.

Previous work has attempted to address this issue by
proposing neuromorphic [7] or non-neuromorphic [6], [8]
spatial reduction techniques. However, the trade-off between
the quantity and the quality of the reduced event data is
not optimal (as explained in [7], [8]), of which a possible
explanation may be the non-detection of salience during data
reduction. Indeed, we believe that detecting Regions of Interest
(RoIs) in the original visual scene to select the corresponding
Objects of Interest (OoIs — i.e. the events taking place in
the detected RoIs) is a more promising approach. A signifi-
cant number of computer vision tasks (classification, object
tracking, autonomous navigation, etc) could rely on small

Fig. 1: (A) Principle of operation of an event-based camera,
from [4]. (B) Behaviour of a spiking neuron, which receives
spike trains as input and processes this information to produce
a new sequence of activations. (C) Evolution of the neuron’s
membrane potential over time when activated by input spikes.



salient items in the global scene [9]. This work presents and
demonstrates the assumption that selecting only the objects
of interest will simultaneously reduce the size of data to be
processed, the number of events and spatiotemporal densities
while maintaining significant information quality.

According to [10], visual attention can be defined as the
behavioural and cognitive process of selectively focusing on
a discrete aspect of sensory cues while disregarding other
perceivable information. The RoI detection we propose in
this work consists ofp a neuromorphic visual attention model
applied to event data. However, works that address all of
these constraints are rare in the literature (see [11]): for
example, the models introduced in [12]–[14] detect saliency
on event data with traditional neural networks while [15], [16]
implement neuromorphic models of visual saliency in RGB
data. Additionally, neuromorphic saliency detection models
applied to event data are most often than not derived from
existing models implemented with traditional neural networks
and applied to RGB or grayscale images: [17] is for example
adapted from [13], itself originally adapted from the grouping
mechanism estimating the location and spatial scale of proto-
objects in RGB data implemented in [18]. Only a few models
truly take advantage of the intrinsic dynamics of SNNs and
the uniqueness of event data: in particular, [19] make use of
the mathematical model of Dynamic Neural Field [20] as a
soft Winner-Takes-All (WTA) to implement salient tracking
of pre-activated objects.

Following this limited number of existing visual attention
models, this paper will first present in more detail the ex-
isting architectures our work is based on and describe our
contribution; then it will extensively outline the different
experimental validations of the original architecture and our
new contribution. In summary, the proposed model of multi-
OoIs attentional selection:

• is able to simultaneously select multiple OoIs present
more than 50% of the time, with no training phase;

• selects at least one OoI with a delay of less than 15ms,
and reaching 5ms in the best cases;

• filters out OoIs with a quality leading to a classification
performance reaching 73% of the original data;

• achieves all the above with a reduced number of neurons
and synapses compared to existing methods.

II. NEUROMORPHIC MODELS FOR OOIS SELECTION

The detection of OoIs is a little-explored issue regarding
event data. This work extends the neuromorphic model we
first introduced in [5] to multi-OoIs selection. Our original
mechanism relies solely on intrinsic SNN dynamics and
dynamic adaptation rules applied to synaptic weights and
population thresholds. These are crucial features as they lead to
minimising the latency since it does not require the conversion
of spiking events into frames. The saliency detection and
multi-OoIs selection model proposed in this new work is not
specialised for any specific context or any specific shape (in
other words, there is no training phase) which allows for a
good generalisation ability of the network.

The original architecture, presented in Fig. 2A, and our con-
tribution, presented in Fig. 2B, are designed to be lightweight
enough to enable embedded simulations in real-time. These
models are implemented using the ”Leaky Integrate-And-Fire”
SNN model because of its simplicity: the membrane potential
is at rest when there is no input; otherwise, it increases
according to the incoming spikes and slowly decays towards
the resting value when the input stops (leak). If the membrane
potential overcomes a threshold, an output spike is produced
and the membrane potential is reset.

A. Saliency detection

As described in [21], the saliency detector integrates the
events produced by each pixel at a low resolution and outputs
a set of coordinates for one or multiple RoIs. In this case, the
RoI would be a region where the amount of events received
over a certain amount of time is more important than elsewhere

(a) Architecture of our initial neuromorphic model detecting
saliency by event density and filtering out one OoI.)

