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FAST, HIGH-ORDER NUMERICAL EVALUATION OF VOLUME POTENTIALS VIA
POLYNOMIAL DENSITY INTERPOLATION∗

THOMAS G. ANDERSON† , MARC BONNET‡ , LUIZ M. FARIA‡ , AND CARLOS PÉREZ-ARANCIBIA§

Abstract. This article presents a high-order accurate numerical method for the evaluation of singular volume integral
operators, with attention focused on operators associated with the Poisson and Helmholtz equations in two dimensions. Fol-
lowing the ideas of the density interpolation method for boundary integral operators, the proposed methodology leverages
Green’s third identity and a local polynomial interpolant of the density function to recast the volume potential as a sum
of single- and double-layer potentials and a volume integral with a regularized (bounded or smoother) integrand. The layer
potentials can be accurately and efficiently evaluated everywhere in the plane by means of existing methods (e.g. the density
interpolation method), while the regularized volume integral can be accurately evaluated by applying elementary quadrature
rules. We describe the method both for domains meshed by mapped quadrilaterals and triangles, introducing for each case
(i) well-conditioned methods for the production of certain requisite source polynomial interpolants and (ii) efficient translation
formulae for polynomial particular solutions. Compared to straightforwardly computing corrections for every singular and
nearly-singular volume target, the method significantly reduces the amount of required specialized quadrature by pushing all
singular and near-singular corrections to near-singular layer-potential evaluations at target points in a small neighborhood of
the domain boundary. Error estimates for the regularization and quadrature approximations are provided. The method is
compatible with well-established fast algorithms, being both efficient not only in the online phase but also to set-up. Numerical
examples demonstrate the high-order accuracy and efficiency of the proposed methodology.
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1. Introduction. This paper considers the numerical evaluation of volume integral operators of the
form

(1.1) Vk[f ](x) :=

∫
Ω

Gk(x,y)f(y) dy, x ∈ R2,

over bounded domains Ω ⊂ R2 with piecewise-smooth boundary Γ, where f ∈ Cm(Ω), m ≥ 0, is a given
function (termed the source density), and where the operator kernel Gk is the free-space Green’s function

(1.2) Gk(x,y) :=


− 1

2π
log |x− y| , k = 0,

i

4
H

(1)
0 (k |x− y|) , k ̸= 0,

for the Laplace (k = 0) or Helmholtz (k > 0) equation. In fact, the method we propose is considerably
more general than the examples presented, extending to (i) volume operators corresponding to these partial
differential operators that possess stronger singularities such as the gradient of Vk as appears e.g. in [38],

(1.3) Wk[f ](x) :=

∫
Ω

∇yGk(x,y) · f(y) dy, x ∈ R2,

where ∇y denotes a gradient with respect to the y variable, (ii) higher-dimensional analogues of these
operators, and (iii) a variety of elliptic partial differential operators of interest in mathematical physics, e.g.
in elasticity and fluids. Despite the broad utility of these operators, for example, to solve a nonlinear or
an inhomogeneous linear PDE, until very recently the computation of volume potentials has been relatively
neglected in the context of complex geometries; in what follows we outline some difficulties of this problem
and present some alternatives to the volume potential.
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There are several well-known challenges to be met for the efficient and accurate evaluation of operators
such as (1.1) or (1.3) in complex geometries—some mirroring those of the more well-studied problem of layer
potential evaluation and some unique to volume problems. As is well known, the free-space Green’s function
Gk given in (1.2) features a logarithmic singularity (whose location is, of course, dependent on the target
evaluation point x) that hinders the accuracy of standard quadrature rules for the numerical evaluation
of the operator (1.1) or (1.3). Despite the requirement for some degree of local numerical treatment, the
potential is a volumetric quantity depending globally on the source density, and as such it is especially im-
portant to couple its computation to global fast algorithms—of which a variety has been developed including
H-matrix compression and their directional counterparts [8,9], the fast multipole method (FMM) [30], and,
more recently, interpolated-factored Green function methods [7]. Generally, it is also desirable to construct
numerical discretizations of the operators which are efficient for repeated application (e.g. in schemes involv-
ing iterative linear solvers, Newton-type iterations for nonlinearities, or time-stepping) or with values that
can be efficiently accessed (e.g. for the construction of direct solvers).

The prototypical, but by no means exclusive, use case for volume operators of the form (1.1) is to tackle
the slightly more specialized problem of producing a particular solution to an inhomogeneous constant-
coefficient elliptic PDE. Restricting attention to work in this vein, where the resulting homogeneous problem
is solved with integral equation techniques, there have been a variety of methods proposed for produc-
ing a valid particular solution, typically on uniform grids using finite difference, finite element, or Fourier
methods—see [3] for more details. With the proviso that methods based on finite elements or finite differ-
ences are often of limited order of accuracy, they nonetheless do apply to piecewise-smooth domains. Fourier
methods, in turn, relying on various concepts of Fourier extension to generate a highly-accurate Fourier series
expansion of the density function (after which the production of a particular solution is straightforward) in
particular have received significant attention as they allow the use of highly-efficient FFT algorithms. Such
Fourier-based methods are either fundamentally limited to globally smooth domains [52, 53] or have only
been demonstrated on such domains [13,22]. Recently a scheme has been proposed [21] that allows extension
on piecewise-smooth domains and, by coupling to highly-efficient volume Laplace FMMs [19] achieves an ef-
ficient and high-order accurate algorithm for producing a particular solution to Poisson’s equation. Another
significant application of the volume operator (1.1) and (1.3) is in the numerical solution of Lippmann-
Schwinger integral equations that arise in some formulations of inhomogeneous scattering problems; see
e.g. [1, 11,12,48,56].

The method proposed in this work directly evaluates the volume integral (1.1) using one of two meshing
strategies for Ω: (i) quadrilateral patch elements or (ii) a standard triangularization. Utilizing Green’s third
identity, the value of the volume potential at each target point is related to a linear combination of regularized
domain integrals, boundary integrals, and a local solution to the PDE that can be explicitly computed in
terms of monomial sources. The method relies on local interpolants of the density function and explicit
solutions to the underlying inhomogeneous PDE associated with those interpolated density functions.

Although the proposed approach is in spirit a natural extension of the density interpolation method [20,
26, 44–46], it shares several elements with previous methods. We first describe prior work in constructing
local PDE solutions and then discuss the manner in which such solutions have historically been coupled
to yield particular solutions valid on the entirety of the domain of interest. The first work we are aware
of in which particular solutions were constructed using monomials is that of reference [4]; of course, the
solutions are also polynomials. Subsequently, a variety of contributions studied combinations of polynomial
sources and various elliptic partial differential operators; for monomials there exist solutions for Laplace [4],
Helmholtz [25], and elasticity operators [39]. A particular solution formula that is applicable to second-order
constant coefficient partial differential operators featuring a non-vanishing zeroth-order term and a monomial
right-hand side was presented in [17]. Many of these methods can be considered to be closely related to the
dual reciprocity method [41,43]—such schemes rely on the density function being globally well-approximated
by a collection of simple functions (e.g. polynomials, sinusoidal, or radial functions), and implicitly rely on
the accurate and stable determination of coefficients in such expansions. This latter task has not generally
been successfully executed to even moderate accuracy levels for complex geometries and/or density functions.

Thus, for an arbitrary complex geometry, in order to use the simple basis function expansions of the
density function envisioned in reference [4] for a stable, high-order solver, one is naturally led to the use of
subdivisions of the domain, wherein global solutions are stitched together from solutions defined with local



FAST, HIGH-ORDER ACCURATE EVALUATION OF VOLUME POTENTIALS 3

data. The case of a rectangular domain that can be covered entirely by boxes is considered in reference [29]
to construct a high-order Poisson solver. That work, similarly to the present method, uses local polyno-
mial solutions (corresponding to Chebyshev polynomial right-hand sides) and layer potential corrections to
provide a global solution. As described there, the local solution defined with data supported on a given
element undergoes jumps across the boundary of that element, and it follows from Green’s identities that
the particular solution, i.e. the volume potential, can be represented outside of the local element in terms
of single- and double-layer potentials with polynomial densities defined explicitly in terms of the local ele-
ment solution. This approach was also taken up using multi-wavelets on domains covered by a hierarchy of
rectangular boxes in reference [6] as well as, in large part, in the three-dimensional works [32,40].

We discuss next a few relevant distinctions between the present methodology and other more closely-
related schemes. The scheme proposed in the present work differs from that introduced in reference [3] (see
also [4]), where the volume potential is evaluated over irregular domain regions using a direct numerical
quadrature of the singular and near-singular integrals. While the method presented in [3] requires only
singular quadrature rules appropriate for the singular asymptotic behavior of the functionGk, its applicability
may not include some of the more severely singular kernels which the present methodology and the density
interpolation method naturally treat [20,26]; additionally, the efficiency of that method suffers when gradients
become large (e.g. k large) with a wider near-field volume correction area needed. We turn next to methods
that like ours leverage a polynomial solution to the underlying PDE and transform volume potentials to layer
potentials. Unlike the previously-mentioned works [6,19,29,32,40] that rely on the method of images and/or
pre-computed solutions for singular and near-singular evaluation points—since the grid and therefore the
target locations have known structure in those settings—the present work applies to unstructured meshes
wherein evaluation points may lay in arbitrary locations relative to element boundaries. Our method shares
some elements with the work [51] that has contemporaneously appeared: both use Green’s third identity for
volume potential evaluation over unstructured meshes, but, unlike that work, the class of near-singular layer
potential evaluation schemes which we employ extends to three dimensions, treats operators with stronger
singularities, and is, in principle, kernel-independent (see e.g. [2, 20], though we stress that with regard to
choice of methods for layer potential evaluation the scheme is agnostic).

An important feature of this method is that it results in a significant reduction in the number of singular
corrections compared to previous volume potential schemes (even as the total number of volume corrections
remains the same). This is made possible by the use of Green’s identity over a large region Γ = ∂Ω (illustrated
in Figure 1) as opposed to element-wise boundaries, with the effect that, on the one hand, near-singular layer
potential quadrature (e.g. with the density interpolation method) is only required in a thin region abutting
Γ while, on the other hand, volume quadrature for resulting regularized volume integrals provably can be
effected to high-order accuracy with standard quadratures.

