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Introduction

The problem of reconstructing a continuous signal from a set of discrete samples is very common in signal processing and it has stimulated a considerable literature. This problem aims at approximating an unknown function f by a surrogate f knowing a set of evaluations of f . The Whittaker-Shannon-Kotel'nikov (WSK) sampling theorem is arguably the most emblematic result in the field. It can be seen as an interpolation result for functions that are band-limited in the Fourier domain [START_REF] Whittaker | The "fourier" theory of the cardinal function[END_REF][START_REF] Shannon | Communication in the presence of noise[END_REF][START_REF] Kotel'nikov | On the transmission capacity of'ether'and wire in electric communications[END_REF]. This theorem has been extended to functions that are band-limited with respect to other transforms than Fourier transform including for instance Sturm-Liouville transforms [START_REF] Kramer | A generalized sampling theorem[END_REF][START_REF] Campbell | A comparison of the sampling theorems of kramer and whittaker[END_REF], Laguerre transforms [START_REF] Jerri | Sampling expansion for laguerre-l: transforms[END_REF] and Jacobi transforms [START_REF] Koornwinder | The finite continuous jacobi transform and its inverse[END_REF].

Reproducing kernel Hilbert spaces (RKHSs) and sampling problems have a long common history. The definition of an RKHS, going back to [START_REF] Aronszajn | La théorie des noyaux reproduisants et ses applications première partie[END_REF][START_REF] Aronszajn | Theory of reproducing kernels[END_REF] can be interpreted by saying that any signal f ∈ F is a limit of weighted sums of kernel translates k(x, •). In a seminal paper, [START_REF] Yao | Applications of reproducing kernel hilbert spaces-bandlimited signal models[END_REF] derived sufficient conditions on a configuration (x i ) i∈I of nodes to achieve exact reconstruction of any element f of the RKHS F, i.e., to ensure that uniformly,

f = i∈I f (x i )k(x i , •).
(1)

This is all the more related to signal processing that Yao proved that the spaces of band-limited signals in the Fourier, Bessel, or cosine domains are all RKHSs. In particular, Yao's result generalizes the WSK theorem. Weaker sufficient conditions than Yao's for (1) to hold have been studied, see e.g. [START_REF] Nashed | General sampling theorems for functions in reproducing kernel hilbert spaces[END_REF]. However the WSK sampling theorem and its extensions to RKHSs are asymptotic: an infinite number of samples is required in order to guarantee the exact reconstruction of the function. In applications, only a finite number of evaluations f (x 1 ), . . . , f (x N ), at nodes x 1 , . . . , x N ∈ X , will be available. Therefore we seek non-asymptotic guarantees on reconstructions from N samples. Interestingly, the latter problem arose first in the order of events, as mentioned by [START_REF] Higgins | Five short stories about the cardinal series[END_REF]. Indeed, an early form of sampling theorem may be traced back to an interpolation scheme due to [START_REF] Ch | Sur la convergence des formules d'interpolation entre ordonnées équidistantes[END_REF]; see [START_REF] Butzer | Sampling theory for not necessarily band-limited functions: a historical overview[END_REF] for a historical account. Nonasymptotic sampling have resurged in popularity recently [START_REF] Cohen | Optimal weighted least-squares methods[END_REF], Bach, 2017a[START_REF] Avron | A universal sampling method for reconstructing signals with simple fourier transforms[END_REF]. In these works, the nodes x 1 , . . . , x N are taken to be independent draws from a particular probability distribution. The latter is closely related to extensions of the so-called Christoffel function, a classical tool in the theory of orthogonal polynomials [START_REF] Nevai | Géza freud, orthogonal polynomials and christoffel functions. a case study[END_REF]. These configurations of independent particles were shown to yield approximations that satisfy the instance optimality property, a desirable multiplicative error bound that guarantees exact recovery on a finite-dimensional subspace, with an almost optimal number of particles. On the other hand, alternative designs have been proposed to achieve optimal reconstruction, using boosting [START_REF] Haberstich | Boosted optimal weighted least-squares[END_REF] or sparsification techniques [START_REF] Krieg | Function values are enough for l2-approximation: Part ii[END_REF], Dolbeault and Cohen, 2022b, Dolbeault et al., 2023[START_REF] Chkifa | Randomized least-squares with minimal oversampling and interpolation in general spaces[END_REF].

Our work presents a general approach for signal reconstruction, based on random sets of nodes drawn from two repulsive point processes. The key idea is to use random nodes sampled from mixtures of determinantal point processes (DPP). DPPs are distributions over configurations of points that encode repulsion in the form of a kernel: connecting the DPP's kernel to the RKHS kernel allows the nodes to repel by an amount related to the smoothness of the target function. DPPs were introduced by [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] as models for detection times in fermionic optics. Since then, they have been thoroughly studied in random matrix theory [START_REF] Johansson | Random matrices and determinantal processes[END_REF], and have more recently been adopted in machine learning [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF], spatial statistics [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF], and Monte Carlo methods [START_REF] Bardenet | Monte carlo with determinantal point processes[END_REF].

We have worked on non-asymptotic guarantees for function reconstruction with DPPs motivated by numerical integration [START_REF] Belhadji | Kernel quadrature with dpps[END_REF][START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF]. In these works, we measured reconstruction performance using the RKHS norm, and we had to make a rather strong smoothness assumption that the function belongs to a particular strict subspace of the RKHS. Motivated this time by applications in signal reconstruction, and to overcome the smoothness assumption of our previous work, we conduct here an alternative analysis where we replace the RKHS norm by the L 2 norm. In particular, we study various finite-dimensional approximations of a function living in an RKHS, like the the least-squares approximation with respect to the L 2 norm. We show that its mean square error converges to 0, at a rate that depends on the eigenvalues of the RKHS kernel. Moreover, we show that the convergence is faster for functions living in a certain low-dimensional subspace of the RKHS. This sheds the light on the phenomenon of superconvergence observed in the literature of kernel-based approximations [START_REF] Schaback | Superconvergence of kernel-based interpolation[END_REF], and gives new insight into the the question of completeness with DPPs [START_REF] Lyons | Determinantal probability: basic properties and conjectures[END_REF]. Yet, in spite of its remarkable theoretical properties, the least-squares approximation with respect to the L 2 norm cannot be evaluated using a finite number of evaluations of the target function. For this reason, we investigate more practical approximations based on two particular transforms, i.e. linear operators from the RKHS to finite-dimensional vector spaces, built through a compilation of quadrature rules. In particular, we prove that the instance optimality property holds for a particular transform-based approximation using DPPs, even with a minimal sampling budget. Numerical experiments in dimension one as well as on the hypersphere validate our results and show the empirical efficiency of the proposed transform-based approach. The performance is even better than the already interesting theoretical guarantees, which at the same time confirms the interest of the approach and leaves room for improvement of the bounds.