(b) Architecture of our main contribution. The maximum number of
OoIs (i.e. the number of output layers) has been set to 2 for clarity.

Fig. 2: Overview of our initial model introduced in [5] (A) and our contribution (B).



over the whole scene, i.e. a region where the events are
numerous in a small spatiotemporal window. The visual atten-
tion mechanism implemented in [21] is thus bottom up (i.e.
independent from any previously set motivation or rule) and
covert (i.e. without simulated saccadic eye movements) [11].
The saliency detector is formed by the ”Input events” and
”Saliency detector” layers and their interconnections depicted
in Fig. 2A.

1) Input events: The input layer translates relative changes
in the illumination from the sensor (or events) into spikes,
which are sent to the saliency detector via an excitatory
downscaling connection. This corresponds to a convolutional
layer with a kernel size S × S, a stride S, without padding.

2) Saliency detector: The saliency detection aggregates the
active regions into distinct segments using a soft exponential
WTA strategy by laterally inhibiting neurons in the same layer
(see Eq. 1): each neuron activation leads to the inhibition of
the others, without autapses (self-connections). A soft WTA
strategy is adopted as it leads to the activation of multiple
neurons in the layer thus the detection of multiple RoIs.

ωWTA = min(
ed

w × h
, ωmax) (1)

where d corresponds to the Euclidean distance between the
active and target neuron subject to inhibition, and w and h to
the width and height of the layer. The upper bound ωmax of
the weight ωWTA is a tunable parameter for optimising the
saliency detection, depending on the input data (see Fig. 8).

3) Weight adaptation rule: Finally, the adaptive detection
of saliency in this layer is enabled by a dynamic weight
adaptation rule between the input layer and the saliency
detector, inspired by Hebb’s rule: ”cells that fire together wire
together” [22]. This rule is implemented by increasing or
decreasing the weights of synapses that have recently fired,
as described in Eq. 2.

ω(t+ 1) =

 ω(t) + ∆ω if ftsaliency ≥ t
ωinit if ftsaliency < t− tδ
ω(t) otherwise

(2)
where ω(t) is the weight at the simulation step t of the
synapse undergoing the dynamic weight adaptation rule, ∆ω
is the positive weight variation at each simulation step, ωinit is
the initial weight of the synapse (homogeneously initialised),
ftsaliency is the firing time of the last spike emitted by the
saliency detector and tδ the delay before the synaptic weight
decays back to ωinit.

B. Attentional selection of one OoI

The saliency detection described above was extended to a
first attentional model by the authors of [5] (see Fig. 2A).

1) Output layer: An output layer of the same size as the
input layer is added in this model. It receives the activity of
the input layer through one-to-one connectors (i.e. each input
neuron is solely connected to the neuron located at the same
coordinates in the output layer). Only the spikes corresponding

to one OoI are emitted by this layer thanks to an exponential
WTA mechanism similar to the one described in Eq. 1.

2) Threshold adaptation rule: The attentional filtering im-
plemented in [5] aims to maintain the same information as the
OoI identified in the original data. In order to do so, the authors
set up a dynamic threshold adaptation rule aiming to facilitate
the neuronal spiking at the salient coordinates and to hinder
it in other neurons of the output layer. This is respectively
translated into the decrease (closer to the resting value) and
increase (further away from it) of the neuronal threshold of
each neuron depending on the activity at the corresponding
region in the saliency detector, as described in Eq. 3 and Eq. 4.

θ(t+ 1) =

 θ(t)−∆θ if ftsaliency ≥ t
θ(t) + ∆θ if ftsaliency < t− tδ
θ(t) otherwise

(3)

where θ(t) is the threshold at the simulation step t of the
neuron to which is applied the dynamic weight adaptation
rule, ∆θ is the positive threshold variation at each simulation
step, ftsaliency corresponds to the firing time of the last spike
transmitted by the saliency detector in the corresponding neu-
ronal regions and tδ is the delay before the neuronal spiking is
hindered i.e. before the neuronal threshold is increased. Note
that the ftsaliency used here corresponds to the ftsynapse used
in Eq. 2. However, while the weight adaptation rule applied to
the synapse linking the input and the saliency detector relies
on the activity of its post-synaptic neurons, here the thresholds
modifications carried out by the adaptation rule do not rely on
the post-synaptic activity (i.e. the output layer’s activity) but
on the saliency detector acting as an external supervisor.