2. Preliminaries. In what follows we briefly outline the principles underlying the singular integration
strategy employed in this paper. The method relies on polynomial approximations of the density function
but is somewhat agnostic to the interpolation strategy. We present two specific strategies relying on one of

(i) Taylor polynomials that match the function and its derivatives up to a certain order at a point
x⋆ ∈ Ω, or

(ii) Lagrange interpolating polynomials over the entirety of an element K in a triangulation.
Next, the method builds associated regularization polynomials that are particular solutions to the PDE

with the interpolant as a right-hand side, and the interpolants and solutions are then used to regularize
the volume integral in (1.1). Precisely, in case (i), we first explicitly construct a family of polynomial PDE
solutions Φn(·;x⋆) : R2 → C, the family being parametrized by x⋆ ∈ Ω0, that satisfies

(2.1) (∆ + k2)Φn(·;x⋆) = fn(·;x⋆) in R2,

where fn(·;x⋆) : R2 → C is the polynomial of total degree n, also parametrized by x⋆, that interpolates the
density f and its derivatives up to order n at x⋆; details about the construction of these polynomials are
given in Section 3.1. Concerning the selection of x⋆, we define

(2.2) x⋆ := argmin
y∈Ω

|y − x|
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Fig. 1: Comparison of the regions for which specialized quadrature is needed in two volume quadrature meth-
ods. Top: With the use of standard quadrature rules for Vk[f ], nearby triangles for which the volume
integral will be inaccurate for specific evaluation points collocated at a quadrature node and marked
with a red star. Computation of the potential at all nodes displayed in the volume requires developing
many (near-)singular quadrature rules for every triangle. Bottom: In the proposed methodology, in
blue are marked the entirety of the volume evaluation points which lay close to the global domain
boundary and at which points evaluation of layer potentials requires specialized quadratures—so as
to evaluate the volume potential at all points in the domain (no specialized quadrature needed for
evaluation points laying away from the boundary).

and note that while our definition simplifies to x⋆ = x in the x ∈ Ω case on which we focus attention, the
x ̸∈ Ω case is also of interest. In interpolation strategy (ii), on the other hand, over each triangle K in a
triangulation Th of Ω, we construct polynomials (now parametrized by the triangle K) Φn(·;K) : R2 → C,
K ∈ Th, that satisfy

(2.3) (∆ + k2)Φn(·;K) = fn(·;K) in R2,

where fn(·;K) is the polynomial of total degree n that interpolates f on a discrete set of points within the
(possibly curvilinear) triangle K which is closest to the target point x ∈ R2 (typically, x ∈ K); details about
the construction of these polynomials, in turn, are given in Section 3.2.

Whichever the method by which a density interpolant and PDE-associated polynomial are generated,
by next employing Green’s third identity and the solution Φn we arrive at the relation

(2.4) µ(x)Φn(x; ⋄) = −
∫
Ω

Gk(x,y)fn(y; ⋄) dy −
∫
Γ

{
∂Gk(x,y)

∂n(y)
Φn(y; ⋄)−Gk(x,y)

∂Φn(y; ⋄)
∂n(y)

}
ds(y),

where

µ(x) :=


1 x ∈ Ω,

γ(x) x ∈ Γ,

0 x ∈ R2 \ Ω,

with γ(x) denoting a function proportional to the interior solid angle at x ∈ Γ that is equal to the familiar 1
2

where Γ is continuously differentiable [5, §8.1]. As usual, normal derivatives in (2.4) are taken with respect
to the exterior unit normal to Γ. Here ⋄ is a placeholder for either x⋆ in interpolation strategy (i) or K in
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interpolation strategy (ii). From adding (2.4) to (1.1) it follows that the volume integral can be recast as

(2.5) Vk[f ](x) =

∫
Ω

Gk(x,y){f(y)− fn(y; ⋄)} dy

−
∫
Γ

{
∂Gk(x,y)

∂n(y)
Φn(y; ⋄)−Gk(x,y)

∂Φn(y; ⋄)
∂n(y)

}
ds(y)− µ(x)Φn(x; ⋄).

In the sequel, we exploit (2.5) to develop an efficient, highly accurate method to numerically evaluate (1.1)
everywhere in R2. Consider first the Taylor polynomial strategy (i): helpfully, since fn(·;x⋆) is a Taylor
interpolant of the density at x⋆, the volume integrand in (2.5) is significantly smoother than the kernel Gk

itself and hence the regularized volume integral can be evaluated directly with high precision provided a
suitable quadrature rule

(2.6) QΩ[ϕ] :=

N∑
j=1

ωjϕ(ξj) ≈
∫
Ω

ϕ(y) dy

for smooth functions ϕ defined over Ω exists. On the other hand, considering now the Lagrange interpolation
strategy (ii), f − fn(·; ⋄) is small (in a sense made precise in Theorem 3.7) over the region near to x where
Gk is singular or experiences large gradients, and standard quadrature rules of the form (2.6) can again be
utilized and yield high-order accuracy. The layer potentials in (2.5), on the other hand, can be accurately
evaluated by means of existing techniques [20,26,44,45]. For sufficiently regular trace functions φ,ψ : Γ → C,
such techniques yield high-order approximations

BΓ[φ,ψ](x) ≈
∫
Γ

{
∂Gk(x,y)

∂n(y)
φ(y)−Gk(x,y)ψ(y)

}
ds(y), x ∈ R2,

where BΓ stands for (any) sufficiently accurate approximation of the boundary integrals.
In order to make the evaluation of (2.5) efficient, we avoid having to recompute all the integrals associated

with the polynomial terms as the evaluation point x ∈ R2 varies. We do so by expressing fn and Φn in
terms of fixed monomials so that the application of the volume and layer potentials to the monomials can
be precomputed and reused. Indeed, expanding the interpolant as

(2.7) fn(y; ⋄) =
∑
|α|≤n

cα[f ](⋄)pα(y), pα(y) :=
yα

α!
,

i.e. in a normalized monomial basis, we readily obtain that

(2.8) Φn(y; ⋄) =
∑
|α|≤n

cα[f ](⋄)Pα(y),

where the polynomials {Pα}|α|≤n, of total degree less than or equal to n ∈ N0, satisfy the inhomogeneous
Laplace/Helmholtz equation:

(2.9) (∆ + k2)Pα = pα in R2.

Here and in what follows, we make use of the standard multi-index notation where, for any α = (α1, α2) ∈ N2
0,

we set α! = α1!α2!, |α| = α1 + α2, y
α = yα1

1 yα2
2 when y = (y1, y2) ∈ R2, and(

α

β

)
=

α!

(α− β)!β!
=

α1!

(α1 − β1)!β1!

α2!

(α2 − β2)!β2!

when β = (β1, β2) ∈ N2
0. The construction of the polynomial PDE solutions Pα corresponding to the

monomial sources pα is based on the procedures presented in [2].
In the case of Taylor interpolation, the coefficients in (2.7) are obtained by employing the binomial theo-

rem to translate the expansion point at x⋆ in (3.1) to the origin. The same technique is utilized for Lagrange
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interpolation, but for a different purpose: in Lagrange interpolation it is useful to solve the multivariate Van-
dermonde system in coordinates local to the triangle, and the translation operators yield again the resulting
global polynomials. In both approaches, the coefficients of the interpolation polynomial {cα[f ](⋄)}|α|≤n

in (2.7) are computed using only the density values at the given set of quadrature nodes {ξj}Nj=1 in (2.6).

Leveraging the expansions (2.7) and (2.8), it then follows that Vk[f ](x) for x ∈ R2, can be approximated
as

(2.10) Vk[f ](x) ≈ QΩ

[
(

G k(x, ·)f(·)
]
−
∑
|α|≤n

cα[f ](⋄)
{
QΩ

[ (

G k(x, ·)pα(·)
]
+ BΓ[Pα, ∂nPα](x) + µ(x)Pα(x)

}
where we make use of the punctured Green’s functions

(2.11)

(

G k(x,y) =

{
Gk(x,y), y ̸= x,

0, y = x,
or

(

G k(x,y) =

{
Gk(x,y), y /∈ K

0, y ∈ K,

depending on the interpolation strategy employed, (i) or (ii), respectively. As usual, the symbol ∂n in (2.10)
denotes the derivative along the exterior unit normal to the boundary Γ, while in (2.11) K denotes the
element such that x ∈ K.

The efficiency of the proposed methodology becomes evident from considering the evaluation of the
approximation (2.10) to Vk[f ] at all the N -numbered volume quadrature nodes {ξj}Nj=1 in the mesh. In
either of the discretization strategies (i) or (ii), the interpolation polynomial fn is expanded in terms of the
monomials {pα}|α|≤n—a fixed monomial basis, of cardinality

(2.12) qn := (n+ 1)(n+ 2)/2,

on which the action of QΩ is precomputed. Table 1 provides an overview of the computational costs asso-
ciated with these evaluations, assuming that the FMM is utilized to accelerate the volume and boundary
integral computations. (Clearly, the layer and volume potential pre-computations inherent in (2.10), i.e. the
computations listed in the f -independent rows in Table 1, can be computed in an embarrassingly-parallel
fashion across the polynomial degree multi-index α.)

The costs in Table 1 for evaluating QΩ[

(

G k(ξj , ·)f(·)], QΩ

[ (

G k(ξj , ·)pα(·)
]
, and BΓ[Pα, ∂nPα](ξj) are the

costs of FMM-accelerated summation at O(N) volume target points; the FMM-accelerated general-purpose
DIM [20] is utilized to evaluate the boundary integrals BΓ, with the boundary discretized using Nb ∝ N1/2

points. Turning to coefficient cα[f ] evaluation, the cost of computing all qn derivatives in the Taylor series
for method (i) is O(qnN logN) due to the use of FFT-based differentiation costing O(N logN) per derivative
(cf. (3.1) and Section 3.1.2), while the cost of performing the translation operations over all N evaluation
points in the mesh is clearly O(q2nN) in view of (3.9). In the Lagrange methodology (ii), on the other
hand, a linear system of size qn must be factored for each of the L elements, which amounts to a cost of
O(q2nN), while the translation for each of the L elements costs a total of O(qnN). Overall, the operation
count estimate shows that, for a given interpolation order n ∈ N0, the volume-DIM methodology achieves
near-optimal complexity and is confirmed by the numerical results in Section 4.

In addition, the regularization of the operator Wk can be achieved in a similar manner by interpolating f
component-wise. Indeed, letting fn(·; ⋄) denote the corresponding polynomial interpolant of the vector
density f at/around the target point x ∈ R2, and letting Φn(·; ⋄) denote a solution of the vector PDE

(2.13) (∆ + k2)Φn(·; ⋄) = fn(·; ⋄) in R2,

we obtain from the identities

µ(x)Φn(x; ⋄) = −
∫
Ω

Gk(x,y)fn(y; ⋄) dy −
∫
Γ

{
∂Gk(x,y)

∂n(y)
Φn(y; ⋄)−Gk(x,y)

∂Φn(y; ⋄)
∂n(y)

}
ds(y)

and ∇xGk(x,y) = −∇yGk(x,y), the following regularized expression for Wk[f ]:

(2.14) Wk[f ](x) =

∫
Ω

∇yGk(x,y) · {f(y)− fn(y; ⋄)} dy

+

∫
Γ

{
∇x

∂Gk(x,y)

∂n(y)
·Φn(y; ⋄)−∇xGk(x,y) ·

∂Φn(y; ⋄)
∂n(y)

}
ds(y) + µ(x) divΦn(x; ⋄).
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Method Task Cost

f -dependent
(i) & (ii) QΩ[

(

G k(ξj , ·)f(·)], j = 1, . . . , N O(N logN)
(i) cα[f ](ξj), j = 1, . . . , N , |α| ≤ n O(q2nN + qnN logN)
(ii) cα[f ](Kℓ), ℓ = 1, . . . , L, |α| ≤ n O(q2nN)

f -independent
(i) & (ii) QΩ

[ (

G k(ξj , ·)pα(·)
]
, j = 1, . . . , N, |α| ≤ n O(qnN logN)

(i) & (ii) BΓ[Pα, ∂nPα](ξj), j = 1, . . . , N, |α| ≤ n O(qnN logN)
(i) & (ii) µ(ξj)Pα(ξj), j = 1, . . . , N, |α| ≤ n O(qnN)

Table 1: Computational costs for components of the method. Here N is the number of volume evaluation
points; in a mesh with L elements, in method (i) N = LM2 with M the Chebyshev order of differ-
entiation and integration while in method (ii) N = Lqn. The cardinality of the polynomial basis is
denoted by qn per (2.12).

