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Abstract
The Box-Cox transformation is used to make data more suitable for statistical analysis. Its application to extreme value
statistics increases the convergence rate of some classical estimators of the tail index and reduces their bias in the
context of independent and identically distributed (i.i.d.) random variables. In this paper, we study a bias-reducing
estimator of the extreme value index under β-mixing serials dependence using the Box-Cox transformation. Under
certain regular conditions, we establish the asymptotic normality of the proposed estimator and derive an asymptotically
unbiased estimator of high quantiles. In a simulation study, we highlight the performance of our proposals, which we
compare with alternative estimators recently introduced in the literature.
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1 Introduction and Preliminaries
Quantitative Risk Management (QRM) is a field that aims to build models for understanding financial and environmen-
tal risks. In the field of environmental risk management, research related to risk measures such as high quantiles has
interested many researchers. Due to the increasing frequency of extreme events and their negative impact on society,
the estimation of return levels, which is linked to the estimation of the high quantile of observations, is of great interest.
Extreme value theory (EVT) establishes the asymptotic behavior of the largest observations in a sample. It provides
methods for extending empirical distribution functions beyond the observed data. This makes it possible to estimate
quantities linked to distribution tails, such as high quantiles. The tail distribution function of these observations is
characterized by a parameter called the extreme value index (E.V.I.), which indicates the size and frequency of certain
extreme phenomena.

Classical extreme value methodology assumes a sample of independent, identically distributed (i.i.d.) random variables
(X1, ..., Xn), with a distribution function F (x) = P(X1 ≤ x). The main result of extreme value theory is the limiting
distribution of the standardized maximum of n > 1, a sample of i.i.d. random variables (X1, ..., Xn) :

P

(
a−1
n

(
max

1≤i≤n
Xi − bn

))
→ G(x), as n → ∞, (1.1)

for all points of continuity of G, where an > 0, bn ∈ R are normalized sequences and G is a non-degenerate limiting
distribution function.

Necessary, G is the same type of the following generalized extreme value (GEV) distribution :

Gγ(x) = exp
(
−(1 + γx)

−1/γ
+

)
,

where y+ = max(y, 0) and Gγ(x) = exp(e−x), for γ = 0. Here, the real-valued parameter is called the extreme value index
γ of F , which in turn is said to belong to the maximum domain of attraction of Gγ , denoted by F ∈ D(Gγ). We refer to
de Haan and Ferreira (2006), for general explanations of extreme value theory.
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However, the i.i.d. assumption is often violated in practice, as financial or environmental observations reveal the presence
of serial dependence. Let Xi, i ∈ N∗, be a stationary time series defined on a probability space (Ω,A,P), with common
marginal distribution function (df) F (x) = P(X1 ≤ x). If Xi, i ∈ N∗ are weakly dependent, then (1.1) is equivalent to
weak convergence of the distribution function of the normalized maximum of n observations to G.

If the Xi, i ∈ N∗ are weakly dependent, then (1.1) is equivalent to the weak convergence of the distribution function
of the standardized maximum of n observations to G. In general, the maximum of a stationary time series is stochastic-
ally smaller than the maximum of an independent, identically distributed (i.i.d.) sequence with the same marginal
distribution function. Indeed, under certain conditions on the dependency structure, F ∈ D(Gγ) implies,

L
(
a−1
n

(
max

1≤i≤n
Xi − bn

))
→ Gθ

γ weakly, (1.2)

for some θ ∈ [0, 1], see Leadbetter et al. (1983), section 3.7 for more details.

Throughout this paper, we assume that the stationary time series Xi, i ∈ N satisfies the following β-mixing dependence
structure condition :

β(m) := sup
p≥1

E

 sup
C∈B∞p+m+1

|P(C|Bp
1)− P(C)|

→ 0,

as m → ∞, where Bj
i denotes the σ-algebra generated by (Xi, ..., Xj). Without loss of generality, β(m) measures the

total distance of variation between the unconditional future distribution of the time series and the conditional future
distribution given the past of the time series when both are detached by m time points.

Assume that the distribution function F is heavy-tailed (belonging to the Fréchet maximum domain of attraction), i.e
there exist a positive number γ and the tail quantile function U := (1/1− F )← where ← denotes the left-continuous
inverse function, such that

lim
t→∞

U(tx)

U(t)
= xγ , ∀ x > 0. (1.3)

According to the relation (1.3), U is considered to be a regularly varying function at infinity with index γ > 0 and denoted
by U ∈ RVγ . The extreme value index γ controls the behavior of the tail distribution function. Its estimation has been
mainly studied in the case of i.i.d. random variables, although few papers consider it in the case of time series with
serial dependence features. We can mention among others, Demoulin and Guillou (2018), de Haan and al. (2016), Drees
(2000), Drees (2003) and Hsing (1991). Moreover, in the i.i.d. case, the simplest estimator for γ > 0 is Hill’s estimator

Hill (1975) defined by

γ̂ H
k :=

1

k

k∑
i=1

logXn−i+1,n − logXn−k,n, (1.4)

where X1,n,⩽ · · · ⩽ Xn,n represents the order statistics and k = k(n) represents an intermediate sequence, i.e. a
sequence such that :

k → ∞ and k/n → 0, as n → ∞. (1.5)

To prove the asymptotic normality of tail-index estimators such as Hill’s, we need a second-order condition that specifies
the rate of convergence of the left-hand side in (1.3) towards its limit. This condition can be formulated in various ways,
as shown below. We’ll use this formulation later.
Second order condition (CSO). Suppose that there exists a positive or negative function A with lim

t→∞
A(t) = 0 and a

real number ρ < 0 such that :

lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ xρ − 1

ρ
, ∀x > 0. (1.6)

The rate of convergence of the function A to 0 is essential, as it illustrates the bias term of the tail index estimators.

In this article, we’ll be working with models in the Fréchet attraction domain γ > 0 which belong to the class of Hall-Welsh
models Hall and Welsh (1985), i.e. models with the second-order right-tail expansion :

1− F (x) =
(x
c

)−1/γ
{
1 +M1

(x
c

)−(−ρ/γ)
+ o

(
x−(−ρ/γ+ϵ)

)}
, x → ∞; (1.7)

with M1 ̸= 0, ρ < 0 and c > 0 is the first-order scaling parameter. For these models, the second-order tail quantile
function is as follows :

U(t) = ctγ (1 +D1t
ρ + o(tρ)) , t → ∞, (1.8)
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with D1 = γM1. If the second-order condition (CSO) is holds with A(t) equivalent to γηtρ, t → ∞, then D1 is equivalent
to A(t)/(ρtρ), t → ∞. Consequently, this implies that M1 = ρ−1η. In order to study the behavior of the 1− F tail distri-
bution function, we can estimate the unknown parameters γ, ρ and η with precision c = 1.

