

Life Cycle Assessment and Circularity Indicators to Design Future Circular and Sustainable Electric Outboards: Results from Workshops with Industrial Experts

Michael Saidani, Harrison Kim, John Bayless

▶ To cite this version:

Michael Saidani, Harrison Kim, John Bayless. Life Cycle Assessment and Circularity Indicators to Design Future Circular and Sustainable Electric Outboards: Results from Workshops with Industrial Experts. SETAC Europe 25th LCA Symposium, Oct 2022, Virtual Event, Unknown Region. hal-04181321

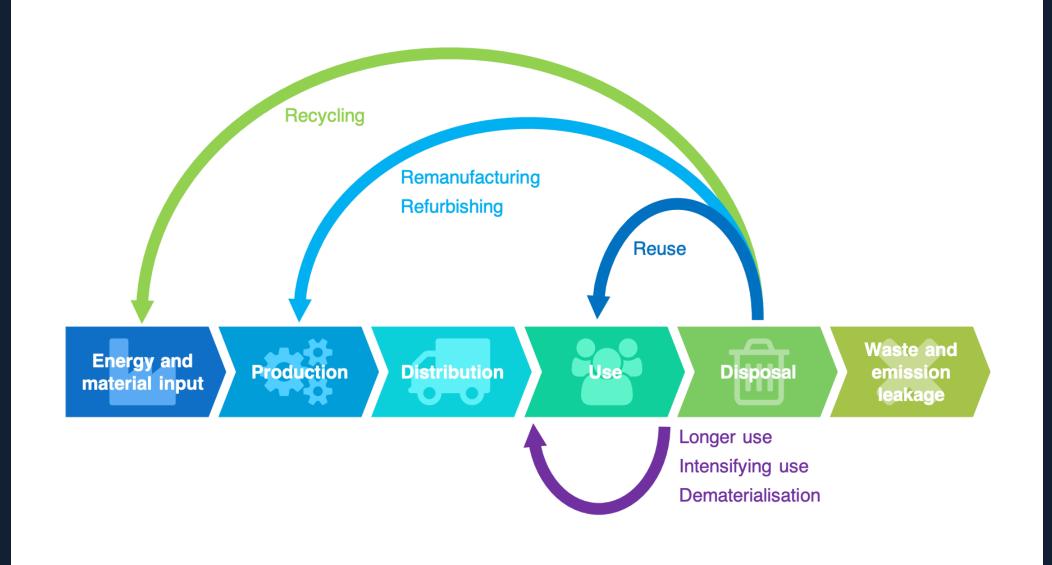
HAL Id: hal-04181321 https://hal.science/hal-04181321

Submitted on 15 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SETAC Europe 25th LCA Symposium 12–14 October 2022 I Virtual Event

MOTIVATIONS


Energy transition:

• A pathway toward transformation of the global energy sector from fossil-based to zero-carbon by the second half of this century. At its heart is the need to reduce energy-related CO_2 emissions to limit climate change. • The benefits of switching diesel-powered machines for fossil-free, electric counterparts are numerous: green house gases (GHG) emissions reduction, lower noise level, energy efficiency, ease of maintenance.

Circular economy (CE):

• Momentum to rethink, create and optimize a circular supply chain in the recreational boat industry.

• Need to identify and quantify opportunities to design for Re-X (reuse, remanufacturing, recycling).

OBJECTIVE

Three complementary research questions (RQ):