Just like the case of Vk[f ], the interpolation property of fn enables the evaluation of the regularized volume
integral in (2.14) using a quadrature rule independent of the target point location. Using (2.14) in conjunction
with existing methods for evaluating the layer potentials we obtain an accurate and efficient algorithm for
evaluating Wk[f ]. (The divergence theorem applied to (2.14) can be useful in reducing computational effort
when both Vk and Wk are needed.)

The remainder of this paper is structured as follows. Section 3 details the construction of the interpolation
polynomial fn, the regularization polynomial solution Φn, and presents error analysis associated with their
use: Section 3.1 discusses the case of quadrilateral patches while Section 3.2 focuses on triangular domain
elements. Finally, numerical examples of the proposed approach are presented in Section 4, and a few
comments on future work are given in the conclusion.

3. Regularization of volume integral operators via density interpolation. In this section, we
present the details of the construction of the polynomial density interpolant fn and the associated polynomial
PDE solution Φn introduced in (2.1) and (2.3). Each section discusses a distinct interpolation scheme on each
of quadrilateral and triangular mesh elements, but a common element is the construction of regularization
polynomials: solutions to the PDEs with monomial inhomogeneity are developed in [2].

Remark 3.1. In general, in the derivations and in the analysis that follow, we will assume smoothness of
the density functions f and f over Ω, e.g. for a given integer n ∈ N0 we assume f ∈ Cm(Ω) and f ∈ [Cm(Ω)]2,
m > n. In addition, the methodology applies in the event the source densities are only piecewise smooth
over Ω, in which case Ω must be considered as a union of disjoint domains where f is smooth. Thus, provided
the location of possible discontinuities of a density function is known, such concerns can be addressed using
the proposed technique.

3.1. Taylor density interpolation over quad-meshed domains. Consider a polynomial density
interpolant fn(·;x⋆) : Ω → C of the smooth density function f : Ω → C at x⋆ ∈ Ω given by the nth-degree
Taylor polynomial;

(3.1) fn(y;x
⋆) :=

∑
|β|≤n

Dβf(x⋆)

β!
(y − x⋆)β ,

where for |y − x⋆| small enough, we have that

(3.2) f(y) = fn(y;x
⋆) +Rx⋆,n(y),

with the residual

(3.3) Rx⋆,n(y) = (n+ 1)
∑

|β|=n+1

(y − x⋆)β

β!

∫ 1

0

(1− t)nDβf(x⋆ + t(y − x⋆)) dt,



8 T. G. ANDERSON, M. BONNET, L. M. FARIA, AND C. PÉREZ-ARANCIBIA

satisfying

(3.4) |Rx⋆,n(y)| ≤
{
C max

|β|=n+1
∥Dβf∥∞

}
|y − x⋆|n+1

for some constant C > 0. In view of (3.4) and the logarithmic singularity of the Green function (1.2) we
have

(3.5) ϕV(y) := Gk(x,y){f(y)− fn(y;x
⋆)} = Gk(x,y)Rx⋆,n(y) = O(|x⋆ − y|n+1 log |x− y|) as y → x⋆,

which implies that the regularized volume integrand ϕV in (2.5) and (3.5) vanishes at the (near-)singularity
for any n ∈ N0. Furthermore, it is easy to see that for a given interpolation/expansion order n ∈ N0, ϕV
belongs to Cn(Ω) hence making the volume integral over Ω in (2.5) straightforward to evaluate numerically
with high precision provided a suitable quadrature rule (2.6) is available.

Similarly, with regard to Wk, we define the local interpolant fn(·;x⋆) : Ω → C2 of the source density
function f : Ω → C2 as

(3.6) fn(y;x
⋆) :=

∑
|β|≤n

Dβf(x⋆)

β!
(y − x⋆)β ,

with a residual Rx⋆,n(y) analogous to (3.2)-(3.3). The regularized volume integrand in (2.14) then satisfies

(3.7) ϕW(y) := ∇yGk(y,x) · {f(y)− fn(y;x)} = ∇yGk(y,x
⋆) ·Rx⋆,n(y) = O(|x⋆ − y|n+1|x− y|−1),

as y → x⋆ and we also have ϕW ∈ Cn−1(Ω) for n ∈ N.

3.1.1. Separable expansions. As discussed in Section 2, for a computationally efficient method, the
Taylor interpolant fn in (3.1) as well as the polynomial PDE solution Φn in (2.13), corresponding to source fn,
are respectively sought as the linear combinations (2.7) and (2.8) in terms of the monomials {pα}|α|≤n and
the fixed (x⋆-independent) polynomials {Pα}|α|≤n that satisfy (2.9), i.e., (∆ + k2)Pα = pα in R2 where
pα(y) = yα/α!. To achieve this, we exploit the exact separability property of polynomials that follows from
the binomial theorem. Indeed, applying the binomial theorem to (y−x⋆)β and observing the scaling for pα
in (2.7) we obtain

(y − x⋆)β =
∑
α≤β

(
β

α

)
(−x⋆)β−αyα =

∑
α≤β

β! pβ−α(−x⋆)pα(y).

The sought separable expansion of fn then follows from this identity and (3.1) which together yield

(3.8) fn(y;x
⋆) =

∑
|β|≤n

∑
α≤β

Dβf(x⋆)pβ−α(−x⋆)pα(y) =
∑
|α|≤n

cα[f ](x
⋆)pα(y),

where the coefficients are given by

(3.9) cα[f ](x
⋆) :=

∑
β≤α

Dβf(x⋆)pβ−α(−x⋆).

Furthermore, using the fact that

fn(y;x
⋆) =

∑
|α|≤n

cα[f ](x
⋆)(∆ + k2)Pα(y) = (∆ + k2)

∑
|α|≤n

cα[f ](x
⋆)Pα(y),

we readily get that the polynomial

(3.10) Φn(y;x
⋆) =

∑
|α|≤n

cα[f ](x
⋆)Pα(y)

satisfies the desired property (2.1), i.e., (∆ + k2)Φn(·;x⋆) = fn(·;x⋆).
The analogous expansions for the vectorial functions fn and Φn used in the regularization of Wk[f ]

in (2.14), are obtained similarly by applying (3.9) to each of the components of f .
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3.1.2. High-order numerical integration/differentiation over quad-meshed domains. Con-
sidering that the construction of (3.1) (resp. (3.6)) inherently requires numerical approximation of the de-
rivatives of f (resp. f) up to order n, (unless, of course, a straightforward closed-form expression of the
density f (resp. f) is provided allowing for exact derivative computation) it becomes crucial to obtain precise
approximations of the derivatives from the density values at the evaluation points {ξj}Nj=1—points that, in
our discretization approach, also serve as quadrature points. Similar to [45,46], below we present an efficient
high-order (Chebyshev-based) method to perform numerical integration/differentiation of a given smooth
function ϕ : Ω → C. This method relies on the following main components, to be described thereafter: the
generation of a smooth mapping for a given domain patch, quadrature rules for sufficiently-smooth inte-
grands over that patch with quadrature nodes given in the parameter space that defines the mapping, and
a numerical differentiation rule for functions defined on the patch.

Smooth mapping of patches. As described above in Section 2, in order to produce accurate numerical

evaluations of the volume integral in (2.5) we resort to a non-overlapping representation of Ω using mapped

quadrilateral patches. The closed domain Ω is meshed by a union Ω =
⋃L

ℓ=1Qℓ of non-overlapping patches
Qℓ, (ℓ = 1, . . . , L). We here assume that there exists for each patch Qℓ a bijective C∞ coordinate map

T ℓ : Q̂→ Qℓ where Q̂ := [−1, 1]× [−1, 1] ⊂ R2 is referred to as the parameter space. The coordinate maps on
each patch can be easily defined in terms of the boundary parametrization using transfinite interpolation [33].
The patches in the numerical examples in this paper were explicitly constructed. In general, quadrilateral
meshing is a challenging problem but meshes for general regions can be obtained using the HOHQMesh
software [34].

Quadrature rules for integration over patches. The numerical evaluation of the integral operators (2.5)
and (2.14) via Taylor interpolation requires both a quadrature rule for integration of regular functions (that
are at least bounded) and a numerical differentiation scheme for smooth functions defined on H. For a
sufficiently regular function ϕ : Ω → C, the domain integral can be expressed, using the coordinate maps
{T ℓ}Lℓ=1 for each of the L patches Qℓ that constitute Ω, in terms of the sum

(3.11)

∫
Ω

ϕ(x) dx =

L∑
ℓ=1

∫
Q̂

ϕ (T ℓ(x̂)) |det Jℓ(x̂)| dx̂,

where Jℓ is the Jacobian matrix of the mapping T ℓ.
Numerical quadrature for the function ϕℓ = ϕ (T ℓ(·)) |det Jℓ(·)| : Q̂ → C, on the other hand, is carried

out by means of a tensor-product version of Fejér’s first quadrature rule [18] over open Chebyshev grids

discretizing the parameter space Q̂,

(3.12) (x̂i, x̂j) ∈ Q̂, i, j = 1, . . . ,M,

with one-dimensional nodes given by the Chebyshev zero locations

(3.13) x̂j := cosϑj , ϑj :=
(2j − 1)π

2M
, j = 1, . . . ,M.

This yields the quadrature rule

(3.14)

∫
Q̂

ϕℓ(x̂) dx̂ ≈
M∑
i=1

M∑
j=1

ϕℓ (x̂i, x̂j)ωiωj ,

where the (one-dimensional) Fejér quadrature weights are given by

ωj :=
2

M

1− 2

[M/2]∑
l=1

1

4l2 − 1
cos (2lϑj)

 , j = 1, . . . ,M.