θ(t+ 1) =

 θmax if θ(t+ 1) > θmax

θreset if θ(t+ 1) < θreset
θ(t+ 1) otherwise

(4)

where θmax and θreset are respectively the upper and lower
bound (i.e. the reset value) of the neuronal threshold. Note that
this equation (as well as Eq. 6 and Eq. 7) updates θ, which
was first calculated in Eq. 3, according to various conditions
at t+1, which explains the repeated use of the term θ(t+1).

The authors of [5] demonstrated that such a plasticity rule
is highly preferred to a simple system of synaptic activations
and inhibitions. Indeed, activating the neurons corresponding
to the salient regions identified by the saliency detector would
compete with the input activation and saturate these neurons.
This would blur the spikes from the input data, causing the
filter to lose spatiotemporal accuracy.

C. Attentional selection of multiple OoIs

The main contribution of this work is the implementation
of the following proposed neuromorphic model, an extension
of our previous work to simultaneously detect and filter out
multiple OoIs in an event-based visual scene using intrinsic
SNN dynamics. This model is designed to detect n OoIs —
however, in an effort to simplify the reader’s comprehension,



it is depicted in Fig. 2B under an architecture which would
allow the detection of two OoIs at most.

This new attentional selection of n OoIs features the same
saliency detector, exponential WTA and weight adaptation rule
we introduced in [5]; however, we propose here a new dynamic
threshold adaptation rule grounded on the activity of both
the saliency detector and the lateral output layers. At each
simulation timestep, for each neuron of each output layer, this
dynamic rule will first identify the lateral neuronal activity at
the same coordinates (see Eq. 5) and maximise the threshold
if the corresponding lateral neurons are activated (see Eq. 6
and Eq. 7). The rule will then modify the threshold depending
on the activation of the saliency detector in the corresponding
neuronal regions (as described in Eq. 3 and 4).

∀λ ∈ λlateral layers,∀n ∈ nneighbourhood,

αn(t+ 1) =

{
0 if t ≥ δλ × iλ and ftλ > tδ
1 otherwise (5)

where αn(t) is the binary mask applied to the neuron n
depending on the activity of the lateral layer λ at the simulation
step t and ftλ corresponds to the firing time of the lateral layer
λ’s neuron at the same coordinates. δλ is the delay applied
to each output’s influence on its lateral populations: as the
output layers are implemented sequentially, iλ is the arbitrary
identifier given to each layer and by which the δλ is multiplied
to calculate λ’s delay. αn(t) is null if the corresponding
neuron in at least one of the lateral layers is activated — thus
hindering the selection of spikes emitted in other layers.

θ(t+ 1) =

{
θmax if α(t+ 1) = 0
θ(t+ 1) otherwise (6)

where θ(t) is the neuronal threshold at the simulation step and
θmax is the upper bound of the neuronal threshold. If α(t+1)
is null, then the corresponding neurons in at least one of the
lateral layers λ are active and the neuron of the current layer
cannot fire.

∀λ ∈ λlateral layers,

θ(t+ 1) =

{
θ(t+ 1)−∆θ if ftλ < t− tδ
θ(t+ 1) otherwise (7)

where ∆θ is the positive threshold variation at each simulation
step and ftλ(t) the firing time of the corresponding neuron in
the lateral layer λ.

III. EXPERIMENTAL VALIDATION

Both architectures described above were implemented with
PyNN, a simulator-independent Python interface for SNN sim-
ulators [24], combined with NEST (NEural Simulation Tool)
[25], a Python simulator for SNN on CPUs. We used these
libraries to simulate architectures of 4,224 neurons interacting
via approximately 8,400,000 synaptic connections and two
dynamic adaptation rules1.

A. Visual input data

This work aims to demonstrate the neuromorphic models’
efficient saliency detection and attentional selection of OoIs in
an event-based visual scene by verifying their quantitative and
qualitative accuracies. To this end, we need an event dataset
with a controlled number of OoIs, with known spatiotemporal
coordinates. Additionally, as we wish to assess a qualitative
aspect by evaluating the performance of a classification task
on the output OoIs, the dataset must include labelled objects
corresponding to the output OoIs.