Assuming that the intermediate sequence k is such that k1/2A(n/k) → λ ∈ R, as n → ∞ and assuming the following
regularity conditions on the mixing coefficients β :
Regularity conditions (CR). There exist ϵ > 0, a bivariate function r and a sequence ℓ = ℓ(n) such that, as n → ∞,

(a)
β(ℓ)

ℓ
n+ ℓ

log2 k
√
k

−→ 0 ;

(b)
n

ℓ k
Cov

 ℓ∑
i=1

I{Xi>F←(1−kx/n)},

ℓn∑
i=1

I{Xi>F←(1−ky/n)}

 −→ r(x, y), ∀ 0 ⩽ x, y ⩽ 1 + ϵ ;

(c) For some constant C :
n

ℓ k
E

( ℓ∑
i=1

I{F←(1−ky/n)<Xi⩽F←(1−kx/n)}

)4
 ⩽ C(y − x), ∀ 0 ⩽ x < y ⩽ 1 + ϵ and n ∈ N,

Drees (2000) established the asymptotic normality of γ̂(H)
k as follows

√
k(γ̂H

k − γ)
d−→ N

(
λ

1− ρ
, γ2r(1, 1)

)
, (1.9)

where r is the covariance structure in (CR). But in the i.i.d. context, the asymptotic variance of Hill’s estimator γ
(H)
k is

equal to γ2. In practice, the bias term of γ̂(H)
kn

depends on whether ρ is close to zero or not, since under the second-order
condition (CSO), the function |A| varies regularly at infinity with the index ρ. This explains all the literature devoted
to bias reduction in the i.i.d. context, see, e.g., Beirlant and al. (2004), Feuerverger and Hall (1999) and Gomes et al.
(2007), etc. However, in the case of β-mixing time series, only the authors Demoulin and Guillou (2018) and de Haan
and al. (2016) have addressed this problem and proposed bias-reduced estimators for the extreme value index γ > 0.
In addition, they established asymptotic normality of the proposed estimators under the regularity condition (CR) and
second-order condition (CSO).

These reduced-bias estimators always pose a problem, as they increase the variance of asymptotic distributions.
This problem is solved in the i.i.d. context by Henriques-Rodrigues and Gomes (2022), who used Box Cox transforma-
tions and studied a Hill-type estimator with reduced bias and minimal variance. The present paper extends the results
obtained by Henriques-Rodrigues and Gomes (2022) in the case of dependent series.

The remainder of this paper is organized as follows : in section 2 we present the Box-Cox transformation methodology
and study a bias-reduced estimator of the extreme value index in the case of mixed β series. In section 3, we derive
an unbiased estimator of high quantiles and establish its asymptotic normality. In section 4, we simulate our estimator
and compare it with some existing estimators in the literature.

2 Box-Cox Transformation on the EVI estimation

2.1 Box-Cox transformation
Let X be a random variable (r.v.) with d.f. F = FX ∈ D(Gγ), γ > 0. The Box-Cox transformation (BC) Henriques-
Rodrigues and Gomes (2022) of X denoted TX is a function of the parameter σ ∈ R given as follows :

TX(σ) =


Xσ − 1

σ
, σ ̸= 0,

logX, σ = 0,
(2.10)

where σ = 1 corresponds to a simple change of location, σ = 1/2 to the square root transformation, and σ = −1 to the
reciprocal transformation.

Remark 1 According to Henriques-Rodrigues and Gomes (2022), under Hall’s class models, the BC transformation of
the data increases the rate of convergence of the tail of the distribution to the generalized distribution of extreme values if
sigma = −ρ/γ, and as a by-product, the bias of the estimation procedure is reduced.

Consider a transformation BC such that X∗ = Xσ + a and denote by (X∗1 , ..., X
∗
n) the transformed sample, with the

d.f. F ∗ associated with the original sample (X1, ..., Xn), where (X∗i = TXi
(σ, a), with TX(σ, a) = Xσ + a. If the original
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tail quantile function U := (1/1− F )← satisfies the condition (1.3), then the transformed tail quantile function U∗ =

(1/1− F )← satisfies the condition (1.3). The transformation U∗ = (1/1− F ∗)← also satisfies the first-order condition as
follows :

lim
t→ ∞

U∗(tx)

U∗(t)
= xγσ = xγ∗ ⇐⇒ U∗ ∈ RVγ∗=γσ . (2.11)

Under the validity of Equation (2.11) and for some c∗, c > 0, we have :

U∗(t) ∼ c∗tγ
∗
= (ctγ)σ . t → ∞.

Teugels and G. Vanroelen (2004) used the theory of extended regular variation (see de Haan and Ferreira (2006)) to
determine the optimal values of σ that maximize the rate of convergence of the second-order condition for values of
γ ≥ 0 and when γ > 0 and γ + ρ > 0, a BC transformation has no effect on the SOC of U∗ unless σ = −ρ/γ ; if γ > 0

and γ + ρ < 0, the BC transformation can have a negative or positive effect on the SOC of U∗ and the positive effect
occurs when σ = −ρ/γ. According to Teugels and G. Vanroelen (2004), if γ > 0 and γ + ρ = 0, for any value other than
σ = −ρ/γ = 1, there is no improvement in the speed of convergence of SOC . Thus, the value of σ that maximizes the
rate of convergence of SOC that will be considered in this work is as follows :

σ = −
ρ

γ
. (2.12)

This choice will improve bias reduction in the estimation procedure in the following sections.

2.2 Box-Cox Hill-type estimator in the β-mixing case
Let (X1, X2, ...) be a stationary β-mixing time series with a continuous common marginal distribution function F .
Consider a BC transformation such that X∗ = Xσ +a and denote by (X∗1 , ..., X

∗
n) the transformed sample, with d.f. F ∗,

associated to the original sample (X1, X2, ..., Xn), where X∗i = TXi
(σ, a) and TXi

(σ, a) = Xσ
i + a..

Based on the BC transformation TXi
(σ, a) = Xσ

i +a, Teugels and G. Vanroelen (2004) introduced a Hill-type estimator,
called the Hill Box-Cox estimator (Hill BC) defined as follows :

γ̂BC
k = γ̂BC

k (σ, a) =
1

k σ

k∑
i=1

log

(
Xσ

n−i+1,n + a

Xσ
n−k,n + a

)
, (2.13)

where a > 0, so that
(
Xσ

i + a
)n
i=1

is strictly positive, σ = −ρ/γ > 0, as in Equation (2.12). The Hill estimator is a parti-
cular case of the Hill Box-Cox estimator which is much more general, one can check that γ̂BC

k (1, 0) = γ̂H
k .

In the following theorem, we begin by deriving the asymptotic behavior of Hill’s BC estimator, assuming that the para-
meters BC, σ and a are known.