As is well known, the error in the approximation (3.14) decays faster than any inverse power of N for

smooth ϕℓ ∈ C∞(Q̂), while for limited-regularity functions ϕℓ ∈ Cn(Q̂) (n ≥ 0), like the ones resulting from
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our regularization approach, the decay of Fourier coefficients implies the error decays at least as rapidly
as a constant times M−n as M increases [55]. While the regularized volume integrals that arise from
our proposed methodology theoretically achieve this O(M−n) convergence, in practice, we observe faster
convergence rates. To properly establish this faster convergence, however, new error bounds for the tensor-
product Fejér quadrature better suited to the type of integrands arising from our regularization approach
are needed. Studies on the convergence properties of the trapezoidal rule [37, 56] could provide a promising
starting point in this direction, and in a related connection, we also find [36] interesting, but further research
is necessary to address this topic.

The resulting composite quadrature rule QΩ in (2.6) then comprises the N = LM2 pairs of quadra-

ture nodes and weights {(ξr, ωr)}Nr=1 corresponding to
⋃L

ℓ=1 {(T ℓ(x̂i, x̂j),ωiωj |det Jℓ(x̂i, x̂j)|)}Mi,j=1 via a

relabeling r = r(ℓ, i, j).
Numerical differentiation. Finally, numerical differentiation of ϕ at the expansion point is required to

obtain Taylor interpolants (3.1) and (3.6) of sufficiently smooth functions ϕ : Ω → C. We resort for that to
the identity

(∇xϕ) ◦ T ℓ(x̂) = J−1
ℓ (x̂)∇x̂(ϕ ◦ T ℓ)(x̂)

and FFT-based differentiation [10]. Indeed, ∇x̂(ϕ ◦ T ℓ) : Q̂ → C2 can be computed with spectral accuracy

on the tensor-product grid (3.12) from the grid samples {(ϕ ◦ T ℓ) (x̂i, x̂j)}Mi,j=1 using the approximation

∇x̂(ϕ ◦ T ℓ) (x̂i, x̂j) ≈ −
[
sinϑi 0
0 sinϑj

]−1 (
∇FFTϕ̃ℓ

)
i,j
,

where the tensor ∇FFTϕ̃ℓ ∈ CM×M×2, which contains approximate values of the gradient of

ϕ̃ℓ (ϑ, ϑ
′) = ϕ(T ℓ(cosϑ, cosϑ

′))

at the grid points defined in (3.13), {(ϑi, ϑj)}Mi,j=1, can be efficiently computed using an FFT of the samples

{(ϕ ◦ T ℓ) (x̂i, x̂j)}Mi,j=1. Approximations of higher-order derivatives of a sufficiently smooth function ϕ can
be obtained by iteration.

3.2. Lagrange density interpolation over triangular-meshed domains. Let Th = {Kℓ}Lℓ=1 be

a triangulation of Ω, i.e., Ω = ∪L
ℓ=1Kℓ and K̊ℓ ∩ K̊ℓ′ = ∅, ℓ ̸= ℓ′, which we assume throughout consists of

elements with maximum diameter h > 0 and with a minimum diameter of inscribed circles of ρ > 0; at times,
local element diameters hK and inscribed circle sizes ρK will be used. Our goal is to use a well-conditioned
nodal basis set to produce a Lagrange interpolation polynomial fn(·;K) : Ω → C that regularizes the singular
and near-singular integrals over and near to the element K ∋ x∗, K ∈ Th. It is important to note that in
contrast to the Taylor interpolation approach of Section 3.1, the same local polynomial density interpolant
fn(·;K) will be used for all target points x⋆ ∈ K.

The numerical approximation of the regularized volume integrals in (2.5) and (2.14) is performed in this
work using general-purpose quadratures for smooth functions, both in the online and offline phases of the
algorithm. A careful comparison of (2.10) and (2.5) reveals two approximations being performed: first, the
contribution from the element K containing the evaluation point is neglected and then smooth quadrature
(i.e. a quadrature meant for smooth functions that is oblivious to any possible singularities present) on the
remaining region is performed. For reference, in the description and analysis of each of these approximations
that follows, it will be useful to introduce the operators

(3.15)

(

V k[f ](x) :=

∫
Ω

(

G k(x,y)f(y) dy and

(

W k[f ](x) :=

∫
Ω

∇y

(

G k(x,y) · f(y) dy,

where

(

G k is the punctured Green’s function given in (2.11). In the sequel we denote by

(

V h,m
k [f ](x) and

(

W h,m
k [f ](x) the approximations of these operators on a triangulation Th using reference element quadratures

that can exactly integrate polynomials of maximum total degree m ∈ N0, see e.g. [57, 58]. In fact, these
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quadratures are independent of x, implying they are compatible with fast algorithms, and the quadrature
over the whole triangular mesh can be written in the generic style of Section 2, for example for Vk:

(

V h,m
k [f ](x) = QΩ[

(

G k(x, ·)f(·)].

The proposed approximation scheme can thus be stated, denoting by K the triangular element of a
triangulation Th of Ω for which x ∈ K,

Vk[f − fn](x) ≈

(

V k[f − fn](x) ≈

(

V h,m
k [f − fn(·;K)] (x)

= QΩ

[ (

G k(x, ·)f(·)
]
−
∑
|α|≤n

cα[f ](K)
{
QΩ

[ (

G k(x, ·)pα(·)
]
,(3.16)

where the first approximation commits regularization error, the second approximation commits quadrature
error, and the third equality identifies how the volume potential approximation which is to be analyzed can
be efficiently computed in an online/offline setting. Convergence rates for the approximations in (3.16) are
established in Section 3.2.4. (Analogous statements to (3.16) for Wk can be written, and the error analysis
for these approximations are also given in Section 3.2.4.)

The remainder of this section is organized as follows. Section 3.2.1 first describes some general concepts
relating to the description of curvilinear or straight domain elements K ∈ Th, including quadrature rules
over K that are independent of x. Next, we present the construction of interpolants in Section 3.2.2 and
Section 3.2.3 subsequently presents analysis on the conditioning of the linear systems that arise in interpolant
construction. Finally, we discuss in Section 3.2.4 the effect of these interpolation polynomials: how they
regularize the domain integrals and give rise to a provably high-order accurate numerical scheme.

3.2.1. Element mappings and quadratures for smooth functions.
Mappings for straight and curvilinear triangles. All elements are mapped from the reference triangle K̂

with vertices {(
−1

2
,−

√
3

2

)
, (1, 0),

(
−1

2
,

√
3

2

)}

and the transformation to physical coordinates is denoted by T : K̂ → K.

Remark 3.2. Throughout this section, superscript-ed tilde notation, e.g. T̃ , will denote quantities in
a certain ‘translated-and-scaled’ system while superscript-ed hat notation, e.g. T̂ , denotes quantities in
reference space on the unit simplex K̂.

When K is a straight triangle, T is an affine map that maps the vertices of K̂ to the vertices of K. When
K is a curved triangle with vertices v1 = (v11, v12), v2 = (v21, v22), and v3 = (v31, v32) that has exactly
one curved edge, say along the edge connecting v1 to v2, we employ, as recently suggested [3], the blending

mappings [27,28] defined on the standard simplex ∆. To do this, let T∆ denote the affine map T∆ : K̂ → ∆

and let the curved element map T : K̂ → K be given by T = T γ ◦ T∆, with

T γ(η1, η2) =

(
(1− η1 − η2)v11 + η1v21 + η2v31 +

1−η1−η2

1−η1
(γ1(η1)− (1− η2)v11 − η1v21)

(1− η1 − η2)v12 + η1v22 + η2v32 +
1−η1−η2

1−η1
(γ2(η1)− (1− η1)v12 − η1v22)

)
.

Here, γ = (γ1, γ2) : [0, 1] → Γ∩K is the parametrization of the coordinates of the curved edge connecting v1

and v2 that satisfy γ(0) = v1 and γ(1) = v2. It can easily be seen that T is a C1-invertible map of K̂ into K

for each element K; we denote {T ℓ}Lℓ=1 the set of all such curvilinear and affine mappings for elements in Th.
Quadrature for smooth functions on mapped triangles. As we previously discussed in the context of Tay-

lor interpolation on quads, the regularized volume integral operators in (2.5) and (2.14) requires a quadrature
rule for smooth functions defined on K. For sufficiently regular functions ϕ : Ω → C, a volume integral can
be expressed via the sum, over all L elements of the triangulation Th,

(3.17)

∫
Ω

ϕ(x) dx ≈
L∑

ℓ=1

∫
K̂

ϕ(T ℓ(x̂)) |det Jℓ(x̂)| dx̂,
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cK rK
K obtuse (v2 + v1)/2 |v2 − v1| /2

K acute / right circumcenter of K circumradius of K

v̂1

v̂2

v̂3

ṽ1

ṽ2

K̃
K̂

v̂1

v̂2

v̂3

K̂

K̃

Table 2: Left: Selection of translation and scale parameters for triangles. Here v1,v2, and v3 denote the
vertices of the triangle K which are numbered in such a way that the side lengths |v2 −v1|, |v3 −v2|
and |v3−v1| are in decreasing order. Right: The resulting positions of triangles in the unit ball after
translation-and-scaling.

where Jℓ is the Jacobian matrix of the transformation T ℓ prescribed above.
Quadrature for each of the integrals over K̂ in (3.17) is performed via the qn-numbered (see (2.12))

Vioreanu-Rokhlin quadrature nodes

În =
{
x̂j : x̂j ∈ K̂

}qn

j=1
.

with associated weights {ωj}qnj=1. Real-space nodes are obtained via the mappings {T ℓ}Lℓ=1 yielding the

node-weight set {(ξr, ωr)}Nr=1, N = Lqn, corresponding to the set ∪L
ℓ=1{T ℓ(x̂j),ωj |det Jℓ(x̂j)|}qnj=1 of global

quadrature nodes and weights; this quadrature rule is compatible with fast algorithms, being independent
of x.

3.2.2. Interpolant construction. We construct a Lagrange interpolation polynomial fn(·;K) of total
degree at most n ∈ N0 that interpolates data at a prescribed nodal set (with qn defined in (2.12)):

In = {xj : xj ∈ K}qnj=1.

For detailed discussions concerning multivariate polynomial interpolation see [24, 42, 49]; we discuss the
interpolation problem in more depth later but remark here only that given a nodal set In the solvability
of the Lagrange interpolation problem (in which case In is called poised) in multiple dimensions is not
assured. It suffices that the associated multivariate Vandermonde matrix is nonsingular, a requirement
which is achieved, as we will prove, by the choice of the interpolation set In as the mapped Vioreanu-
Rokhlin nodes [57], i.e., In = T ( În ), T : K̂ → K, with the reference space nodes În = {x̂j}qnj=1 ⊂ K̂ being
precisely the Vioreanu-Rokhlin nodes. (The multivariate Vandermonde matrices associated with these nodes
on the unit simplex have favorable condition numbers [57, Tab. 5.1-2], at least on a certain basis, suggesting
their use here.)