What is the ecological impact of

Brunswick's new electric outboard

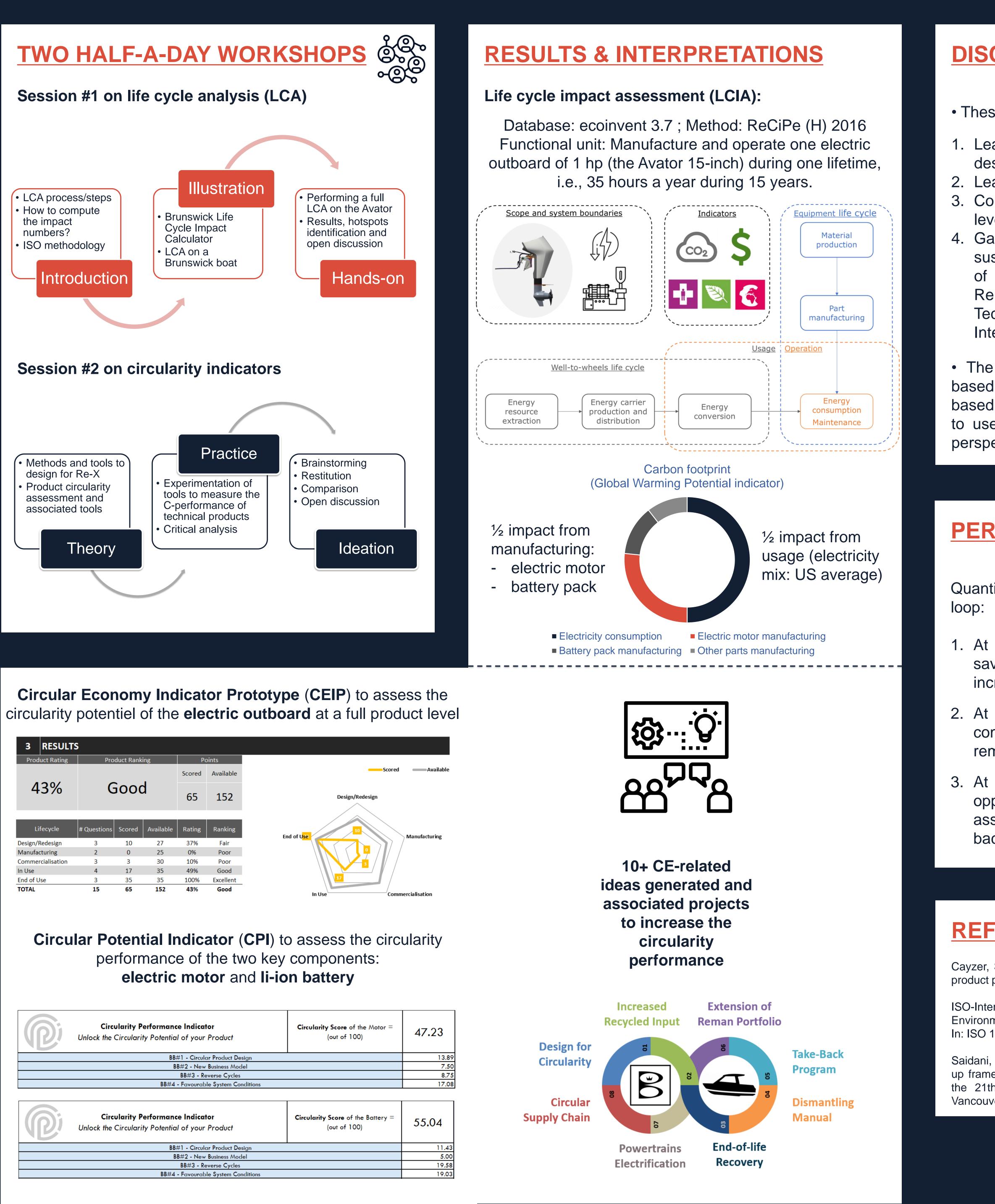
and what are the critical components

How to assess the circularity

performance of this electric

outboard (Avator 1hp 15-inch)?

Which design for Re-X strategies


and mechanisms to deploy to close-

the-loop in a sustainable fashion?

(environmental hotspots)?

Life Cycle Assessment and Circularity Indicators to Design Future Circular and Sustainable Electric Outboards: Results from Workshops with Industrial Experts

Michael Saidani, Harrison Kim, John Bayless Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign Sustainability Engineering Programs, Brunswick Corporation

3 RESULT	S					
Product Rating	Pro	Product Ranking			Points	
				Scored	Available	
43%	C	9000	k	65	152	
Lifecycle	# Questions	Scored	Available	Rating	Ranking	
Design/Redesign	3	10	27	37%	Fair	
Manufacturing	2	0	25	0%	Poor	
Commercialisation	3	3	30	10%	Poor	
In Use	4	17	35	49%	Good	
End of Use	3	35	35	100%	Excellent	
TOTAL	15	65	152	43%	Good	

Pi	Circularity Performance Indicator Unlock the Circularity Potential of your Product	Circularity Score of the Motor = (out of 100)	47.23			
BB#1 - Circular Product Design						
BB#2 - New Business Model						
BB#3 - Reverse Cycles						
BB#4 - Favourable System Conditions						
6	Circularity Performance Indicator	Circularity Score of the Battery =				
P	Unlock the Circularity Potential of your Product	(out of 100)	55.04			
P	-	-	55.04 11.43			
P	Unlock the Circularity Potential of your Product	-				
P	Unlock the Circularity Potential of your Product BB#1 - Circular Product Design	-	11.43			

DISCUSSION

• These workshops met the following key objectives:

1. Learn how to calculate the environmental impact of a design, in alignment with ISO 14040-44

2. Learn how to assess the circularity of a design 3. Complete LCA and Re-X assessments and, leveraging the assessments, generate practical ideas Gather key experts/stakeholders to collaborate on sustainable and circular design, including the Director Sustainability Engineering Programs, the Remanufacturing General Manager, the Product Leads, Materials Engineers (x2), and Technical Interns (x3)

• The participants found both frameworks (the Excelbased LCA Calculator and the two circularity indicatorsbased tools) simple of utilization and efficient: "very easy to use"; "the workshop today was excellent, from my perspective"; "the engagement was very high".

PERSPECTIVES

Quantify the actual sustainable benefits from closing the

1. At a material level: Assess the potential impact savings from recycled materials in manufacturing (by increasing the recycled content).

2. At a component/product level: Look further at the components and parts that can be reused and/or remanufactured.

3. At a system level: Analyze and experiment the opportunities discussed after the circularity assessment, such as circular business model, takeback scheme, etc.

REFERENCES

Cayzer, S., Griffiths, P., Beghetto, V., 2017. Design of indicators for measuring product performance in the circular economy. Int. J. Sustain. Eng. 10 (4e5).

ISO-International Organization for Standardization. 2006. ISO 14040: 2006 Environmental management - Life cycle assessment - Principles and framework. In: ISO 14000 International Standards Compendium. Genève, Switzerland.

Saidani, M., Yannou, B., Leroy, Y., Cluzel, F., 2017. Hybrid top-down and bottomup framework to measure products' circularity performance. In: Proceedings of the 21th International Conference on Engineering Design, vol. 17. ICED, Vancouver, Canada.

