
HAL Id: hal-04181107
https://hal.science/hal-04181107

Submitted on 11 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

A Survey on Secure Android Apps Development
Life-Cycle: Vulnerabilities and Tools

Mohammed El Amin Tebib, Mariem Graa, Pascal Andre, Oum-El-Kheir
Aktouf

To cite this version:
Mohammed El Amin Tebib, Mariem Graa, Pascal Andre, Oum-El-Kheir Aktouf. A Survey on Secure
Android Apps Development Life-Cycle: Vulnerabilities and Tools. International Journal On Advances
in Security, 2023, 16 (1 & 2), pp.54-71. �hal-04181107�

https://hal.science/hal-04181107
https://hal.archives-ouvertes.fr


54

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Survey on Secure Android Apps Development
Life-Cycle: Vulnerabilities and Tools

Mohammed El Amin TEBIB
Mariem GRAA

Oum-El-Kheir AKTOUF
Univ. Grenoble Alpes, Grenoble INP*, LCIS lab., 26000 Valence,France

*Institute of Engineering Univ. Grenoble Alpes
mohammed-el-amin.tebib@univ-grenoble-alpes.fr

mariem.graa@univ-grenoble-alpes.fr
oum-el-kheir.aktouf@univ-grenoble-alpes.fr

Pascal ANDRE

LS2N Lab
UMR 6004 CNRS, Nantes University,

F-44000 Nantes, France

pascal.andre@ls2n.fr

Abstract—Mobile devices are increasingly used in our daily
lives. To fulfill the needs of smartphone users, the development
of mobile applications has been growing at a high rate. As
developers are not necessarily aware of security concerns, most of
these applications do not address security aspects appropriately
and usually contain vulnerabilities. Therefore, it is essential to
incorporate security into the app development life-cycle. To help
development teams to address security issues, several security
integrated development environment (IDE) plugins have been
proposed. In this paper, we aim to review the effectiveness of
existing IDE plugins in detecting known Android vulnerabilities.
We developed a classification framework that highlights the
salient features related to 16 selected IDE plugins including:
(1) the analysis-based approach, (2) the vulnerabilities checks
coverage, and (3) the development stage, on which these tools
could be employed. We proceeded to a deep analysis process
where each tool effectiveness is investigated against 19 vulnera-
bilities. Each vulnerability has been demonstrated by executing
a corresponding attack scenario on the recent version 12 of
Android. The study results provide an overview of the current
state of secure Android application development and highlight
limitations and weaknesses. Limits such as: tools unavailability,
benchmarks incompleteness, and the need of dynamic analysis
approaches adoption are among the main findings of this study.
The paper synthesizes valuable information for future research
on IDE plugins for detecting Android-related vulnerabilities.

Keywords- Android; Software development; DevSec; Secure
Coding; Classification Framework; Security IDE Plugins.

I. INTRODUCTION

With the increase of mobile devices usage, a growing number
of applications have been developed to satisfy Android users’ re-
quirements. In October 2022, approximately 97000 mobile apps
were released through the Google Play Store1. However, most of
these applications are developed without integrating proper security
needs. Due to the lack of security awareness among developers,
many of these applications contain vulnerabilities. According to the
official MITRE data-source for Android vulnerabilities, Common
Vulnerabilities and Exposures (CVE) details,2 recent years witnessed
the most significant increase of Android security threats, ”1034
vulnerabilities the last couple years” , and it continues to increase
with ”34 vulnerabilities only the two first months of 2022”. These
vulnerabilities could be exploited to create harmful actions such as

1https://fr.statista.com/
2https://www.cvedetails.com/product/19997/Google-Android.html

developing malwares and stealing users private information. Thus,
many updates and patches are provided to the published applications.
Therefore, there is an urgent need to fix source code vulnerabilities at
the design and development stages and to integrate security-by-design
concepts and practices. More precisely, security verification must
belong to Integrated Development Environments (IDE), as plugins,
rather than being just external tools, otherwise developers would
often consider security as a secondary concern. Security verification
feedback should appear as syntax or type errors in the IDE to be
part of the developer’s activity. Industry and academia tools started
recently to integrate security to the software development life-cycle,
shifting from just ensuring the development speed and leaving the
security checks to external stakeholders, to employing new software
development paradigms such as development, security, and operations
(DevSecOps) [2]. In these paradigms, developers adhere to a secure
development process by means of training sessions and analysis tools.

To assist non-expert Android developers in addressing security
concerns, it is essential to provide them with an up-to-date overview
of IDE tools that can help to secure their applications. This is the
main contribution of our article. We selected a sample of IDE plugins
(tools). This sample includes the four most well-known industrial
plugins, as extracted from the OWASP list (Open Source Application
Security Project) [3]. Additionally, we included academic tools for
more comprehensive analysis.

To study these tools, we propose a classification framework
based on three dimensions: (1) the analysis-based approach (static
or dynamic); (2) the covered security vulnerabilities by each tool;
and (3) the development stage, on which these tools could be
employed. To limit the scope of our study, we consider the following
constraints: (a) Only tools usable during the development life-cycle
are considered; i.e., the tools integrated in the IDE environment.
(b) For academic tools, if the tool code is not provided, our analysis
is based only on reading the corresponding published scientific
publications and related documentations. (c) For industrial tools, only
free available ones are considered.

This classification framework allows to highlight salient features of
16 selected tools by a shallow analysis. We proceeded to a deep anal-
ysis process by running the tools on a relevant security benchmark.
Each tool effectiveness is investigated against 19 vulnerabilities. Each
vulnerability has been demonstrated by executing a corresponding
attack scenario on the recent version 12 of Android. The study
results allowed to establish a picture of the current secure Android
application development.

This article is an extended version of a paper published in
Secureware 2022 [1]. The tool information has been revisited to add
more details. New material includes a detailed presentation of the
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framework in Section V, including the list of potential vulnerabilities;
a review of the security analysis approaches and a position of the
topic in the Secure Software Development Life-Cycle. The main
contribution of our work is an empirical evaluation of the IDE plugins
(16 IDE plugins) in detecting vulnerabilities (19 vulnerabilities) for
Android 12. We add new research questions in Section IV and new
experiments with methodological feedback.

The article is organised as follows. Section II introduces material to
understand the context and the comparison methodology. Section III
summarizes the existing related works in the literature, reviewing the
IDE plugins used for securing Android applications development.
We describe our work methodology in Section IV. The classification
framework is exposed in Section V. In Section VI, we overview
the 16 tools selected according to the selection criteria provided
in Section IV. Based on the proposed classification framework, we
present in Section VII the main results of the search and analysis
phases of our study methodology. We discuss the main findings of our
study in Section VIII as well as methodological limitations. Finally,
Section IX concludes the paper and provides tracks for future work.

II. BACKGROUND

This section illustrates the main concepts related to Android
applications. Android provides a layered software stack composed
of native libraries and a framework as an environment for running
Android applications. The framework exposes a set of system services
in the form of Applications Programming Interfaces (APIs). An
application uses a specific service by instantiating the interface of
the corresponding API; the framework launches a remote procedure
call to invoke the real implementation that resides on the kernel level.

Based on this software stack, developers implement different types
of Android applications: (1) native applications that restrict their
access to the APIs provided by the framework and (2) hybrid
applications that could also be web applications. Since considering
the security of hybrid applications should cover a wide range of
potential security issues related to the web, our study only covers
native Android applications (also called apps in this article).

A native Android application is built using four types of
components, categorised into two families: (1) Foreground
components such as activities, and (2) Background
components such as services, broadcast receivers, and content
providers. Activities provide graphical interfaces, which allow the
user to interact with the app to perform different tasks (following the
Model-View-Controller (MVC) pattern). The other components are
merely used to handle background processing and communications.
The core functionalities of the application are implemented through
services that are used for long-running operations. Content
providers manage the data layer (storage, read/write accesses),
they are used to share data between apps; and finally broadcast
receivers that receive and respond to Broadcasts (i.e., messages
that the Android system and Android apps send when events that
might affect the functionality of other apps occur). There are two
types of broadcasts: system broadcasts, that are delivered by the
system, and custom broadcasts, that are delivered by apps. Custom
Intent actions are defined to create a custom broadcast. There
are four ways to deliver a custom broadcast: normal, ordered, local,
sticky. Normal broadcasts are sent to all the registered receivers at
the same time, in an undefined order. Ordered broadcasts are sent
in defined order, the android: priority attribute determines
the order of the broadcast sending. If more than one receiver
with same priority are present, the sending order is random. The
intent is propagated from one receiver to the next one. A receiver
has the ability to update the intent or cancel the broadcast. Local
broadcasts are specifically sent to receivers within the same app.
On the other hand, sticky broadcasts are a unique type of broadcast
where the intent object that is sent remains in the cache even after
the broadcast has been completed. This allows other components
within the app to access and retrieve the intent at a later time. The

system may broadcast once again sticky intents to later registrations
of receivers. Unfortunately, the sticky broadcasts API suffers from
numerous security-related shortcomings. Sticky broadcasts can lead
to sensitive data exposure, data tampering, unauthorized access
to execute behavior in another app, and denial of service. The
intents manage the communication aspects between the application
components. Communications could be implicit in case the message
target is not specified. Application can pass a PendingIntent
to another application in order to allow it to execute predefined
actions. The unfilled fields of a pending intent can be modified
by a malicious app and allow access to otherwise non-exported
components of a vulnerable application.

To ensure secure execution of Android applications, two main
security artefacts are considered: sand-boxing and permissions. An
application runs within its own context or sandbox, which is an
isolation mechanism between Android applications. So applications
cannot interact with other installed applications or the Android oper-
ating system (OS) without proper permissions. Thus, the permission
system restricts the access to applications, application components
and system resources (contacts, locations, images, etc.) to those
having the required permissions. Android categorizes permissions
into different types, including install-time permissions and runtime
permissions. The install-time permissions allow an app to perform
restricted actions that minimally affect the system or other apps.
Thus, they are automatically granted when the app is installed. There
are several sub-types of install-time permissions, such as normal
permissions and signature permissions. Normal permissions allow
access to data that present very little risk to the user’s privacy. The
system assigns the normal protection level to normal permissions.
Signature permission are granted by system to an app only when the
app is signed by the same certificate as the app or the OS defining
the permission. The system assigns the signature protection level
to normal permissions. Runtime permissions give the app access to
restricted data such as private user data or allow the app to perform
restricted actions that more substantially affect the system and other
apps. Thus, runtime permissions are not automatically granted, since
their access could be given or denied by the user. The system assigns
the dangerous protection level to runtime permissions.

