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1. Introduction and Preliminaries

Quantitative Risk Management (QRM) is a field that aims to build models for understanding financial and
environmental risks. In the field of environmental risk management, research related to risk measures such
as high quantiles has interested many researchers. Due to the increasing frequency of extreme events and
their negative impact on society, the estimation of return levels, which is linked to the estimation of the
high quantile of observations, is of great interest. Extreme value theory (EVT) establishes the asymptotic
behavior of the largest observations in a sample. It provides methods for extending empirical distribution
functions beyond the observed data. This makes it possible to estimate quantities linked to distribution
tails, such as high quantiles. The tail distribution function of these observations is characterized by a pa-
rameter called the extreme value index (E.V.I.), which indicates the size and frequency of certain extreme
phenomena.

Classical extreme value methodology assumes a sample of independent, identically distributed (i.i.d.) ran-
dom variables (X1, ..., Xn), with a distribution function F (x) = P(X1 ≤ x). The main result of extreme
value theory is the limiting distribution of the standardized maximum of n > 1, a sample of i.i.d. random
variables (X1, ..., Xn):

P
(

a−1
n

(
max

1≤i≤n
Xi − bn

))
→ G(x), as n → ∞, (1.1)

for all points of continuity of G, where an > 0, bn ∈ R are normalized sequences and G is a non-degenerate
limiting distribution function.

Necessary, G is the same type of the following generalized extreme value (GEV) distribution:

Gγ(x) = exp
(

−(1 + γx)−1/γ
+

)
,

where y+ = max(y, 0) and Gγ(x) = exp(e−x), for γ = 0. Here, the real-valued parameter is called the
extreme value index γ of F , which in turn is said to belong to the maximum domain of attraction of Gγ ,
denoted by F ∈ D(Gγ). We refer to [6], for general explanations of extreme value theory.
However, the i.i.d. assumption is often violated in practice, as financial or environmental observations reveal
the presence of serial dependence. Let Xi, i ∈ N∗, be a stationary time series defined on a probability space
(Ω, A,P), with common marginal distribution function (df) F (x) = P(X1 ≤ x). If Xi, i ∈ N∗ are weakly
dependent, then (1.1) is equivalent to weak convergence of the distribution function of the normalized
maximum of n observations to G.

If the Xi, i ∈ N∗ are weakly dependent, then (1.1) is equivalent to the weak convergence of the distribu-
tion function of the standardized maximum of n observations to G. In general, the maximum of a stationary
time series is stochastic-ally smaller than the maximum of an independent, identically distributed (i.i.d.)
sequence with the same marginal distribution function. Indeed, under certain conditions on the dependency
structure, F ∈ D(Gγ) implies,

L
(

a−1
n

(
max

1≤i≤n
Xi − bn

))
→ Gθ

γ weakly, (1.2)

for some θ ∈ [0, 1], see [19], section 3.7) for more details.
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Throughout the article, we assume that the stationary time series Xi, i ∈ N satisfies the following β-mixing
dependence structure condition:

β(m) := sup
p≥1

E

{
sup

C∈B∞p+m+1

|P(C|Bp
1) − P(C)|

}
→ 0,

as m → ∞, where Bj
i denotes the σ-algebra generated by (Xi, ..., Xj). Without loss of generality, β(m)

measures the total distance of variation between the unconditional future distribution of the time series
and the conditional future distribution given the past of the time series when both are detached by m time
points.

Assume that the distribution function F is heavy-tailed (belonging to the the Fréchet maximum domain
of attraction), i.e there exist a positive number γ and the tail quantile function U := (1/1 − F )← where ←

denotes the left-continuous inverse function, such that

lim
t→∞

U(tx)
U(t) = xγ , ∀ x > 0. (1.3)

According to the relation in (1.3), U is considered to be a regularly varying function at infinity with index
γ > 0 and denoted by U ∈ RVγ . The extreme value index γ controls the behavior of the tail distribution
function. Its estimation has been mainly studied in the case of i.i.d. random variables, although few papers
consider it in the case of time series with serial dependence features. We can mention among others, [4],
[7], [8], [9] and [16]. Moreover, in the i.i.d. case, the simplest estimator for γ > 0 is Hill’s estimator [17]
defined by

γ̂ H
k := 1

k

k∑
i=1

log Xn−i+1,n − log Xn−k,n, (1.4)

where X1,n,⩽ · · · ⩽ Xn,n represents the order statistics and k = k(n) represents an intermediate sequence,
i.e. a sequence such that :

k → ∞ and k/n → 0, as n → ∞. (1.5)

To prove the asymptotic normality of tail-index estimators such as Hill’s, we need a second-order condition
that specifies the rate of convergence of the left-hand side in (1.3) towards its limit. This condition can be
formulated in various ways, as shown below. We’ll use this formulation later.
Second order condition (CSO). Suppose that there exists a positive or negative function A with
lim

t→∞
A(t) = 0 and a real number ρ < 0 such that :

lim
t→∞

1
A(t)

(
U(tx)
U(t) − xγ

)
= xγ xρ − 1

ρ
, ∀x > 0. (1.6)

The rate of convergence of the function A to 0 is essential, as it illustrates the bias term of the tail index
estimators.

In this article, we’ll be working with models in the Fréchet attraction domain γ > 0 which belong to the
class of Hall-Welsh models [14], i.e. models with the second-order right-tail expansion :

1 − F (x) =
(x

c

)−1/γ
{

1 + M1

(x

c

)−(−ρ/γ)
+ o

(
x−(−ρ/γ+ϵ)

)}
, x → ∞; (1.7)



M.B. DIOUF and al./ 4

with M1 ̸= 0, ρ < 0 and c > 0 is the first-order scaling parameter. For these models, the second-order tail
quantile function is as follows:

U(t) = ctγ (1 + D1tρ + o(tρ)) , t → ∞, (1.8)

with D1 = γM1. If the second-order condition (CSO) is holds with A(t) equivalent to γηtρ, t → ∞, then
D1 equivalent to A(t)/(ρtρ), t → ∞. Consequently, this implies that M1 = ρ−1η. In order to study the
behavior of the 1 − F tail distribution function, we can estimate the unknown parameters γ, ρ and η with
precision c = 1.

