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Abstract—The changing climate and increasingly unpredictable sea ice conditions
have created life-threatening risks for Inuit, the residents of the Arctic, who
depend on the ice for transportation and livelihood. In response, they are turning
to technology (e.g., RADAR imagery from the Canadian RADARSAT satellite)

to augment their traditional knowledge of the ice and to map potential hazards.
The difficulty lies in the actual RADAR interpretation process. In order to support
understanding of the RADAR image content, we introduce a work-in-progress,
INTUIT, a physicalization that represents the RADAR reflection strength,

which is highly influenced by surface roughness, as a tactile texture. Such tactile
texture is made by resampling the RADAR imagery to a number of UV cells and
mapping the average brightness value of each cell to a physical variable. A proof

of concept was designed for a region in Baffin Island (Nunavut) and sent to the
Arctic for initial feedback. Preliminary study results are promising: it is expected
that INTUIT will facilitate the interpretation learning process for RADAR imagery.

esidents in the Arctic depend on stable sea ice

for their transportation and livelihoods. There

is an inherent danger with sea ice travel,
however, and hazards can be difficult to detect in the
north’s constant winter darkness. Inuit have relied on
traditional knowledge of ice characteristics and move-
ments to travel safely on the ice, informed by genera-
tions of observations and experience. Climate change
is also affecting the environmental conditions upon
which the traditional knowledge is based, making travel
based only on that knowledge increasingly dangerous.
In 2009 - 2010, nearly one in twelve residents of Nain,
Newfoundland and Labrador, Canada, fell through the
sea ice, 68% were afraid to use the ice, and 75%
were unable to predict ice conditions [1]. It has been
necessary for Inuit to look elsewhere for additional data
sources to inform them of ice status and conditions.
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One of those data sources is satellite earth observation
data, particularly Synthetic Aperture RADAR (SAR)
sourced from the Canadian RADARSAT satellite, or the
European Space Agency’s Sentinel system.

In northern Canada, a multi-year educational pro-
gram, Sikumit Qaujimajjuti, managed by a social en-
terprise SmartICE, is underway to train Inuit in remote
sensing and digital mapping technologies so that they
may augment their own knowledge of the ice with
information from the satellite sensors (see [2] for more
details). An important component is developing compe-
tency in understanding RADAR image content to read
the ice conditions and features. RADAR imagery uti-
lizes microwave wavelengths of energy to measure the
reflectivity of the Earth’s surface. During this process,
“rough ice” appears highly reflective, while “smooth”
ice exhibits less reflectivity. The resulting grayscale
images display varying levels of brightness to rep-
resent reflectivity rather than the color of a feature.
Consequently, smooth ice, which appears pure white in
satellite photos, looks darker in these images, making
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interpretation challenging despite its value for sea-
ice observation (see Figure 1). Within the framework
of the SmartICE program, individuals known as Inuit
Mappers are trained to “interpret” RADAR data into
practical information. They are employed to achieve
the ultimate objective of producing ice safety maps
for the community, derived from the information they
decipher from the imagery. Nevertheless, interpreters
face a challenge when linking image tone to surface
roughness. It can be difficult for them to recall that
image brightness does not equate to “visual” bright-
ness. To mitigate the associated confusion, merely
inverting the image is not an effective solution, as it
presents additional complexities in comprehending the
data and its correlation with visual brightness. For ex-
ample, the image’s roughest parts will appear as black
areas in the inversion, which could be misinterpreted
as shadows, as demonstrated in Figure 1c. Further-
more, this inversion process could cause confusion for
interpreters when viewing a RADAR image, as they
would have to determine whether they’re viewing a
“standard” or inverted image. Alternatively, employing
custom algorithms to convert RADAR imagery into
an image that resembles optical images may reduce
ambiguity but could result in data loss during the con-
version process (refer to Figure 1d). Most crucially, this
approach would create a new challenge: interpreters
would need to convert the data each time prior to
usage, which could undermine the educational value of
developing competency in understanding such images.
To tackle this issue, tactile physical representations
have the potential to help novice interpreters build
a cognitive bridge between image tone and surface
roughness and would complement the visual repre-
sentation. Tactile and physical models can be more
effective than on-screen visualizations for information
retrieval by providing physical touch as a cognitive aid
[3]- Such characteristics make physical models effec-
tive tools for geography education. Physical models
can facilitate deeper learning through kinesthetic and
active learning, as well as engagement through interest
and novelty [4]. Physical models can also be used as a
mode of inquiry to promote constructivist learning [5].