Permissions are declared by developers in the manifest file. Many
studies showed that the manifest file can be the source of many
security issues [4]: privilege escalation resulting from the over
declaration of permissions [5], communication issues resulting from
the use of undocumented message types of intents [6], etc.

III. RELATED WORKS

In this section, we resume the related works aiming to review or
evaluate the tools assisting developers in securing Android applica-
tions and we show how the current survey extends these works.

Significant effort has been made by the research community to
assess security analysis tools for software development in general,
and mobile applications more specifically. Recent works [7] and [8]
present general reviews of existing IDE plugins for detecting se-
curity vulnerabilities in software applications. In [8], the authors
selected plugins for the 5 main IDEs (Eclipse, Visual Studio, IntelliJ,
NetBeans, Android Studio) and specifically focused on 17 plugins
that provide support for input-validation-related vulnerabilities (as
described in the Common Weakness Enumeration (CWE) repository).
By reading documentations, they listed salient related features such
as their supported IDEs, applicable languages and their capabilities
in detecting security vulnerabilities. No experimentation is done
to assert the documentation sources. In [7], only five open-source
plugins were selected. These plugins were also studied in [8], except
FindSecBugs/SpotBugs (selected as it is more recent than Findbugs).
The authors evaluated coverage and performance by experimenting 14
CWE entries for the 10 top Open Worldwide Application Security
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Project (OWASP) categories, using the Juliet Test Suite3 that is a
collection of intentionally vulnerable artificial code written in C, C++,
C#, Java or PHP. They also evaluated usability by analysing the result
quality and the plugin suggestions. Both works are complementary
and present interest but none of them focuses on the Android
system, its usual programming languages (Java & Kotline) and its
vulnerabilities. In our work, we only focus on Android apps, and we
cover even a larger scope by handling a more complete and up-to-date
set of existing IDE plugins, which still miss evaluation. Consequently,
we will provide a more complete and consistent analysis by covering
a wider set of vulnerabilities and finer applicability assets.

In [9], Mejı́a et al. conducted a systematic review to establish the
state of the art of secure mobile development. They found 7 assisting
solutions for secure development. These solutions are classified
based on: 1) the type of the use (methodologies, models, standards
or strategies); and 2) the related security concern (authentication,
authorisation, data storage, data access and data transfer). After
analysing the results of this research, we consider that the number
of handled solutions is limited regarding the real existing ones in the
literature. In addition, we found that none of the presented solutions
is proposed as a tool or a plugin for secure development. In our work,
the search and the analysis processes are deeper. Indeed, we present
a higher number of assistant solutions, which are intended to be used
as IDE plugins. In addition, our classification is related to software
development life-cycle of Android applications.

Janaka S. et al. [10] presented a Systematic Literature Review
(SLR) on the Android vulnerability detection tools based on machine
learning techniques. 118 technical studies were carefully studied. The
results showed that machine learning techniques are used to increase
the security of an Android application based on three steps: 1)
considering analysing, 2) detecting, and 3) preventing vulnerabilities.
In the same line, another SLR was proposed in [11] that classifies 300
security analysis tools based on 1) the analysis dimension (malware
detection, vulnerability detection) and 2) the type of security threat
(spoofing, Denial of Service, Privilege Security, etc). Regarding these
works, the studies are too generic and there is no evaluation process
included in the study.

The closest works to our research are [12] and [13]. In [12],
Bradley et al. proposed an assessment and evaluation study of
Android applications analysis tools. The tools were categorized
based on the security issue they solve. To evaluate these tools, the
authors recruited eight computer science students with confirmed Java
programming skills for a period of 10 weeks. The students evaluated
each tool against open source applications extracted from known
benchmarks, such as DroidBench and GooglePlay. The results of each
evaluation showed the time needed to configure the requisite environ-
ment, the problem to address, the vulnerabilities to detect and the type
of analysis to perform. Many limitations related to usability, time of
execution and analysis precision were outlined as results of the study.
The assessment study proposed by Mitra et al. in [13] evaluated the
effectiveness of vulnerability detection tools for Android applications.
The authors considered 64 security analysis tools and empirically
evaluated 19 of them against the Ghera benchmarks [14]. It captures
42 known vulnerabilities, each implemented inside a single Android
application. As a result, they found that the evaluated tools for
Android applications are very limited in their ability to detect known
vulnerabilities. The sample of tools in these studies are oriented for
use by pen-testers after the application release. All of them are not
IDE plugins (except FixDroid) In addition, the evaluation process
is limited to the academic tools. In our work, we are interested in
academic and industrial free tools, which are specifically intended as
security assisting tools. We did not find existing research work that
studies precisely Android IDE plugins from a security perspective.
After analysing the existing benchmarks, we consider that Ghera
repository [14] is the most useful means for evaluating the analysis

3https://samate.nist.gov/SRD/testsuite.php

tools. Indeed, Ghera summarises a non-exhaustive list of well know
vulnerabilities related to the development of Android applications.
It provides an open source Android application implementing each
vulnerability. Moreover, having numerous test cases with single
vulnerabilities is better, in terms of evolution, than big test cases
covering several vulnerabilities. Indeed new Android releases remove
old vulnerabilities. Therefore, to conduct our study, we used the same
benchmark as Mitra et al. [13] to evaluate the list of our selected
plugins.

In summary, existing comparisons are interesting at first sight but
have limited scope or panel of tools, some are deprecated because
security evolves with the OS releases. In the next section, we propose
a new methodology to cover a large range of development and
security fields and a consistent panel of available tools.

IV. RESEARCH METHODOLOGY

This section illustrates the proposed methodology for conducting a
precise analysis and comparison study of existing tools dealing with
security concerns throughout the Android app development process.

A. Research questions
The study aims to answer the following research questions:
• RQ1 Which tools are being employed in the development of

secure Android applications? The goal is to conduct a review
of significant related works and identify tools to aid in secure
code development.

• RQ2 Is security considered in all the design activities during the
development process of Android apps? This research question
explores the coverage of security analysis solutions throughout
the entire software development life-cycle (Section V-A).

• RQ3 Which analysis techniques are being adopted by the
existing security development solutions? This research question
aims to map tools to the existing analysis techniques described
in Section V-C.

• RQ4 Are the studied IDE plugins effective in detecting known
vulnerabilities? Through this research question, we aim to
investigate the capabilities of the IDE plugins in detecting the
list of Android vulnerabilities presented in Section V-B.

B. Classification framework
A classification framework enables to structure our comparison

study by grouping the search space on axes. Four main dimensions
are explored:

• what to find as security issues;
• where to assist developers in detecting security vulnerabilities;
• when to handle the security issues during the software devel-

opment;
• how to proceed to detect security vulnerabilities.

This framework will be detailed in Section V. It serves as a
structuring basis for our analysis approach. Next, we present the
followed search methodology to identify relevant security assistance
tools. These tools will be examined to refine all the dimensions of
the presented framework.

C. Research methodology process
The proposed research methodology is depicted in Fig. 1. Three

main phases are considered in the process:
1) Tools search & selection: This phase highlights the tools used

by designers and/or developers to prevent security issues in
Android applications. To define this list, our primary source
of information were mainly:
• For academic tools, we focused on published academic

reviews [7] [8], systematic mapping studies [9] [15], and
public GitHub repositories [16] [17];

• For industrial plugins, we considered only free and
available ones such as SonarLint [18], Findbugs [19],
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Fig. 1. Proposed Research Methodology

AndroidLint [20], and Snyck [21]. We had the opportunity
to experiment them during the development of many IT
industrial projects in France. They are also listed among the
well known tools extracted from the OWASP list [3]. We also
included solutions built on top of AndroidLint [20] such as:
Lintent [22], and icc− lint [23].

• As an additional selection criteria, we included the tools that
we had the opportunity to investigate while we are building
the PermDroid tool [24] in a complementary research work.
This tool is based on formal analysis to prevent permissions
related security issues in Android applications.

To continue the selection process, we also considered the
following excluding criteria:
• Tools that are not oriented for detecting vulnerabilities during

the development process like Anadroid [25], which is used
for malware detection, and MassVet [26], which is used for
analysing packaged applications in Google-Play store;

• Tools that cannot be used within the IDE, e.g.,
ComDroid [27], which warns pen-testers of exploitable inter
applications communication errors related to the released
applications. The investigation of this kind of tools has
already been done by Ul Haq et al. in [15], and J. Mitra
in [13];

• Tools that are integrated in the IDE but are not concerned by
security vulnerabilities, like PMD [28], and CheckStyle [29].
These tools are used for checking coding standards, class
design problems, but cannot be used for identifying code
smells related to security issues;

• Industrial tools such as: Fortify [30] and Checkmarx [31],
which are well-known tools, but we were unable to install
them due to their pay access policy.

2) Shallow analysis: In this phase, we conduct an evaluation of

the IDE plugins security coverage against the list of vulner-
abilities presented in Section V-B. This analysis is shallow
because it is only performed through investigating the available
documentation and/or the published papers. Three teams are
constituted: Team1 is the first author. Team 2 is a group of
three final year students (Rémi AGUILAR, Tristan Boura and
Nicolas MEGE) of a cyber-security curriculum in Grenoble
Alpes Univ., France. Team 3 is composed of all the authors.
The dig of the documentations is performed by different teams
in three iterations. Team 2 conducted the initial investigation of
all vulnerabilities. Then, Team 1 performed a second iteration.
Finally, the results were reviewed by Team 3.