Assuming that the intermediate sequence k is such that k1/2A(n/k) → λ ∈ R, as n → ∞ and assuming
the following regularity conditions on the mixing coefficients β:
Regularity conditions (CR). There exist ϵ > 0, a bivariate function r and a sequence ℓ = ℓ(n) such that,
as n → ∞,

(a) β(ℓ)
ℓ

n + ℓ
log2 k√

k
−→ 0;

(b) n

ℓ k
Cov

(
ℓ∑

i=1
I{Xi>F←(1−kx/n)},

ℓn∑
i=1

I{Xi>F←(1−ky/n)}

)
−→ r(x, y), ∀ 0 ⩽ x, y ⩽ 1 + ϵ;

(c) For some constant C:
n

ℓ k
E

( ℓ∑
i=1

I{F←(1−ky/n)<Xi⩽F←(1−kx/n)}

)4 ⩽ C(y − x), ∀ 0 ⩽ x < y ⩽ 1 + ϵ and n ∈ N,

[8] established the asymptotic normality of γ̂
(H)
k as follows

√
k(γ̂H

k − γ) d−→ N
(

λ

1 − ρ
, γ2r(1, 1)

)
, (1.9)

where r is the covariance structure in (CR). But in the i.i.d. context, the asymptotic variance of Hill’s es-
timator γ

(H)
k is equal to γ2. In practice, the bias term of γ̂

(H)
kn

depends on whether ρ is close to zero or not,
since under the second-order condition (CSO), the function |A| varies regularly at infinity with the index
ρ. This explains all the literature devoted to bias reduction in the i.i.d. context, see, e.g., [2], [11] and [13],
etc. However, in the case of β-mixing time series, only the authors [4] and [7] have addressed this problem
and proposed bias-reduced estimators for the extreme value index γ > 0. In addition, they established
tasymptotic normality of the proposed estimators under the regularity condition (CR) and second-order
condition (CSO).

These reduced-bias estimators always pose a problem, as they increase the variance of asymptotic distri-
butions. This problem is solved in the i.i.d. context by [21], who used Box Cox transformations and studied
a Hill-type estimator with reduced bias and minimal variance. The present paper extends the results ob-
tained by [21] in the case of dependent series.

The remainder of this paper is organized as follows: in section 2 we present the Box-Cox transformation
methodology and study a bias-reduced estimator of the extreme value index in the case of mixed β series.
In section 3, we derive an unbiased estimator of high quantiles and establish its asymptotic normality. In
section 4, we simulate our estimator and compare it with some existing estimators in the literature.
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2. Box-Cox Transformation on the EVI estimation

2.1. Box-Cox transformation

Let X be a random variable (r.v.) with d.f. F = FX ∈ D(Gγ), γ > 0. The Box-Cox transformation (BC)
[21] of X denoted TX is a function of the parameter σ ∈ R given as follows:

TX(σ) =


Xσ − 1

σ , σ ̸= 0,

log X, σ = 0,
(2.1)

where σ = 1 corresponds to a simple change of location, σ = 1/2 to the square root transformation, and
σ = −1 to the reciprocal transformation.

Remark 2.1. According to [21], for Hall’s class models, the BC transformation of the data increases
the rate of convergence of the tail of the distribution to the generalized distribution of extreme values if
σ = −ρ/γ, and as a by-product, the bias of the estimation procedure is reduced.

Consider a transformation BC such that X∗ = Xσ + a and denote by (X∗1 , ..., X∗n) the transformed
sample, with the d.f. F ∗ associated with the original sample (X1, ..., Xn), where (X∗i = TXi

(σ, a), with
TX(σ, a) = Xσ + a. If the original tail quantile function U := (1/1 − F )← satisfies the condition (1.3),
then the transformed tail quantile function U∗ = (1/1 − F )← satisfies the condition (1.3). transform
U∗ = (1/1 − F ∗)← also satisfies the first-order condition as follows:

lim
t→ ∞

U∗(tx)
U∗(t) = xγσ = xγ∗ ⇐⇒ U∗ ∈ RVγ∗=γσ. (2.2)

Under the validity of Equation (2.2) and for some c∗, c > 0, we have:

U∗(t) ∼ c∗tγ∗ = (ctγ)σ. t → ∞.

[22] used the theory of extended regular variation (see [6]) to determine the optimal values of σ that
maximize the rate of convergence of the second-order condition for values of γ ≥ 0 and when γ > 0 and
γ + ρ > 0, a BC transformation has no effect on the SOC of U∗ unless σ = −ρ/γ ; if γ > 0 and γ + ρ < 0,
the BC transformation can have a negative or positive effect on the SOC of U∗ and the positive effect
occurs when σ = −ρ/γ. According to [22], if γ > 0 and γ + ρ = 0, for any value other than σ = −ρ/γ = 1,
there is no improvement in the speed of convergence of SOC . Thus, the value of σ that maximizes the rate
of convergence of SOC that will be considered in this work is as follows:

σ = − ρ

γ
. (2.3)

This choice will improve bias reduction in the estimation procedure in the following sections.

2.2. Box-Cox Hill-type estimator in the β-mixing case

Let (X1, X2, ...) be a stationary β-mixing time series with a continuous common marginal distribution
function F . Consider a BC transformation such that X∗ = Xσ + a and denote by (X∗1 , ..., X∗n) the trans-
formed sample, with d.f. F ∗, associated to the original sample (X1, X2, ..., Xn), where X∗i = TXi

(σ, a) and
TXi

(σ, a) = Xσ
i + a..
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Based on the BC transformation TXi
(σ, a) = Xσ

i + a, [22] introduced a Hill-type estimator, called the Hill
Box-Cox estimator (Hill BC) defined as follows:

γ̂BC
k = γ̂BC

k (σ, a) = 1
k σ

k∑
i=1

log
(

Xσ
n−i+1,n + a

Xσ
n−k,n + a

)
, (2.4)

where a > 0, so that (Xσ
i + a)n

i=1 is strictly positive, σ = −ρ/γ > 0, as in Equation (2.3). The Hill esti-
mator is a particular case of the Hill Box-Cox estimator which is much more general, one can check that
γ̂BC

k (1, 0) = γ̂H
k .