This article is organized as follows. Section 2 contains notations and definitions of the finitedimensional approximations that we will study, as long as a brief review of previous work on the reconstruction of functions, based on discrete samples, living in RKHSs. In Section 3, we present the main results of this work. Finally, in Section 4 we illustrate our result and compare to related work using numerical simulations.

Sampling and reconstruction in RKHSs

In Section 2.1.1, for ease of reference, we introduce some basic notation and assumptions to be used throughout the paper. In Section 2.1.2, we define fractional subspaces, which correspond to increasing levels of smoothness within an RKHS. In Section 2.2, we recall the finite-dimensional approximations that we will work with in the rest of the article. To give historical context, Section 2.3 and Section 2.4 are devoted to related work on the topic. The contents of these two sections may be skipped in a first read except for Section 2.3.2 which is necessary for the statement of the main results presented in Section 3.

Kernels and RKHS

Notations and assumptions

Let X be a metric set, equipped with a Borel measure ω. Let k : X × X → R be a symmetric, positive definite kernel, and consider the inner product defined on the space F 0 of finite linear combinations of kernel translates by

m i=1 a i k(x i , •), n j=1 b j k(y j , •) F = m i=1 n j=1 a i b j k(x i , y j ), (2) 
where

a 1 , b 1 , • • • ∈ R and x 1 , y 1 , • • • ∈ X .
In the sequel, [N ] will denote the set of indices ranging from 1 to N . The completion F of F 0 for •, • F is the so-called reproducing kernel Hilbert space of kernel k. By the Moore-Aronszajn theorem, it is the unique Hilbert space of functions that satisfies the reproducing property, i.e., for all f ∈ F and x ∈ X , f (x) = f, k(x, •) F ; see e.g. [START_REF] Berlinet | Reproducing kernel Hilbert spaces in probability and statistics[END_REF] for a general reference.

The properties of a function in F are often described in terms of the spectral characteristics of the integral operator of kernel k. More precisely, assume that Σf (x) = k(x, y)f (y)dω(y).

(3) defines a compact operator Σ from the space L 2 (ω) of real-valued square-integrable functions to itself. A practical sufficient condition for this compactness to hold is given in [Steinwart and Scovel, 2012, Lemma 2.3].

Assumption 1. The diagonal x → k(x, x) is integrable.

Under Assumption 1, the spectral theorem, see e.g. Chapter 6 in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], guarantees the existence of an orthonormal basis (e m ) m∈N * of L 2 (ω) and a family of non-increasing nonnegative scalars (σ m ) m∈N * such that Σe m = σ m e m for m ∈ N * . We now make extra assumptions to reach a Mercer decomposition.

Assumption 2. The kernel k is continuous, ω has full support, and σ m > 0 for all m ∈ N * .

The continuity of the kernel guarantees that e m may be taken to be a continuous function when σ m > 0; see e.g. Theorem 4.7 in [START_REF] Cucker | Learning theory: an approximation theory viewpoint[END_REF]. Moreover, the positivity of all σ m s and the fact that ω has full support imply that F is dense in L 2 (ω); see Section 4.2 in [START_REF] Cucker | Learning theory: an approximation theory viewpoint[END_REF]. Letting e F m := √ σ m e m , the family (e F m ) m∈N * is then an orthonormal basis of F; see Theorem 4.12 in [START_REF] Cucker | Learning theory: an approximation theory viewpoint[END_REF]. In particular, for f ∈ F and m ∈ N * , we have f, e F m F = f, e m ω / √ σ m , so that Moreover, by the reproducing property, for x ∈ X and m

f 2 F = m∈N * f, e m 2 ω σ m < +∞. (4) Σ 1/2 Σ 1/2 Σ L 2 (ω) F = Σ 1/2 L 2 (ω) ΣL 2 (ω) B L 2 (ω) B F ΣB L 2 (ω)
≥ 1, e F m , k(x, •) F = e F m (x). Now, the decomposition of k(x, •) on the basis (e F n ) yields the Mercer decomposition of k, k(x, y) = k(x, •), k(y, •) F = m∈N * e F m (x)e F m (y) = m∈N *
σ m e m (x)e m (y).

(5)

Actually, under Assumption 2, the convergence in (5) holds uniformly on any compact A × A ⊂ X × X ; see [Steinwart and Scovel, 2012, Corollary 3.5]. Moreover, under Assumption 2 the pointwise convergence of the r.h.s. of ( 5) is equivalent to the injectivity of the embedding I : F → L 2 (ω); see [Steinwart and Scovel, 2012, Theorem 3.1] and [Steinwart and Christmann, 2008, Chapter 4]. We assume in this paper that Assumptions 1 and 2 hold.

Increasing levels of smoothness

Equation (4) yields more intuition on why RKHSs are considered spaces of smooth functions. Indeed, by definition, f lying in such an RKHS means that f has generalized Fourier coefficients f, e m ω that decay fast enough in modulus for the sum in (4) to converge, thus ensuring smoothness. Note also that, for f ∈ F, 

f := m∈N * f, e F m F e m ∈ L 2 (ω) satisfies f = Σ 1/2 f and f F = f ω . In other words, F = Σ 1/2 L 2 (ω),
r ≥ r ≥ 0 =⇒ Σ r+1/2 L 2 (ω) ⊂ Σ r +1/2 L 2 (ω). ( 6 
)
In particular, since F = Σ 1/2 L 2 (ω), we know that for r ≥ 0, Σ r+1/2 L 2 (ω) ⊂ F: these subspaces define increasing levels of regularity in the RKHS F. Figure 1 illustrates this hierarchy of functional spaces and gives some more intuition.

Finite-dimensional approximations in RKHSs

The reconstruction of a function f that belongs to an RKHS F based on its evaluations over a finite set of nodes x 1 , . . . x N ∈ X can be achieved by different families of finite-dimensional approximations. The following approximations will be of interest for the rest of the article.

Approximations based on mixtures of kernel translates

By definition of an RKHS, a natural choice of approximation is a weighted sum of kernel functions. Formally, the objective is thus to build a set of nodes (x i ), a.k.a. a design, and weights (w i ), such that a suitable norm of the residual

f - i∈[N ] w i k(x i , •) (7) 
is small. Assuming the design x = (x i ) i∈[N ] is fixed, we now consider two possible choices for this norm that induce different sets of weights.