As part of the Sikumit Qaujimajjuti program, inno-
vative learning resources are being co-developed with
the Inuit participants. Acknowledging the challenges in
learning RADAR concepts, there was a desire to de-
velop a physical model of RADAR imagery. This model
would enable learners to feel the surface roughness
while simultaneously comparing the brightness on the
imagery. By doing so, learners could generate a tactile
memory of the relationship between image brightness
and the Earth’s surface roughness. This idea aligns

W
FIGURE 1: (a) A satellite photo showing the ice sur-
face, (b) RADAR imagery of the same location, (c)
Inverted RADAR image, (d) Inverted RADAR image
using a custom algorithm.

with the tactile consciousness created when using
“pboth vision and manipulation of objects” [6].

Here we introduce a work-in-progress, INTUIT, a
novel idea of tactile physicalizations of RADAR images
to be used by Inuit Mappers. A physicalization is an
artifact that represents data through its geometry or
physical properties [7] and can provide an analytical
reading of the data or an artistic representation of it [8].
Focusing on the former goal, INTUIT transforms purely
visual radar images into tactile maps where the surface
roughness of ice can be experienced through touch.
Towards this goal, our algorithm resamples the original
RADAR imagery to a number of UV cells, extracts the
average brightness of each cell as roughness values,
and maps the values to physical variables, such as
height or size. To facilitate image interpretation, the
interpreter views the image while feeling the texture
with their hands, with the goal of keeping the idea of
surface “roughness” at the forefront of the interpreter’s
mind and securing the connection of grey levels to the
texture.

The remainder of this paper is structured as follows.
In the Background Section, we briefly review the litera-
ture related to this research. The Methodology Section
introduces our applied methodology to design tactile
surfaces from RADAR imagery. The Results Section is
dedicated to the introduction of our preliminary results
and end-user feedback from the interpreters in Baffin
Island. In Discussion, we discuss the technical issues
we faced during the design of INTUIT and introduce
our proposed solutions. Finally, Conclusion focuses on
the conclusion and future work.
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In this section, we first describe RADAR imagery and
its importance in sea-ice interpretation and then outline
physicalization as a tool for improving the understand-
ing of data.

RADAR Imagery

Spaceborne synthetic aperture RADAR (SAR) is a
valuable source of Earth observation data and has
three important distinctions from optical imagery (e.g.,
Google Earth imagery, air photos) that make it valuable
for Arctic ice sensing — active sensing, reliability, and
sensitivity to roughness [10]. RADAR is an active
sensor, providing its own illumination of the Earth’s
surface, so ice can be imaged in the darkness of win-
ter. The long microwave wavelengths emitted means
that clouds do not provide a barrier to the energy,
thereby providing reliable data. When the RADAR
pulse meets the Earth’s surface, the energy interacts
with the features and their structure on the surface,
causing scattering and backscattering, with some of
the energy being reflected back to the sensor, where
its strength is measured. RADAR is also sensitive to
terrain and surface roughness, helping to tell the differ-
ence between blocky older ice, smooth new ice, and
hazards (ridges, water). The roughness information
afforded by RADAR imagery is important in sea-ice
interpretation and recognizing potential safe zones and
hazards [11]. The challenge lies in the actual inter-
pretation process. An optical image that we are more
familiar with is generated when a sensor measures
the strength of sunlight (visible wavelengths) reflected
from the Earth’s surface. The reflectance strength is
represented by a grey scale on the image; features
with a high reflectance value will appear bright or white,
and low reflectance features will appear dark. Since
this brightness corresponds to the same reflectance
sensed by our vision, the image is intuitive to read.
RADAR sensors transmit and receive longer wave-
length microwave energy that the human eye cannot
detect. Microwave energy acts differently than visible
light, responding to surface roughness, salinity, and
internal geometry of an object, not the “color” [10].
Reflected energy values are still shown in a grey scale
with high values appearing bright; however, what those
values represent is not what we see, so the image
can appear quite different than an optical scene. For
example, smooth ice appears white in optical imagery
but dark in RADAR imagery, primarily due to its surface
roughness properties (Figure 1a,b).
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Data Physicalization