In the class of Hall-Welsh models of equation (1.8 ), let (X1, X2, · · · ) be a stationary β-mixing time series with
a continuous common marginal distribution function F and assume that CSO) and CR) hold. Let k = k(n) be an
intermediate sequence satisfying the condition (1.5), when n → ∞. Then, under a Skorohod construction, there exists a
centered Gaussian process (W (t))t∈[0,1], with covariance function r(., .), such that, when n → ∞, we have the following
distributional representation :

γ̂BC
k (σ, a)

d
= γ +

γ
√
k

∫ 1

0

(
t−1W (t)−W (1)

)
dt+

A(n/k)

1− ρ

{
1−

a

ηcσ

}
(1 + oP(1)) .

More precisely, if k1/2A(n/k) → λ ∈ R, as n → ∞, we have
√
k
(
γ̂BC
k (σ, a)− γ

)
d→ N

(
λ

1− ρ

{
1−

a

ηcσ

}
, γ2r(1, 1))

)
. (2.14)

Theorem 2.2 extends the results of Henriques-Rodrigues and Gomes (2022) in serial dependence. Next, we note that,
if a = ηcσ, then

√
k
(
γ̂BC
k (σ, ηcσ)− γ

)
d→ N(0, γ 2r(1, 1)), as n → ∞. (2.15)

Clearly, γ̂BC
k (σ, ηcσ) is an asymptotically unbiased estimator for the extreme value index γ in the case of series depen-

dence. From a practical point of view, however, it cannot be obtained directly, as it depends on the unknown parameters
σ, η and c.

To solve this problem, we adopt the same approach as in Henriques-Rodrigues and Gomes (2022), for which we
choose the misspecification c = 1 and replace σ and η respectively by their semi-parametric estimators. The resulting
unbiased plug-in estimator is studied in the next section.
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2.3 Reduced bias of the Hill Box-Cox estimator
In this section, we introduce a bias-reduced estimator of the extreme value index γ > 0. As mentioned previously, we
first establish consistent estimators for σ and η and derive an estimated version of γ̂BC

k (σ, η).

Now, it comes from (2.12), that σ = −ρ/γ. Let ρ̂kρ be an external estimator for ρ, consistent in probability, which depends
on an intermediate sequence of integers kρ := kρ(n), greater than k and satisfying :

kρ → ∞ and kρ/n → 0 as, n → ∞. (2.16)

Then, we can estimate σ by
σ̂k,kρ = −ρ̂kρ/γ̂

H
k , (2.17)

where γ̂H
k is Hill’s estimator in (1.4).

A possible choice for ρ̂kρ is one of the best-performing consistent estimator among those studied in the i.i.d. case (see,
e.g, Deme et al. (2013), Gomes et al. (2002)) and also used in the β-mixing case by Demoulin and Guillou (2018); de
Haan and al. (2016). This estimator is defined as follows :

ρ̂ ∗kρ
=

6S
(2)
kρ

− 4 +
√

3S
(2)
kρ

− 2

4S
(2)
kρ

− 3
, provided S

(2)
kρ

∈
(
2

3
,
3

4

)
, (2.18)

where

S
(2)
kρ

=
3

4

[
M

(4)
kρ

− 24
(
M

(1)
kρ

)4] [
M

(2)
kρ

− 2
(
M

(1)
kρ

)2]
[
M

(3)
kρ

− 6
(
M

(1)
kρ

)3]2 ,

with

M
(α)
k =

1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)
α, α ≥ 1.

Clearly, Hill’s estimator γ̂H
k corresponds to M

(1)
k . Under the conditions (CSO) and (CR) with the additional assumptions

k1/2A(n/k) → λ and k
1/2
ρ A(n/kρ) → ∞, as n → ∞, de Haan and al. (2016) showed that ρ̂ ∗kρ

is consistent in probability
to ρ.

Next, for the estimation of the parameter η, we note that in the class of Hall-Welsh models in equation (1.8 ), the second-
order conditions (CSO) hold with A(t) = γηtρ(1 + o(1)), t → ∞. This implies that (n/k)−ρA(n/k)/γ → η, as n → ∞.

Therefore, referring to the Lemma 5 in the appendix of this document, we have as n → ∞ :

(1− ρ)2
(
M

(2)
k − 2

(
M

(1)
k

)2)
2γρA(n/k)

= 1 + oP(1), (2.19)

This implies that

(1− ρ)2
(
M

(2)
k − 2

(
M

(1)
k

)2)
2γ2ρ

(
n
k

)ρ = η(1 + oP(1)). (2.20)

Consequently, the parameter η can be estimated as follows :

η̂k,kρ =

(
1− ρ̂kρ

)2 (
M

(2)
k − 2

(
M

(1)
k

)2)
2
(
M

(1)
k

)2 (
n
k

)ρ̂kρ ρ̂kρ

. (2.21)

Finally, we obtain our new unbiased Hill Box-Cox estimator, which is expressed as follows :

γ̂BC
k,kρ

:= γ̂BC
k (σ̂k,kρ , η̂k,kρ ) =

1

k σ̂k,kρ

k∑
i=1

log

X
σ̂k,kρ

n−i+1,n + η̂k,kρ

X
σ̂k,kρ

n−k,n + η̂k,kρ

 . (2.22)

In the i.i.d. context, Henriques-Rodrigues and Gomes (2022) studied the consistency of the estimator γ̂BC
k,kρ

, but they
did not prove asymptotic normality. Our next result, Theorem 2.3 below, is a more general version, since it solves at the
same time the problem of asymptotic normality in the i.i.d. case, which we have established in the β-mixing-context
case. Before establishing the main result of the new estimator γ̂BC

k,kρ
, we give in the following proposition the consistency

of the estimators σ̂k,kρ and η̂k,kρ with respect to σ and η respectively.

Assume that the assumptions of Theorem 2.2 hold. Suppose that the intermediate sequence k := k(n) satisfies the
condition of (1.5). Further, let ρ̂kρ be an external estimator for ρ, consistent in probability and such that |ρ̂kρ − ρ| =
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OP(n
−ν), for some ν > 0, where kρ := kρ(n) is an intermediate sequence of integers, greater than k and satisfying the

condition of (2.16). Then, we have :

σ̂k,kρ

P→ σ and η̂k,kρ

P→ η, as n → ∞.

Remark 2 Note that from Theorem 3 in Demoulin and Guillou (2018), the assumption |ρ̂kρ − ρ| = OP(n
−ν), for some

ν > 0 is required to establish the asymptotic normality of an extreme quantile estimator under β mixing time series. From
Proposition A.3. in Gomes et al. (2002), we easily see that, under dependence serials assumptions and the condition
(CSO), |ρ̂ ∗kρ

− ρ| = OP((k
1/2
ρ A(n/kρ))−1), with kρ satisfying (2.16) and k

1/2
ρ A(n/kρ) → ∞. Then, from the equivalence

A(n/kρ) ∼ γη(n/kρ)ρ, as n →, the classical estimator ρ̂ ∗kρ
defined in (2.18) satisfies also |ρ̂ ∗kρ

− ρ| = OP(n
−ν), for some

0 < ν < 1/2.