Minimizing the L 2 (ω) norm of the residual (7) yields the classical least-squares (LS) approximation fLS,x = arg min

w∈R N f - i∈[N ] w i k(x i , •) 2 ω . (8) 
The least-squares approximation typically enjoys strong theoretical properties. However, we shall see in Section 3.1 that computing the optimal weights in (8) requires the evaluation of Σf at the nodes x 1 , . . . , x N . This makes the method impractical, and calls for more tractable approximations.

The RKHS norm of the residual is a natural alternative objective to minimize, and yields the so-called optimal kernel approximation (OKA) fOKA,x = arg min

w∈R N f - i∈[N ] w i k(x i , •) F . (9) 
We shall sometimes write fOKA for fOKA,x when the design x is clear from the context. Let us observe that the approximation (9) is uniquely defined if the matrix

K(x) = (k(x i , x i )) i,i ∈[N ]
is non-singular. The optimal vector of weights is then simply w OKA,x := K(x) -1 f (x); unlike the least-squared approximation, computing the weights solely depends on being able to evaluate f at the nodes. Moreover, OKA comes with a remarkable interpolation property:

for i ∈ [N ], fOKA,x (x i ) = f (x i ).

Approximations living in eigenspaces

Another way to recover a continuous signal f ∈ F from its evaluations f (x 1 ), . . . , f (x N ) at fixed nodes, is to seek an approximation that belongs to the eigenspace E M = Span(e 1 , . . . , e M ) for some M ∈ N * . We consider two such approaches.

Transform-based approximations. Consider the projection of f on E M ,

f M := m∈[M ]
f, e m ω e m .

(10)

Note that, for m ∈ [M ], f, e m ω is the integral I m (f ) := X f (x)e m (x)dω(x). Since we want to assume only the availability of the evaluation of f at the nodes, we consider approximating each integral I m (f ) by a weighted sum

Îm (f ) := i∈[N ] α m,i f (x i ), (11) 
where α m,i are quadrature weights to be discussed shortly. The collection of operators Îm form a transform Φ, defined as Φ(f ) = ( Îm (f )) m∈[M ] ∈ R M . The resulting approximation fΦ will be called a transform-based approximation of f , and we observe that

fΦ := m∈[M ] Îm (f )e m = i∈[N ]   m∈[M ] α m,i   f (x i ), ( 12 
)
is a weighted sum of evaluations of f at the nodes (x i ).

For the construction of the quadrature weights (α m,i ) in ( 11), this work focuses on interpolative quadrature rules [START_REF] Larkin | Gaussian measure in hilbert space and applications in numerical analysis[END_REF]: given a kernel κ : X × X → R, the weights α m,i of an interpolative quadrature are chosen so that

∀i ∈ [N ], m ∈ [N ], Îm (κ(x i , •)) = I m (κ(x i , •)). ( 13 
)
Under the assumption that the functions κ(x 1 , •), . . . , κ(x N , •) are linearly independent, the sequence (α m,i

) (m,i)∈[N ]×[N ]
is uniquely defined by (13).

In general, (13) only holds for Î1 , . . . , ÎN . Yet, when κ = k, the property (13) extends to Îm for m > N as well. Indeed, when κ = k, we have I m (κ(x, •)) = σ m e m (x) for x ∈ X , so that (13) implies that the vector

α m := (α m,i ) i∈[N ] satisfies α m = σ m K(x) -1 e m (x), (14) 
under the assumption that the matrix K(x) is non-singular. In other words, the vector α m is nothing but the one that minimizes (9) when f is Σe m = σ m e m . We name the resulting quadrature rule the optimal kernel quadrature (OKQ). In the rest of the article, the corresponding transform will be called the optimal kernel quadrature transform, the corresponding quadrature rules denoted by ÎOKQ 1 , . . . , ÎOKQ

M

, and the resulting approximation by fOKQ,M,x . Alternatively, by taking κ equal to k N (x, y) := n∈[N ] e n (x)e n (y), (13) boils down to

∀m, m ∈ [N ], Îm (e m ) = δ m,m , (15) 
which is reminiscent of a property satisfied by Gaussian quadrature [START_REF] Gautschi | Orthogonal polynomials: computation and approximation[END_REF]. Moreover, for m ∈ [N ], we have

α m = K N (x) -1 e m (x), (16) 
where

K N (x) := (k N (x i , x i )) i,i ∈[N ]
. Note the similarity with ( 14). Except for some exceptional families of functions such as orthogonal polynomials, the quadrature weights ( 16) do not guarantee that ( 13) can be extended to m > N . Finally, note that the resulting approximation, denoted by fQI,N,x has been called quasi-interpolant or hyperinterpolant in the literature [START_REF] Sloan | Polynomial interpolation and hyperinterpolation over general regions[END_REF], since

∀f ∈ E M = Span(e 1 , . . . , e M ), fQI,M,x = f = f M . (17) 
In the rest of the article, we denote the corresponding quadrature rules by ÎQI 1 , . . . , ÎQI N .1 

The empirical least-squares approximation. Let x ∈ X N and q : X → R * + . Consider the so-called empirical semi-norm . q,x defined on L 2 (ω) by

h 2 q,x := 1 N N i=1 q(x i )h(x i ) 2 . ( 18 
)
The empirical least-squares estimator yields yet another approximation fELS,M,x := arg min

f ∈E M f -f 2 q,x , (19) 
We discuss the choice of q and the design x in Section 2.3.1. For the moment, the intuition is that, for a well-chosen weight q and design x, the semi-norm . q,x is supposed to "mimic" the . ω norm as N goes to infinity. Similarly, fELS,M,x is supposed to inherit some of the properties as f M , the projection of f on E M . Compared to fLS,x , the approximation fELS,M,x has the advantage of being computable given the evaluations of f at the nodes x. Indeed, [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF] show that writing fELS,M,x =

M m=1 w m e m yields G q,x w = d q,x , (20) 
where

G q,x = ( e m , e m q,x ) m,m ∈[M ] ∈ R M ×M is the Gramian matrix of the family (e m ) m∈[M ]
with respect to the inner product defined by ( 18), and

d q,x = (d m ) m∈[M ] ∈ R M is defined by d m := N i=1 q(x i )f (x i )e m (x i )/N, m ∈ [M ].
In other words, the numerical evaluation of fELS,M,x requires to solve the linear system (20). This in turn requires the evaluation of G q,x and d q,x , which boils down to the evaluation of f , the functions e m and q on the nodes x 1 , . . . , x N . Moreover, fELS,M,x is uniquely defined if and only if G q,x is non-singular.