In the following theorem, we begin by deriving the asymptotic behavior of Hill’s BC estimator, assuming
that the parameters BC σ and a are known.

Theorem 2.1. In the class of Hall-Welsh models of equation (1.8 ), let (X1, X2, . . . ) be a stationary
β-mixing time series with a continuous common marginal distribution function F and assume that cSO)
and cR) hold. Let k = k(n) be an intermediate sequence satisfying the condition (1.5), when n → ∞.
Then, under a Skorohod construction, there exists a centered Gaussian process (W (t))t∈[0,1] with covariance
function r(., .), such that, when n → ∞, we have the following distributional representation: (W (t))t∈[0,1],
we have the following distributional representation:

γ̂BC
k (σ, a) d= γ + γ√

k

∫ 1

0

(
t−1W (t) − W (1)

)
dt + A(n/k)

1 − ρ

{
1 − a

ηcσ

}
(1 + oP(1)) .

More precisely, if k1/2A(n/k) → λ ∈ R, as n → ∞, we have

√
k
(
γ̂BC

k (σ, a) − γ
) d→ N

(
λ

1 − ρ

{
1 − a

ηcσ

}
, γ2r(1, 1))

)
. (2.5)

Theorem 2.1 extends the results of [21] in serial dependence. Next, we note that, if a = ηcσ, then

√
k
(
γ̂BC

k (σ, ηcσ) − γ
) d→ N(0, γ 2r(1, 1)), as n → ∞. (2.6)

Clearly, γ̂BC
k (σ, ηcσ) is an asymptotically unbiased estimator for the extreme value index γ in the case of

series dependence. From a practical point of view, however, it cannot be obtained directly, as it depends
on the unknown parameters σ, η and c.

To solve this problem, we adopt the same approach as in [21], for which we choose the misspecification
c = 1 and replace σ and η respectively by their semiparametric estimators. The resulting unbiased plug-in
estimator is studied in the next section.

2.3. Reduced bias of the Hill Box-Cox estimator

In this section, we introduce a bias-reduced estimator of the extreme value index γ > 0. As mentioned
previously, we first establish consistent estimators for σ and η and derive an estimated version of γ̂BC

k (σ, η).

Now, it comes from (2.3), that σ = −ρ/γ. Let ρ̂kρ be an external estimator for ρ, consistent in probability,
which depends on an intermediate sequence of integers kρ := kρ(n) , greater than k and satisfying:

kρ → ∞ and kρ/n → 0 as, n → ∞. (2.7)

Then, we can estimate σ by
σ̂k,kρ

= −ρ̂kρ
/γ̂H

k , (2.8)
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where γ̂H
k is Hill’s estimator in (1.4).

A possible choice for ρ̂kρ
is one of the best-performing consistent estimator among those studied in the

i.i.d. case (see, e.g, [10], [12]) and also used in the β-mixing case by [4, 7]. This estimator is defined as
follows:

ρ̂ ∗kρ
=

6S
(2)
kρ

− 4 +
√

3S
(2)
kρ

− 2

4S
(2)
kρ

− 3
, provided S

(2)
kρ

∈
(

2
3 ,

3
4

)
, (2.9)

where

S
(2)
kρ

= 3
4

[
M

(4)
kρ

− 24
(

M
(1)
kρ

)4
] [

M
(2)
kρ

− 2
(

M
(1)
kρ

)2
]

[
M

(3)
kρ

− 6
(

M
(1)
kρ

)3
]2 ,

with

M
(α)
k = 1

k

k∑
i=1

(log Xn−i+1,n − log Xn−k,n)α, α ≥ 1.

Clearly, Hill’s estimator γ̂H
k corresponds to M

(1)
k . Under the conditions (CSO) and (CR) with the addi-

tional assumptions k1/2A(n/k) → λ and k
1/2
ρ A(n/kρ) → ∞, as n → ∞, [7] showed that ρ̂ ∗kρ

is consistent
in probability to ρ.

Next, for the estimation of the parameter η, we note that in the class of Hall-Welsh models in equa-
tion (1.8 ), the second-order conditions (CSO) hold with A(t) = γηtρ(1 + o(1)), t → ∞. This implies
that (n/k)−ρA(n/k)/γ → η, as n → ∞. Therefore, referring to the ¨Lemma 5.1 in the appendix of this
document, we have as n → ∞:

(1 − ρ)2
(

M
(2)
k − 2

(
M

(1)
k

)2
)

2γρA(n/k) = 1 + oP(1), (2.10)

This implies that
(1 − ρ)2

(
M

(2)
k − 2

(
M

(1)
k

)2
)

2γ2ρ
(

n
k

)ρ = η(1 + oP(1)). (2.11)

Consequently, the parameter η can be estimated as follows:

η̂k,kρ
=

(
1 − ρ̂kρ

)2
(

M
(2)
k − 2

(
M

(1)
k

)2
)

2
(

M
(1)
k

)2 (
n
k

)ρ̂kρ ρ̂kρ

. (2.12)

Finally, we obtain our new unbiased Hill Box-Cox estimator, which is expressed as follows:

γ̂BC
k,kρ

:= γ̂BC
k (σ̂k,kρ , η̂k,kρ) = 1

k σ̂k,kρ

k∑
i=1

log

X
σ̂k,kρ

n−i+1,n + η̂k,kρ

X
σ̂k,kρ

n−k,n + η̂k,kρ

 . (2.13)