3) Deep analysis: In this phase, we perform an experimental
analysis that completes the shallow analysis. It consists of
performing an empirical evaluation of the selected tools against
a subset of vulnerabilities. The evaluation process is realized
by Team 2 led by Team 1 and reviewed by Team 3. It was
organized according to agile practices. The backlog describes
the tasks focusing on the list of vulnerabilities to check on the
plugins:
• To DO branch: contains the list of vulnerabilities to be

investigated during the week;
• Doing branch: contains the list of vulnerabilities under in-

vestigation, this helped to perform a quick feedback between
the team members;

• Review: contains the list of investigated vulnerabilities during
the week;

• Done: contains the work verified and validated.
To accomplish each task among those presented in the backlog,
we follow an ordered list of steps described in Fig. 2 and below:
a) We install the various tools and plugins on the Intellij

IDE, the goal is to check whether a tool detects a given

Fig. 2. Deep Analysis Process (experimentation part)
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vulnerability in the entry application.
b) We write or modify Android applications in order to have

vulnerable applications. The vulnerabilities are those we
selected from the Ghera repository [14].

c) We check that Android 12 does not prevent the vulnerability
(the issue has not been closed yet). It is useless to require
from a tool to detect ”old” vulnerabilities.

d) Once we ensure that the vulnerability could be exploited
on the recent Android version, we analyse the vulnerable
application by the selected IDE plugins and we report the
results.

This evaluation has been conducted only with available and free
tools such as SonarLint [18], FindBugs [19], Android−Lint [20],
lint −icc [23], and FixDroid [32]. We attempted to experiment
more tools but it was not possible due to the unavailability of
the tools. We contacted the authors of PerHelper [33], 9Fix [34]
and Vandroid [35] but we did not receive an answer yet.
Consequently, we decided to perform a second iteration on
the documentation analysis for the unavailable tools instead of
experimenting them (which was not possible). Finally, as our
study focuses on vulnerabilities that could be found at the code
level (cf. Section V-B), our deep analysis could not apply to
tools such as Sema [36], PoliDroid−As [37], Page [38] because
the inputs of these tools are respectively: GUI Storyboards
for Sema [36], Textual specification of the application for
PoliDroid−As [37] and Page [38], and not the application source
code.

In the following, we present our framework in Section V, the
selected tools in Section VI and the analysis and evaluation results
in Section VII.

V. CLASSIFICATION FRAMEWORK

The classification framework is a comprehensive analysis of the
relevant criteria of security concerns in the development cycle of
Android applications. Our classification framework contains four
main dimensions as illustrated in Fig. 3.

• IDE plugins: As a first dimension the goal is to define the
IDE plugins Where the presented security vulnerabilities will
be checked. We conducted a review of significant related
works and identified tools to aid in secure code development.
We thoroughly discussed each tool, its capabilities, and the
mitigation process during development. Finally, we determined
the vulnerabilities covered by each tool.

• Design level: This dimension explores When the selected tools
could be employed regarding the entire software development
life cycle. The study in this dimension is conducted based on
the engineering phases presented in Section V-A.

• Analysis approaches: In this dimension, we manually inspected
How the selected tools behave to analyse security vulnerabil-
ities. This enabled us to figure out the adopted analysis ap-
proaches of IDE security plugins regarding the analysis methods
presented in Section V-C such as Fuzzing, Instrumentation,
Symbolic Execution, and Formal verification.

• Security vulnerabilities: In the final dimension, we examine
the selected tools effectiveness against a non exhaustive list of
vulnerabilities that we selected from the Ghera repository [14]
(cf. Section V-B). The goal is to investigate What are the well
known vulnerabilities covered by the selected tools. In addition,
we tested each vulnerability based on corresponding attack
scenarios on recent versions of the Android OS to confirm the
associated risks.

Next, we present each dimension in detail.

A. Secure Development Life-cycle (when)

Software developers are pointed out in many exploratory stud-
ies [40] [41] as the main reason of security vulnerabilities. This is
because they often consider security as an afterthought concern. Soft-
ware developers are mostly not security experts. Considering security
requirements would need many interactions with software security
experts, hence adding delays to the core software development. Con-
sequently, these interactions are not considered in the development
life cycle like many non-functional requirements, while functional
testing starts in the requirements analysis phase by providing user
scenarios that will be the source of acceptance testing. To overcome
these limitations, software organizations have recently initiated new
software development paradigms allowing to secure the SDLC [42],
[43] (see Fig. 4 borrowed from [39]). The goal is to ensure security
requirements throughout the entire software development pipeline:
requirements analysis, design, coding, testing deployment/runtime
and decommissioning. With this regards, software development and
operations (DevOps) approaches are of high interest as one of their
objectives is to improve communication and interaction between
involved actors in the software development process.

• Specification: considering security at software specification
level is recommended at the head of the 10 proactive controls

Fig. 3. Android DevSec Classification Framework
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list of OWASP4. The goal is to ensure that the software
design meets security requirements and minimizes the risk
of security vulnerabilities. Potential vulnerabilities analysis,
security requirement and risk assessment become part of this
phase. Security requirements define or redefine features to solve
specific security problems or eliminate potential vulnerabilities.

• Design: At this level, security may be ensured based on the
following steps: (1) to conduct threat modeling by designing
potential security threats and vulnerabilities; and (2) to select
well known design patterns for fundamental aspects such as:
access control, encryption, etc.

• Implementation: Considering security during the coding phase
can help to identify and fix security vulnerabilities early in the
development process, before they become serious issues that
could be exploited by attackers. At this stage, security could be
ensured in many ways such as: implementing applications by
following secure coding best practices, using static and dynamic
code analysis, using secure libraries, and automate security
checks.

• Testing: considering security at the testing stage by performing
different types of structural and functional tests such as: unit,
instrumentation, fuzzing tests. Pentests or security tests should
also be applied at this stage.

• Deployment & Post-Deployment: at this stage, operational se-
curity processes and tools are needed. In particular, they include
testing build routines and user acceptance testing.

One of the first approaches that have been proposed to consider
security needs in the software development lifecycle is the Security
Development Lifecycle (SDL) by Microsoft. SDL defines twelve
stages, in which objective is to consider security throughout the whole
development process. Among these stages, education and aware-
ness, security best practices, security documentation, etc. have been
highlighted. Today, these security specific stages are implemented
throughout security practices.

OWASP has strengthened the Software Development Lifecycle
with a Software Assurance Maturity Model (SAMM) that encom-
passes security aspects throughout the development process. In the
OWASP SAMM model, security governance is considered as a
specific stage and highlights, as in the Microsoft Secure Development
Lifecycle, the importance of training and education. Traditionally, IT

4https://owasp.org/www-pdf-archive/OWASP Top 10 Proactive
Controls V3.pdf

people were in charge of security testing, once the application has
been released. Such delayed security tests are no longer sufficient in
the nowadays context, with highly interconnected applications and
numerous security breaches.

Thus, DevSecOps approaches have been introduced. At the core
of DevSecOps is the principle of keeping security as a priority and
adding security controls and practices into the DevOps cycle [44]. All
these initiatives that aim to handle security aspects put the light on
the methodological concerns including models, processes and people,
tools and automation.

In the context of Secure Android Apps Development Life-Cycle,
models are those of the vulnerabilities, actors are mobile app devel-
opers, process, tools and automation are implemented and integrated
in IDEs. We will detail these aspects in the next sections.

B. Security vulnerabilities related to the development process
(what)

This section introduces the identified vulnerabilities in the recent
Android versions and illustrates the attack scenarios we will imple-
ment.

1) Identified Vulnerabilities: In this work, we are mainly
interested in security vulnerabilities (Vi) that could be mistakenly
introduced by developers and exploited to craft attacks (Ai). Based
on available benchmarks such as Ghera [14] that contains open source
applications implementing vulnerabilities, we started by considering
vulnerabilities (V), which belong to the following class of attacks (A):
(i) privilege escalation, (ii) data injection, (iii) code injection, (iv) in-
formation leaks and (v) components hijacking. These vulnerabilities
are summarised in Fig. 5. Below, we briefly describe vulnerabilities
for each class.

1) A1. Privilege escalation (PE): this attack occurs when an appli-
cation with less permissions gains access to the components of
a higher privileged application. Situations where such an attack
can occur are mainly related to:
• A1.V1. The use of PendingIntent with empty base action:

a PendingIntent object is a token that is given to a foreign
application to allow it to execute a predefined action. When
a PendingIntent is sent, the receiver application will execute
the corresponding action using the sender permission. If a
malicious app receives a PendingIntent whose base action is
empty, then the malicious app can escalate its own privilege,

Fig. 4. Secure Software Development Life-cycle (SSDLC) [39]
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set an action and execute it in the context of the benign app
that sent the PendingIntent.

• A1.V2. Fragments Dynamic Load: Java reflection is used
to dynamically load fragments into an activity, where a
fragment is a part of a user interface. But, the fragment
name could be provided by a malicious application to make
fragment injection attacks. For example, an activity that
accepts fragment names as input from other components, and
loads the fragment dynamically into the activity is vulnerable
to executing a fragment provided as input by a malicious app
on the device.

• A1.V3. High Privileged component export: If an app has the
permission to perform a particular privileged operation and
if that operation is performed via an app component that is
exported for public consumption, then a malicious app can
invoke the component method that performs the privileged
operation and make the app perform the operation on behalf
of the malicious app. This is a privilege escalation attack or
a confused deputy attack.

• A1.V4. Permission over-privilege: Android applications priv-
ileges are managed through the concept of Permissions. A
Permission is declared on the XML manifest configuration
file as an XML attribute. Declaring a Permission on the
Manifest file means that the application needs this permission
to access a system resource(s) such as: CAMERA, GPS, etc.
The security design flow here is when developer mistakenly
declares permission(s) on the manifest file that are not
necessary for the application functioning. Malware could gain
these permissions to create harmful actions.

• A1.V5. Permission Enforce: If an application uses the
method enforcePermission to grant permission at run-time,
it won’t throw a SecurityException when another component
in the same process was granted permission earlier. Thus
a malicious application could get privilege permission. The
exploit of the attack scenario related to this vulnerability does
not work on Android 12, 11 and 10 (API 29..33) but works
on Android 9 (API 28).

• A1.V6. EnfroceCallingOrSelfPermission: When the method
enforceCallingOrSelfPermission is used to grant permission,
it will not throw further SecurityException from the moment
it has already granted one permission to another application,
meaning a malicious app could ask a permission after a
benign app, and get that permission granted.