In the following theorem, we show the asymptotic normality of the unbiased Hill Box-Cox estimator γ̂BC
k,kρ

.
Assume that the assumptions of Theorem 2.2 hold. Suppose that the intermediate sequence k := k(n) satisfies the

condition of (1.5). Further, let ρ̂kρ be an external estimator for ρ, consistent in probability and such that |ρ̂kρ − ρ| =
OP(n

−ν), for some ν > 0, where kρ := kρ(n) is an intermediate sequence of integers, greater than k and satisfying the
condition of (2.16). Then, we have : :

√
k
(
γ̂BC
k,kρ

− γ
)

d→ N(0, γ2r(1, 1)),

as n → ∞, where r is the covariance structure given in (CR).

3 Extreme quantiles estimation
The importance of estimating the extreme value index lies in its usefulness for estimating extreme quantiles, which
is of paramount importance in practice. The quantile, at probability level (1 − t) in(0, 1) with respect to F denoted by
x(t), is defined as follows : x(t) := U(1/t). Consequently, the quantile x(t) is estimated by x̂(t) := Xn−[nt],n, where [nt]

represents the integer part of nt. Let’s now consider a positive sequence t = t(n) that tends to 0, such as n → ∞. It is
then possible to establish the consistency of the non-parametric estimator x̂(t), when t → 0 is sufficiently slow. However,
in certain areas of life such as the environment, hydrology, finance and reliability, a major requirement is to find values
large enough that the chances of exceeding them are very low. This leads to removing the restriction on the rate of
convergence of t = t(n) to 0, as n → ∞. Furthermore, the interest is in estimating x(p), an extreme quantile, where p,
the tail probability depends on the observed sample size n (i.e. p := p(n)) and p(n) is smaller than 1/n. It is therefore
not possible to obtain a non-parametric estimate of such a quantile.

The objective of this section is to address this estimation problem in a β-mixing series framework in order to estimate
x(p) = U(1/p), the extreme quantile with np < 1. Based on the Box-Cox transformation procedure, we propose, in a
bias-reduced method, to estimate x(p), the extreme quantile. The construction of our bias-reduction procedure is based
on the second-order condition (CSO), which is stated as follows :

U(tx)

U(t)
≃ xγ exp

(
A(t)

xρ − 1

ρ

)
Let tx = 1/p and t = n/k → ∞, as n → ∞. We obtain the following approximation :

x(p) = U(1/p) ≈ U(n/k)

(
k

np

)γ

exp

A(n/k)

(
k
np

)ρ
− 1

ρ

 , (3.23)

where γ, ρ and A(n/k) are unknown. The first part U(n/kn) (k/(np))
γ in the right side of (3.23) is exactly estimated by

the Weissman’s estimator x̂
(W )
k (p), Weissman (1978) and defined as :

x̂
(W )
k (p) = Xn−k,n

(
k

np

)γ̂
(H)
k

, (3.24)

where Xn−k,n is the empirical estimator of U(n/k) and γ̂
(H)
k is the Hill’s estimator of γ. Obviously, x̂(W )

k (p), Weissman’s
estimator is potentially biased because it depends on Hill’s estimator γ̂

(H)
kn

, which presents a similar problem. The ex-
pression exp(A(n/k)[(k/(np))ρ−1]/ρ) can be considered as a correction term, since A(n/k) tends towards 0. The question
of estimating A(n/k) and ρ then arises.
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Since we’re working here on the class of Hall-Welsh models (1.8), the second-order condition (CSO) hold with A(t) is
equivalent to γηtρ, as t → ∞. We can therefore estimate A(n/k) as γ̂H

k η̂k,kρ (n/k)
ρ̂kρ , where γ̂H

k is Hill’s estimator in (1.4),
ρ̂kρ is the consistent estimator of ρ defined in (2.18) and η̂k,kρ the consistent estimator of η defined in (2.21). Therefore,
replacing respectively in the right-hand side of (3.23) U(n/k), γ, ρ and A(n/k) ∼ γη(n/k)ρ by their estimators Xn−k,n,
γ̂BC
k,kρ

, ρ̂kρ and γ̂H
k η̂k,kρ (n/k)

ρ̂kρ , we obtain the following extreme quantile estimator :

x̂BC
k,kρ

(p) := Xn−k,n

(
k

np

)γ̂BC
k,kρ

exp

γ̂H
k η̂k,kρ

(n
k

)ρ̂kρ

(
k
np

)ρ̂kρ − 1

ρ̂kρ

 . (3.25)

The asymptotic normality of the estimator of the extreme quantile x̂BC
k,kρ

is established in the following theorem.
Assume that the assumptions in Theorem 2.2 hold. Let k = k(n) be an intermediate sequence of integers satisfying

(1.5) and
√
kA(n/k) → λ ∈ R, as n → ∞. Assume in addition that

√
kA(n/k) → λ ∈ R, np/k → 0, log(np)/

√
k → 0 and

n−µ log p → 0 for all µ > 0, n → ∞. Further, let ρ̂kρ be an external estimator for ρ, consistent in probability and such
that |ρ̂kρ − ρ| = OP(n

−ν), for some ν > 0, where kρ := kρ(n) is an intermediate sequence of integers, greater than k and
satisfying the condition of (2.16). Then, we have :

√
k

log(k/(np))

(
x̂N
k,kρ

(p)

x(p)
− 1

)
d→ N

(
0, γ2r(1, 1)

)
,

as n → ∞.

Remark 3 Note that the unbiased estimator of the extreme quantiles x̂BC
k,kρ

(p) is also valid when the observations are i.i.d.,
for which the asymptotic variance in Theorem 3 is equal to γ2.

4 Simulation study
In this section, we proceed by generating data from different stationary models, satisfying the (CR) condition and for
which we can estimate the theoretical value of γ and the true extreme quantile x(p), p = 1/1000. In this spirit, we first
consider an i.i.d. sequence of innovations (ε1, ..., εn) distributed from Fε given by

Fε(ε) =

{
(1− q)(1− F̃ (−ε)) if ε < 0,

1− q + qF̃ (ε)) if ε > 0,

where F̃ is the unit Fréchet distribution function with F̃ (ε) = 1 − exp(−1/ϵ), for ε > 0, and q = 0.75. Then Fε belongs
to the Fréchet domain of attraction, with extreme value index γ = 1. Next, we generate N = 1000 stationary time series
(X1, ..., Xn) of size n = 1000 based on (ε1, ..., εn), by the following models, for t = 1, ..., n :

- The stationary AutoRegressive AR(1) model : Xt = θXt−1 + εt, θ ∈ (0, 1),

- The stationnary Moving Average MA(1) model : Xt = θϵt−1 + εt, θ ∈ (0, 1).

Under the models listed above, we select three time series models as follows :

• Model 1 : Independence model Xt = ϵt, for which the theoretical value of x(0.001) is 749.80.