In the i.i.d. context, [21] studied the consistency of the estimator γ̂BC
k,kρ

, but they did not prove asymptotic
normality. Our next result, Theorem 2.2 below, is a more general version, since it solves at the same time
the problem of asymptotic normality in the i.i.d. case, which we have established in the β-mixing-context
case. Before establishing the main result of the new estimator γ̂BC

k,kρ
, we give in the following proposition

the consistency of the estimators σ̂k,kρ
and η̂k,kρ

with respect to σ and η respectively.
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Proposition 2.1. Assume that the assumptions of Theorem 2.1 hold. Supose that the the intermediate
sequence k := k(n) satisfies the condition of (1.5). Further, let ρ̂kρ

be an external estimator for ρ, consistent
in probability and such that |ρ̂kρ

− ρ| = OP(n−ν), for some ν > 0, where kρ := kρ(n) is an intermediate
sequence of integers, greater than k and satisfying the condition of (2.7). Then, we have:

σ̂k,kρ

P→ σ and η̂k,kρ

P→ η, as n → ∞.

Note that in [4], the assumption |ρ̂kρ
−ρ| = OP(n−ν), for some ν > 0 is required to establish the asymptotic

normality of an extreme quantile estimator under the β mixing serials. From the following theorem, we
show the asymptotic normality of the unbiased Hill Box-Cox estimator γ̂BC

k,kρ
.

Theorem 2.2. Assume that the assumptions of Theorem 2.1 hold. Supose that the the intermediate se-
quence k := k(n) satisfies the condition of (1.5). Further, let ρ̂kρ

be an external estimator for ρ, consistent
in probability and such that |ρ̂kρ

− ρ| = OP(n−ν), for some ν > 0, where kρ := kρ(n) is an intermediate
sequence of integers, greater than k and satisfying the condition of (2.7). Then, we have::

√
k
(

γ̂BC
k,kρ

− γ
)

→ N(0, γ2r(1, 1)),

as n → ∞, where r is the covariance structure given in (CR).

3. Extreme quantiles estimation

The importance of estimating the extreme value index lies in its usefulness for estimating extreme quan-
tiles, which is of paramount importance in practice. The quantile, at probability level (1 − t) in(0, 1) with
respect to F denoted by x(t), is defined as follows: x(t) := U(1/t). Consequently, the quantile x(t) is
estimated by x̂(t) := Xn−[nt],n, where [nt] represents the integer part of nt. Let’s now consid a positive
sequence t = t(n) that tends to 0, such as n → ∞. It is then possible to establish the consistency of the
non-parametric estimator widehatx(t), when t → 0 is sufficiently slow. However, in certain areas of life
such as the environment, hydrology, finance and reliability, a major requirement is to find values large
enough that the chances of exceeding them are very low. This leads to removing the restriction on the rate
of convergence of t = t(n) to 0, as n → ∞. Furthermore, the interest is in estimating x(p), an extreme
quantile, where p, the tail probability depends on the observed sample size n (i.e. p := p(n)) and p(n) is
smaller than 1/n. It is therefore not possible to obtain a non-parametric estimate of such a quantile.

The objective of this section is to address this estimation problem in a β-mixing series framework in
order to estimate x(p) = U(1/p), the extreme quantile with np < 1. Based on the Box-Cox transformation
procedure, we propose, in a bias-reduced method, to estimate x(p), the extreme quantile. The construction
of our bias-reduction procedure is based on the second-order condition (CSO), which is stated as follows:

U(tx)
U(t) ≃ xγ exp

(
A(t)xρ − 1

ρ

)
Let tx = 1/p and t = n/k → ∞, as n → ∞. We obtain the following approximation:

x(p) = U(1/p) ≈ U(n/k)
(

k

np

)γ

exp

A(n/k)

(
k

np

)ρ

− 1
ρ

 , (3.1)
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where γ, ρ and A(n/k) are unknown. The first part U(n/kn) (k/(np))γ in the right side of (3.1) is exactly
estimated by the Weissman’s estimator x̂

(W )
k (p), [23] and defined as:

x̂
(W )
k (p) = Xn−k,n

(
k

np

)γ̂
(H)
k

, (3.2)

where Xn−k,n is the empirical estimator of U(n/k) and γ̂
(H)
k is the Hill’s estimator of γ. Obviously, x̂

(W )
k (p),

Weissman’s estimator is potentially biased because it depends on Hill’s estimator γ̂
(H)
kn

, which presents a
similar problem. The expression exp(A(n/k)[(k/(np))ρ −1]/ρ) can be considered as a correction term, since
A(n/k) tends towards 0. The question of estimating A(n/k) and ρ then arises.

Since we’re working here on the class of Hall-Welsh models (1.8 ), the second-order condition (CSO) hold
with A(t) is equivalent to γηtρ, as t → ∞. We can therefore estimate A(n/k) as γ̂H

k η̂k,kρ(n/k)ρ̂kρ , where
γ̂H

k is Hill’s estimator in (1.4), ρ̂kρ is the consistent estimator of ρ defined in (2.9) and η̂k,kρ the consistent
estimator of η defined in (2.12). Therefore, replacing respectively in the right-hand side of (3.1 U(n/k),
γ, ρ and A(n/k) ∼ γη(n/k)ρ by their estimators Xn−k,n, γ̂BC

k,kρ
, ρ̂kρ

and γ̂H
k η̂k,kρ

(n/k)ρ̂kρ , we obtain the
following extreme quantile estimator:

x̂BC
k,kρ

(p) := Xn−k,n

(
k

np

)γ̂BC
k,kρ

exp

γ̂H
k η̂k,kρ

(n

k

)ρ̂kρ

(
k

np

)ρ̂kρ

− 1
ρ̂kρ

 . (3.3)

The asymptotic normality of the estimator of the extreme quantile widehatxBC
k,kρ

is established in the
following theorem.