2) A2. Data injection: Data injection is a type of attack where
malicious actors are able to inject malicious data into a software
system. It has serious consequences on sensitive data, access
control, and quality of service. In Android ecosystem, this can
occur through the exploitation of various vulnerabilities, such
as:
• A2.V1. Ordered broadcasts: As mentioned in Section II, a

broadcast is a component that allows an application to send
and/or receive messages (intents) to/from the applications
and/or the system. Each component could be registered to a
broadcast to be notified whenever this broadcast is generated.
On its configuration, a broadcast receiver can be declared as
either ordered or non-ordered. In non-ordered mode, Android
will deliver all broadcasts to all receivers at the same time.
On the other hand, ordered broadcast receivers define a
priority of transmission. The receiver with higher priority
responds first and forwards it to lower priority receivers.
Hence, a malicious receiver with high priority can intercept
the broadcast, change its content, and forward the malicious
payload to the receivers with low priority.

• A2.V2. Sticky broadcasts: A sticky broadcast in Android is a
broadcast message that is saved by the system and sent to all
registered receivers. This type of broadcast can be potentially
dangerous because a malicious receiver can modify the
message and broadcast it again, causing all receivers to
receive the updated message. Sticky broadcast could be sent
using the method sendStickyBroadcast(), which is deprecated
in the latest version of Android. Starting from Android 8.0
(Oreo), the use of sticky broadcasts is discouraged.

• A2.V3. Weak Checks On Dynamic Invocation: to invoke
any provider-defined method. Android does no permission
checking on this entry into the content provider. Whenever
the developer calls this method without doing its own permis-
sion checks, unauthorised components are allowed to interact
with the content provider. So, apps that use the call() in
the Content Provider API are vulnerable to exposing the
underlying data store to unauthorized reads and writes.

• A2.V4. Uncontrolled External Storage Reads are used to
store application data with a public share. If an application
reads from any file stored in External Storage, even if the
file is in the private storage directory, then the application
has no control over the file it is reading. If a malicious app
changes the file being read by a victim application, then this

Fig. 5. A taxonomy of Android vulnerabilities
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one will unknowingly read malicious content.
3) A3. Code injection: consists of injecting potentially malicious

code that is after that interpreted/executed by the application.
Situations where such an attack can occur are mainly related
to:
• A3.V1. Dynamic code loading: Since the apps can load

classes from local archives (via PathClassLoader) or remote
archives (via URLClassLoader), malicious actors can change
such archives and affect the behavior of apps that use the
archive. So, Android apps that rely on dynamic code loading
without verifying the integrity and authenticity of the loaded
code may be vulnerable to code injection.

• A3.V2. Dynamic invocation with weak checks: Android al-
lows developers to share data across apps through the Content
Provider API. The Content provider API provides a method
call() to call any provider-defined method. But, Android has
no idea whether call will read or write data in the provider,
so it cannot enforce those individual permissions. Therefore,
malicious apps with read and without write permission can
write data through the Content Provider.

4) A4. Information leak: It occurs when an application private data
are accessed by unauthorised applications or when developers
improperly use the cipher modes (ECB, CBC) and AEAD
(Authenicated Encryption With Additional Data) cipher like
GCM (Galois Counter Mode) or by exploiting weaknesses in
random number generation (RNG) process. So, an attacker
could be able to guess the encrypted message. Situations where
such an attack can occur are mainly related to the use of:
• A4.V1. Block Cipher algorithm in Electronic Codebook

Block (ECB) mode: ECB mode leaks information about the
plaintext because identical plaintext blocks produce identical
ciphertext blocks, it does not hide data patterns well. An
attacker could be able to guess the encrypted message. So,
applications that use a block cipher algorithm in ECB mode
for encrypting sensitive information are vulnerable to leaking
sensitive data. Thus, ECB is not recommended for use in
cryptography protocols.

• A4.V2. A block cipher algorithm in cipher block chaining
(CBC) mode: The greatest advantage CBC has over ECB is
that, with CBC mode, identical blocks do not have the same
cipher. This is because the initialization vector adds a random
factor to each block; hence, the same blocks in different po-
sitions will have different ciphers. But, applications that use
a block cipher algorithm in CBC mode with a non-random
initialisation vector for encrypting sensitive information are
vulnerable to leaking sensitive data.

• A4.V3. Applications that store the encryption key in the
source code are vulnerable to leaking encrypted information.
An attacker with decompiler and static analyzer tools can
identify the encryption function and find encryption key.
Someone who has the assembly code will even be able to
call Decrypt directly, not bothering with extracting the key.

• A4.V4. Ability to load files from internal storage (private
access) to external storage (public access). Android allows
apps to save data in files. These files can be stored in Internal
Storage or in External Storage. Files stored in Internal Stor-
age are private to the app. External Storage can be accessed
by all apps that have permission to access ExternalStorage.

5) A5. Android components hijack: this attack can occur in the
following situations:
• A5.V1. Activities that start in a new task: This situation

occurs when the user can navigate from a benign activity A to
a malicious activity M by pressing the back button, instead
of navigating to an intended benign activity C. Therefore,
malicious activity M will hijack benign activity C.

• A5.V2. Applications with low priority activities: If a mali-
cious activity has a higher priority than a benign one, then it
will appear before the benign activity, making it more likely
for the user to choose the malicious activity over the benign
one.

• A5.V3. Pending Intent with implicit base intent: If base
intent is an implicit intent then, when the pending intent is
performed, it can be intercepted by a malicious application.
If the implicit intent has sensitive information in it, then it
will be leaked.

As we can see, developing Android applications without a prior
knowledge and/or a specific focus on security aspects could lead
to critical security attacks. It is worth-noting that the above list of
vulnerabilities is not exhaustive, and it is intended to be extended in
future research.

2) Attack scenario: To clearly outline the exploits utilizing these
vulnerabilities, we provided, based on Ghera repository a scenario of
attack related to each vulnerability. Each scenario was documented
using Gherkin, a language supported by Martin Fowler5 for outlining
functional software test scenarios. In this Section we describe as
an example the attack scenario related to vulnerability A1.V1. The
remaining scenarios can be found in the technical report [45].
Given A simple application called BenignApp
And BenignApp has a module called BenignAppPartner
And BenignAppPartner implements a broadcast receiver
When BenignApp sends a pending intent with empty action to the
BenignPartner
Then BenignAppPartner receives this Pending Intent, then launches
a remote service that resides on the benign app (until now, it is a
normal behavior)
When MalicousApp intercepts through its broadcast receiver the
Pending Intent sent to the BenignPartnerApp
Then MaliciousApp manipulates the empty action of this Pending
Intent
And MaliciousApp executes the action it wants into the Benign app’
service by escalating its own permission

In order to test A1.V1, we use three apps: Benign, BenignPartner,
and Malicious. Benign is a benign app that sends an empty
pending intent to BenignPartner, which has a broadcast receiver
MyReceiver.java that takes the pending intent and starts a service
MyService.java in Benign app. Malicious app has a broadcast re-
ceiver MyReceiver.java that intercepts the pending intent sent from
Benign app and starts an internal service in Benign that performs
some sensitive operation. This service is not exported and is meant
for internal use within the benign app. However, because of the
empty pending intent intercepted by the malicious broadcast re-
ceiver, Malicious app can escalate its own privilege and can start
MySensitiveService eventhough it is not supposed to.

C. Security analysis Approaches and Tooling (how)
Determining the effectiveness of each security analysis tool in de-

tecting known vulnerabilities is closely related to the analysis method
used by the tool. Hence, in order to examine the studied IDE plugins
effectiveness based on their analysis techniques, we describe in this
section common analysis approaches used in software engineering.
As summarized in Table I, these approaches are generally classified
into 3 groups: Static, Dynamic, and Hybrid analysis.

• Static analysis approaches. Static analysis inspects the pro-
gram without running it. It examines source or compiled binary
code against coding flaws. Generally, it is used to identify
potential bugs, vulnerabilities, or other security issues. Many
automated tools are able to perform static code analysis to report
security problems related to Android applications and systems,

5https://martinfowler.com/bliki/GivenWhenThen.html
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such as: (1) ComDroid [27], which statically analyses DEX code
of third party Android applications to detect inter application
communication vulnerabilities: Broadcast theft, Activity and
Service hijacking, and Broadcast injection; (2) Lintent [46],
which is based on formal verification techniques (formal cal-
culus) to reason about the application behaviour and prevent
security attack surfaces from privilege escalation and commu-
nications; (3) FlowDroid [47], which tracks the flow of data
between different components of an Android app. Starting from
an Android application, it constructs a full control flow graph.
This graph can then be used to identify potential security
issues based on data tainting; (4) Arcade [48], NatiDroid [49]
and Pscout [50] that perform static analysis on the Android
framework to build a permission mapping used for detecting
over-privileged applications.
Several techniques could be used to perform static analysis in
Android application security analysis, such as formal verifica-
tion and symbolic execution:
– Symbolic Execution can be used to simultaneously explore

multiple paths that a program could take under different
inputs. This allows sound analyses that can give strong guar-
antees on the checked property. Rather than taking on fully
specified input values, the technique abstractly represents
them as symbols, resorting to constraint solvers to construct
actual instances that would cause property violations [51].
These symbols will be used along the execution path to
determine the path condition. A path condition is a first
order logic formula that describes the conditions satisfied by
the branches taken along that path. The mapping between
variables and symbolic expressions or values will be stored
to determine if the property is satisfied at the end of the
the execution path. Klee [52] is a symbolic execution tool
built on the LLVM compilation framework that automati-
cally generates test cases for high coverage of complex and
environmentally intensive programs. Symbolic Execution can
be conducted on the basis of some pre-extracted models
to ensure the reachability of some branches [53]. Many
approaches, such as: Scandroid [54], Cassandra [55], etc.,
analyse data-flow to formally check various system level
information-flow properties.