• Model 2 : The AR(1) model with θ = 0.3, for which the theoretical value of x(0.001) is 1072.26.

• Model 3 : The MA(1) model with θ = 0.3. The theoretical value of x(0.001) is 972.85.

From the models below, we simultaneously apply the original Hill estimator γ̂H
k as in Eq. 1.4, the reduced-bias estimator

of γ > 0, studied in de Haan and al. (2016) and denoted by γ̂dH
k,kρ

, the reduced-bias estimator of γ > 0, studied in De-
moulin and Guillou (2018) and denoted by γ̂Ch

k,kρ
and our reduced-bias Hill Box-Cox estimator γ̂BC

k,kρ
as in Eq. (2.22), for

k = 1, ...,m with m the number of positive values in each model studied. We also apply the associated extreme quantile
estimators, denoted respectively by x̂W

k (p), x̂dH
k,ρ̂(p), x̂

Ch
k,kρ

(p) and x̂BC
k,kρ

(p).

To calculate the bias-reduced estimators of the tree considered models and the associated extreme quantiles, we use
the second-order estimator ρ̂kρ defined in (2.18), where the intermediate sequence kρ is selected as follows :

kρ := sup

{
k : k ≤ min

(
n− 1,

2m

log logm
)

)
and ρ̂k exists

}
.
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Finally, we compare the performance of the estimators of the tail index in each model. Moreover, we do the same for
the estimators of the extreme quantiles. For this reason, we compute the absolute value of the mean bias (ABias) and
the root mean square error (RMSE) based on the N samples, defined as follows

ABias(η, k) :=

∣∣∣∣∣ 1N
N∑
i=1

η̂(i)

η
− 1

∣∣∣∣∣ and RMSE(η, k) :=

√√√√ 1

N

N∑
i=1

(
η̂(i)

η
− 1

)2

,

where η is either γ or x(p), and η̂(i) is the i-th value (i = 1, ..., N) of an estimator of γ or x(p) evaluated at k = 1, ...,m.
• In terms of bias in models 1, 2 and 3, our extreme value index γ̂BC

k in (2.22) is much more stable and has a smaller
bias than those of the Hill estimator γ̂H

k in (1.4, the unbiased Hill estimator γ̂dH
k in de Haan and al. (2016) and the

unbiased Hill estimator γ̂Ch
k in Demoulin and Guillou (2018) for the AR(1) and MA(1) models. In terms of RMSE, our

estimator is better and significantly more competitive, as it retains the lowest RMSE values and is very stable compared
with the three alternative estimators for the three models.

• Our high-quantile estimator x̂BC
k has a smaller and more stable bias than x̂W

k x̂dH
k and x̂Ch

k for smaller values of k
and maintains its stability for larger values of k in all the three considered models. In terms of RMSE, our estimator
also retains the lowest values and is very stable compared with the three alternative estimators for all three models.
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Figure 4.1 – Simulation of the tail index : By row, Models 1, 2, 3. By column, ABias (left ) and

RMSE (right ) as functions of k.
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Figure 4.2 – Simulation of the extreme quantiles estimators : By row, Models 1, 2, 3. By column,

ABias (left ) and RMSE (right ) as functions of k.

5 Conclusion
In this paper, we have introduced a new asymptotically unbiased high quantile estimator for β-mixing stationary

time series. mixing stationary time series. Comparing the new procedure to the alternative proposed by de Haan et al.
(2016), our high-quantile estimator offers, in addition to lower ABias and RMSE in general, greater stability over k, which
is an important feature, greater stability over k, an important feature expected in this type of approach to be applicable
in practice. practice. In application, the new high-quantile estimator can be proposed to any other stationary model
of the type mixing heavy-tailed time series for which high quantiles need to be calculated. This applies to heavy-tailed
autoregressive data encountered in network traffic forecasting for instance and many other applications data in climate
change.
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Appendix : Proofs of the results
Before establishing the proofs of our Theorems, we need the following preliminary result, which is similar to Corollary

A.2 of de Haan and al. (2016), but assuming
√
kA(n/k) = O(1) and no third-order condition. In particular, no third-order

condition is assumed.
Before establishing the proofs of our Theorems, we need the following preliminary result which is similar to that of

Corollary A.2 in de Haan and al. (2016), but assuming that
√
kA(n/k) = O(1) and without assuming a third order condi-

tion. Let (X1, X2, ...) be a stationary β-mixing time series with a continuous common marginal distribution function F

and assume (CS0) and (CR). Suppose k is an intermediate sequence satisfying k → ∞, k/n → 0 and
√
kA(n/k) = O(1),

as n → ∞.
For a given ϵ > 0, under a Skorohod construction, there exists a function Ã ∼ A and a centered Gaussian process

(W (t))t∈[0,1] with covariance structure r defined in (CR), such that, as n → ∞,

√
k
(
M

(α)
k − γαΓ(α+ 1)

)
− αγαP (α) −

√
kÃ
(n
k

)
γα−1Γ(α+ 1)

1

ρ

(
1

(1− ρ)α
− 1

)
→ 0,

as n → ∞, where Γ(α+1) =
∫ 1
0 (− log t)αdt and the random term P (α) =

∫ 1
0 (− log t)α−1

(
t−1W (t)−W (1)

)
dt is a centered

Gaussian process with covariance cα,α′ = Cov
(
P (α), P (α′)

)
; α, α′ > 1, defined as,

cα,α′ =

∫ 1

0

∫ 1

0
(− log s)α−1(− log t)α

′−1

(
r(s, t)

st
−

r(s, 1)

s
−

r(1, t)

t
+ r(1, 1)

)
dsdt. (5.26)

Proof of Lemma 5. It is similar to that of Corollary A.2 in de Haan and al. (2016) where we restrict ourselves to second-
order conditions.
Recall that for α ≥ 1,

M
(α)
k =

1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)
α,

Let Qn(t) = Xn−[kt],n, 0 ≤ t ≤ 1, where [x] is the integer part of the value x. Thus M
(α)
k can be rewritten as

M
(α)
k =

∫ 1

0

(
log

Qn(t)

Qn(1)

)α

dt.