Theorem 3.1. Assume that the assumptions in Theorem 2.1 hold. Let k = k(n) be an intermediate
sequence of integers satisfying (1.5) and

√
kA(n/k) → λ ∈ R, as n → ∞. Assume in addition that

√
kA(n/k) → λ ∈ R, np/k → 0, log(np)/

√
k → 0 and n−α log p → 0 for all α > 0 , n → ∞. Further,

let ρ̂kρ be an external estimator for ρ, consistent in probability and such that |ρ̂kρ − ρ| = OP(n−ν), for
some ν > 0, where kρ := kρ(n) is an intermediate sequence of integers, greater than k and satisfying the
condition of (2.7). Then, we have:

√
k

log(k/(np))

(
x̂BC

k,kρ
(p)

x(p) − 1
)

d→ N
(
0, γ2r(1, 1)

)
,

as n → ∞.

Remark 3.1. Note that the unbiased estimator of the extreme quantiles x̂BC
k,kρ

(p) is also valid when the
observations are i.i.d., for which the asymptotic variance in Theorem 3.1 is equal to γ2.

4. Simulation study

In this section, we proceed by generating data from different stationary models, satisfying the (CR) condi-
tion and for which we can estimate the theoretical value of γ and the true extreme quantile x(p), p = 1/1000.
In this spirit, we first consider an i.i.d. sequence of innovations (ε1, ..., εn) distributed from Fε given by

Fε(ε) =

 (1 − q)(1 − F̃ (−ε)) if ε < 0,

1 − q + qF̃ (ε)) if ε > 0,

where F̃ is the unit Fréchet distribution function with F̃ (ε) = 1 − exp(−1/ϵ), for ε > 0, and q = 0.75.
Then Fε belongs to the Fréchet domain of attraction, with extreme value index γ = 1. Next, we generate



M.B. DIOUF and al./ 10

N = 1000 stationary time series (X1, ..., Xn) of size n = 1000 based on (ε1, ..., εn), by the following models,
for t = 1, ..., n:

- The stationary AutoRegressive AR(1) model: Xt = θXt−1 + εt, θ ∈ (0, 1),

- The stationnary Moving Average MA(1) model: Xt = θϵt−1 + εt, θ ∈ (0, 1).

Under the models listed above, we select three time series models as follows:

• Model 1: Independence model Xt = ϵt, for which the theoretical value of x(0.001) is 749.80.

• Model 2: The AR(1) model with θ = 0.3, for whch the theoretical value of x(0.001) is 1072.26.

• Model 3: The MA(1) model with θ = 0.3. The theoretical value of x(0.001) is 972.85.

From the models below, we simultaneously apply the original Hill estimator γ̂H
k as in Eq. 1.4, the reduced-

bias estimator of γ > 0, studied in [7] and denoted by γ̂dH
k,kρ

, the reduced-bias estimator of γ > 0, studied in
[4] and denoted by γ̂Ch

k,kρ
and our reduced-bias Hill Box-Cox estimator γ̂BC

k,kρ
as in Eq. (2.13), for k = 1, ..., m

with m the number of positive values in each model studied. We also apply the associated extreme quantile
estimators, denoted respectively by x̂W

k (p), x̂dH
k,ρ̂(p), x̂Ch

k,kρ
(p) and x̂BC

k,kρ
(p).

To calculate the bias-reduced estimators of the tree considered models and the associated extreme quantiles,
we use the second-order estimator ρ̂kρ

defined in (2.9), where the intermediate sequence kρ is selected as
follows:

kρ := sup
{

k : k ≤ min
(

n − 1,
2m

log log m
)
)

and ρ̂k exists
}

.

Finally, we compare the performance of the estimators of the tail index in each model. Moreover, we do
the same for the estimators of the extreme quantiles. For this reason, we compute the absolute value of the
mean bias (ABias) and the root mean square error (RMSE) based on the N samples, defined as follows

ABias(η, k) :=
∣∣∣∣∣ 1
N

N∑
i=1

η̂(i)

η
− 1
∣∣∣∣∣ and RMSE(η, k) :=

√√√√ 1
N

N∑
i=1

(
η̂(i)

η
− 1
)2

,

where η is either γ or x(p), and η̂(i) is the i-th value (i = 1, ..., N) of an estimator of γ or x(p) evaluated
at k = 1, ..., m.
• In terms of bias in models 1, 2 and 3, our extreme value index γ̂BC

k in (2.13) is much more stable and has
a smaller bias than those of the Hill estimator γ̂H

k in (1.4, the unbiased Hill estimator γ̂dH
k in [7] and the

unbiased Hill estimator γ̂Ch
k in [4] for the AR(1) and MA(1) models. In terms of RMSE, our estimator is

better and significantly more competitive, as it retains the lowest RMSE values and is very stable compared
with the three alternative estimators for the three models.

• Our high-quantile estimator x̂BC
k has a smaller and more stable bias than x̂W

k x̂dH
k and x̂Ch

k for smaller
values of k and maintains its stability for larger values of k in all the three considered models. In terms of
RMSE, our estimator also retains the lowest values and is very stable compared with the three alternative
estimators for all three models.
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Fig 4.1: Simulation of the tail index: By row, Models 1, 2, 3. By column, ABias (left) and RMSE (right)
as functions of k.
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Fig 4.2: Simulation of the extreme quantiles estimators: By row, Models 1, 2, 3. By column, ABias (left)
and RMSE (right) as functions of k.

5. Conclusion

In this paper, we have introduced a new asymptotically unbiased high quantile estimator for β-mixing
stationary time series. mixing stationary time series. Comparing the new procedure to the alternative
proposed by de Haan et al. (2016), our high-quantile estimator offers, in addition to lower ABias and
RMSE in general, greater stability over k, which is an important feature, greater stability over k, an
important feature expected in this type of approach to be applicable in practice. practice. In application,
the new high-quantile estimator can be proposed to any other stationary model of the type mixing heavy-
tailed time series for which high quantiles need to be calculated. This applies to heavy-tailed autoregressive
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data encountered in network traffic forecasting for instance and many other applications data in climate
change.