Designs for finite-dimensional approximations

An abundant literature provides theoretical guarantees for the finite-dimensional approximations presented in Section 2.2; this includes, but is not limited to, [START_REF] Erdős | On interpolation i[END_REF][START_REF] Sloan | Polynomial interpolation and hyperinterpolation over general regions[END_REF][START_REF] Wendland | Scattered Data Approximation[END_REF][START_REF] Schaback | Kernel techniques: from machine learning to meshless methods[END_REF]. These results deal with specific RKHSs, and cannot be easily generalized to an arbitrary RKHS. Recently, a new tendency has emerged that looks for a universal sampling approach that is valid for a large class of RKHSs. In this section, we first provide an overview of this universal sampling literature. In the same spirit, we then show that determinantal point processes (DPPs) offer an adequate framework to design configurations of nodes with strong theoretical guarantees for finite-dimensional approximations, in a wide family of RKHSs.

Independent samples from the Christoffel function

The last decade has seen significant progress in the study of function reconstruction based on randomized configurations [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF][START_REF] Hampton | Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression[END_REF][START_REF] Cohen | Optimal weighted least-squares methods[END_REF][START_REF] Adcock | Near-optimal sampling strategies for multivariate function approximation on general domains[END_REF][START_REF] Adcock | Towards optimal sampling for learning sparse approximations in high dimensions[END_REF], Dolbeault and Cohen, 2022a]. These works focused on the study of the empirical least-squares approximation; see Section 2.2.2. In particular, the so-called instance optimality property (IOP) has been a matter of extensive investigation. The idea is to find assumptions on the configuration x, the function q : X → R * + , and the order M ≤ N , under which we can certify that

2 ∀f ∈ F, f -fELS,M,x ω ≤ C f -f M ω , (21) 
where C > 0 is a constant. Instance optimality implies that fELS,M,x = f for f ∈ E M , so that the reconstruction is exact in the eigenspace E M . Moreover, it provides an upper bound of the approximation error f -fELS,M,x ω for generic functions. Investigating necessary conditions for the IOP to hold unraveled the importance of the study of the eigenvalues of the Gramian matrix G q,x [START_REF] Cohen | Optimal weighted least-squares methods[END_REF]. In particular, it was proved that

G q,x -I M op ≤ δ ⇐⇒ ∀f ∈ E M , (1 -δ) f 2 ω ≤ f 2 q,x ≤ (1 + δ) f 2 ω , (22) 
where I M ∈ R M ×M is the identity matrix of order M , and . op is the operator norm. In other words, the . q,x norm is equivalent to . ω on E M if and only if the matrix G q,x is close to I M . Interestingly, [START_REF] Gröchenig | Sampling, marcinkiewicz-zygmund inequalities, approximation, and quadrature rules[END_REF] showed that the condition ( 22) was connected to Marcinkiewicz-Zygmund inequalities, which are common tools in the literature of non-uniform sampling [START_REF] Gröchenig | A discrete theory of irregular sampling[END_REF][START_REF] Ortega-Cerdà | Marcinkiewicz-zygmund inequalities[END_REF][START_REF] Filbir | Marcinkiewicz-zygmund measures on manifolds[END_REF]; see [START_REF] Gröchenig | Sampling, marcinkiewicz-zygmund inequalities, approximation, and quadrature rules[END_REF] for more references. [START_REF] Cohen | Optimal weighted least-squares methods[END_REF] proved necessary conditions for G q,x -I M op ≤ 1/2 to hold with high probability, when x 1 , . . . , x N are i.i.d. draws from the measure ω defined by dω = 1/qdω. In particular, they proved that the sampling budget N should scale as q/c M ∞ log(2M ), where c M is the inverse of the so-called Christoffel function

c M (x) := M m=1 e m (x) 2 ; x ∈ X , (23) 
and . ∞ is the infinity norm on X . Since the required sampling budget grows with q/c M ∞ , it is preferable to choose the function q in such a way that q/c M ∞ is minimized, under the constraint that X 1/q(x)dω(x) = 1. In particular, if we take q = c M /M , the constant q/c M ∞ grows linearly with M , and the required sampling budget scales as M log(M ). This is to be compared with the situation when q is taken to be a constant, where the required sampling budget would scales as O(M 1/c M ∞ log(M )). The constant 1/c M ∞ , also called the Nikolskii constant in approximation theory, is known to be at best linear in M for many families of orthogonal polynomials [START_REF] Nevai | Géza freud, orthogonal polynomials and christoffel functions. a case study[END_REF][START_REF] Bos | Asymptotics for the christoffel function for jacobi like weights on a ball in rm[END_REF][START_REF] Xu | Asymptotics for orthogonal polynomials and christoffel functions on a ball[END_REF][START_REF] Totik | Asymptotics for christoffel functions for general measures on the real line[END_REF]], hinting at a suboptimal sampling budget in O(M2 log(M )). Achieving the IOP using a sampling budget that scales linearly in M was proved to be possible using sparsification techniques [Dolbeault andCohen, 2022b, Chkifa andDolbeault, 2023]. These results rely on the extension of techniques developed to solve the Kadison-Singer problem [START_REF] Marcus | Interlacing families ii: Mixed characteristic polynomials and the kadison-singer problem[END_REF]. However, as was shown in [Dolbeault and Cohen, 2022b], the algorithmic complexity of these techniques is exponential in N . Alternately, a similar approach was adopted by Bach [2017a], yet with a kernel-based approximation that solves a regularized variant of the optimization problem (9). In particular, his analysis relied on the so-called regularized leverage score

function cλ (x) := +∞ m=1 σ m σ m + λ e m (x) 2 , ( 24 
)
where λ > 0 is a regularization constant. In particular, Bach [2017a] showed that when the nodes are i.i.d. draws from cλ dω, the resulting approximation converges to 0 at an almost optimal rate, as λ is made to go to zero with N at a suitable rate. One practical downside, compared to (23), is the need for an infinite summation.

Determinantal sampling

In [START_REF] Belhadji | Kernel quadrature with dpps[END_REF] and [START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF], we have investigated two random designs defined using determinants and Gram matrices.