Since (to the best of our knowledge) such a dataset does not
exist, we artificially created one meeting the criteria described
above by combining together various samples from DVS 128
Gesture [23] according to a protocol described below.

1) DVS 128 Gesture: The DVS128 Gesture dataset [23] has
now become a standard benchmark in event data classification.
It features 29 subjects recorded (with a 128 × 128 pixels
DVS128 camera) performing 11 different hand gestures under
3 kinds of illumination conditions. A total of 133 samples are
available for each gesture, each composed roughly of 400K
events, for a duration of 6 seconds approximately.

1This number of neurons and synaptic connections was calculated for two
output layers. It was obtained by computing the corresponding values in the
saliency detection (see the equations described in Tab. II) added to the number
of synaptic connections between the input and the output layers (2×w× h)
and the number of output neurons (2 × w × h). We ran the experiments on
the custom-made datasets described in Section III.A, where each sample is
spatially downsized by 4 (thus w = 64 and h = 32) using the eventcount
method introduced in [8].

A) Control dataset — (left and right) gesture ”right arm clockwise”
performed by user 5.

B) Random symmetric dataset — (left) gesture ”hand clap” performed
by user 16 and (right) gesture ”right arm counter-clockwise”

performed by user 5.

Fig. 3: Samples from control and random symmetric datasets with n = 2 and shift = 0, constituted from DVS 128 Gesture [23].



2) Control and random symmetric combinations: A first
custom-made dataset called ”control” was created by randomly
selecting 50 DVS 128 Gesture samples, copying them n
times and combining them together side-by-side by offsetting
their x and y coordinates accordingly. This leads to a pool
of 50 samples on which to detect one to n OoIs (i.e. the
hand doing the gesture), whose spatiotemporal localisation is
approximately known.

A second custom-made dataset was similarly created by
randomly selecting 50×n DVS 128 Gesture sample and com-
bining them together to produce a final pool of 50 samples. As
the intrinsic activity measures of each sample differ according
to their class and may affect the saliency detection (see Fig. 5),
for each combination n−1 others are created by permuting the
order of the samples in order to create a random but symmetric
custom-made dataset of 50× n elements.

The two datasets described above will be respectively re-
ferred to as ”control” and ”random symmetric” in the rest
of this paper. An example of both custom-made datasets is
shown in Fig. 3, where n is arbitrarily set to 2 to facilitate
the reader’s comprehension. It is to be noted that the actual
data used as input in the following sections have been spatially
reduced by 4 using the event count method introduced in [8]
(see Fig. 6 and Fig. 7), due to the limitations of PyNN in
terms of the maximum number of simultaneously simulatable
neurons and connections. Furthermore, only the first 100ms
(or 1s for any classification task) of each sample was used to
reduce the computation time.

3) Shift: Additionally, we introduce some variations within
the two kinds of custom-made datasets presented above: the
n samples are combined together according to a certain
temporal shift, where the m+1 sample’s temporal coordinate

Fig. 4: Evolution of quantitative and qualitative properties of the DVS 128 Gesture dataset after attentional filtering, according
to the dataset’s various targets i.e. various labelled gestures.

Fig. 5: Performance of the attentional filtering introduced in [5] according to the shift and diverse activity measures. N
corresponds to the number of events, TD to the temporal density and SD to the spatial density.



(a) Input reduced data to attentional selection of a
”control” sample (see Fig. 3A).

(b) Input reduced data to attentional selection of a
”random symmetric” sample (see Fig. 3B).

Fig. 6: Samples from control and random symmetric datasets with n = 2 and shift = 0, after spatial reduction using the
event count method introduced in [8] then attentional selection of one OoI.

(a) Input reduced data to attentional selection of
multi-OoIs in a ”control” sample (see Fig. 3A).

(b) Input reduced data to attentional selection of multi-OoIs
in a ”random symmetric” sample (see Fig. 3A).

Fig. 7: Samples from control and random symmetric datasets with n = 2 and shift = 0, after spatial reduction then attentional
selection of one OoI.

is shifted by a factor shift to the mth sample. In the following
experimental results, shift varies between 0 (all the combined
samples start simultaneously) and 5000µs.