As a matter of practicality, one can observe on the one hand that directly interpolating using the physical
nodes leads to highly ill-conditioned matrices (in view of the vast differences in scale in the columns), while

on the other hand interpolation on the reference simplex K̂, where conditioning can be considered ideal, is
simultaneously not trivially compatible with the use of normalized monomials {pα}|α|≤n introduced in (2.7)
throughout the domain (especially on the boundary) and can also involve a potentially inefficient change of
basis calculations. We strike a middle ground by interpolating on a translated and scaled triangle

K̃ := T̃ (K̂) with T̃ (x̂) := r−1
K (T (x̂)− cK),

where cK and rK are K-dependent translation and scale factors, respectively, whose prescription is given in
Table 2. We again utilize translation formulae for purposes of the global basis. An important consequence
for the theory that follows in Theorem 3.4 is that this translation and scaling operation results in the triangle
K̃ that possesses a minimum bounding circle of unit radius. A different translation and scaling procedure,
and not with the use of translation formulae to retain a global basis, has been employed in the recent
work [51], though there no guarantees are provided on the solvability of the resulting Vandermonde system
(see Section 3.2.3).

The interpolating polynomial is thus obtained by solving the multivariate Vandermonde system

(3.18) Ṽ c̃ = d,
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with d = [f(x1), f(x2), . . . , f(xqn)]
⊤ ∈ Cqn the vector of data samples at In. Here Ṽ is the multivariate

Vandermonde matrix corresponding to a normalized monomial basis set {pα}|α|≤n and the set Ĩn := T̃ (În) =
{x̃j := (x̃j,1, x̃j,2)}qnj=1 of translated-and-scaled points:

(3.19) Ṽ =


1 x̃1,1 x̃1,2

1
2 x̃

2
1,1 x̃1,1x̃1,2 . . . 1

(n−1)! x̃
n−1
1,1 x̃1,2

1
n! x̃

n
1,2

1 x̃2,1 x̃2,2
1
2 x̃

2
2,1 x̃2,1x̃2,2 . . . 1

(n−1)! x̃
n−1
2,1 x̃2,2

1
n! x̃

n
2,2

...
1 x̃qn,1 x̃qn,2

1
2 x̃

2
qn,1 x̃qn,1x̃qn,2 . . . 1

(n−1)! x̃
n−1
qn,1

x̃qn,2
1
n! x̃

n
qn,2

 .

The resulting translated-and-scaled interpolation polynomial by construction satisfies f̃n(x̃j ;K) = f(xj),
j = 1, . . . , qn, and can be expressed as

(3.20) f̃n(x̃;K) =
∑
|β|≤n

c̃β [f ](K)pβ(x̃),

(
pβ(x̃) =

x̃β

β!

)
,

where the coefficients {c̃β [f ](K)}|β|≤n, sorted in (say) lexicographical order, are contained in the vector

c̃ ∈ Cqn solution of (3.18). Therefore, by setting x̃ = r−1
K (x− cK) above, we get that the sought Lagrange

interpolation polynomial is given by

(3.21) fn(x;K) =
∑
|β|≤n

c̃β [f ](K)

r
|β|
K

(x− cK)β

β!
.

The needed separable expansions for fn(·;K) in (3.21) as well as for its associated polynomial partic-
ular solution Φn(·;K) can be found just as in the case of the Taylor interpolation polynomial discussed
in Section 3.1.1. Indeed, we obtain

(3.22) fn(x;K) =
∑
|α|≤n

cα[f ](K)pα(x) and Φn(x;K) =
∑
|α|≤n

cα[f ](K)Pα(x),

where the coefficients are in this case given by

(3.23) cα[f ](K) :=
∑
β≤α

c̃β [f ](K)

r
|β|
K

pβ−α(−cK).

The potential Wk in (1.3), which features a vector-valued function f in the integrand, requires a vector-
valued interpolant fn(·;K) that can be constructed component-wise; explicit expressions for fn(·;K) and
Φn(·;K) are omitted for brevity.

3.2.3. Invertibility and conditioning of the translated-and-scaled Vandermonde matrix.
As mentioned before, the invertibility/conditioning of the multivariate Vandermonde matrix Ṽ in (3.18)

and (3.19) corresponding to a set of distinct points Ĩn is not obvious, as there is a subtle (and increasingly
so at high order) interplay between the geometry of the nodal set and the solvability of the interpolation
problem [24, 42, 49]. Furthermore, the relation between the geometry of the nodal set and the conditioning
of the system is even less clear. In particular, the available theory does not provide that a generic set of
interpolation nodes can be expected to be poised, i.e., that the interpolation problem can even be solved
(nevertheless, this is often still the case [49]). In fact, the poisedness (though not the invertibility or condi-
tioning of a given Vandermonde matrix) for node sets transformed from known-poised sets is, in our case, a
consequence of reference [14, Lem. 1], by an argument which is partially used in the proof of Theorem 3.4
below. However, until the effect of the transformation on the node-sets is understood, the conditioning could
in principle be arbitrarily poor.

To address these matters, drawing in part on results in [16], in Theorem 3.4 below we show that the linear

system in (3.18) for an arbitrary element K̃ generated by an affine transformation T̃ , is not only necessarily
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invertible (Ĩn is poised) but has a condition number that can be bounded above by a function that depends
explicitly on a standard measure of triangle quality and the degree n of the polynomial basis. For simplicity,
we restrict the theorem statement to straight elements; a similar statement could be developed for curved
elements generated by (or approximated by) polynomial transformations. It will be useful to consider the
geometrical parameters

(3.24) h̃K := diam K̃ and ρ̃K := sup
a>0

{
2a : Ba(x) ⊂ K̃,x ∈ R2

}
,

that denote the diameter of the triangle and the maximum diameter of inscribed disks Ba(x) := {y ∈ R2 :
|x− y| < a} in the triangle, respectively. They, together through their ratio, provide a common measure of

triangle quality. Note that by construction we have
√
3 ≤ h̃K ≤ 2; the parameters ĥK =

√
3 and ρ̂K = 1

denote analogous quantities for the unit simplex K̂.
In order to state and prove the result, it will help to recall a few facts from the work [16], which, for

a given nodal interpolation set Y = {ζ1, ζ2, . . . , ζqn} ⊂ B1(0) ⊂ R2 and a certain normalized monomial
basis set {pα}|α|≤n, develops a bidirectional connection between the condition number of the multivariate

Vandermonde matrix V (given by (3.19) with samples from Y replacing the samples from Ĩn with which Ṽ
there is populated) and the size of Lagrange polynomials associated with Y—termed the “Λ-poised” character
of Y. A nodal set Y is Λ-poised if and only if the Euclidean norm ∥λ(·)∥2 of the vector function λ : R2 → Rqn

containing the Lagrange polynomial basis for that nodal set Y, satisfies supζ∈B1(0) ∥λ(ζ)∥2 ≤ Λ.
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(a) n = 2
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(b) n = 4
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(c) n = 6
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(d) n = 8

Fig. 2: Visualization of the condition numbers of the Vandermonde matrices V and Ṽ, associated with the
quadrature nodes in the physical triangle K and in the corresponding translated and scaled triangle
K̃, respectively, for all the elements K making up an elongated domain. The color axis represents the
decimal logarithm of the condition numbers. The translation/scaling procedure’s remarkable effective-
ness is clearly evident in these results; for example, for n = 2 we observe a 104-fold reduction in the
condition number and a 1012-fold reduction for n = 6

.

We repeatedly use the following lemma, which is a direct adaptation of [16, Thm. 1] to our notation.

Lemma 3.3. If V is nonsingular and
∥∥V−1

∥∥ ≤ M , then the set Y is Λ-poised with Λ =
√
qnM in the

unit disk B1(0). Conversely, if the set Y is Λ-poised in the unit disk B1(0), then V is nonsingular and∥∥V−1
∥∥ ≤ θnΛ

where θn > 0 is dependent on n but independent of Y and Λ.
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Theorem 3.4. For a given n ∈ N, let the nodes In be mapped from the Vioreanu-Rokhlin nodes În
of order n via a non-degenerate affine transformation T . We have that the interpolation sets In and Ĩn
are poised in the normalized monomial basis {pα}|α|≤n. Further, the associated multivariate Vandermonde

matrix Ṽ in (3.19) is invertible and its condition number satisfies the bound

(3.25) κ(Ṽ) ≤ χn

(
1 +

hK
ρK

)n

κ(V̂),

where χn is computable and depends only on n, and where V̂ is the multivariate Vandermonde matrix in the
normalized basis on În.

Remark 3.5. Explicit bounds on the “constant” θn in Lemma 3.3 can be computed; reference [16, Eq.
(13)] provides the necessary ingredient for n = 2, showing a path for bounding θn for larger n as well.

Concretely, while the quantity κ(V̂) can be computed once and for all in the basis {pα}|α|≤n and is of very
modest size, the theorem represents a somewhat modest result because χn in Theorem 3.4 depends linearly
on θn in Lemma 3.3, and the latter quantity admittedly, as reference [16] notes, likely grows as much as
exponentially with n.

Proof. As a first step, we estimate the Λ-poisedness of În. It follows from Lemma 3.3, the identity
∥V̂−1∥ = κ(V̂)∥V̂∥−1, and the fact that ∥V̂∥ ≥ 1, that În is Λ̂-poised with

(3.26) Λ̂ :=
√
qnκ(V̂),

where κ(V̂) denotes the condition number of the multivariate Vandermonde matrix for the Vioreanu-Rokhlin
nodes in the monomial basis.

We next study the effect of the mapping T̃ : K̂ → K̃ on the reference Lagrange-polynomial vector
function, denoted λ̂ = [λ̂1, . . . , λ̂qn ]

⊤ : R2 → Rqn , which via the concept of Λ-poisedness introduced above,
ultimately provides control on the condition number of the multivariate Vandermonde system. We first note
that the polynomials

(3.27) λ̃j(x̃) := λ̂j(T̃
−1

(x̃)),

in fact satisfy the Lagrange interpolation property λ̃j(x̃i) = δij , i, j = 1, . . . , qn. An analogous statement

holds for λj(x) := λ̂j(T
−1(x)). It follows that both Ĩn and In are poised.

From (3.27) it follows that

sup
x̃∈B1(0)

∣∣∣λ̃j(x̃)∣∣∣ = sup
x̃∈B1(0)

∣∣∣λ̂j(T̃−1
(x̃))

∣∣∣ ≤ sup
x̂∈B1+R(0)

∣∣∣λ̂j(x̂)∣∣∣ , j = 1, . . . , qn,

where we used the fact that T̃
−1

(B1(0)) ⊂ B1+R(0) where R := h̃K/ρ̃K = hK/ρK . This inclusion follows

from the fact that |x̂| = |T̃
−1

(x̃)| = |Ax̃+ b| ≤ ∥A∥|x̃|+ |b| ≤ R+ 1 which we establish next in two parts.