– Formal Verification. Formal methods are among the most
used techniques in Android security analysis. They cover
many application areas such as: security protocols, the im-
plementation of access control policies, intrusion detection
and even source or binary code security. Generally, they are
categorized in three families as presented in [56]: 1) Specifi-
cation and Process algebra where the approach that deals with
the system behavior is algebraic and axiomatic. 2) Model
checking or Property checking, which is a model-based spec-
ification technique that aims to develop visual models for the
specified system and analyzing their properties. 3) Theorem
proving that is an axiomatic technique, in which the system
is expressed as a set of axioms and a set of inference rules,
and the desired property is expressed as a theorem to be
proved. For Android security, this technique has been widely
adopted such as in [57] for mobile malware analysis based
on model checking. Theorem proving techniques provide
a high level of code coverage. However, they suffer from
over-approximation results.

Static analysis approaches have some limitations due to un-
decidability problems [58]. It is impossible to determine if a
program will terminate for a given input. Another limitation of
static analysis tools is the fact that they report problems that
are not really bugs in the code [59] i.e. they identify incorrect
behaviors that cannot occur during any run of the program (false
positives).

• Dynamic analysis approaches. In contrast to static analysis,
dynamic analysis is performed at run-time. The goal is to
identify problems that cannot be detected by static analysis, such
as: race condition, performance, and concurrency problems. In
comparison to static analysis, dynamic analysis provides sound
results. It does not require an access to the source code, it traces
a binary code to understand the system behaviour.
Many automated tools have been proposed to perform dynamic
security analysis on Android applications and system, such as:
TaintCheck [60], LIFT [61], Valgrind [62], just to name a few.
They instrument the bytecode to control the information flows
in the program and detect security attacks. Thus, they suffer
from significant performance overhead that does not encourage
their use in real-time applications.
Several techniques could be used to perform dynamic analysis
in Android application security analysis, such as fuzzing and
instrumentation:
– Fuzzing is an automated technique used for software testing

and security. The main idea behind fuzzing is to use randomly
generated inputs to fuzz the software under analysis in order
to find bugs or vulnerabilities. The set of inputs are called
Oracle. In software testing, fuzzing could be performed based
on different methods, such as: (1) generation-based fuzzing
that involves generating inputs from scratch; (2) mutation-
al-based fuzzing (called also feedback-based fuzzing) that
modifies the existing inputs during the testing process, in
order to redirect the execution paths; and (3) model-based
fuzzing that constructs a model for the input data, then
generates inputs that conform to that model.
Fuzzing could be conducted dynamically. It has been used
in significant works analysing security vulnerabilities and
attacks in Android applications. The results showed that it
could cover numerous boundary cases using invalid data
as application input to better ensure the absence of ex-
ploitable vulnerabilities [63]. Among the existing tools al-
lowing to apply fuzzing for Android security analysis we
found: (1) Jazzer , which is a coverage-guided fuzzer for the
Java Virtual Machine (JVM). It works on the bytecode level
and can be applied directly to compiled Java applications
and to targets in other JVM-based languages such as Kotlin
or Scala. It is composed by a native binary that links in
libFuzzer and runs a Java fuzz target through the Java Native
Interface (JNI) and by a Java agent that runs in the same
JVM as the fuzz target and applies instrumentation at run–
time. These fuzzers can often find out previously unknown
vulnerabilities [64]; (2) Dynamo [65] uses mutational based
fuzzing to provide inputs that fuzz the Android framework
code related to checking the API access control. This process
helps to construct a permission-mapping allowing developers
to identify over-privileged applications.
Despite the advantages that fuzzing can offer it suffers from
some limitations such as: 1) Low code coverage due to the
fact that the executed paths are related the selected inputs;
2) The set of inputs could be computationally intensive; and
3) Inadequate inputs generation, which can result in a high
number of false negatives.

– Instrumentation. Generally, fuzzing is combined with in-
strumentation techniques to perform dynamic analysis. In-
strumentation provides the possibility to modify a program
under analysis at run-time, and add some functionalities
such as: logging messages or new instructions in order to
understand the software behaviour.
There are several toolkits, e.g., Frida [66], ARTIST [67],
DaVinci [68] that are used for dynamic instrumentation in
Android system. Frida allows developers, reverse-engineers,
and security engineers to inject snippets of JavaScript into
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TABLE I
SOFTWARE ANALYSIS APPROACHES: STRENGTHS, WEAKNESSES, AND TOOLS

Approach Technique Pros Cons Tools
Static Analysis Formal Verification, Sym-

bolic Execution
Efficient, Scalable, High
Code coverage

Decidability, Low Sound-
ness

ComDroid, Lintent ,
FlowDroid, NatiDroid

Dynamic Analysis Fuzzing, Instrumentation,
Debugging

Race Condition, Concur-
rency, Performance

Time Consuming,
Resource-Intensive

Frida , Dynamo,
stowaway

native Android apps to monitor and debug running processes.
ARTIST is an open source instrumentation framework for
Android’s apps and Java middleware. It is based on the new
ART runtime and the on-device dex2oat compiler to monitor
the execution of Java and native code. ARTIST modifies code
during on-device compilation. In contrast to existing instru-
mentation frameworks, it preserves the application’s original
signature and operates on the instruction level. DaVinci is an
Android kernel module for dynamic system call analysis. It
provides pre-configured high-level profiles to easily analyze
the low level system calls.
The instrumentation adoption faces also some challenges.
First, adding some functionalities to a software system
will add significant complexity, which may cause bugs and
crashes. In addition, there is a high risk of execution in-
terference between the real and the added code. Finally,
instrumentation can have a significant impact on performance
because the added code can slowdown execution time.

The dynamic analysis limitation is that it consumes resources
and has difficulty covering all execution paths, so it generates
false negatives.

• Hybrid analysis approaches. Hybrid analysis combines and
benefits from the advantages of static and dynamic analyses.
Regarding the provided tools performing static or dynamic
analysis, fewer tools combine both of them due to the dif-
ficulty of combination. For instance, AM Detector [69] is an
automatic malware detection prototype system based on attack
tree model. This approach employs a hybrid static-dynamic
analysis method. Static analysis tags attack tree nodes based
on application capability. It filters the obviously benign appli-
cations and highlights the potential attacks in suspicious ones.
Dynamic analysis selects rules corresponding to the capability
and conducts detection according to run-time behaviours. In
dynamic analysis, events are simulated to trigger behaviours
based on application components, and hence it achieves high
code coverage.

Overall, static and dynamic analysis are complementary ap-
proaches. We presented in this section the commonly used techniques
for detecting security issues related to Android applications. Starting
from the presented strengths and weaknesses of each technique, we
investigate in the coming section the based-analysis approach of the
selected IDE plugins in order to study their effectiveness in detecting
the selected vulnerabilities.

VI. SELECTED TOOLS (RQ1)

The result of the Tools search & selection (phase 1) of the research
methodology is a set of 16 IDE plugins that match the selection
criteria provided in Section IV-C. This set is an answer to RQ1. The
list of selected tools is summarised in column 1 of TABLE II. In the
reminder of the section, we overview these plugins.

• Curbing [5] is the first proposed tool assisting developers
in utilizing least privilege principle when developing Android
applications. It notifies developers if one or more unnecessary
permission(s) is (are) declared unintentionally by the developer.
At the time when Curbing was developed in 2011, there was

no ready data-set of Android application source code. So, the
tool was analysed empirically,

• SonarLint [18] is a popular linter that is largely used in
industrial IT projects. It contains a large set of code smells
for many programming languages, including those for Android
security. The tool can also provide suggestions for remediation.
SonarLint performs static code analysis (SAST) by whether
inspecting the program AST, or using data taint propagation.
It also performs dynamic analysis (DAST) even if it is still
limited to few dynamic functionalities such as: Memory Error
Detection, Invariant Inference, Concurrency Error, which may
cause race-condition, resource/memory leak, etc. SonarLint can
also be used in many ways: IDE integration (Eclipse, IntelliJ,
Android Studio, etc.), or through DevOps pipeline (github,
jenkins, etc.),

• FindBugs [19] provides static code analysis to look for bugs
in Java code from within IntelliJ IDE. For more than 200 bug
patterns related to different topics, such as performance, cor-
rectness, bad practices, FindBugs also provides the opportunity
to investigate the code security, and detect the malicious code
vulnerability. As a code review tool, it investigates the AST of
the program against predefined rule patterns. The last available
version (2016) of FindBugs is not compatible with the final
version of IntelliJ. Since 2016, FindBugs is integrated into
FindSecBugs [70] tool.

• Snyk [21] is one of the leading industrial vulnerability analysis
tools. It has a large open-source database of the common vulner-
abilities related to different programming languages including
Java and Kotlin for Android application development.

• Android-Lint [20] (also called Lint ) is the official analysis
tool provided by Google for Android application development.
It checks common issues in an Android project’s source code
and provides suggestions for improving the code’s quality and
security. Lint offers a robust API that can be utilized to create
custom Android lint checks for additional analysis rules. Several
tools based on this API have been found in the literature.
– Lintent [22] is a security analysis plug-in integrated with the

Android development tools suite. Based on a static analysis
approach, it implements a static formal calculus based analy-
sis to reason on the Android inter-component communication
API. Lintent analyzes Java source code through reasoning
about types. The goal is to statically prevent privilege esca-
lation attacks on well-typed components. Lintent also detects
over-privileged application based on the permission mapping
described on the corresponding readme description file of the
tool in github 6. To analyse the program elements, Lintent
is built on top of Android−Lint library,

– icc-lint [23] called also AndroidICC. Like Lintent and 9Fix
its security checker is based on Lint Checker. It serves to
analyse Android application source code and reveals vulner-
abilities related to inter-component-communications. These
vulnerabilities are extracted from Ghera repository. This tool
is open-source and ready for use,

– 9Fix [34] is another recent plugin supporting secure program-

6https://github.com/alvisespano/Lintent
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ming. It inspects the vulnerable code and instantly suggests
an alternate secure code for developers. The security proper-
ties covered by 9Fix are classified as general security code
smells related to different topics such as password stealing,
the use of vulnerable cryptography algorithms, SSL and TLS
communications, just to name a few. 9Fix is integrated as an
Android Studio plugin.