Definition 1 (A projection DPP). Let N ≥ 1, and

k N (x, y) = n∈[N ]
e n (x)e n (y), ( 25)

where (e n ) are the eigenfunctions in the Mercer decomposition (5) of the RKHS kernel k. The design x = (x 1 , . . . , x N ) is said to have for distribution the DPP of kernel k N and reference measure ω if

x = (x 1 , . . . , x N ) ∼ 1 N ! Det k N (x i , x j ) (i,j)∈[N ]×[N ] dω(x 1 ) . . . dω(x N ). ( 26 
)
Since k N is a projection kernel, the resulting point process is a projection DPP and (26) integrates to 1. In the remainder of the paper, E DPP is to be understood as an expectation under (26). DPPs were introduced by [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF], and possess many interesting properties [START_REF] Hough | Determinantal processes and independence[END_REF]. For instance, any point of x in (26) has marginal distribution

x i ∼ 1 N N n=1 e n (x i ) 2 dω(x i ), (27) 
which is related to the inverse of the Christoffel function ( 23). In that sense, (26) generalizes previous work on i.i.d. designs sampled from the inverse of the Christoffel function, but adding a kernel-dependent correlation among the nodes. Another useful property of DPPs with projection kernels like ( 26) is that the chain rule for x amounts to a product of explicit "base-times-height" terms. This yields a polynomial-time, exact sampling algorithm colloquially known as HKPV, after the authors of [START_REF] Hough | Determinantal processes and independence[END_REF]. Continuous volume sampling, introduced in [START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF], is a closely related distribution for nodes.

Definition 2 (continuous volume sampling). Assume that X k(x, x)dω(x) < ∞. The design x = (x 1 , . . . , x N ) is said to have a distribution according to continuous volume sampling if

x = (x 1 , . . . , x N ) ∼ 1 Z Det k(x i , x j ) (i,j)∈[N ]×[N ] dω(x 1 ) . . . dω(x N ), (28) 
where Z < ∞ is a normalization constant.

In the remainder of the paper, E CVS is to be understood as an expectation under (28). Note that unlike (26), the normalization constant is not explicit. Yet Hadamard's inequality yields

Z κ,ω = X N Det κ(x i , x j ) n∈[N ] dω(x n ) ≤ X N n∈[N ] κ(x n , x n )dω(x n ) ≤ X κ(x, x)dω(x) N < +∞.
While the chain rule for continuous volume sampling is not as simple as for the DPP in (26), continuous volume sampling can actually be shown to be a statistical mixture of projection DPPs. In words, x in (28) can be drawn by first sampling a N -uplet I ∈ N N proportionally to i∈I σ i , and then drawing x from (26) with k N replaced by i∈I e i (x)e i (y). In that sense, continuous volume sampling is a "soft" modification of the DPP (26), which is the component with largest weight in the mixture; see [START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF] for more details.

Existing results on RKHS sampling using DPPs and CVS

This section gathers existing works on function reconstruction using determinantal distributions. We provide some details because we shall use some results in Section 3.

The Ermakov-Zolotukhin quadrature rule

Non-asymptotic reconstruction guarantees for functions living in Hilbert spaces can be traced back to [START_REF] Ermakov | Polynomial approximations and the monte-carlo method[END_REF]. Indeed, in this work, the authors studied quadrature rules Î1 , . . . , ÎN obtained by taking the configuration of the nodes x to follow the distribution of the projection DPP as in Definition 1 with κ = k N in Section 2.3.2, and the corresponding vectors of weights α 1 , . . . , α N to be equal to (16). In particular, they proved that for a continuous function f :

X → R living in L 2 (ω), we have ∀n ∈ [N ], E DPP În (f ) = I n (f ) V DPP În (f ) = m≥N +1 f, e m 2 ω
.

(29) [START_REF] Gautier | On two ways to use determinantal point processes for monte carlo integration[END_REF] revisited this result and proved that

∀n 1 , n 2 ∈ [N ], n 1 = n 2 =⇒ Cov DPP ( În1 (f ), În2 (f )) = 0. ( 30 
)
As it was mentioned in [START_REF] Kassel | On the mean projection theorem for determinantal point processes[END_REF], ( 29) and ( 30) imply that the resulting transform3 yields an approximation ĥEZ,x that satisfies

∀f ∈ L 2 (ω), E DPP f -fQI,N,x 2 ω = N f -f N 2 ω . (31) 
In other words, the quasi-interpolant satisfies an instance optimality. Yet, the corresponding constant grows to infinity with N . Observe that (31) holds in L 2 (ω) and f is not assumed to live in a particular RKHS.

The optimal kernel approximation using determinantal sampling

The study of quadrature rules instigated the inquiry of non-asymptotic guarantees for finitedimensional approximations based on determinantal nodes for functions living in RKHSs. Indeed, in the context of numerical integration, we have for any function h living in the RKHS F and for any g ∈ L 2 (ω) [START_REF] Muandet | Kernel mean embedding of distributions: A review and beyond[END_REF]

] X h(x)g(x)dω(x) - N i=1 w i h(x i ) 2 ≤ h 2 F f - N i=1 w i k(x i , •) 2 F , (32) 
where f = Σg. Moreover, f -

N i=1 w i k(x i , •) 2
F corresponds to the squared worst case integration error (WCE) on the unit ball of the RKHS F. In other words, the squared residual provides an upper bound of the squared error of the approximation of the integral X h(x)g(x)dω(x) by the quadrature rule N i=1 w i h(x i ). This is especially applicable to the optimal kernel quadrature mentioned at Section 2.2.2: by taking the vector of weights α g is taken to be equal to K(x) -1 f (x), we extend (14) to g and the squared WCE of the corresponding quadrature rule is equal to f -fOKA,x 2 F . Now, it was proven in [START_REF] Belhadji | Kernel quadrature with dpps[END_REF] that

E DPP sup f ∈ΣB L 2 (ω) f -fOKA,x 2 F = O(N 2 r N +1 ), ( 33 
)
where r N +1 := m≥N +1 σ m . Moreover, it was proven in Theorem 3 of [START_REF] Belhadji | An analysis of ermakov-zolotukhin quadrature using kernels[END_REF] that

E DPP f -fOKA,x 2 F ≤ 4 g 2 ω r N +1 . (34) 
The first upper bound (33) deals with the worst interpolation error on the set ΣB L2(ω) . In contrast, the second upper bound (34) is punctual since the expected squared error of interpolation depends on the function f . These upper bounds highlight the importance of the eigenvalues σ m for the study of the convergence of fOKA,x under the projection DPP of Definition 1: these quantities converge to 0 if the convergence of σ m , and moreover of r N , to 0 is fast enough. These results give convergence rates for the interpolation under the distribution of the projection DPP, that scale, at the best, as O(r N ), which is slower than the empirical convergence rate O(σ N +1 ) observed in [START_REF] Belhadji | Kernel quadrature with dpps[END_REF][START_REF] Belhadji | Subspace sampling using determinantal point processes[END_REF]. Indeed, when

σ N = N -2s for s > 1/2, we have O(r N ) = O(N 1-2s
), which is slower, by a factor of N , than O(σ N +1 ), which corresponds to the optimal rate of convergence in the following sense: for N ∈ N * , there exists g ∈ L 2 (ω) such that g ω ≤ 1 and f -fOKA,x 2 F ≥ σ N +1 for x ∈ X N such that Det κ(x) > 0; see Section 2.5. in [START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF] for a proof.