Assume that the assumptions of Lemma 5 hold. Following the same Skorohod construction as in Proposition 1 in
Demoulin and Guillou (2018), it follows that, for given α, δ > 0, there exist a function Ã ∼ A, and a centered Gaussian
process (W (t))t∈[0,1] with covariance function r, such that, as n → ∞ :

sup
t∈[0,1]

t
1
2
+ϵ

∣∣∣∣∣√k

(
log

Qn(t)

U(n
k
)
+ γ log t

)
− γt−1W (t)−

√
kA(

n

k
)
t−ρ − 1

ρ

∣∣∣∣∣→ 0, as. (5.27)

Using the fact that

log
Qn(t)

Qn(1)
= log

Qn(t)

U(n
k
)
− log

Qn(1)

U(n
k
)
,

we get as n → ∞ :

sup
t∈(0,1]

t1/2+δ

∣∣∣∣√k

(
log

Qn(t)

Qn(1)
− γ(− log t)

)
− γ

(
t−1W (t)−W (1)

)
−

√
kÃ(n/k)

t−ρ − 1

ρ

∣∣∣∣→ 0, a.s. (5.28)

This means for all t ∈ (0, 1](
log

Qn(t)

Qn(1)

)α

γα(− log t)α

[
1 +

(− log t)−1

√
k

(
t−1W (t)−W (1)

)
+γ−1(− log t)−1Ã(n/k)

t−ρ − 1

ρ
+ o(k−1/2)t−1/2−δ

]α
.

And from the relation (1 + x)α = 1 + αx+
α(α−1)

2
x2 + o(x2), o(x2) −→ 0 when x → 0, we get

sup
t∈(0,1]

t1/2+δ

∣∣∣∣√k

(
log

Qn(t)

Qn(1)

)α

− γα(− log t)α − αγα(− log t)α−1
(
t−1W (t)−W (1)

)
−
√
kÃ(n/k)αγα−1(− log t)α−1 t

−ρ − 1

ρ

∣∣∣∣ −→ 0, a.s. (5.29)

Without losing generality, some terms tend to 0, as n → ∞. In fact, we have supt∈(0,1] t
1/2+δt−1|W (t)| = O(1) a.s. and

Ã(n/k) → 0 as n → ∞.
By using δ < 1/2 in (5.29), we can take the integral of

(
log

Qn(t)
Qn(1)

)α
on (0, 1] and use the fact that Γ(a+ 1) = aΓ(a) and∫ 1

0 (− log t)a−1t−bdt =
Γ(a)

(1−b)a
for b < 1 to obtain the result in the Lemma 5. The random term is obtained by taking

P (α) =

∫ 1

0
(− log t)α−1

(
t−1W (t)−W (1)

)
dt.
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and is normally distributed with mean zero and covariance cα,α′ .

Proof of Theorem 2.2 : Clearly, we have Xi,n
d
= U(Yi,n), i = 1, ...;n where each Yi’s follows a standard Pareto distribution,

we obtain that (Y1, Y2, ...) is a stationary β-mixing series satisfying the regularity conditions. This is a direct consequence
of Yi = 1/(1− F (Xi)). Thus, remarking that Qn(t) = Xn−[kt],nU(Yn−[kt],n) and using the expression in (2.13), we have

γ̂BC
k (σ, a)

d
=

1

k σ

k∑
i=1

log

(
Uσ(Yn−i+1,n) + a

Uσ(Yn−k,n) + a

)
d
=

1

k σ

k∑
i=1

log

(
U(Yn−i+1,n)

U(Yn−k,n)

)σ

+
1

k σ

k∑
i=1

log

(
1 + a/Uσ(Yn−i+1,n)

1 + a/Uσ(Yn−k,n)

)
.

This implies that

γ̂BC
k (σ, a)

d
= γ̂H

k +
1

k σ

k∑
i=1

(
a

Uσ(Yn−i+1,n
−

a

Uσ(Yn−k,n)

)
.

Which can be rewritten as

γ̂BC
k (σ, a)

d
= γ̂H

k +
1

k σ

k∑
i=1

a

Uσ(Yn−k,n)

(
−1 +

(
U(Yn−k,n)

U(Yn−i+1,n)

)σ)
. (5.30)

More precisely, we have

γ̂BC
k (σ, a)

d
= γ̂H

k +
a

σUσ(Yn−k,n)

(
−1 +

1

k

k∑
i=1

(
U(Yn−k,n)

U(Yn−i+1,n)

)σ
)

. (5.31)

From (5.27), we infer that for n → ∞,

Qn(1)U
(n
k

)
exp

(
1
√
k
γW (1) + oP

(
1
√
k

))
. (5.32)

Observing that Qn(t) = Xn−[kt],nU(Yn−[kt],n) then

U(Yn−k,n)U
(n
k

)
exp

(
1
√
k
γW (1) + oP

(
1
√
k

))
. (5.33)

This implies that

U−σ(Yn−k,n)U
−σ
(n
k

)
exp

(
−σ
√
k
γW (1) + oP

(
1
√
k

))
.

Moreover, under Hall classes, we have from (1.8), U(t) = ctγ(1 + o(1)), as t → ∞, this leads to

U−σ
(n
k

)
= c−σ

(n
k

)−σγ
(1 + o(1)), as n → ∞. (5.34)

Since W (1) is bounded, we get from (5.34) that

U−σ(Yn−k,n) = c−σ
(n
k

)−σγ
(1 + oP(1)), as n → ∞. (5.35)

Next, using again Qn(t) = Xn−[kt],nU(Yn−[kt],n), 0 ≤ t ≤ 1, we have

1

k

k∑
i=1

(
U(Yn−k,n)

U(Yn−i+1,n)

)σ

=

∫ 1

0

(
U(Yn−k,n)

U(Yn−|kt],n)

)σ

dt

∫ 1

0

(
Qn(t)

Qn(1)

)−σ

dt.

From (5.28), we get as n → ∞ and for all t ∈ (0, 1] :

Qn(t)

Qn(1)
t−γ exp

(
γ

1
√
k

(
t−1W (t)−W (1)

)
+ Ã(n/k)

t−ρ − 1

ρ
+ oP

(
1
√
k

)
t−1/2−δ

)
(5.36)

Then, for all t ∈ (0, 1], we have :(
Qn(t)

Qn(1)

)−σ

tγσ exp

(
−γσ

1
√
k

(
t−1W (t)−W (1)

)
− σÃ(n/k)

t−ρ − 1

ρ
+ oP

(
1
√
k

)
t−1/2−δ

)
,

as n → ∞. By a Taylor expansion, we get for all t ∈ (0, 1] and for all values of n large enough :(
Qn(t)

Qn(1)

)−σ

tγσ
(
1− γσ

1
√
k

(
t−1W (t)−W (1)

)
− σÃ(n/k)

t−ρ − 1

ρ
+ oP

(
1
√
k

)
t−1/2−δ

)
,

since for δ > 0, supt∈(0,1] t1/2+δt−1|W (t)| = O(1) a.s. and Ã(n/k) → 0 as n → ∞. Moreover, remarking that γσ = −ρ > 0

and choosing δ < 1/2, we can take the integral of
(

Qn(t)
Qn(1)

)−σ
on (0, 1] to obtain∫ 1

0

(
Qn(t)

Qn(1)

)−σ

dt
P→
∫ 1

0
tγσdt =

1

1 + γσ
, as n → ∞.