B. Validation of the attentional selection of one OoI

1) One OoI in input data: Firstly we aimed to validate our
original attentional mechanism by assessing the evolution of
the quantitative and qualitative properties of DVS 128 Gesture
[23] before and after attentional filtering. Fig. 4 presents the
ratio of various quantitative properties’ values of the model’s
output to those of the original dataset, averaged for each class;
as well as the classification performance performed by the
Parametric Leaky Integrate-and-Fire (PLIF) classifier [26] on
the original and output datasets.

We aim to implement an attentional selection of multiple
OoIs that on one side significantly reduce the input data
to handle, while on the other side maintaining relatively
good quality. Fig. 4 assures us that using our initial saliency
detection model allows for an attentional selection of events
answering to our needs, with a repartition of events in space
reduced by 80% and a classification accuracy maintained at
70% of the original one’s.

2) Multiple OoIs in input data: After verifying the perfor-
mance of the saliency detection model with one OoI in the
input data, we now wish to assess its behaviour and its bio-
plausibility. Indeed, when confronted with a visual scene with
multiple OoIs and asked to select only one, we expect a human
being to always select either the one with the highest density of
information (i.e. highest number of events and spatiotemporal
density) or the one that comes first when the shift between the
multiple OoIs is big enough. A bio-plausible saliency detection
model would follow a similar behaviour; we thus present

our previous model with the pool of custom-made ”random
symmetric” samples (see Section III.A). Fig. 5 displays the
results of this experiment: we can see that as expected, the
performance of detection of the first sample increases strongly
with the shift, reaching nearly 100% for a shift of 1000µs
and higher. On the other side, this performance is strongly
degraded when the value of the activity measure of the first
sample is smaller than the second one (i.e. where the ratio of
the first sample’s value to the second is smaller than 100%,
highlighted by a green line on the figure). This is confirmed
by comparing these results to the one obtained in case of no
shift (plot on the left).

We can thus conclude that detecting the saliency in event
data according to the event density is bio-plausible: the de-
tected OoI corresponds either to the first object appearing
in the scene (with at least a 1000µs delay compared to the
others) or the one with the highest spatial density of events. We
can thus indeed call such a model a spatiotemporal attention
mechanism. Additionally, Fig. 6 allows for a visual assessment
of the quality of the OoI selection on reduced input event data,

TABLE I: Hyperparameters used to implement our contribu-
tion, the multi-OoI selection model.

Parameter Values
Saliency detector Outputs

Resting membrane potential −65mV −65mV
Reset membrane potential −100mV −65mV

Neuronal threshold −25mV −20mV
Membrane time constant 2.5ms 25ms

Refractory period 0.1ms 0.1ms
Excitatory decay time 5ms 5ms
Inhibitory decay time 5ms 5ms

ωWTA 0.5 /
∆θ / 12mV
tδ / 50ms



Fig. 8: Performance of simultaneous multi-OoIs detection
according to the parameters ωWTA, ∆θ and tδ . The impact
of tδ variation was observed for the parameterizations A
(ωWTA = 0.5, ∆θ = 14), B (ωWTA = 0.5, ∆θ = 13), C
(ωWTA = 0.5, ∆θ = 12) and D (ωWTA = 0.5, ∆θ = 11).

Fig. 9: Latency of the OoI selection in [5]’s (in blue) and
our novel architecture according to the shift (in red). With the
exception of the dip observed for a 50µs shift, the overall
latency of OoI selection increases with the number of OoIs to
be detected (from one in blue to two in red).

Fig. 10: Multi-OoIs detection performance (top), latency of
the OoIs detection (middle), and classification accuracy of the
selected OoIs (bottom) of the multi-OoIs selection model on
a ”control” dataset.

whether the dataset used is ”control” (Fig. 6a) or ”random
symmetric” (Fig. 6b).