• PerHelper [33] is an IDE plugin that guides developers to
declare permissions automatically and correctly and identify
permission-related mistakes, such as over-privilege and under-
privilege permissions, unprotected APIs, etc. By inferring the
candidate permission sets, PerHelper helps to set permissions
more effectively and accurately.

• VanDroid [35] is an Analysis tool based on Model Driven
Reverse Engineering approach (MDRE). In a first step, Vandroid
analyzes the code source of the application based on its Graphi-
cal Abstract Syntax Tree (GAST), then generates a correspond-
ing security model that facilitates and improves accuracy of
the analysis. As a second step, it launches a formal verification
process that identifies security risks related to the Android com-
munication model. The formal verification in Vandroid checks
the satisfaction of specified security properties in the generated
model. Vandroid is provided as an Eclipse plugin, which limits
its adoption on the current Android development projects. We
contacted the corresponding authors of Vandroid by email in
order to gain access for experimenting the tool. The tool cannot
be used in new IDE supporting Android development such as
IntelliJ and Android Studio.

• Sema [36] is a new methodology for designing secure Android
applications from an app’s storyboards. Storyboards are used
as state-transition diagrams. The states specify the screens of
the application, and the transitions present the operations to be
launched to transit from one screen (state) to another one. The
goal of Sema is to help application designers to care about
security at the design stage. While specifying the application
functioning and designing storyboards, Sema has the ability to
check security properties at this stage based on formal analysis.
Finally, Sema is able to generate a secure source code starting
from the designed storyboards. The tool is open-source and can
be integrated in Idea IDEs such as IntelliJ and Android Studio.

• PoliDroid-As [37] is a tool allowing Android developers to
check if the created code adheres to privacy security policies.

These policies are not created by developers but by legal experts
using natural language. The main contribution of PoliDroid−As
is to automatically align the code source of the application
to the specified security policies. By using natural language
processing algorithms, PoliDroid-As maps key phrases existing
in the documentation of the used APIs to low-level technical
terminology in the API.

• Page [38] is a tool that supports developers creating natural
language privacy policies during the development process. It
is proposed as an Eclipse plugin to document privacy tasks
and notes during the construction and testing of the application.
There is no automatic alignment between the specified textual
policies and the source code of the application. The goal of
the tool is just to make an internal IDE repository to remind
the developers checking the validity of these policies after each
code evolution.

• PermitMe [71] has the same goal as Curbing, Perhelper and
Lintent . PermitMe is a code review tool (CR) used to notify
developers when they intentionally include extra permissions
in their apps. By statically investigating the program Abstract
Syntax Tree (AST). PermitMe decides whether a declared
permission is used in the program or not. If at least one
permission is not used, then the application is flagged as over-
privileged.

• Coconut [72] has been developed on 2018 as an IDE plugin for
Android Studio. It helps developers to handle privacy based on
the concepts of annotation. Through heuristics (H), Coconut de-
tects the code that handles personal data, and asks the developer
to add an annotation that describes how and why the personal
data is used. To simplify the handling of annotations, Coconut
proposes a quickfix to automatically generate an annotation
skeleton with several fields (i.e., ‘dataType‘, ‘frequency‘). These
fields could be filled automatically if they could be inferred
from the code, or manually in the opposite case. Filling out the
annotation makes the developers think to the use of private data,
such as examining the collections manipulating the private data,
checking that there is a legitimate reason to collect the private
data, etc. Coconut is available and open-source.

• FixDroid [73] is an Android Studio plugin (it is not available
on IntelliJ). It provides helpful security alerts, explanations and
quickfixes whenever possible. It is updated periodically to add
new features and fix software bugs.

TABLE II
IDE SECURITY ANALYSIS TOOLS FOR ANDROID APPLICATIONS

Tool Name Year SDLC Focus Approach Method Availability AV
Curbing 2011 Dev Permission Over-privilege Static, Manual AST No 2.2
Lintent 2013 Dev Communication Static FM Yes 4.x
PermitMe 2014 Dev Permission Over-privilege Static AST No 5.0
Page 2014 Spec Privacy policies Static NLP No -
Vandroid 2018 Design, Dev ICC Static FM No 9.0
AndroidLint 2019 Dev General Code Smells Static AST Yes all
Sema 2019 Design General Security Properties Static FM Yes 10
PerHelper 2019 Dev Permission Over-privilege Static AST No 10
PoliDroid−As 2017 Spec Privacy security policies Static NLP No 8
9Fix 2021 Dev General code smells Static AST No 12
SonarLint 2021 Dev General code smells Hybrid DAST Yes 12
Find Bugs 2016 Dev General code smells Static AST Yes 7
Cocunut 2018 Spec Privacy policies Static H No -
FixDroid 2017 Dev General Code smells Static AST Yes 7
icc− lint 2019 Dev ICC Static AST Yes 10
Snyk 2014 Dev General code smells Hybrid DAST Yes all
1 AST: Abstract Syntax Tree; CR: Code Review; FM: Formal Methods; Spec: Specification;
2 SD Stage: Software Development Stage; AV: Android Version; NLP: Natural Language Processing;
3 DAST: Dynamic Application Security Testing
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The following section presents the results of the analysis process.

VII. ANALYSIS AND EVALUATION RESULTS

We analysed the selected tools according to the classification
framework of section V. The results are summarised in Fig. 2, and
the technical report [45]. provides a detailed description for the
performed analysis and results. As mentioned in Section IV-C, we
proceeded in two steps, which results are exposed below.

A. Shallow analysis results
This section presents the analysis results deduced from reading

available documentation, communications and research articles. A
global overview is presented in TABLE II.

For each studied tool, we identify the software development stage
(SDLC stage), the type of covered security vulnerabilities (Focus),
the analysis approach (Approach), the analysis method (Method) and
its availability (Availability). We also identify the Android Version
(AV) attribute that represents the version upon which the tool is
constructed. This will help to measure the tools updates.

1) Considered development phases for security analysis
(RQ2): It is broadly admitted that security concerns should be
handled as early as possible during the application development
lifecycle. Secure development life-cycle (SDLC) methodologies have
been adopted by many software organisations, e.g., Microsoft through
their Microsoft Security Development Lifecycle (SDL) [74], OWASP
with their SDLC and Software Assurance Maturity Model (SAMM)
processes [75], etc. The following outcome of our work aims at
clearly identifying development phases during which studied tools
could be used, thus helping developers in hardening developed
applications with regards to security requirements. In our study,
most identified tools can be used at one or several of the following
development phases: specification, design, coding and testing, as
described below.

• Specification: during this phase, security policies are acquired
usually from natural language descriptions, stating mainly
how private data should be managed. Such descriptions could
be legal documents. As a consequence, application devel-
opers need to clearly state how applications collect, use,
and share personal information, introducing relevant security
policies in the design of the application. As shown in TA-
BLE II, PoliDoid−AS, Page, Cocunut are used in the specifi-
cation phase.

• Design: threat modelling should be part of the application
design in order to allow designers to analyse the designed
application architecture for potential security issues, that could
be then mitigated. During this phase, issues related to the use of
third-party components or libraries could also be handled. As
shown in TABLE II, Sema through storyboards, and Vandroid
through modelling are used in the design phase.

• Coding & Testing: analysis approaches could be
used during this phase to assess the application code
with regards to security vulnerabilities. As shown in
TABLE II, Curbing, Lintent , PermitMe, Vandroid, 9Fix,
AndroidLint, PerHelper , SonarLint , FindBugs, FixDroid,
icc− lint , Snyk are used in the coding and testing phases.
We combined the coding and testing phases here because we
consider only solutions integrated in the IDE. Although coding
and testing are two separate sub-processes in the software
development life-cycle, in the context of our study, testing
solutions serve only as a means of code review to identify
coding flaws within the IDE. This classification does not
include penetration tests or application post-deployment tests.

Referring to the results displayed in TABLE II, we classified the
existing plugins by development activity. Fig. 6 maps identified tools
with design phases where they can be used advantageously with
regards to security enhancement during the development life cycle.

Fig. 6. Classification Per Design Level

On the one hand, we found that most of IDE plugins are considered
at the coding phase of the development life cycle. They act as code
review tools notifying developers about their ”unconscious” security
issues. On the other hand, few works allowing security checks at
specification, design and testing phases have been proposed. As a
consequence, efforts towards filling this gap are expected and could
allow significant enhancement in tackling security issues.

2) Used security analysis approaches (RQ3): We found that
88% of the adopted analysis approaches are static. AST analysis and
formal methods are among the most used analysis methods by our
sample of plugins.

• Static AST Analysis: Most of IDE plugins investigate statically
the program Abstract Syntax Tree (AST) provided by the IDE
such as SonarQube [18], Findbugs [19] and AndroidLint [20].
The goal is to extract information that enables to check the
validity of predefined security properties patterns. Other tools,
such as PerHelper [33], PermitMe [71] and Curbing [5] also
investigate the AST to find the declared permissions in the
application and the list of API calls requiring those permissions.
The goal is to detect extra declared permissions that are not
associated to any API call.

• Formal Methods: Other tools, such as Lintent [46] analyse
the data-flow to formally check information flow with regards
to security properties. Lintent [46] uses the formal calculus for
reasoning on the Android inter-component communication API,
and type and effect to statically prevent privilege escalation
attacks on well typed components. In the same line, Sema [36]
uses formal verification of security properties in order to
generate a secure code.

As a consequence, when comparing our observations with the security
analysis methods presented in Section V-C, we found that only some
static ones are adopted by studied plugins. Dynamic and hybrid
approaches are not referred despite their advantages. We underline
this point in detail in Section VIII.

3) Considered security vulnerabilities (RQ4): The visual
matrix presented in Fig. VII-A2 summarises the plugins capabilities
in analysing the considered security vulnerabilities (cf. Section V-B).
The final results of the analysis (Fig. VII-A2) cover all the vulnerabil-
ities of all the selected IDE plugins. For each category of attacks, we
present which associated vulnerabilities are covered (or not) by the
tools. We used dark colors to specify the results obtained following
an experimental evaluations, while light colors were used to indicate
results obtained from a deep analysis of the corresponding tool’s
documentation. Green colors are associated to the True Positive (TP)
cases. This means that the tool has detected the vulnerability that
actually exists in the application. Red colors are associated to the
False Negative (FN) cases. This means that the tool has not detected
the vulnerability that actually exists in the application.