Appendix: Proofs of the results

Before establishing the proofs of our Theorems, we need the following preliminary result, which is similar
to Corollary A.2 of [7], but assuming

√
kA(n/k) = O(1) and no third-order condition. In particular, no

third-order condition is assumed.
Before establishing the proofs of our Theorems, we need the following preliminary result which is similar

to that of Corollary A.2 in [7], but assuming that
√

kA(n/k) = O(1) and without assuming a third order
condition.

Lemma 5.1. Let (X1, X2, ...) be a stationary β-mixing time series with a continuous common marginal
distribution function F and assume (CS0) and (CR). Suppose k is an intermediate sequence satisfying
k → ∞, k/n → 0 and

√
kA(n/k) = O(1), as n → ∞.

For a given ϵ > 0, under a Skorohod construction, there exists a function Ã ∼ A and a centered Gaussian
process (W (t))t∈[0,1] with covariance structure r defined in (CR), such that, as n → ∞,

√
k
(

M
(α)
k − γαΓ(α + 1)

)
− αγαP (α) −

√
kÃ
(n

k

)
γα−1Γ(α + 1)1

ρ

(
1

(1 − ρ)α
− 1
)

→ 0,

as n → ∞, where Γ(α+1) =
∫ 1

0 (− log t)αdt and the random term P (α) =
∫ 1

0 (− log t)α−1 (t−1W (t) − W (1)
)

dt

is a centered Gaussian process with covariance cα,α′ = Cov
(

P (α), P (α′)
)

; α, α′ > 1, defined as,

cα,α′ =
∫ 1

0

∫ 1

0
(− log s)α−1(− log t)α′−1

(
r(s, t)

st
− r(s, 1)

s
− r(1, t)

t
+ r(1, 1)

)
dsdt. (5.1)

Proof of Lemma 5.1. It is similar to that of Corollary A.2 in [7] where we restrict ourselves to second-
order conditions.
Recall that for α ≥ 1,

M
(α)
k = 1

k

k∑
i=1

(log Xn−i+1,n − log Xn−k,n)α,

Let Qn(t) = Xn−[kt],n, 0 ≤ t ≤ 1, where [x] is the integer part of the value x. Thus M
(α)
k can be rewritten

as
M

(α)
k =

∫ 1

0

(
log Qn(t)

Qn(1)

)α

dt.

Assume that the assumptions of Lemma 5.1 hold. Following the same Skorohod construction as in Propo-
sition 1 in [4], it follows that, for given α, δ > 0, there exist a function Ã ∼ A, and a centered Gaussian
process (W (t))t∈[0,1] with covariance function r, such that, as n → ∞:

sup
t∈[0,1]

t
1
2 +ϵ

∣∣∣∣√k

(
log Qn(t)

U( n
k ) + γ log t

)
− γt−1W (t) −

√
kA(n

k
) t−ρ − 1

ρ

∣∣∣∣ → 0, as. (5.2)

Using the fact that
log Qn(t)

Qn(1) = log Qn(t)
U( n

k ) − log Qn(1)
U( n

k ) ,

we get as n → ∞:

sup
t∈(0,1]

t1/2+δ

∣∣∣∣√k

(
log Qn(t)

Qn(1) − γ(− log t)
)

− γ
(
t−1W (t) − W (1)

)
−

√
kÃ(n/k) t−ρ − 1

ρ

∣∣∣∣ → 0, a.s. (5.3)
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This means for all t ∈ (0, 1](
log Qn(t)

Qn(1)

)α
d= γα(− log t)α

[
1 + (− log t)−1

√
k

(
t−1W (t) − W (1)

)
+γ−1(− log t)−1Ã(n/k) t−ρ − 1

ρ
+ o(k−1/2)t−1/2−δ

]α

.

And from the relation (1 + x)α = 1 + αx + α(α−1)
2 x2 + o(x2), o(x2) −→ 0 when x → 0, we get

sup
t∈(0,1]

t1/2+δ

∣∣∣∣√k

(
log Qn(t)

Qn(1)

)α

− γα(− log t)α − αγα(− log t)α−1 (t−1W (t) − W (1)
)

−
√

kÃ(n/k)αγα−1(− log t)α−1 t−ρ − 1
ρ

∣∣∣∣ −→ 0, a.s. (5.4)

Without losing generality, some terms tend to 0, as n → ∞. In fact, we have supt∈(0,1] t1/2+ϵt−1|W (t)| =
O(1) a.s. and Ã(n/k) → 0 as n → ∞.
By using δ < 1/2 in (5.4), we can take the integral of

(
log Qn(t)

Qn(1)

)α

on (0, 1] and use the fact that Γ(a+1) =
aΓ(a) and

∫ 1
0 (− log t)a−1t−bdt = Γ(a)

(1−b)a for b < 1 to obtain the result in the Lemma 5.1. The random term
is obtained by taking

P (α) =
∫ 1

0
(− log t)α−1 (t−1W (t) − W (1)

)
dt.

and is normally distributed with mean zero and covariance cα,α′ .

Proof of Theorem 2.1: Clearly, we have Xi,n
d= U(Yi,n), i = 1, ...; n where each Yi’s follows a standard

Pareto distribution, we obtain that (Y1, Y2, ...) is a stationary β-mixing series satisfying the regularity
conditions.
This is a direct consequence of Yi = 1/(1 − F (Xi)). In what follows, we shall use the following relation for
j > i, Yj,n

Yi,n

d= Yj−i,n−i. Thus, remarking that Qn(t) = Xn−[kt],n
d= U(Yn−[kt],n) and using the expression in

(2.4), we have

γ̂BC
k (σ, a) d= 1

k σ

k∑
i=1

log
(

Uσ(Yn−i+1,n) + a

Uσ(Yn−k,n) + a

)
d= 1

k σ

k∑
i=1

log
(

U(Yn−i+1,n)
U(Yn−k,n)

)σ

+ 1
k σ

k∑
i=1

log
(

1 + a/Uσ(Yn−i+1,n)
1 + a/Uσ(Yn−k,n)

)
.