On the other hand, it is possible to derive better convergence guarantees using continuous volume sampling. Indeed, [START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF] showed that

E CVS f -fOKA,x 2 F = m∈N * g, e m 2 ω m (N ), (35) 
where

m (N ) = σ m U ∈ U N ;m / ∈U u∈U σ u U ∈ U N u∈U σ u ; U N := {U ⊂ N * ; |U | = N }. (36) 
The identity (35) gives and explicit expression of 

E CVS f -fOKA,x 2 
E CVS f -fOKA,x 2 F ≤ sup m∈N * m (N ) = 1 (N ). ( 37 
)
Moreover, as it was proven in Theorem 4 of [START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF], we have

1 (N ) ≤ σ N +1 (1 + β N ) , (38) 
where

β N := min M ∈[2:N +1] [(N -M + 2)σ N +1 ] -1 m≥M σ m .
In particular, under the assumption that the sequence (β N ) N ∈N * is bounded, which is the case as soon as the sequence (σ m ) decreases polynomially or exponentially, (38) yields

sup f ∈ΣB L 2 (ω) E CVS f -fOKA,x 2 F = O(σ N +1 ), ( 39 
)
which corresponds to the optimal rate of convergence. The results reviewed until now are restricted to functions that belong to ΣL 2 (ω), are mostly relevant in the study of kernel-based quadrature using determinantal sampling. Yet, as it was mentioned , ΣL 2 (ω) is strictly included in the RKHS F. Still, it is possible to extend (39) to functions belonging to Σ r+1/2 L 2 (ω), where r ∈ [0, 1/2] is a parameter that interpolates between the set of the embeddings ΣL 2 (ω) and the RKHS F = Σ 1/2 L 2 (ω). Indeed, as it was shown in [START_REF] Belhadji | Kernel interpolation with continuous volume sampling[END_REF],

E CVS f -fOKA,x 2 F = O(σ 2r N +1
) under the assumption that the sequence (β N ) N ∈N * is bounded. This result is an extension of (39) to r ≤ 1/2: the rate of convergence is O(σ 2r N +1 ) which is slower than O(σ N +1 ) and it gets worse as r goes to 0. In other words, an additional level of smoothness controlled by r > 0 is needed to achieve the convergence with respect to the RKHS norm . F . Nevertheless, we can expect that the convergence hold with respect to a weaker norm that is . ω as we will see in Section 3.

Theoretical guarantees

While previous work on determinantal sampling measured performance in RKHS norm, we investigate here the mean squared reconstruction error in L 2 (ω) norm. We emphasize that a few key results play a fundamental role, like the two properties ( 29) and ( 30) of the Ermakov-Zolotukhin quadrature, and the 'Pythagorean' formula (35) of continuous volume sampling.

The least-squares approximation

The following result gives a bound for the mean-square error of fLS,x under the projection DPP of Definition 1.

Theorem 1. Consider N ∈ N * . Let f ∈ F, and let f N be its projection onto the eigenspace E N defined by (10). Then

E DPP f -fLS,x 2 ω ≤ 2 f -f N 2 ω + f N 2 ω +∞ m=N +1 σ 2 m . (40) 
The relative importance of the two terms of the r.h.s. of (40) depends on the smoothness of f , as characterized by the nested spaces in Section 2.1.2. To be more precise, if f ∈ Σ 1/2+r L 2 (ω) with r ≥ 0, there exists g ∈ L 2 (ω) such that

∀m ∈ N * , f, e m ω = σ r+1/2 m g, e m ω , (41) 
so that the first term of the r.h.s. of (40) satisfies

f -f N 2 ω = +∞ m=N +1 f, e m 2 ω = +∞ m=N +1 f, e m 2 ω σ 2r+1 m σ 2r+1 m (42) = σ 2r+1 N +1 +∞ m=N +1 g, e m 2 ω ≤ σ 2r+1 N +1 g 2 ω . (43) 
Meanwhile, the second term in the r.h.s. of ( 40) is o(σ N +1 ), upon noting that f N ω ≤ f ω and

+∞ m=N +1 σ 2 m ≤ σ N +1 +∞ m=N +1 σ m .
So whatever r ≥ 0, the r.h.s. of ( 40) is O(σ N +1 ), and as soon as r > 0, it is even o(σ N +1 ). As r grows, and more smoothness is assumed, the second term in the r.h.s. gets to dominate.

In particular, if r ≥ 1/2, the first term is O(σ 2 N +1 ): this is the fastest rate we can expect from the second term, however large r is. This potential change of convergence rate when r increases is called superconvergence in the literature; see [START_REF] Schaback | Superconvergence of kernel-based interpolation[END_REF] and references therein. In particular, we shall observe a convergence in O(σ 2 N +1 ) in the numerical experiments of Section 4.

The following lemma, which we use to prove Theorem 1, underlines a practical limitation of the least-squares approximation.

Lemma 1. Let f ∈ F, w ∈ R N and x ∈ X N . Then f - i∈[N ] w i k(x i , •) 2 ω = f 2 ω -2 i∈[N ] w i µ f (x i ) + w T K 2 (x)w, ( 44 
)
where µ f := Σf and K 2 (x) is the Gram matrix associated to the kernel

k 2 (x, y) := +∞ m=1 σ 2 m e m (x)e m (y), ( 45 
)
where the convergence holds uniformly on compact subsets of X × X . In particular, for a given x ∈ X N such that the matrix K 2 (x) is non-singular, the associated least-squares approximation fLS,x is equal to i∈

[N ] ŵi k(x i , •), where ŵ = K 2 (x) -1 µ f (x). ( 46 
)
As a consequence, the most direct way to evaluate fLS,x requires evaluating µ f rather than f , and evaluating the kernel k 2 instead of k. Both may not have tractable expressions, which can be an important practical limitation. The proof of Lemma 1 is based on the Mercer decomposition (5) and it is given in Section 3.4.1, while the crux of the proof of Theorem 1, given in Section 3.4.2, is a property of the Ermakov-Zolotukhin quadrature rule proved in [START_REF] Belhadji | An analysis of ermakov-zolotukhin quadrature using kernels[END_REF].