In this first analysis iteration, we classify the analysis difficulty in
three levels:

• Tools that are specialised in a specific and unique security
concern were easy to investigate. Based on the corresponding
published papers for the plugins: Curbing [5], PermitMe [71]
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and PerHelper [33]. They are clearly specialised in detecting
privilege escalation attacks (A1) resulting from the extra use
of permissions (V4) in the application. For other tools such as
9Fix [34], Fixdroid [73], and icc− lint [23], the list of covered
vulnerabilities was explicitly declared in the related paper. So,
it was easy to know that these tools detect A3.V1 vulnerability.

• Tools specialised in detecting a specific type of attacks but the
number of covered vulnerabilities is too large, are less easy
to investigate. As an example, Lintent [46] could theoretically
detect a large number of vulnerabilities as it formalises a notion
of safety against privilege escalation. Based on the related pub-
lished paper, it was not easy to decide whether the tool detects
the vulnerability or not as the described formal model was too
general. Fortunately, we found the list of covered vulnerabilities
mentioned in the corresponding git repository [22]. Thus, we
found that the tool covers:
– EmptyPendingIntent A1.V1 because the authors declares

explicitly that the tool covers secrecy of pending intents,
– Over-privilege application A1.V4 because it contains the

permission mapping for some Android APIs,
– The remaining vulnerabilities related to privilege escalation

A1.V2, A1.V3, A1.V5, and A1.V6 are also covered following
the github readme file where it is declared that the tool covers
attack surfaces for privilege escalation,

– It also detects A5.V3 with Vandroid related to component
hijacking.

For Page, Coconut and POLIDROID−AS, the inputs are secu-

rity requirements specified by natural languages, so they are not
specialized in detecting our list of vulnerabilities.
For Sema [36] it is explicitly declared that it covers all the vul-
nerabilities present in Ghera. However, we could not experiment
the tool as the inputs of Sema are graphical storyboards and not
source code.

• Finally, for industrial tools such as AndroidLint [20],
SonarLint [18], Snyk [21], and findbugs [19], it was hard
to investigate the covered vulnerabilities based on the docu-
mentation. The scope of these tools is too general and the
documentation is too large. We found that the following vul-
nerabilities: V1.A2, A4.V1, A4.V2, A4.V3 are covered by
SonarLint. For the remaining properties, we did not find any
information indicating whether they are covered by these tools
or not.

After performing a long analysis process of the documentation,
we decided to confirm the obtained findings by a second analysis
iteration, in the form of experimental work for the available tools. For
the unavailable tools, a second analysis iteration of the corresponding
documentation is performed by another team member. Details of this
second analysis are explained in the next subsection.

B. Deep analysis results
The objective of this part of our study is to confirm shallow analy-

sis results with an experimental evaluation using Android application
benchmarks. Compared to our previous work [1], we extended our
deep analysis process to cover all vulnerabilities related to the 5

a true positive confirmed through the tool documentation without experimentation
a true positive confirmed through the tool documentation with experimentation
a false negative confirmed through the tool documentation without experimentation
a false negative confirmed through the tool documentation with experimentation

Fig. 7. Analysis Results - IDE plugins effectiveness in detecting known vulnerabilities
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attack families: Privilege escalation, information leaks, data and code
injection, and component hijacking.

We can observe that the deep evaluation confirmed that the follow-
ing tools: Curbing [5], PermitMe [71], and PerHelper [33] are specif-
ically oriented to detect over-privilege vulnerabilities (A1.V4); and
not all the other vulnerabilities. Our deep evaluation also confirmed
that none of the privilege escalation vulnerabilities are covered by
SonarLint [18], FindBugs [19], FixDroid [32] and AndroidLint [20].
For SonarLint the documentation mentions the use of least privilege
principle among the list of coding best practices to avoid A1.V4.
However, during the analysis of the over-privileged application,
SonarLint did not detect the vulnerability as shown in the technical
report [45]. For icc− lint [23], the analysis of vulnerable apps
revealed the presence of A1.V3, A1.V6, A2.V2, A4.V1, and A4.V2
vulnerabilities. In the same line, A1.V3 was also detected by icc− lint
and fixDroid .

For A1.V2 and A5.V3, we marked the result because, even though
the tool didn’t detect them during the deep analysis phase, we
found in the code two implemented rules for EmptyPendingIntent
and ImplicitPendingIntent. We assume it is not a false negative, but
rather a result explained by the fact that the tool needs maintenance.

For tools that are not available (Vandroid [35] and 9Fix [34]), an
additional careful documentation-based analysis also confirmed that
none of the privilege escalation vulnerabilities is covered.

All false negatives (FN) resulted from the shallow analysis iteration
were confirmed by the deep analysis iteration, whether through
experimental evaluation of tools or through a second round of
documentation analysis. In order to provide a rigorous and explicit
evaluation, each realized experimentation is described in details in
the technical report [45].

As a conclusion of the deep analysis phase, we are surprised by
the low detection rate of the selected IDE plugins against well known
Android vulnerabilities. We confirmed that none of the studied IDE
plugins covers all the vulnerabilities marked by the red color which
are related to critical security attacks such as: privilege escalation,
data and code injections, and sensitive information leaks. We consider
this as a research gap to be tackled during future research.

VIII. DISCUSSIONS

Section VII presented the analysis results, we now discuss on
lessons learnt and key findings, mitigated by validity threats of our
empirical study.

A. Key findings
Our analysis study raised some lessons:
• Lack of maintenance. Since the creation of the first version

of Android on 2008, the system and the framework levels have
shown many security improvements to protect users privacy.
A new Android version is released every 6 months. As a
consequence, most of the security assisting IDE plugins become
outdated, and not able to deal any more with new types
of application components, or new released APIs. Table III
provides an overview of some open-source tools updates on
git repositories, and considered IDEs. Four factors are of
interest when considering outdated tools: (i) the date of the last
commit (at the time of our study), (ii) the supported IDE type,
(iii) information leaks, (iv) the integration of the tools within
the last IDE versions. Besides observing that the date of the
last commit for many tools is old, most tools are still supported
by Eclipse only, which is no more used for developing Android
applications.

• Tools availability. In order to assist developers in identifying
and fixing the listed vulnerabilities, the availability of the
security analysis tools is crucial for the software community.
Indeed, among the proposed tools, only few are available for
use in real Android development projects. Hence, among the 16

TABLE III
MEASURE TOOLS UPDATES BASED ON THE LAST GIT COMMIT

Tool Name Publication Year Last Commit Supported IDE
Curbing 2011 - Ec
Lintent 2013 25/03/2013 Ec
PermitMe 2014 - Ec
Page 2014 - Ec
Vandroid 2018 - Ec
Android−Lint - - Ec, AS
Sema 2019 03/2020 AS
PerHelper 2019 - IJ
PoliDroid−AS 2019 08/2019 AS, IJ
9Fix 2022 - IJ
SonarLint - 02/2022 Ec, AS, IJ
FindBugs - 12/2018 Ec, AS, IJ
Cocunut 2018 09/2019 AS
FixDroid 2017 11/2017 IJ, AS
icc− lint 2018 07/2021 IJ, AS
Snyk - 2023 IJ, AS
1 AS: Android Studio: IJ: IntelliJ EC: Eclipse
2 - : unknown

analysed tools, 8 academic tools are not available for use (See
Table II). As an example, for over-privilege related vulnerability,
among the 16 tools, 11 tools could not detect this vulnerability.
On the other hand, the remaining 5 tools could detect it only
at theoretical level (based on the related research paper). As a
result, we do not find any solution that could effectively assist
developers in detecting over-privileged applications.

• Analysis effectiveness. Our study shows that none of the
assessed industrial plugin covers over-privilege vulnerabilities.
Furthermore, tools such as Lintent , PerHelper, PermitMe are
based on Fel et al. [76] permission mapping (PM) for detecting
over-privileged applications. This PM is outdated and does not
consider an accurate permission set. As a result, these tools
will generate more false negatives during the analysis process.
To overcome this limitation, these tools need to be updated to
consider a newer PM that covers more API calls such as the
permission mapping proposed by Dynamo [65], which is based
on dynamic analysis and provides PM for last Android versions
APIs.
On the other hand, we found that some vulnerabilities detection
rules do not conform to the Android specification. As an
example 9Fix, which does not allow any component to be
exported by changing the value of the attribut ”exported” as
false, and this to prevent any other application to access that
component.
Overall, we observed a dearth of tools capable of effectively
detecting the most of listed vulnerabilities. Among the 19
presented vulnerabilities, only 11 are covered by the set of
IDE plugins (which is the number of vulnerabilities for which
the analysis yielded at least one ’dark green’ result). No one
of the analysed IDE plugins is able to detect the following
vulnerabilities: A1.V1, A1.V2. A1.V3, A1.V4, A1.V5, A2.V3,
A2.V4, A5.V1, A5.V2. Except, for some vulnerabilities, it is
only theoretically possible based on the documentation, and may
not be practically detectable due to the tools unavailability.

• Analysis approaches for security: as observed in Section V-C,
most tools are based on a static analysis approach for extracting
information that enables to check the validity of predefined
security properties patterns. Figure 8 displays the analysis
techniques used by the sample of tools we analyzed. Among
these tools, 88% are based on static analysis techniques. Natural
language processing techniques are used to specify security
requirements in case of Page, Coconut, PoliDroid−AS. Few
other tools are based on formal verification methods. And the
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remaining static based analysis tools investigate the program
AST to analyse the program structure and check if it conforms
to the specified security rules defined by the tools. On the other
hand, only 12% of the selected tools enable dynamic application
security testing, which are: sonarlint and snyk. In addition to
static analysis, they enable developers to examine a running
build and detect problems related to security.
As a first direction of improvement, static analysis effectiveness
of IDE plugin could be improved by adopting complementary
analysis techniques such as Symbolic execution, to allow sound
results in case of inter-component communication analysis. We
were surprised to observe that none of the investigated tools
takes advantage from the integrated IDE Android simulator
to perform dynamic analysis. Adopting dynamic analysis ap-
proaches could be an interesting direction to improve security
IDE plugin analysis results. This makes it possible to anal-
yse API calls performed dynamically (eg. through reflection).
Furthermore, other dynamic analysis techniques could be used
such as dynamic code instrumentation to exploit run-time source
code, and fuzzing as a software testing technique for automatic
input generation.