It comes, that
1

k

k∑
i=1

(
U(Yn−k,n)

U(Yn−i+1,n)

)σ
P→

1

1 + γσ
, as n → ∞. (5.37)
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Therefore, the combination of (5.31), (5.35) and (5.37), ensures that for all n large enough

γ̂BC
k (σ, a)

d
= γ̂H

k −
a

cσ

(n
k

)−σγ γ

1 + σγ
(1 + oP(1)).

The application of Lemma 5, ensures that

γ̂H
k := M

(1)
k γ +

γ
√
k
P (1) +

A
(
n
k

)
1− ρ

(1 + oP(1)) . (5.38)

In the other hand, observing that A(n
k
) = ηγ(n

k
)ρ(1 + o(1)) and γσ = −ρ, then we have for all n large enough

γ̂BC
k (σ, a)

d
= γ +

γ
√
k
P (1) +

A
(
n
k

)
1− ρ

(
1−

a

ηcσ

)
(1 + oP(1)),

with P (1) =
∫ 1
0

(
t−1W (t)−W (1)

)
dt and its variance is c1;1 := Cov(P (1), P (1)) = r(1, 1). The Theorem 2.2 is then proved.

Proof of Proposition 2.3.
Under assumptions, we have from (5.38), γ̂H

k
P→ γ, as n → ∞. Now, let ρ̂kρ be an external estimator for ρ, consistent

in probability, which depends on an intermediate sequence of integers kρ := kρ(n), greater than k and satisfying the
condition in (2.16)., then σ̂k,kρ = −ρ̂k,kρ/γ̂

H
k

P→ σ = −ρ/γ.

In other hand, for Hall-Welsh class of models in Equation (1.8 ), we have for all n large enough, A(n/k) ≈ γη
(
n
k

)ρ, and
further from Lemma 5 :

M
(2)
k = 2γ2 +

2γ2

√
k
P (2) + 2γ2η

(n
k

)ρ 1

ρ

(
1

(1− ρ)2
− 1

)
(1 + oP(1)),

and (
M

(1)
k

)2
= γ2

(
1 +

P (1)

√
k

+
η
(
n
k

)ρ
1− ρ

(1 + oP(1))

)2

.

Using Taylor’s expansion, we get as n → ∞,

(
M

(1)
k

)2
= γ2

(
1 +

2P (1)

√
k

+
2η
(
n
k

)ρ
1− ρ

(1 + oP(1))

)
.

Hence,
M

(2)
k − 2(M

(1)
k )22γ2k−1/2

(
P (2) − 2P (1)

)
+ 2ηγ2

(n
k

)ρ ρ

(1− ρ)2
(1 + oP(1)). (5.39)

Therefore
(1− ρ)2

(
M

(2)
k − 2

(
M

(1)
k

)2)
2γ2

(
n
k

)ρ
ρ

P→ η, as n → ∞. (5.40)

And this leads to the estimation of η as

η̂k,kρ =

(
1− ρ̂kρ

)2 (
M

(2)
k − 2

(
M

(1)
k

)2)
2
(
M

(1)
k

)2 (
n
k

)ρ̂kρ ρ̂kρ

.

Next, we have :

η̂k,kρ

η
=

γ2ρ
(
1− ρ̂kρ

)2
(
M

(1)
k

)2
ρ̂kρ (1− ρ)2

(
n
k

)ρ̂kρ−ρ

(1− ρ)2
(
M

(2)
k − 2

(
M

(1)
k

)2)
2γ2

(
n
k

)ρ
ρ η

.

By the consistency in probability of M(1)
k and ρ̂kρ respectively to γ and ρ, it comes from the convergence in (5.40), that

η̂k,kρ

η
=
(n
k

)ρ−ρ̂kρ
(1 + oP(1)), as n → ∞. (5.41)

Since (n/k)
ρ−ρ̂kρ = exp

{
(ρ̂kρ − ρ) log(k/n)

}
, then under the assumption |ρ̂kρ − ρ| = OP(n

−ν), for some ν > 0, we have
(ρ̂kρ − ρ) log(k/n) = OP(k

−ν) = oP(1), as n → ∞. Further, inspired by Deme et al. (2013), we study the term in (5.41)
by using the inequality ∣∣∣∣ exp(x)− 1

x
− 1

∣∣∣∣ ≤ exp(|x|)− 1, (5.42)

in the neighborhood of zero, we get for n large enough :(n
k

)ρ−ρ̂kρ
= 1 + (ρ̂kρ − ρ) log

(
k

n

)
+OP(Rn),

where
Rn = |ρ̂kρ − ρ| log

(n
k

)(
exp{|ρ̂kρ − ρ| log

(n
k

)
} − 1

)
.
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Since (ρ̂kρ − ρ) log(k/n) = oP(1), then Rn = oP(1), as n → ∞. This implies that (n/k)
ρ−ρ̂kρ = 1 + oP(1), as n → ∞.

Therefore η̂k,kρ

P→ η, as n → ∞. This completes the proof of the Proposition 2.3.

Proof of Theorem 2.3.
We follow the same approach as in the proof of Theorem 2.2. Firstly, using the same arguments as in (5.30) and (5.31),
we have

γ̂BC
k,kρ

d
= γ̂H

k +
1

σ̂k,kρ

η̂k,kρ

(U(Yn−k,n))
σ̂k,kρ

(
−1 +

1

k

k∑
i=1

(
U(Yn−k,n)

U(Yn−i+1,n

)σ̂k,kρ

)
. (5.43)

From (5.33), we get for values of n large enough :(
U(Yn−k,n)

)−σ̂k,kρ

(
U
(n
k

))− σ̂k,kρ
exp

(
− γσ̂k,kρ

W (1)
√
k

+ oP

(
1
√
k

))
.

Now, by choosing the misspecification c = 1, we have from (1.8), U(t) = tγ(1 + o(1)), as t → ∞ and then with a Taylor
expansion, we get as n → ∞ :(

U
(n
k

))− σ̂k,kρ
=
(n
k

)− γσ̂k,kρ
(1− σ̂k,kρ × o(1)), as n → ∞. (5.44)

Since σ̂k,kρ = −ρ̂k,kρ/γ(1 + oP(1)) and σ̂k,kρ

P→ σ , as n → ∞ and by using the fact that W (1) is bounded, we get from
(5.44) that (

U(Yn−k,n)
)−σ̂k,kρ =

(n
k

)ρ̂k,kρ
(1 + oP(1)), as n → ∞.