C. Quality of the simultaneous attentional selection of multi-
ple OoIs

Fig. 8 presents the evolution of the performance of detection
of two different OoIs depending on the tuning of synaptic and
neuronal parameters: ωWTA which influences the number and
size of detected RoIs (see Eq. 1), ∆θ which moderates the
impact of salient activity on the output’s thresholds (see Eq. 3)
and tδ which delays the impact of the lateral output layers
(see Eq.7). It highlights the importance of parameter tuning in
SNN, and the difficulty to identify the correct parameters for
each dataset — although we can conclude that it seems that
tδ has little impact on the selection performance. According
to Fig. 8, in order to optimise the multi-OoI detection perfor-
mance, this work uses the hyperparameters defined in Table I.

We aim to assess the multi-OoIs selection performance as
well as the quality of the output OoIs. Fig. 10 shows the evo-
lution of the performance of multi-OoIs detection according
to the temporal shift in the custom-made ”control” datasets,
as well as the detection latency and classification accuracy of
PLIF [26] compared to the original (in orange). The drop in
accuracy compared to the original can be explained by the
smaller number of events contained in the multiple output
OoIs (see Fig. 7). Indeed, the PLIF classifier [26] accumulates
events in frames and therefore performs better on a dataset
rich in events.Finally, Fig. 7 allows for a visual assessment of
the quality of the OoI selection on reduced input event data,
whether the dataset used is ”control” (Fig. 7a) or ”random
symmetric” (Fig. 7b).

D. Latency of OoI selection

On an embedded system, the latency of the model’s decision
is crucial to limit any risk of an accident. We found in our
previous work that our ”Neuromorphic Event-Based Spatio-
temporal Attention Model rejects more than 50% of incoming
unwanted events occurring only 20 ms after activity onset” [5].
One might fear that extending this model to multiple OoI
might lead to a significant increase in decision latency —
however, Fig. 9 demonstrates that our contribution maintains
this latency performance, which is revised to the value of
14ms maximum without shift and decreases down to 5ms
for an increasing shift.

E. Comparison with State-of-the-Art

Table II compares our contribution with the neuromorphic
saliency models implemented in [17], [19] as well as with
our initial model [5]. The data presented here were either
retrieved directly from the information given by the authors or
calculated from the description of each model. Those different
metrics enhance our proposed model, whose implementation is
resource-efficient while implementing additional features with
lower latency.



TABLE II: Comparison between our contribution and the state-of-the-art, with input data of size w×h (w the width and h the
height), OL the overlapping percentage described in [17] and div the dividing factor between the input layer and the saliency
detector in [5]. A numerical value was calculated for each theoretical estimation, for w = h = 128, OL = 5% and div = 16.

Renner et al., 2019 [19] D’Angelo et al., 2022 [17] Our initial model [5] Our contribution

Saliency detection

nlayers 2 10 2 2

nneurons 2× w × h w × h× (1 + 4
OL2 ) + 5 w × h× (1 + 1

div2 ) w × h× (1 + 1
div2 )

For S = 128: 32,768 19,010 17,408 17,408

nsynapses w × h× (2× w × h− 1) w × h× (4 + 20
OL2 ) + 4 w × h× (1 + w×h

div4 − 1
div2 ) w × h× (1 + w×h

div4 − 1
div2 )

For S = 128: 536,854,528 65,540 1,063,936 1,063,936

Selection of OoIs

Selection of OoI No No Yes Yes

Simultaneous
multi-OoI selection No No No Yes

Detection latency NA 16µs 13µs 14µs

IV. CONCLUSION

This work significantly extends our original preliminary
SNN architecture introduced in [5] to attentionally and simul-
taneously select multiple OoIs in event data. This innovative
proposed architecture is able to accurately filter out n objects
of interest out of n initially present more than 50% of the
time; selects at least one OoI with a delay of less than 15ms at
most and reaching 5ms in the best cases; filters out OoIs with
a quality leading to a classification performance reaching 73%
the original data’s; and achieves all the above with no training
phase and a reduced number of neurons and connections
compared to state-of-the-art salient detection methods.

In future works, we wish to validate this novel architecture
on additional event-based datasets such as the One Megapixel
Detection Dataset [27], to an increasing number of n OoIs
as well as implement it on neuromorphic hardware, such as
SpiNNaker [28] or Kraken, an academic platform that includes
a Spiking Neural Accelerators and RISC-V cores [29], directly
interfaced with an event camera. We believe in its usefulness
in embedded multi-object tracking or scene segmentation.
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