The transform based on the optimal kernel quadrature

To bypass the practical limitations of the least-squares approximation, we study the transform fOKQ,M,x based on the optimal kernel quadrature, defined in Section 2.2.2. The latter transform can be seen as a surrogate of fLS,x , and has the advantage to only require evaluating f at the design. The following result makes use of the recent progress in the field of numerical integration using determinantal sampling to prove bounds on the mean square error of this approximation.

Proposition 1. Let f ∈ F and N ∈ N * . For a given x ∈ X N , denote by fOKQ,M,x the approximation obtained through the optimal kernel quadrature transform of order M ∈ N * associated to the configuration x, which is defined by (12) where the vectors α m := (α m,i ) are defined by ( 14)

for m ∈ [M ]. Then E DPP f -fOKQ,M,x 2 ω ≤ M r N +1 f 2 F + f -f M 2 ω ( 47 
)
and

E CVS f -fOKQ,M,x 2 ω ≤ M 1 (N ) f 2 F + f -f M 2 ω , (48) 
where f M := M m=1 f, e m ω e m , r N +1 := m≥N +1 σ m and 1 (M ) is given by (36). Two comments are in order. First, the two upper bounds (47) and (48) both involve the squared residual f -f M 2 ω and a term that depends on f F . The residual can be seen as a trace of approximating f M instead of f , while the RKHS norm is a trace of performing numerical quadrature. Note that the two upper bounds are not multiplicative in the squared residual f -f M 2 ω : for f = e F 1 , the residual is zero as long as M ≥ 1, while the RKHS term is positive. In other words, a priori the IOP4 does not hold. We will see in Section 3.3 that the quasi-interpolant satisfies the IOP under the distribution of the projection DPP. Second, the upper bounds ( 47) and (48) yield convergence rates. Indeed, observe that

f -f M 2 ω = m≥M +1 f, e m 2 ω = m≥M +1 σ m f, e m 2 ω σ m ≤ σ M +1 f -f M 2 F . (49) 
In particular, when M = N , (47) yields a convergence rate under the DPP in O((N + 1)r N ), while (48) yields a convergence rate under CVS that scales as O((N + 1)σ N +1 ) when 1 (N ) = O(σ N +1 ). Both are slower than the rate of convergence of E DPP f -fLS,x 2 ω = O(σ N +1 ) proved in Theorem 1. It would be interesting to investigate whether ( 47) and ( 48) can be sharpened. Indeed, the RHS of ( 47) and ( 48) goes to infinity as M → +∞. The following result shows that for a given configuration x ∈ X N such that K(x) is non-singular, f -fOKQ,M,x ω seen as a function of M is bounded.

Proposition 2. Let f ∈ F and N ∈ N * . For a given x ∈ X N such that the matrix K(x) is nonsingular, denote by fOKQ,M,x the approximation defined through the optimal kernel quadrature transform of order M ∈ N * associated to the configuration x, which is defined by (12) where the vectors α m := (α m,i ) are defined by (14

) for m ∈ [M ]. Then ∀M ∈ N * , f -fOKQ,M,x 2 ω ≤ f -fOKA,x 2 ω + f -f M 2 ω , ( 50 
)
where f M := M m=1 f, e m ω e m . Compared to ( 47) and ( 48), the first term of the RHS of ( 50) is independent of M . In particular, fOKA,x can be seen as limit of fOKQ,M,x as M → +∞. This result would yield an improved convergence rate of the squared mean error of fOKQ,M,x if we manage to prove sharp upper bounds of the squared mean error of fOKA,x under one of the two distributions defined in Section 2.3.2. Such a result is not yet available. However, the study of fLS,x in Section 3.1, which is close to fOKA,x in the construction, suggests that the squared mean error of fOKA,x , under determinantal sampling, scales as O(σ N +1 ). This intuition is corroborated by numerical simulations presented in Section 4.1. The proof of Proposition 1, given in Section 3.4.3, is based on (34) and (37). The proof of Proposition 2 is given in Section 3.4.4.

The instance optimality property under projection DPPs

The empirical least-squares approximation (19) was extensively studied in the literature as mentioned in Section 2.3.1. A large proportion of these works focus on the study of the instance optimality property of fELS,M,x as defined by ( 21) when x is a random configuration of N nodes of X . It was shown that the IOP holds when the nodes are i.i.d. draws according to the inverse of the Christoffel function defined by ( 23) and when the sampling budget N scales as O(M log(M )), which is optimal up to the logarithmic factor. Seeking alternative sampling algorithms that require a minimal budget of sampling that scale linearly with M is an active topic of research as it was mentioned in Section 2.3.1. To this aim, the projection DPP defined in Section 2.3.2 is a good candidate as a non-i.i.d. extension of the Christoffel sampling with a negative correlation property. This section investigates the IOP of the empirical least-squares approximation under this determinantal distribution. More precisely, this section studies a variant of this approximation which is amenable to theoretical analysis under the distribution of the projection DPP of Definition 1. Given a positive function q : X → R * + , and given N, M ∈ N * such that M ≤ N , we define the truncated empirical least-squares approximation of order M associated to the configuration x ∈ X N as ftELS,M,x :

= M m=1 fELS,N,x , e m ω e m , (51) 
where fELS,N,x is the empirical least-squares approximation of f of dimension N associated to the function q and the configuration x of size N . A subtle but important remark is that, in general, ftELS,M,x = fELS,M,x : ftELS,M,x is the projection on E M of the ELS approximation in E N while fELS,M,x is the ELS approximation in E M . As we shall now see, ftELS,M,x is even invariant to the choice of the function q, which is not the case of fELS,M,x .

Proposition 3. Consider N ∈ N * and let q :

X → R * + a positive function. Let x ∈ X N such that the matrix E N (x) := (e m (x i )) (i,m)∈[N ]×[N ] is non-singular, then fELS,N,x = fQI,N,x , (52) 
where fQI,N,x is the quasi-interpolant defined in Section 2.2.2. As a result,

∀M ∈ [N ], ftELS,M,x = M m=1 fQI,N,x , e m ω e m . (53) 
In other words, the empirical least-squares approximation of dimension N is invariant to the choice of the function q and coincides with the quasi-interpolant defined in Section 2.2.2. As a result, ftELS,M,x5 is nothing but the projection of fQI,N,x on the eigenspace E M . Therefore, the numerical evaluation of ftELS,M,x boils down to the evaluation of the quadrature rules Î1 (f ), . . . , ÎM (f ) defined by ( 15) that implies the evaluation of α 1 , . . . , α N via ( 16). Compared to the evaluation of (20) to get fELS,M,x , this involves an N × N rather than M × M matrix. Therefore the evaluation of the coefficients of ftELS,M,x in the o.n.b. (e m ) m∈N * is numerically more expensive than fELS,M,x . However, this newly introduced approximation can be studied theoretically when the configuration x is a projection DPP, which yields the following result.