Indeed, ∥A∥ ≤ ĥK/ρ̃K ≤ R, a fact that itself results from [14, Lemma 2] that establishes the first inequality

followed by use of the second inequality ĥK ≤ h̃K which in turn follows from the fact that an equilateral
triangle K̂ is the triangle having a minimum diameter among all triangles with a minimum bounding circle
of unit radius. The bound |b| ≤ 1 used above, on the other hand, follows directly from the bijectivity of

T̃
−1

: K̃ → K̂ together with the fact that, by construction, 0 ∈ K̃, which imply b = T̃
−1

(0) ∈ K̂ ⊂ B1(0).

It remains to estimate the supremum of |λ̂j | over B1+R(0), for which purpose we build upon the bound,

that follows from the definition of Λ-poisedness (3.26), |λ̂j(x̂)| ≤
√
qnκ(V̂) for x̂ in the more limited region

B1(0). To extend the estimate to B1+R(0) we use a Markov-type inequality that provides bounds on homo-
geneous sub-components of a polynomial relative to the norm of the polynomial on a more limited convex
region such as a disk. Specifically, reference [23, Thm. 1] provides for a polynomial Q(x) =

∑
|α|≤n dαx

α,
the bound

(3.28)

∣∣∣∣∣∣
∑
|α|=ℓ

dαx
α

∣∣∣∣∣∣ ≤ B
(n)
ℓ |x|ℓ sup

y∈B1(0)

|Q(y)| , ℓ = 0, . . . , n,
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where for a given n the (n + 1)-numbered constants B
(n)
ℓ are known explicitly (see [23]) and are related to

the coefficients of Chebyshev polynomials of degree n. In our context, for a given j ∈ {1, . . . , qn}, choosing
Q(x̂) = λ̂j(x̂) and summing over each of the homogeneous polynomials of degree ℓ = 0, . . . , n making up λ̂j ,

we obtain λ̂j(x̂) =
∑n

ℓ=0

∑
|α|=ℓ dαx̂

α. Then, employing the triangle inequality, and using (3.28), we readily
find

∣∣∣λ̂j(x̂)∣∣∣ ≤ n∑
ℓ=0

∣∣∣∣∣∣
∑
|α|=ℓ

dαx̂
α

∣∣∣∣∣∣ ≤
(

sup
y∈B1(0)

∣∣∣λ̂j(y)∣∣∣) n∑
ℓ=0

B
(n)
ℓ |x̂|ℓ ≤

(
sup

y∈B1(0)

∣∣∣λ̂j(y)∣∣∣)( max
ℓ=0,...,n

B
(n)
ℓ

) n∑
ℓ=0

|x̂|ℓ.

Letting B(n) = maxℓ=0,...,nB
(n)
ℓ and taking supremum of the expressions above over x̂ ∈ B1+R(0) it hence

follows that

sup
x̃∈B1(0)

∣∣∣λ̃j(x̃)∣∣∣ ≤ sup
x̂∈B1+R(0)

∣∣∣λ̂j(x̂)∣∣∣ ≤ 2B(n)(1 +R)n sup
y∈B1(0)

∣∣∣λ̂j(y)∣∣∣ , j = 1, . . . , qn,

where we have used the fact that
∑n

ℓ=0 |x̂|ℓ ≤
∑n

ℓ=0(1 +R)ℓ = [(1 +R)n+1 − 1]/R ≤ 2(1 +R)n which is in

turn obtained from R = hK/ρK > 1 and x̂ ∈ B1+R(0). It follows immediately that the set Ĩn is Λ̃-poised
with

(3.29) Λ̃ := 2B(n)(1 +R)n
√
qnκ(V̂) ≥ 2B(n)(1 +R)n sup

y∈B1(0)

∥λ̂(y)∥2 ≥ sup
x̃∈B1(0)

∥λ̃(x̃)∥2.

We have, further, from using Lemma 3.3 together with (3.29), the bound

(3.30)
∥∥∥Ṽ−1

∥∥∥ ≤ θnΛ̃ = 2θnB
(n)(1 +R)n

√
qnκ(V̂).

Here θn denotes the quantity in Lemma 3.3 (see also Remark 3.5). The result follows from this inequality

in conjunction with the inequality, see [16, Eq. (9)],
∥∥∥Ṽ∥∥∥ ≤ q

3/2
n , which eventually yields χn = 2θnq

2
nB

(n).

Finally, to showcase the remarkable effectiveness of the translation-and-scaling methodology in practical
applications, we present Figure 2. This figure illustrates the (log10 of the) condition numbers of the direct

and modified Vandermonde matrices, V and Ṽ, respectively, over a fixed triangulation of an eel-shaped
domain Ω for various interpolation orders. Notably, these examples demonstrate a significant reduction
in the condition number by several orders of magnitude, demonstrating the capabilities of the proposed
methodology; larger, more stretched domains would make the contrast progressively starker.

3.2.4. Numerical quadrature accuracy for regularized volume integrals. This section exam-
ines the regularizing effect of the density interpolant on the volume potential evaluated at some point x ∈ K,
K a (curvilinear) triangular element. Its relevance is that part of the method’s efficiency owes to the avoid-
ance of the use of (near-)singular volumetric quadrature in the entirety of the domain, as explained in the
preamble to Section 3.2. Indeed, we develop the arguments that allow us to restrict the use of nearly-
singular quadrature (for layer potentials) to a bounded region close to the boundary and still control the
error introduced by using generic quadratures meant for smooth functions on regularized volume integrals.
In fact, the error estimates are optimal in the sense that they establish the same order of convergence as
that would be achieved with the use of exact evaluation of the nearly-singular volume integrals—we stress
that the required number of such evaluations would scale as O(1/h2). Moreover, the results in the numerical
experiments closely match the theoretical rate of convergence.

We must account for contributions from both singular and near-singular integration and for these pur-
poses it is helpful to handle integration regions separately, so we denote by Ωh = Ωh(x) an O(h)-sized
neighborhood of K ∋ x, obtained, say, by querying all triangles that share (at least) a vertex with K.
Writing the volume potential as

(3.31) Vk [f ] (x) =

(∫
Ω\Ωh

+

∫
Ωh\K

+

∫
K

)
Gk(x,y)f(y) dy,
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the analysis that follows estimates the contribution of the latter two integrals for the potential Vk[f −
fn(·;K)](x), where fn(·;K) is the Lagrange interpolant of f over K ∋ x. On the basis of the estimates that
follow we could, for evaluation at a given x, neglect all elements in the region Ωh and retain an optimal order
of convergence; in practice, for both simplicity and accuracy, only the contribution from K will be discarded;
cf. the punctured Green’s function definition in the second relation of (2.11). We recall the definitions (3.15)
of the punctured volume potentials and for convenience write them in the form

(

V k[f ](x) =

(∫
Ω\Ωh

+

∫
Ωh\K

)
Gk(y,x)f(y) dy and

(

W k[f ](x) =

(∫
Ω\Ωh

+

∫
Ωh\K

)
∇yGk(x,y) · f(y) dy.

(Recall from Section 3.2 that

(

V h,m
k and

(

W h,m
k denote numerical quadrature approximations to these opera-

tors over Th with a quadrature rule capable of integrating polynomials of total degree at most m.)
The theorem applies for evaluation on subsets of the plane that are interior to an element with respect

to other elements of the mesh, an idea made precise in the next definition. A typical use-case is evaluation
at the (interior) Vioreanu-Rokhlin interpolation/quadrature nodes, Ê = În: the theorem thus estimates

the error in the volume potential evaluated at all the interpolation/quadrature points
{
ξj
}N
j=1

, N = Lqn.

Another use-case would be the evaluation at point-sets E laying on the boundary Γ = ∂Ω, e.g. for the
solution of Dirichlet or Neumann boundary value problems.

Definition 3.6. An evaluation point set Ê ⊂ K̂, possibly laying on the boundary of K̂, is called well-
separated for a given K ∈ Th if

(3.32) dK,Ê := inf
y∈Th\K

x∈E

|x− y|/hK > 0, with E = T (Ê).

Theorem 3.7. Let the respective quadrature and interpolation orders m,n ∈ N0 and the wavenumber
k ≥ 0 be given and let {Th}h>0 denote a quasi-uniform family of triangulations of Ω (in the sense of [50]),

with h denoting the maximum element diameter in Th. Fix a triangle K ⊂ Th and let Ê be a well-separated
evaluation set for this K. Denote by fn(·;K) (resp. fn(·;K)) the Lagrange polynomial interpolant of f ∈
Cm+1(Ω) (resp. f ∈ [Cm+1(Ω)]2) with interpolation in K enforced on the interpolation node-set In. It holds
that

(3.33)
∣∣∣Vk [f − fn(·;K)] (x)−

(

V h,m
k [f − fn(·;K)] (x)

∣∣∣ ≤ C
(1)
V hn+3| log h|+ C

(2)
V hm+1, x ∈ E ,

where C
(1)
V and C

(2)
V are positive constants independent of h but dependent on f , k and dK,Ê , and it holds

that

(3.34)
∣∣∣Wk [f − fn(·;K)] (x)−

(

W h,m
k [f − fn(·;K)] (x)

∣∣∣ ≤ C
(1)
W hn+2 + C

(2)
W hm+1, x ∈ E ,

where C
(1)
W and C

(2)
W are positive constants independent of h but dependent on f , k and dK,Ê .

Remark 3.8. For interpolation orders n ≥ 2, the Vioreanu-Rokhlin rules satisfy m ≥ n+2 [57, Tab. 5.1],
so the error estimate (3.33) in such cases simplifies to

(3.35)
∣∣∣Vk [f − fn(·;K)] (x)−

(

V h,m
k [f − fn(·,K)] (x)

∣∣∣ ≤ CVh
n+3| log h|, x ∈ E ,

for some constant CV > 0. Similarly, since for n ≥ 1 it holds that m ≥ n+1, so the the error estimate (3.34)
simplifies to

(3.36)
∣∣∣Wk [f − fn(·;K)] (x)−

(

W h,m
k [f − fn(·;K)] (x)

∣∣∣ ≤ CWhn+2, x ∈ E ,

for some constant CW > 0. (Estimates (3.33) and (3.34) yield concrete error estimates when n < 2 via the
relations [57, Tab. 5.1] m = 1 when n = 0 and m = 2 when n = 1; the case n = 1 is also, per Figure 4, the
case where super-convergence is observed in numerical experiments for the Vk operator.) As a consequence,
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the analysis that follows shows, for Vk and n ≥ 2 or for Wk and n ≥ 1, that these estimates for the
numerical quadrature evaluation of the potential of the regularized volume integral yield precisely the order
of accuracy in (3.40) and (3.41), respectively, of the regularization error alone—that is, the approximation
error introduced by neglecting the regularized weakly-singular integral over K.