This implies that

γ̂BC
k (σ, a) d= γ̂H

k + 1
k σ

k∑
i=1

(
a

Uσ(Yn−i+1,n
− a

Uσ(Yn−k,n)

)
.

Which can be rewritten as

γ̂BC
k (σ, a) d= γ̂H

k + 1
k σ

k∑
i=1

a

Uσ(Yn−k,n)

(
−1 +

(
U(Yn−k,n)

U(Yn−i+1,n)

)σ)
. (5.5)

From (5.2), we infer that for n → ∞,

Qn(1) d= U
(n

k

)
exp

(
1√
k

γW (1) + oP

(
1√
k

))
.

Observing that Qn(t) = Xn−[kt],n
d= U(Yn−[kt],n) then

U(Yn−k,n) d= U
(n

k

)
exp

(
1√
k

γW (1) + oP

(
1√
k

))
. (5.6)
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This implies that
U−σ(Yn−k,n) d= U−σ

(n

k

)
exp

(
−σ√

k
γW (1) + oP

(
1√
k

))
.

Moreover, under Hall classes, we have from (1.8), U(t) ∼ ctγ as t → ∞, this leads to

U−σ
(n

k

)
∼ c−σ

(n

k

)−σγ

, as n → ∞. (5.7)

Since Yn−i+1,n/Yn−k,n
d= Yk−i+1,k for i = 1, ..., k, which is also distributed from a standard Pareto distri-

bution. Now, we have Yn−k,n → ∞, as n → ∞, then using the regular varying assumption in (1.3), we get
for all large values of n,

U(Yn−k,n)
U(Yn−i+1,n)

d= (Yk−i+1,k)−γ (1 + oP(1)). (5.8)

Thus, the combination of (5.5), (5.6), (5.7) and (5.8), ensures that for all n large enough

γ̂BC
k (σ, a) d= γ̂H

k + a

σcσ

(n

k

)−σγ

exp
(

−σ√
k

γW (1) + oP

(
1√
k

))(
−1 + 1

k

k∑
i=1

(Yk−i+1,k)−σγ

)
.

Moreover, we have −σγ = ρ < 0, then by the large law number 1
k

∑k
i=1 (Yk−i+1,k)−σγ P→ E(Y −σγ

1 ) = 1
1+σγ ,

as n → ∞. It comes that,

γ̂BC
k (σ, a) d= γ̂H

k − a

cσ

(n

k

)−σγ γ

1 + σγ
exp

(
−σ√

k
γW (1) + oP

(
1√
k

))
.

In the other hand, observing that A( n
k ) = ηγ( n

k )ρ, then we have for all n large enough

γ̂BC
k (σ, a) d= γ̂H

k −
A( n

k )
1 − ρ

a

ηcσ
exp

(
ρ√
k

W (1) + oP

(
1√
k

))
.

The application of Lemma 5.1, ensures that

γ̂H
k = M

(1)
k

d= γ + γ√
k

P (1) +
A
(

n
k

)
1 − ρ

(1 + oP(1)) . (5.9)

Finally, since W (1) is bounded, this leads for all n large enough to

γ̂BC
k (σ, a) d= γ + γ√

k
P (1) +

A
(

n
k

)
1 − ρ

(
1 − a

ηcσ

)
+ oP

(
1√
k

)
,

with P (1) =
∫ 1

0
(
t−1W (t) − W (1)

)
dt and its variance is c1;1 := Cov(P (1), P (1)) = r(1, 1). The Theorem 2.1

is then proved.
Proof of Proposition 5.4.
Under assumptions, we have from (5.9), γ̂H

k
P→ γ, as n → ∞. According to [22], for a given intermediate

sequences kρ := kρ(n) satisfy the conditions in (2.7) and such that
√

kρA(n/kρ) → ∞, as n → ∞, then
the estimator ρ̂kρ

defined in (2.9) is consistent in probability to the second order parameter ρ as n → ∞.
Since σ̂k,kρ

= −ρ̂k,kρ
/γ̂H

k , this implies that σ̂k,kρ

P→ σ = −ρ/γ.

In other hand, for Hall-Welsh class of models in Equation (1.8 ), we have for all n large enough, A(n/k) ≈
γη
(

n
k

)ρ, and further from Lemma 5.1:

M
(2)
k = 2γ2 + 2γ2

√
k

P (2) + 2γ2η
(n

k

)ρ 1
ρ

(
1

(1 − ρ)2 − 1
)

(1 + oP(1)),

and (
M

(1)
k

)2
= γ2

(
1 + P (1)

√
k

+
η
(

n
k

)ρ

1 − ρ
(1 + oP(1))

)2

.
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Using Taylor’s expansion, we get as n → ∞,

(
M

(1)
k

)2
= γ2

(
1 + 2P (1)

√
k

+
2η
(

n
k

)ρ

1 − ρ
(1 + oP(1))

)
.

Hence
M

(2)
k − 2(M (1)

k )2 d= 2γ2k−1/2
(

P (2) − 2P (1)
)

+ 2ηγ2
(n

k

)ρ ρ

(1 − ρ)2 (1 + oP(1)). (5.10)

Therefore
(1 − ρ)2

(
M

(2)
k − 2

(
M

(1)
k

)2
)

2γ2
(

n
k

)ρ
ρ

P→ η, as n → ∞.

And this leads to the estimation of η as

η̂k,kρ
=

(
1 − ρ̂kρ

)2
(

M
(2)
k − 2

(
M

(1)
k

)2
)

2
(

M
(1)
k

)2 (
n
k

)ρ̂kρ ρ̂kρ

.

In addition, if kρ := kρ(n) satisfies the condition (2.7) and
√

kρA(n/kρ) → ∞, as n → ∞, we have from
[7], ρ̂kρ

P→ ρ, which implies that η̂k,kρ

P→ η, as n → ∞.