Information has been transformed into physical objects
for thousands of years. Dragicevic and Jansen curated
a list that contains hundreds of physicalization exam-
ples, including clay tokens dating back to 5500 BC,
models made by biologists and physicists in the 19th
and 20th century, and many examples of physically
representing geospatial datasets. The term data phys-
icalization is coined to how “computer-supported phys-
ical representations of data (i.e., physicalizations) can
support cognition, communication, learning, problem-
solving, and decision making” [7]. A study done by
Stusak et al. [12] showed that physicality can increase
the memorability of visualizations. The fact that phys-
icalizations are able to provide physical touch makes
them effective tools for conveying messages that are
otherwise difficult or even impossible to represent. In
[8], Djavaherpour et al. introduce a variety of phys-
icalization types and present and evaluate several
methods for their design and fabrication. While many
conventional examples of data physicalization involve
spatial data, a significant portion of the published
research does not. Among the examples that utilize
spatial data for physicalization, Boxcars on Potatoes
[9] presents a technique for creating physicalizations
of glyph-based representations of a scalar field on 3D
surfaces. Similarly, our research introduces a method
for physicalizing a scalar field defined over a regular
grid.

This paper introduces a computational design ap-
proach to generate design variations for tactile models
that can be digitally fabricated and used as image
interpreter tools. A model is defined in principle by a
tactile surface that physically encodes the roughness
values of the RADAR imagery (i.e., our input data
source). Such a physical model helps to interpret the
roughness data (in a controlled, warm environment)
by feeling the texture that is visually depicted only by
the grayscale tone of the image. Thus, hypothetically,
viewing the image and physically interacting with the
surface simultaneously helps the interpreters to learn
what grayscale tones relate to what types of surface
roughness on the ground. Such interaction has the
potential to make the reading of the data a multi-
sensory experience rather than a visual-only one.

Processing the RADAR Data

To make the tactile surface, we first set an arbitrary
initial surface with a rectangular domain and map
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FIGURE 2: Methodology diagram of generating the tactile surface from the RADAR imagery. (a) The input RADAR
image representing roughness, (b) UV segmentation and reading the brightness values, (c) moving the centroid
of UV cells along the z axis proportional to their brightness values.

the RADAR imagery on it (Figure 2a). As described
earlier, RADAR imagery is an image different than
an optical scene (see Figure 1). The typical spatial
resolution of RADARSAT imagery is usually 8-100m
(See RADARSAT), where the intensity value is 0 for
the pixels representing a smooth surface and 255 for
the pixels showing the roughest parts.

In the next step, our algorithm resamples the image
by dividing the original domain into a number of U
and V divisions, respectively, along the row and the
column of the input image, making U x V rectangular
cells (Figure 2b). This resampling has a critical role in
assigning the roughness to the surface. The number
of the UV cells should be decided by considering the
fabrication techniqgue employed and its limitations in
handling complex models. A higher UV value provides
a higher resolution and results in a surface that more
accurately reflects the original RADAR texture and
tone.

Having the resampling set, our algorithm then pro-
cesses the original RADAR imagery at each UV cell to
extract the average brightness values () of the sub-
domains. A brightness value is a number ranging from
0 to 1, with 0 being pure black, a smooth surface, and
1 being pure white, the roughest surface. We linearly
map v € [0, 1]to [0, H], where H is the maximum height
for the resulting tactile model. Next, the algorithm
moves the centroids along the z axis proportional to
their brightness values (Figure 2c). These displaced
points and their height values can be later used to
generate different design options for the tactile surface.