Proof. The proof, with exposition primarily restricted to the operator Vk and relevant differences for the
Wk case mentioned as needed, proceeds by first showing that the error incurred by neglecting the weakly-

singular integral over K in

(

V k is an O(hn+3 log h) quantity as h → 0, and then next that the near-singular
volume integrals over each of the O(1) elements within the neighborhood Ωh of x are each O(hn+3 log h)
quantities so that the integral over Ωh \ K approximates the integral over Ωh with errors that behave as
O(hn+3 log h) as h→ 0. Then we finally consider the error from numerical quadrature that arises both from
integration on the O(1) elements in the near-field Ωh \ K and from the O(h−2) elements in the far-field
Ω \ Ωh. Throughout this proof, Cj , j = 0, . . . , 6 will denote positive constants independent of h.

Let x ∈ E ⊂ K denote a fixed evaluation point in K. In what follows the Lagrange interpolation
error estimate [54, Thm. 1] (that holds since the interpolant here is polynomial and thus easily satisfies the
required uniformity condition needed there) will prove useful; it provides (cf. also [14, Thm. 2])

(3.37) |f(y)− fn(y;K)| ≤ C0h
n+1 for all y ∈ Ωh(x),

and, for vector-valued functions the corresponding estimate

(3.38) |f(y)− fn(y;K)| ≤ C1h
n+1 for all y ∈ Ωh(x),

where C0 and C1 denote constants independent of h but possibly dependent on the quotient of the diameter
of Ωh and h. Note that these estimates hold not merely on K but as well over an O(h) neighborhood; indeed,
the result of [14, Thm. 2] can be applied over the entirety of Ωh with interpolation conditions enforced at
In ⊂ K.

The first step of the proof provides bounds on components of the regularized volume potential. Consid-
ering each of the integrals over the elements of Ωh, we have from a change to polar variables centered at the
closest point xc in each element Kℓ ⊂ Ωh to x ∈ E ⊂ K ⊂ Ωh and the bound (3.37), the estimate

(3.39)

∣∣∣∣ ∫
Ωh

Gk(x,y) [f(y)− fn(y;K)] dy

∣∣∣∣ ≤ ∫
Ωh

|Gk(x,y) [f(y)− fn(y;K)]| dy ≤ C2h
n+3| log h|,

which in view of the fact that K ⊂ Ωh(x) implies that

(3.40)
∣∣∣Vk [f − fn(·;K)] (x)−

(

V k [f − fn(·;K)] (x)
∣∣∣ ≤ C2h

n+3| log h|.

In a similar vein, it is easy to see that

(3.41)
∣∣∣Wk [f − fn(·;K)] (x)−

(

W k [f − fn(·;K)] (x)
∣∣∣ ≤ C3h

n+2,

where we used the fact |∇yGk(x,y)| = O(h−1) as h→ 0 for x,y ∈ K.
Similarly, since Ωh \K ⊂ Ωh we get from the latter inequality of (3.39) the bound∣∣∣∣ ∫

Ωh\K
Gk(x,y) [f(y)− fn(y;K)] dy

∣∣∣∣ ≤ C2h
n+3| log h|(3.42)

and a similar argument for Wk yields

(3.43)

∣∣∣∣ ∫
Ωh\K

∇yGk(x,y) · [f(y)− fn(y;K)] dy

∣∣∣∣ ≤ C3h
n+2.

Turning to numerical quadratures, recall that the numerical quadrature rule exactly integrates polyno-
mials up to total degree m which implies that the integral of a function ϕ ∈ Cm+1(Ω \Ωh) can be computed
with an error that can be bounded [31] by

(3.44)

∣∣∣∣ ∫
Ω\Ωh

ϕ(y) dy −
∑

ξj∈Ω\Ωh

ωjϕ(ξj)

∣∣∣∣ ≤ C4h
m+1.
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(We have utilized here the assumption that {Th}h>0 is a quasi-uniform, not necessarily regular, family of
triangular meshes [50] that, together with the definition of h, implies that there exists positive constants c1
and c2 such that c1h ≤ hK ≤ c2h for all K ∈ Th.)

For the elements comprising Ωh \K, whose cardinality is independent of h, using (3.42) and (3.37) in
conjunction with the triangle inequality, we find∣∣∣∣ ∫

Ωh\K
Gk(x,y) [f(y) − fn(y;K)] dy −

∑
ξj∈Ωh\K

ωjGk(x, ξj)
[
f(ξj)− fn(ξj ;K)

] ∣∣∣∣ ≤
≤ C2h

n+3| log h|+ C0h
n+1 max

ξj∈Ωh\K

∣∣Gk(x, ξj)
∣∣ ∑
ξj∈Ωh\K

ωj

≤ C5h
n+3| log h|,

(3.45)

where the last inequality follows because, firstly, the quadrature rule satisfies
∑

ξj∈Ωh\K ωj ≲ h2 and secondly,

since x ∈ E lies at a distance from Ωh \K that scales linearly with h, maxξj∈Ωh\K
∣∣Gk(x, ξj)

∣∣ ≲ | log h|, with
an implied constant dependent on dK,Ê . Here we used the quasi-uniformity assumption on Th [50].

In a similar vein for the

(

W k kernel, using the triangle inequality and (3.43) together with the esti-
mate (3.38) yields the bound∣∣∣∣∣

∫
Ωh\K

∇yGk(x,y) · [f(y) − fn(y;K)] dy −
∑

ξj∈Ωh\K

ωj∇yGk(x, ξj) ·
[
f(ξj)− fn(ξj ;K)

]∣∣∣∣∣∣ ≤
≤ C3h

n+2 + C1h
n+1 max

ξj∈Ωh\K

∣∣∇yGk(x, ξj)
∣∣ ∑
ξj∈Ωh\K

ωj

≤ C6h
n+2,

(3.46)

where the last inequality follows because, recalling x ∈ E , maxξj∈Ωh\K
∣∣∇yGk(x, ξj)

∣∣ ≲ h−1 with an implied
constant dependent on dK,Ê .

Collecting (3.40), (3.44) with ϕ(y) = Gk(x,y) [f(y)− fn(y;K)], and (3.45) we conclude∣∣∣Vk [f − fn(·;K)] (x)−

(

V h,m
k [f − fn(·;K)] (x)

∣∣∣ ≤ ∣∣∣Vk [f − fn(·;K)] (x)−

(

V k [f − fn(·;K)] (x)
∣∣∣

+
∣∣∣ (

V k [f − fn(·;K)] (x)−

(

V h,m
k [f − fn(·;K)] (x)

∣∣∣
≤ C

(1)
V hn+3| log h|+ C

(2)
V hm+1.

Similarly, for

(

W k by collecting (3.41), (3.44) with ϕ(y) = ∇yGk(x,y) · [f(y)− fn(y;K)], and (3.46) we find∣∣∣Wk [f − fn(·;K)] (x)−

(

W h,m
k [f − fn(·;K)] (x)

∣∣∣ ≤ ∣∣∣Wk [f − fn(·;K)] (x)−

(

W k [f − fn(·;K)] (x)
∣∣∣

+
∣∣∣ (

W k [f − fn(·;K)] (x)−

(

W h,m
k [f − fn(·;K)] (x)

∣∣∣
≤ C

(1)
W hn+2 + C

(2)
W hm+1.

The proof is complete.

4. Numerical examples.

4.1. Validation examples. In order to validate the proposed methodology, we manufacture potential
evaluations with scalar and vectorial volume densities, f : Ω → C and f := fd : Ω → C2 (d ∈ R2 being a
constant vector), respectively, that do not involve the evaluation of volume integrals and so are more easily
computable as a reference solution for assessing error levels. To do this, we start off by selecting a known
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smooth function u : Ω → C and define the scalar source density as f := (∆+k2)u : Ω → C. By Green’s third
identity it readily follows that Vk[f ] = vref in Ω, where the reference potential is given by

(4.1) vref(x) := −u(x)−
∫
Γ

{
∂Gk(x,y)

∂n(y)
u(y)−Gk(x,y)

∂u(y)

∂n(y)

}
ds(y)

in terms of the known function, u, and the single- and double-layer Laplace/Helmholtz potentials applied to
its Neumann and Dirichlet traces, respectively. Similarly, we have Wk[f ] = wref in Ω, where

(4.2) wref(x) := d · ∇
{
u(x) +

∫
Γ

{
∂Gk(x,y)

∂n(y)
u(y)−Gk(x,y)

∂u(y)

∂n(y)

}
ds(y)

}
.

Since both vref and wref only entail the evaluation of layer potentials and their gradients, a highly accurate
numerical approximation of the boundary integrals yields a reliable expression for the volume potentials that
can be used as a reference to measure the numerical errors.

For definiteness, in all the numerical examples considered in this section, we employ the planewave
u(x) = exp(ik0x · θ), (|θ| = 1) which gives rise to the density function f = (k2 − k20)u, and make the
selections k = 2π, k0 = π, d = (1, 1), and θ = (cos π

3 , sin
π
3 ). The numerical results are demonstrated

on three specific domains, namely, the unit disk, the kite [15], and the jellyfish [26], whose boundaries are
parametrized, respectively, by the smooth curves

γ0(t) = (cos t, sin t),(4.3a)

γ1(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), and(4.3b)

γ2(t) = {1 + 0.3 cos(4t+ 2 sin t)}(sin t,− cos t), 0 ≤ t ≤ 2π.(4.3c)

In the numerical examples that follow, the relative numerical errors are measured by means of the
formulae

(4.4) ErrorV :=

max
j∈{1,...,N}

|vapprox(ξj)− vref(ξj)|

max
j∈{1,...,N}

|vref(ξj)|
and ErrorW :=

max
j∈{1,...,N}

|wapprox(ξj)− wref(ξj)|

max
j∈{1,...,N}

|wref(ξj)|
,

which provide approximate relative errors in the natural C0(Ω)-norm, where {ξj}Nj=1 are the volumetric quad-
rature nodes and where vapprox and wapprox denote respectively the approximate potentials Vk[f ] and Wk[f ].
The evaluation of each operator is performed in the experiments that follow using both the Taylor and La-
grange polynomial density interpolation methods described above in Section 3.1 and Section 3.2, respectively.