Proof of Theorem 2.2:
We follow the same approach as in the proof of Theorem 2.1. Firstly, as in (5.5), we have

γ̂BC
k,kρ

d= γ̂H
k + 1

kσ̂k,kρ

k∑
i=1

η̂k,kρ

(U(Yn−k,n))σ̂k,kρ

(
−1 +

(
U(Yn−k,n)
U(Yn−i+1,n

)σ̂k,kρ

)

The application of Corollary A.2 in [7], ensures that

γ̂H
k = γ + γ√

k
P

(1)
1 + 1

1 − ρ
A
(n

k

)
+ oP

(
1√
k

)
then we have

γ̂BC
k,kρ

d= γ + γ√
k

P
(1)
1 + 1

1 − ρ
A
(n

k

)
+

η̂k,kρ

U σ̂k,kρ (Yn−k,n)
1

kσ̂k,kρ

k∑
i=1

(
−1 +

(
U(Yn−k,n)
U(Yn−i+1,n

)σ̂k,kρ

)
+ oP

(
1√
k

)
(

U(Yn−k,n)
U(Yn−i+1,n)

)σ̂k,kρ

= (Yk−i+1,k)−σ̂k,kρ γ + oP(1)

γ̂BC
k,kρ

d= γ + γ√
k

P
(1)
1 + 1

1 − ρ
A
(n

k

)
+

η̂k,kρ

U σ̂k,kρ (Yn−k,n)
−γ

1 + σ̂k,kργ
+ oP

(
1√
k

)
It follows from (5.6)

U σ̂k,kρ (Yn−k,n) = U σ̂k,kρ

(n

k

)
exp

(
σ̂k,kρ√

k
γW (1) + oP

(
1√
k

))
.

Moreover, we have 1.8 under Hall classes ensures that U(t) ∼ ctγ then

U σ̂k,kρ

(n

k

)
∼
(n

k

)σ̂k,kρ γ

.

Hence
η̂k,kρ

U−σ̂k,kρ (Yn−k,n) = η̂k,kρ

(n

k

)−σ̂k,kρ γ

exp
(−σ̂k,kρ√

k
γW (1) + oP

(
1√
k

))
.

Under Hall classes we have

Â
(n

k

)
= η̂k,kρ

(n

k

)ρ̂kρ

γ̂H then
(n

k

)ρ̂kρ =
Â
(

n
k

)
η̂k,kρ

γ̂H
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η̂k,kρ

(
n
k

)−σ̂k,kρ γ = η̂k,kρ

[(
n
k

)ρ̂kρ

] γ

γ̂H = η̂k,kρ

[
Â( n

k )
η̂k,kρ γ̂H

] γ

γ̂H

γ̂BC
k (σ̂k,kρ

, η̂k,kρ
) d= γ+ γ√

k
P

(1)
1 + 1

1 − ρ
A
(n

k

)
+η̂k,kρ

[
Â
(

n
k

)
η̂k,kρ

γ̂H

] γ

γ̂H −γ

1 + σ̂k,kρ
γ

exp
(

−
σ̂k,kρ√

k
γW (1) + oP

(
1√
k

))

+oP

(
1√
k

)
since σ̂k,kρ

P→ σ, Â( n
k )

A( n
k )

P→ 1, η̂k,kρ

P→ η, γ̂H P→ γ and γ
γ̂H

P→ 1 then

√
k
(
γ̂BC

k (σ̂k,kρ , η̂k,kρ) − γ
) d= γP

(1)
1 + oP (1)

then we obtain the result.
Proof of theorem 3.1:
First of all, we consider the equation 3.3

x̂BC
k,kρ

(p) := Xn−k,n

(
k

np

)x̂BC
k,kρ

(p)
exp

γ̂H
k η̂k,kρ

(n

k

)ρ̂kρ

(
k

np

)ρ̂kρ

− 1
ρ̂kρ

 .

√
k

log( k
np )

log
x̂BC

k,kρ
(p)

x(p) =
√

k

log( k
np )

log Xn−k,n + γ̂BC
k,kρ

log
(

k

np

)
+ η̂k,kρ γ̂H

k

(n

k

)ρ̂kρ

(
k

np

)ρ̂kρ

− 1
ρ̂kρ

− log x(p)


=

√
k(γ̂BC

k,kρ
− γ) +

√
k

log( k
np )

log Qn(1)
U
(

n
k

) −
√

k

log( k
np )

log
U
(

1
p

)
U
(

n
k

) − γ log( k

np
)


+

√
k

log( k
np )

η̂k,kρ
γ̂H

k

(n

k

)ρ̂kρ

(
k

np

)ρ̂kρ

− 1
ρ̂kρ

=
√

k(γ̂BC
k,kρ

− γ) +
√

k

log( k
np )

log Qn(1)
U
(

n
k

) −
√

k

log( k
np )

A
(n

k

) ( k
np

)ρ

− 1
ρ

−
√

k

log(k/(np))A
(n

k

) log U
(

1
p

)
− log U

(
n
k

)
− γ log k

np

A
(

n
k

) −

(
k

np

)ρ

− 1
ρ


+

√
k

log( k
np )

η̂k,kρ γ̂H
k

(n

k

)ρ̂kρ

(
k

np

)ρ̂kρ

− 1
ρ̂kρ

= I1 + I2 − I3 − I4 + I5

I1
d−→ N

(
0, γ2r(1, 1)

)
.

It was proved in [4] that I2, I3 et I4 → 0

Now, if we consider I5 = η̂k,kρ γ̂H
k

(
n
k

)ρ̂ ( k
np )ρ̂kρ−1

ρ̂kρ

we have η̂k,kρ
= η(1 + oP(1)), γ̂H

k = γ(1 + oP(1)), ( k
np )ρ̂kρ−1

ρ̂kρ
= −1

ρ (1 + oP(1)) and
(

n
k

)ρ̂kρ → 0 then

I5 → 0

which conclude the proof
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