Generating Tactile Models
Using the method discussed above, we generated
three different design variations by setting the resam-
pling resolution at 100 x 100 (i.e., U=100 and V=100)
(Figure 3).

In the first approach for making the tactile model,

we used the displaced points as vertices to generate a
mesh representing the roughness of the ice (Figure 3-
1). However, the results of a previous study on geospa-
tial physicalizations show that such representations are
misinterpreted by users to be peaks and valleys of a
terrain [4]. Thus, any approach that resembles terrain
or elevation data should not be incorporated into the
design of the final model.

In order to avoid a design that resembles elevation,
we used the information provided by the tactile surface
to generate a prism map, using the rectangle made
by each UV cell and the brightness values (v) as an
extrusion factor (Figure 3-2). Here, we linearly map v €
[0,1] to [0 + ¢, H], where ¢ is a small number to avoid
failure in extrusion. However, since the cubes making
the prism map fill the entire surface of the model, the
tactile model will be inevitably single-colored, which
will reduce visual correlation to the RADAR imagery.
Such a representation risks making the interpretation
process a challenging task for the Inuit.

To be able to better preserve the appearance of the
RADAR imagery and match it to the tactile model, we
took another design approach by employing a bump
map texture using spheres. For this design variation,
we placed the centroid of spheres at centroids of UV
cells and mapped the corresponding brightness values
to their radii (Figure 3-3). Based on the initial dis-
cussions, we believed that this roughness model was
capable of providing the required tangible tactile expe-
rience while keeping a high visual correspondence to
the original RADAR imagery.

The RADAR imagery used for this exploration was
a region of rough and smooth ice areas near Baffin
Island, Nunavut, Canada. We built this surface in one
piece with an FDM 3D printer using ABS filament.
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FIGURE 3: Three dlfferent variations of the tactile model generated from the RADAR imagery at the resampllng
resolution of 100x 100. (1) The mesh variation ((a) Top, (b) Close-up, (c) Perspective). (2) The prism map variation.
(3) The final design approach for the tactile model, generated by spheres.
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FIGURE 4: The 3D printed model: (a) The version 3D
printed with white ABS, (b) A close up view.

We chose ABS over PLA to provide higher strength
and durability for INTUIT. Although the goal was to
fabricate the model with dual colors to better mimic
the original RADAR imagery, we ended up building
two single-colored prototypes. This happened due to
the technical difficulties we faced during the fabrication
process as a result of the 3D printer’s limitations in
handling the required resolution (see Discussion for
more details). We made two prototypes using light
(white) and dark (grey) filaments to give interpreters
the option to choose the model that they are more
comfortable working with. Figure 4 shows the version
of the model 3D printed with white ABS filament, as
well as a close-up view of its details.

The models were brought to an ongoing RADAR
training session in Pond Inlet, Baffin Island, to get
initial feedback (See [2] for more details about co-
development with Inuit and training approaches in the
context of Sikumik Qaujimajjuti). The participants knew
how a RADAR image was generated but were strug-
gling to secure the connection of image tone to surface
roughness when they started interpreting images. To
get an initial sense of whether such a model would
be useful in helping learners understand RADAR, the
models were introduced with the corresponding im-
agery, and the participants were asked to interpret
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the image while feeling the model. There were five
participants who tried both color variations of the 3D
printed models, feeling the texture on the model as
they looked at a corresponding area on the image.
The reactions were monitored by an observation team,
and all reactions were immediate and consistent. The
models generated interest and sparked a conversation
about how the texture related to the tone. Each partici-
pant spent more time examining the imagery than they
had in the past, thinking about the texture. During this
study session, we observed an enhancement in both
the self-efficacy of the group and the accuracy of their
image interpretations. Here, “self-efficacy” refers to an
individual’s confidence in their ability to complete a task
successfully (Please see Wang (2019) for the use of
this concept in Human-Computer Interaction Design).
In our context, the improvement in self-efficacy was
measured through qualitative statements from individ-
uals or their self-assessments, reflecting their growing
confidence in interpreting images. The sphere-based
model was felt to portray the roughness in a way that
best helped feel the texture. One participant, despite
knowing what the models represented, temporarily
confused the roughness for elevation, thinking of the
model as a relief model, aligning with the findings of
[4]. This generated an opportunity to review the idea of
surface roughness and how the model was generated
from the tone of the image. Another mentioned having
a bit more visual contrast in the textures of the 3D
printed models would be helpful to even better dis-
tinguish areas of different roughness. The preliminary
feedback from the interpreters affirmed the models
helped in developing RADAR interpretation compe-
tency and interest in learning. Although the concept
of this type of RADAR imagery was familiar to them,
we were told by the interpreters that it was only after
using the tactile model and touching its texture that
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FIGURE 5: (1) Variation 2 of the tactile model to better preserve the visual appearance of the RADAR imagery,