For the Taylor density interpolation method, which relies on a quad-based mesh of the domain and a
tensor product Fejér’s quadrature rule, we maintain a constant number L of mapped-quadrilateral domain
patches that together form Ω. In fact, discretization is a function of both L and M , and experiments using
an alternate strategy of subdividing patches (increasing L) while keepingM fixed could be contemplated; we
choose the present strategy, that can be viewed as isolating the effect of interpolation error dominating, as
an illustrative point of contrast to the Lagrange case where in the simple case of Vioreanu-Rokhlin interpola-
tion/quadrature the quadrature order is closely related to interpolation order. To experimentally determine
the rate of convergence of the method, we then increase the number of quadrature nodes N = LM2 by in-
creasing M , the number of Fejér nodes in one dimension. The results of this example are shown in Figure 3.
The top row of Figure 3 displays the fixed patches used for each of the domains considered, while the middle
and bottom rows respectively display the relative errors ErrorV and ErrorW in (4.4) obtained for various
values of the mesh parameterM . For the interpolation orders n ∈ {0, 1, 2, 3, 4} considered in these examples,
we observe that ErrorV scales as O(M−(n+3)) as M increases while ErrorW , in turn, scales as O(M−(n+2)).
Note that these results are in accordance with the singularity degree of the integral kernels; the accuracy
deteriorates as the singularity degree of the kernel increases. The general-purpose DIM [20] was utilized in
all these examples to accurately evaluate the layer potentials (BΓ in Table 1) that arise in both the regular-
ization formula (2.5) and in the reference solution (4.1). In the former case, the boundary Γ is decomposed
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Fig. 3: Numerical accuracy in the numerical evaluation of the volume potentials Vk and Wk using Taylor
density interpolation over quad-meshed domains. Top row: The three domains Ω whose curve
parametrizations are given in (4.3), that are represented using mapped-quadrilateral patches. Middle
and bottom rows: Relative errors in the numerical evaluation of Vk (middle row) and Wk (bottom
row) for different discretization sizes.

into curved segments corresponding to the parts of the boundary Γ contained in the domain’s patches that
intercept the boundary. The layer potentials are then evaluated by integrating over each segment using,
again, Fejér’s quadrature rule. The total number of boundary discretization points is kept proportional to
M ∝ N1/2 where N is the total number of volume quadrature nodes. This choice ensures that the accuracy
of the layer potential evaluation also improves as the domain discretization is refined. In the latter case, on
the other hand, we employ a further refined boundary discretization, achieved by doubling the number of
Fejér nodes on each of the curved boundary segments, that ensures the attainment of significantly higher
accuracy for the reference solutions vref and wref .

A wide pre-asymptotic regime is observed for the higher-order versions of the Taylor density interpo-
lation method considered in Figure 3, which perform worse than the lower-order ones over coarse grids
(especially for the more complicated jellyfish domain). This phenomenon could be explained by the fact
that as the interpolation order increases, so does the degree of the polynomials that have to be resolved by
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Fig. 4: Numerical accuracy in the evaluation of volume potentials Vk and Wk using Lagrange density inter-
polation over triangular-meshed domains. Top Row: Initial triangular meshes representing the three
domains Ω, with their respective curve parametrizations given in (4.3) and the Vioreanu-Rokhlin quad-
rature/interpolation nodes for n = 5. Middle and Bottom Rows: Relative errors in the numerical
evaluation of Vk (middle row) and Wk (bottom row) for various discretization sizes.

the fixed discretization grid. Coarser grids are not good enough to properly capture the growth and wild
variations of the higher-degree polynomials over the curved surface patches, eventually leading to numerical
errors that dominate over the singular-integration error targeted by our method. This suggests that for
moderate accuracies (∼ 10−3 relative errors) low order methods (i.e., n ∈ {0, 1, 2}) for the regularization
are advantageous. Finally, our numerical experiments (unreported here) indicate the alternate strategy of
keeping M fixed while increasing L via patch subdivision exhibits somewhat steadier convergence.

Next, we conduct a similar experiment, but this time, we employ the Lagrange density interpolation
method, which utilizes (curved) triangular meshes and Vioreanu-Rokhlin quadrature nodes for integration
and interpolation, as detailed in Section 3.2. The results are presented in Figure 4, showcasing the obtained
errors, ErrorV and ErrorW , for meshes of varying sizes h and interpolation orders n ∈ {0, 1, 2, 3, 4}. Notably,
we observe clear convergence orders for interpolation orders n ∈ {0, 2, 3, 4}, that match the error estimates
established in Theorem 3.7. However, interestingly, for the Vk operator, we observe evidence of super-



FAST, HIGH-ORDER ACCURATE EVALUATION OF VOLUME POTENTIALS 23

2 4 6 8 10 12 14

10
4

10

20

30

40

50

60

70

80

(a) Quad-meshed kite-shaped domains comprising L = 9
patches, each utilizing Chebyshev grids with M × M
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(b) Triangular-meshed kite-shaped domains consisting of L
triangles, with each triangle employing qn Vioreanu-
Rokhlin quadrature/interpolation nodes.

Fig. 5: Computation times (in seconds) for evaluating Vk[f ] over progressively larger discretizations of the
kite-shaped domain whose boundary γ2 is given in (4.3b). The two different density interpolation
approaches, namely Taylor (left) and Lagrange (right), were employed in this example.

convergence in the case n = 1 even as the expected rate is observed for the Wk operator (see Remark 3.8).
Finally, in Figure 5, we showcase the timing results obtained from the numerical evaluation of the

operator Vk over the kite-shaped domain using Taylor and Lagrange density interpolation for orders n =
{0, 1, 2, 3, 4} and for increasingly large discretizations. The implementation of this code in Matlab is unop-
timized. To accelerate both volume and layer potential evaluations, we utilize the FMM as implemented in
the fmm2d library (https://github.com/flatironinstitute/fmm2d). The plots displayed in the linear-linear
scale exhibit excellent agreement with the asymptotic complexity estimates presented in Table 1, as they
demonstrate that the overall cost of the algorithm scale linearithmically with the total number of discretiza-
tion points N . Notably, the offline (f -independent) part of the algorithm incurs significantly higher costs
compared to the online (f -dependent) part, despite the O(q2nN) cost associated with the interpolation of the
density. This observation can be attributed to a constant factor that multiplies the O(qnN logN) cost of the
FMM, which is significantly larger than the corresponding factor multiplying the O(q2nN) interpolation cost.
Additionally, we note that when comparing the two approaches for roughly the same number of discretiza-
tion points N , the Lagrange interpolation method appears to be relatively more expensive than the Taylor
interpolation method. This discrepancy can be attributed to the code implementation in Matlab, where the
Taylor density interpolation leverages vectorization more efficiently, resulting in improved performance.

4.2. Lippmann-Schwinger equation. To demonstrate the practical application of our proposed
methodology, we employ it to solve the scattering problem of a planewave uinc(x) = exp(ikx · θ), |θ| = 1,
interacting with a scatterer Ω ⊂ R2 with the examples thus showing how the high-order accurate operator
evaluation previously demonstrated can lead to a high-order volume integral equation solver. We consider
a scatterer that has a smooth refractive index function ν > 0 defined within its boundaries. Outside of Ω,
we assume a constant refractive index of ν = 1. The scattering problem seeks a volumetric total field
u : R2 → C, u ∈ C1(R2) ∩H2

loc(R2), that satisfies the Helmholtz equation

∆u+ ν(x)k2u = 0 in R2 \ Γ,(4.5)

with the scattered field usc := u−uinc satisfying Sommerfeld’s radiation condition. It can also be reformulated
as the Lippmann-Schwinger volume integral equation for u inside the scatterer:

(4.6) u(x) + k2Vk [(1− ν)u] (x) = uinc(x), x ∈ Ω,

https://github.com/flatironinstitute/fmm2d
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with the solution outside the scatterer given by the representation formula

(4.7) u(x) = uinc(x)− k2Vk[(1− ν)u](x), x ∈ R2 \ Ω.
The Lippmann-Schwinger equation (4.6) can be effectively solved using Nyström methods based on

the high-order discretization approaches presented above in Section 3 using iterative methods, wherein the
resulting N ×N linear system for the approximate values of the total field at the quadrature nodes {ξj}Nj=1

is solved via GMRES [47] and the volume integral operator Vk is used as a forward map. This methodology,
which only necessitates repeated applications of the operator Vk over the fixed domain Ω, allows us to
exploit the algorithm’s potential fully, as all source-independent steps can be precomputed and reused at
each operator application (see Table 1).

(a) Planewave scattering by a homogeneous obstacle, for k = 2π and ν = 4 in Ω. Left: Real part of the solution of the
transmission problem (4.8). Middle and right: Absolute pointwise error in Lippmann-Schwinger equation solutions obtained
using Taylor and Lagrange density interpolation-based Nyström methods, respectively.

(b) Planewave scattering by an inhomogeneous obstacle. Left: Piecewise smooth refractive index ν. Middle and right: Real part
of approximate Lippmann-Schwinger equation solutions obtained using Taylor and Lagrange density interpolation-based
Nyström methods, respectively.

Fig. 6: Application of the polynomial density interpolation method to the Lippmann-Schwinger equation.
Convergence experiments demonstrate the same high convergence orders for solution of the volume
integral equation that are illustrated for the operator evaluation in Figures 3 and 4.

To assess the accuracy of such a Nyström method for the Lippmann-Schwinger equation, we focus on
a specific scenario where ν maintains a constant value of 4 within Ω. In this case, the total field can be
determined by solving the transmission problem

(4.8)
∆u+ νk2u = 0 in Ω, ∆usc + k2usc = 0 in R2 \ Ω,

u = uinc + usc and ∂nu = ∂n
(
uinc + usc

)
on Γ.

that can itself be recast into a second-kind boundary integral equation [35]. By solving the boundary integral
equation (and employing an exponentially convergent Nyström method, based on the Martensen-Kussmaul
quadrature rule [15, Sec. 3.5] for kernels with logarithmic singularities to do so), we obtain a highly accurate
reference solution that serves as the benchmark to quantify the error in the solution of the volume integral
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equation for this piecewise constant refractive index medium. Figure 6a displays the pointwise errors within Ω
in the volume integral equation solutions obtained utilizing the Taylor (resp. Lagrange) density interpolation-
based Nyström method for n = 3 (resp. n = 4) and M = 64 (resp. h = 0.08), which correspond to the same
parameters utilized in the respective panels of Figure 6b.

We consider, finally, a more interesting scattering problem involving a piecewise-smooth refractive index
ν, seen in the scatterer in the left panel of Figure 6b. The remaining panels of that figure show the real part
of the total field obtained by the two discretization methods considered in this work. GMRES convergence
was achieved in these examples after about 80 iterations for a relative error tolerance of 10−9 using k = 2π
and θ = (cos π

3 , sin
π
3 ).

5. Conclusions. We have presented a provably high-order scheme for the numerical evaluation of
volume integral operators that is amenable to fast algorithms. Future work will consider macro forms of
domain subdivision and their effect on computational efficiency. Applications to other PDEs will be explored
in future work and is in some cases quite natural given the generality afforded by [2,20]. The reduction in the
dimensionality of the region of singular quadrature should prove especially effective in three dimensions. The
implementation we presented here was rudimentary; we look forward to optimized and parallelized schemes
built on these concepts and coupling them to more adaptive methods.
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of Computational Physics, 375 (2018), pp. 57–79.
[23] M. I. Ganzburg, A Markov-type inequality for multivariate polynomials on a convex body, Journal of Computational

Analysis and Applications, 4 (2002), pp. 265–268.
[24] M. Gasca and T. Sauer, Polynomial interpolation in several variables, Advances in Computational Mathematics, 12

(2000), pp. 377–410.
[25] M. Golberg, A. Muleshkov, C. Chen, and A.-D. Cheng, Polynomial particular solutions for certain partial differential

operators, Numerical Methods for Partial Differential Equations: An International Journal, 19 (2003), pp. 112–133.
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