Remarking that (n/k)
ρ̂k,kρ = (n/k)

ρ̂kρ−ρ+ρ
= (n/k)ρ exp

{
(ρ̂kρ − ρ) log(n/k)

}
, then under the assumption |ρ̂kρ − ρ| =

OP(n
−ν), for some ν > 0, we have (ρ̂kρ −ρ) log(n/k) = OP(k

−ν) = oP(1), as n → ∞ and finally, using again the inequality
(5.42), we get (

U(Yn−k,n)
)−σ̂k,kρ =

(n
k

)ρ
(1 + oP(1)), as n → ∞. (5.45)

Also, remarking that
1

k

k∑
i=1

(
U(Yn−k,n)

U(Yn−i+1,n)

)σ̂k,kρ
∫ 1

0

(
Qn(t)

Qn(1)

)− σ̂k,kρ

dt,

and using (5.28), we get as n → ∞ and for all t ∈ (0, 1] :(
Qn(t)

Qn(1)

)− σ̂k,kρ

t
γσ̂k,kρ exp

(
−

γσ̂k,kρ√
k

(
t−1W (t)−W (1)

)
− σ̂k,kρ Ã(n/k)

t−ρ − 1

ρ
+ oP

(
1
√
k

)
σ̂k,kρ

t1/2+δ

)
.

Next, using again the consistency in probability of σ̂k,kρ to σ, we obtain as n → ∞ :(
Qn(t)

Qn(1)

)− σ̂k,kρ

tγσ exp

(
−

γσ
√
k

(
t−1W (t)−W (1)

)
− σÃ(n/k)

t−ρ − 1

ρ
+ oP

(
1
√
k

)
t−1/2−δ

)
(1 + oP(1)). (5.46)

Using again the fact that supt∈(0,1] t
1/2+δt−1|W (t)| = O(1), δ > 0, a.s., Ã(n/k) → 0 as n → ∞ and a Taylor expansion,

we get by remarking that γσ = −ρ > 0 and by choosing δ < 1/2 :∫ 1

0

(
Qn(t)

Qn(1)

)− σ̂k,kρ

dt
P→
∫ 1

0
tγσdt =

1

1 + γσ
, as n → ∞.

This leads to
1

k

k∑
i=1

(
U(Yn−k,n)

U(Yn−i+1,n)

)σ
P→

1

1 + γσ
, as n → ∞. (5.47)

Therefore, the combination of (5.43), (5.45) and (5.47), ensures that for all n large enough

γ̂BC
k,kρ

d
= γ̂H

k − η̂k,kρ

(n
k

)ρ γ

1 + σγ
(1 + oP(1)).

Using again (5.38) and observing that A(n
k
) = ηγ(n

k
)ρ(1 + o(1)) and γσ = −ρ, then we have for all n large enough

γ̂BC
k,kρ

d
= γ +

γ
√
k
P (1) +

A
(
n
k

)
1− ρ

(
1−

η̂k,kρ

η

)
(1 + oP(1)).

Finally, remarking that
√
kA(n/k) → λ ∈ R and from Proposition 2.3, η̂k,kρ converges in probability to η, then the Theo-

rem 2.3 holds.

Proof of theorem 3 :
First of all, we consider the equation 3.25

x̂BC
k,kρ

(p) := Xn−k,n

(
k

np

)γ̂BC
k,kρ

exp

γ̂H
k η̂k,kρ

(n
k

)ρ̂kρ

(
k
np

)ρ̂kρ − 1

ρ̂kρ

 .
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Assume that the assumptions of Theorem 3 hold. By transformation, we have

√
k

log( k
np

)
log

x̂BC
k,kρ

(p)

x(p)
=

√
k

log( k
np

)

logXn−k,n + γ̂BC
k,kρ

log

(
k

np

)
+ η̂k,kρ γ̂

H
k

(n
k

)ρ̂kρ

(
k
np

)ρ̂kρ − 1

ρ̂kρ

− log x(p)


=

√
k(γ̂BC

k,kρ
− γ) +

√
k

log( k
np

)
log

Qn(1)

U
(
n
k

) −
√
k

log( k
np

)

log U
(

1
p

)
U
(
n
k

) − γ log(
k

np
)



+

√
k

log( k
np

)
η̂k,kρ γ̂

H
k

(n
k

)ρ̂kρ

(
k
np

)ρ̂kρ − 1

ρ̂kρ

=
√
k(γ̂BC

k,kρ
− γ) +

√
k

log( k
np

)
log

Qn(1)

U
(
n
k

) −
√
k

log( k
np

)
A
(n
k

) ( k
np

)ρ
− 1

ρ

−
√
k

log(k/(np))
A
(n
k

) logU
(

1
p

)
− logU

(
n
k

)
− γ log k

np

A
(
n
k

) −

(
k
np

)ρ
− 1

ρ



+

√
k

log( k
np

)
η̂k,kρ γ̂

H
k

(n
k

)ρ̂kρ

(
k
np

)ρ̂kρ − 1

ρ̂kρ

:= I1 + I2 − I3 − I4 + I5.

Firstly, Theorem 2.3 ensures that,
I1

d−→ N
(
0, γ2r(1, 1)

)
as n → ∞.

Moreover, it was proved in Demoulin and Guillou (2018) that I2 = oP(1), I3 = o(1) and I4 = o(1), as n → ∞.

Now, our next step is the computation of the term I5 = η̂k,kρ γ̂
H
k

(
n
k

)ρ̂kρ

(
k
np

)ρ̂kρ−1

ρ̂kρ
. From (5.38), we have γ̂H

k = γ(1 +

oP(1)), as n → ∞, also from Proposition (2.3), we have η̂k,kρ = η(1 + oP(1)), as n → ∞.

Next, we have (n
k

)ρ̂kρ

(
k
np

)ρ̂kρ − 1

ρ̂kρ

=
(n
k

)ρ̂kρ−ρ (n
k

)ρ ( k
np

)ρ̂kρ−ρ (
k
np

)ρ
− 1

ρ̂kρ

.

For a given estimator ρ̂kρ , consistent in probability to ρ < 0 and such that |ρ̂kρ − ρ| = OP(n
−ν) for some ν > 0, as

n → ∞, if k = k(n) is an intermediate sequence of integers satisfying k/n → 0, k/(np) → ∞, as n → ∞, then we have :
(n/k)ρ → 0 and (k/(np))ρ → 0, as n → ∞. Following the proof of Proposition 2.3, we have (n/k)

ρ̂kρ−ρ
= 1 + oP(1), as

n → ∞. Using again the inequality (5.42) in the neighborhood of zero, we get for n large enough :(
k

np

)ρ̂kρ−ρ

= 1 + (ρ̂kρ − ρ) log

(
k

np

)
+OP(R̃n),

where
R̃n = |ρ̂kρ − ρ| log

(
k

np

)(
exp{|ρ̂kρ − ρ| log

(
k

np

)
} − 1

)
.

Since |ρ̂kρ − ρ| = OP(n
−ν) for some ν > 0 and n−µ log p → 0 for all µ > 0, we get as n → ∞ :

|ρ̂kρ − ρ| log
(

k

np

)
= OP(n

−ν log(k/(np))).

choosing µ = ν we have n−ν log(k/(np)) → 0, then,
(

k
np

)ρ̂kρ−1

ρ̂kρ
= −1

ρ
(1 + oP(1)), as n → ∞. Which implies that I5 → 0.

Which conclude the proof of Theorem 3.
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