(2) Variation 3 of the model.

they were able to fully connect the surface roughness
with the tone on the image. This is an important step in
applying the knowledge to ice conditions and ultimately
generating a sea ice safety map to be consulted before
deciding on the sea ice travel routes by Inuit.

As discussed in the Methodology Section, one core
step to generate the tactile surface is setting the
number of UV values, which is partially impacted by
the limitations of the employed fabrication technique.
In FDM 3D printing, the designed geometry should be
tessellated for the fabrication process, for which the
dominant format is STL (an unstructured collection of
triangles used to represent structured meshes). In STL
files, the coordinates of any vertex are encoded once
for each of the triangle incidents at that vertex, which
leads to a highly redundant representation. While there
is no recommended file size for STLs, anecdotally, the
slicing software fails to write the G-Code for 3D printing
when the number of vertices making the model gets
close to 100k. Sometimes in such cases, the file gets
sliced, but the 3D printing process fails. In our case,
we had the number of U and V set to 100 to achieve
the desired resolution for our surface, but it made the
“sphere” model too complicated for FDM 3D printing.

In order to avoid such failures, we need to either
slice the model into several pieces, fabricate each
piece separately, and assemble them to have the final
prototype or apply another roughness pattern to make
the tactile surface. The initial feedback that we got

from the interpreters supports our hypothesis that hav-
ing a dual color representation that visually matches
the physical model to the RADAR imagery would be
preferable. As a result, one design solution to make
the tactile model while preserving the appearance of
the RADAR imagery could be applying a scaling factor
to each cell of the prism map shown in Figure 3-
2. Such scaling factor should be in reverse order,
i.e, the cell with the least brightness (shortest height)
shrinks the most (Figure 5-1). Although the resulting
roughness model from this approach seems promising
in terms of representing the roughness values and
visually matching the RADAR imagery, it has high
potential for breakage having too many tiny and narrow
details. One possible solution to overcome this issue
is to carve the scaled cells in Figure 5-1 out of the
original cells to make varying apertures (Figure 5-2).
Such an approach helps in preserving the appearance
of the RADAR imagery and can provide a dual-color
appearance without the necessity to be printed in dual
colors.

In this WIP paper, we presented a novel approach for
representing RADAR imagery showing the ice rough-
ness in a tangible method. Our approach uses the core
concept of physicalizations to convey the message
of such important and critical data in an interactive
tactile method by using an accessible 3D printer. It
is expected that INTUIT will facilitate the learning of
RADAR content and interpretation, ultimately reducing
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the life-threatening risks for these Arctic residents.
In the future, we plan to formally compare different
design variations to show roughness. A formative study
will be conducted to identify the ideal resolution for
the designs, considering both the limitations of fabri-
cation and human tactile perception. This study will
also aim to decrease the number of design options
for the final evaluation involving interpreters in the
North. The forthcoming versions will undergo formal
testing as part of the Sikumik Qaujimajjuti training with
new participants. This testing will aim to determine
user design preferences, efficacy, and performance
impacts. Co-development of the design will be critical,
as well as incorporating measures and assessment of
experience, learning impact, and self-efficacy from an
Inuit perspective and with Inuit values.

This research is partially funded by the MOPGA pro-
gram, implemented by Campus France, and funded
by the French Ministry for Europe and Foreign Affairs
in collaboration with the French Ministry for Higher
Education and Research.
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