Fig. 8. Security Analysis Approach

• The lack of native code analysis support. We noticed a
substantial shortfall in the tools’ abilities to analyse native
code, which is crucial for detecting vulnerabilities. For instance,
overuse of permissions in Android apps cannot be accurately
detected without analyzing API calls at the native code level.
Currently, Per-Helper is the only plugin among the studied tools
that analyzes native code, using specific regular expressions for
C and C++ code. However, it only performs static analysis of the
program’s AST and does not provide a complete static analysis
process. Additionally, it cannot detect dynamic native API calls.

• Poor tools evaluation and validation. After reviewing the
tools’ validation process, we found that most tools do not focus
on the validation techniques used to confirm their ability to
detect the stated vulnerabilities. Except from icc− lint that has
a few unit tests for each detection rule, and Lintent , which
uses formal models and rigorous validation methods to assess
its analysis capabilities. None of the other tools follows a well
formalised validation process, except for testing the tool on
an open-source database of applications. However, there is no
guarantee that the vulnerabilities are present, neither that the
tool is able to detect the vulnerability.

• Vulnerability presence per Android version we showed
through the deep analysis step that most of listed vulnerabilities
(18 among 19 vulnerabilities) are prone to be exploited on last
version of Android 12 (see TABLE IV) Except A2.V4 (External
storage) where the vulnerability was automatically prevented
by the Android system under the following versions: 12, 11,
10. However, the corresponding attack scenario of A2.V4 is

successfully launched on Android 9. This information is critical
for developers of security analysis tools to target their detection
rules towards specific versions of the Android API.

TABLE IV
VULNERABILITY PRESENCE PER VERSION

Vulnerability Android Vulnerability Android
version version

A1.V1 12 A1.V2 12
A1.V3 12 A1.V4 12
A1.V5 12 A1.V6 12
A1.V7 12
A2.V1 12 A2.V2 12
A2.V3 12 A2.V4 9
A3.V1 12 A3.V2 12
A4.V1 12 A4.V2 12
A4.V3 12
A5.V1 12 A5.V2 12

• Vulnerability based vs Tool based Evaluation. We found
through deep analysis that analyzing vulnerable applications
yields positive results. However, we think that a more accurate
evaluation could be achieved by constructing more challenging
scenarios for the tool’s analysis. For certain vulnerabilities like
A1.V4, the current scenario only considers stated permissions
that have no relation to Java API calls. To properly assess
the tool’s detection capabilities, we need to enrich the attack
scenario by adding API calls, either dynamically or through
native code. This will help in evaluating the tool’s effectiveness
in better detecting over-privileged apps. The purpose here is
to move from analyzing simple vulnerable apps to analyzing a
larger attack surface sample.

• Tools documentation. Some tools do not mention the source of
some selected vulnerabilities. In addition, no scenario validating
the existence of the vulnerability was proposed. Adding a de-
tailed description for each vulnerability, with and attack scenario
demonstrating its exploitation would be a better approach to
ease the use of the tool and increase the trust of end-users.

• Benchmark availability and incompleteness: Ghera [14] is
a valuable reference for evaluating security analysis plugins
that focus on open-source projects, as it implements an open-
source application with common vulnerabilities. However, it
lacks some vulnerabilities, such as service hijacking, and other
vulnerabilities related to component hijacking. As a recom-
mended improvement, more vulnerabilities could be found in
CVE details. The goal is to enrich Ghera benchmark with new
vulnerabilities. As an example, we can implement scenarios
exploiting new vulnerabilities related to the manipulation of
customer permissions [77]. The availability of more relevant
benchmarks could lead to more comprehensive security analy-
sis.

B. Threats to validity

In this section, we discuss various potential threats to the validity
of our empirical study results, classified in the four categories of [78]
according to [79].

a) Conclusion Validity: focuses on how sure we can be that
the treatment we used in an experiment is really related to the actual
outcome we observed [79].

• The proposed classification focuses on security tools used dur-
ing: specification, design, coding and testing stages of software
development. Other main stages such as: integration, deploy-
ment, and the various steps of the DevOps pipeline can also be
investigated regarding the existing security tools.
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• The tools are continuously evolving. Only after we conducted
our evaluation, we found that a recent version of Vandroid2 has
been published.

• For the included tools where all the line is in red color, e.g.,
POLIDROID−AS and Findbugs, this does not mean that the
tool is not able to detect other vulnerabilities.
b) Internal Validity: focuses on how sure we can be that the

treatment actually caused the outcome [79]. The main threat focuses
on the Tools search & selection phase, detailed in Section IV-C.

• The set of analysis tools is not exhaustive. Despite we searched
in a wide space, we may miss existing tools because the search
key words differ, especially because our search target is crossing
fields of the classification framework of Fig. 3. To mitigate
this limitation, we crossed the references, we reviewed tools
studies and related work, had a look to development forums
and proceeded with snowballing to enrich the database.

• The selection (and rejection) criteria have been motivated in
Section IV-C. To fix these criteria we experimented more
plugins than those selected. All the selected tools are not
dedicated to Android, some have a more general purpose but
include Android vulnerability lookup. We may miss tools in
that intersection field. A major weakness is that most industrial
tools could not be included in the selection, and therefore some
outcomes would change, surely be improved.

• The set of security vulnerabilities is not exhaustive (complete-
ness). We based the vulnerability benchmark on the Ghera
repository, referring also to CVE details because only reference
repositories are sound for benchmarks. But security is a long
term race and new vulnerabilities are continuously discovered.

• Besides, the selected tools target neither the same Android
versions, nor the same vulnerabilities. So, we had to be very
careful while extracting related information to mitigate these
threats to validity. In particular, in the tool papers, the authors
do not have the same reference model, and further the one we
used (see also construct validity).
c) Construct Validity: focuses on the relation between the

theory behind the experiment and the observation(s) [79]. While
completeness is an internal validity criteria, consistency is a construct
validity criteria.

• The main threat here is the heterogeneity of the available
information for each tool. We can classify along a 4-level scale.
(a) The minimal information is articles or scientific publications,
this is a partial information to lead the shallow analysis. (b) The
information collected is better with tool documentations or
author answers to our queries. (c) Available and deployable
tools enable experimentation. (d) Git repositories enable deep
knowledge. Unfortunately we did not have the same information
on each approach.

• Identification failure is important construction threat. We based
the vulnerability benchmark on the Ghera repository but all
the tool providers do not use this repository. We may miss
vulnerabilities detected by one tool if the tool documentation
is not explicit enough to identify with the Ghera vulnerability.
This is a kind of homonym/synonym lexical issue. This may
affect the high rate of false negatives.

• The classification framework covers many complementary
points of view but the tools are not aligned on these projection
axes. This may affect some interpretation.

• We used the IntelliJ IDE to process the tests, because it is of
widespread use for Android development (Android Studio). But
using several IDE plugins and standalone tools would provide
different results (merely better if we select the union of the
passing tests).

• The tools were tested against simple scenarios specified in the
repository for each vulnerability. If the vulnerability could be
presented in many ways in the application code and the tool

implements a security detection rule that does not match the
specified manner in Gherkin, then the analysis results may be
inaccurate.

d) External Validity: is concerned with whether we can
generalize the results outside the scope of our study [79].

• Our observations are based on the evaluation of 16 IDE plugins
against 19 known vulnerabilities. Although it is a large set, it
does not represent the population of the analysis tools. The
study does not include commercial IDE plugins, tools that
could be used out of the IDE, etc. As a result, the above
observations should be considered only for similar IDE plugins,
and further exploration should be conducted before generalizing
the observations to all the existing tools.

• The research protocol is generic since the selected tools, the
SDLC stage and the vulnerabilities can be seen as parameters.
Selecting other data set for these parameters does not change
the methodology, it changes the outcomes.

• It can also be extended. Web apps are not in the scope but
connecting apps will extend the scope of inter-application
vulnerabilities.

• This study is evolving by nature and be replayed periodically
but also contributing to the Ghera repository.

The above threats show that outcome reproducibility is related to
time and facts that are true now may change. However, the process
itself is to be replayed periodically, just like vulnerability repositories
have to be updated continuously.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a detailed survey of IDE plugins
used for secure Android application development. Our study was
motivated by the lack of existing research studies investigating their
effectiveness in preventing security attacks. We conducted a rigorous
and explicit evaluation process of 16 IDE plugins against 19 known
vulnerabilities. We believe that the results of the survey would be
useful in many cases including:

• Assisting developers in selecting the appropriate IDE plugin to
use for secure Android application development,

• Guiding researchers and security tools manufacturers in identi-
fying the existing limits in each tool, and in conducting further
research related to Android vulnerabilities,

• In addition, it could be employed as an educational framework
during security training sessions.

As the studied vulnerabilities are well known and already included
in the list of Common Vulnerabilities Expose (CVE), we expected to
have more true positives while conducting the analysis process. How-
ever, we were surprised by the obtained number of false negatives.
There remains much effort to achieve the transition from Android
software development life-cycle (SDLC) to Secure SDLC.

For future works, our study highlighted many observations that
could benefit from improvements. First, we aim to enrich the Ghera
repository with new vulnerabilities, as an example by implementing
scenarios exploiting new vulnerabilities related to the manipulation
of customer permissions [77]. Second, it is necessary to add more
activities to embrace the full SSDLC, especially at early specification
time -by defining threats, risks and scenarios that will be entry
points for the application development- and lately by considering
vulnerabilities at deployment time. Third, the current study focuses
on native applications. To cover the Android ecosystem, it must be
extended to analyze vulnerabilities related to hybrid applications,
e.g., web applications. More generally, our methodology could apply
to IOS applications by revisiting the identified vulnerabilities (what
axis). Finally, to better detect the vulnerabilities identified in this
survey, it is important to develop new IDE plugins that utilize
effective analysis techniques.
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