Proposition 4. Consider N, M ∈ N * such that M ≤ N . Then, for f ∈ F E DPP f -ftELS,M,x 2 ω = f -f M 2 ω + M f -f N 2 ω , (54) 
As a direct consequence,

E DPP f -ftELS,M,x 2 ω ≤ (1 + M ) f -f M 2 ω . ( 55 
)
In other words, under the projection DPP, ftELS,M,x satisfies the IOP with constant (1 + M ), for any sampling budget that satisfies N ≥ M . For comparison, the required sampling budget for i.i.d. Christoffel sampling scales as O(M log(M )). We emphasize that this approximation bound in O(M ) is a concrete benefit of the negative correlation property of projection DPPs for sampling.

The proof of Proposition 3 is given in Section 3.4.5, and the proof of Proposition 4, based on the identities ( 29) and ( 30), is given in Section 3.4.6.

Proofs

3.4.1 Proof of Lemma 1 Let f ∈ F, w ∈ R N and x ∈ X N . The squared residual f -i∈[N ] w i k(x i , •) 2 ω writes f 2 ω -2 f, i∈[N ] w i k(x i , •) ω + i∈[N ] w i k(x i , •) 2 ω . ( 56 
)
The identity (44) follows from evaluating the latter two terms. First note that

µ f = Σf = m∈N * σ m f, e m ω e m .
Moreover, by ( 5), we have k(

x i , •) = +∞ m=1 σ m e m (x i )e m (•) for i ∈ [N ], so that f, k(x i , •) ω = m∈N * f, e m ω σ m e m (x i ) = m∈N * µ f , e m ω e m (x i ) = µ f (x i ), ( 57 
) and ∀i, i ∈ [N ] 2 , k(x i , •), k(x i , •) ω = k 2 (x i , x i ). ( 58 
)
Plugging ( 57) and ( 58) into (56) yields the desired formula.

Proof of Theorem 1

First, observe that when x follows the distribution of the projection DPP of Definition 1, the Gram matrix K N (x) associated to the kernel k N defined by ( 25) is almost surely non-singular.

Similarly, the Gram matrix K 2,N (x) associated to the kernel k 2,N (x, y) = N m=1 σ 2 m e m (x)e m (y) is almost surely non-singular. Now, observe that

K 2,N (x) = N m=1 σ 2 m e m (x)e m (x) T ≺ K 2 (x) = +∞ m=1 σ 2 m e m (x)e m (x) T , (59) 
so that the matrix K 2 (x) is also almost surely non-singular. Now, let f ∈ F, x ∈ X N such that the matrices K N (x), K 2,N (x) are non-singular. In short, we use the Ermakov-Zolotukhin quadrature of Section 2.4.1 as a pivot. Define fEZ,x :

= N i=1 ŵEZ i k(x i , •),
where ŵEZ := K N (x) -1 f N (x) and f N is defined by (10). By definition of fLS,x , f -fLS,x

2 ω ≤ f -fEZ,x 2 ω , so that f -fLS,x 2 ω ≤ 2 f -f N 2 ω + f N -fEZ,x 2 ω . Therefore E DPP f -fLS,x 2 ω ≤ 2 f -f N 2 ω + E DPP f N -fEZ,x 2 ω .
Now, using the identity (44

) of Lemma 1, f N -fEZ,x 2 ω writes f N 2 ω -2 i∈[N ] ŵEZ i µ f N (x i ) + ŵEZ T K 2 (x) ŵEZ , (60) 
which is equal to

µ f N -i∈[N ] ŵEZ i k 2 (x i , •) 2 F 2
, where µ f N = Σf N , and F 2 is defined to be the RKHS associated to the kernel k 2 and . F 2 its norm. Indeed, for i, i ∈ [N ], we have

k 2 (x i , x i ) = k 2 (x i , •), k 2 (x i , •) F2 .
Moreover, denote by Σ 2 the integration operator associated to the kernel k 2 and the measure ω, and observe that Σ

1/2 2 = Σ, so that f N 2 ω = Σ 1/2 2 f N 2 F 2 = Σf N 2 F 2 = µ f N 2 F 2 . Now, since f N ∈ E N = Span(e 1 , .
. . , e N ), Theorem 3 in [START_REF] Belhadji | An analysis of ermakov-zolotukhin quadrature using kernels[END_REF] yields

E DPP µ f N - i∈[N ] ŵEZ i k 2 (x i , •) 2 F 2 = f N 2 ω +∞ m=N +1 σ 2 m .
To sum up, we obtain

E DPP f -fLS,x 2 ω ≤ 2 f -f N 2 ω + f N 2 ω +∞ m=N +1 σ 2 m .

Proof of Proposition 1

Let f ∈ F. We have f = m∈N * I m (f )e m , where I m (f ) := f, e m ω . Moreover, by definition ( 12), any transform-based approximation writes fΦ =

m∈[M ] Îm (f )e m ,
where Îm are quadrature rules. In particular,

f -fΦ = m∈[M ] (I m (f ) -Îm (f ))e m + m≥M +1 f, e m ω e m (61) 
and

f -fΦ 2 ω = m∈[M ] (I m (f ) -Îm (f )) 2 + f -f M 2 ω . (62) 
Now, when Φ corresponds to the transform based on the optimal kernel quadrature, we have by ( 12) and ( 14)

∀m ∈ [M ], Îm (f ) = i∈[N ] α m,i f (x i ) = µ m (x) T K(x) -1 f (x), (63) 
where µ m := σ m e m = Σe m . Now, let m ∈ [M ] and define µ := µ m . By definition (9), we have μOKA,x = i∈[N ] w i k(x i , •), where w = K(x) -1 µ(x). Thus, by (63), we have

Îm (f ) = f (x) T w = f, i∈[N ] w i k(x i , •) F = f, μOKA,x F . (64) 
Moreover, we have e F m , ϕ F = e m , ϕ ω / √ σ m for any ϕ ∈ F; see Section 2.1.1. Thus

I m (f ) = f, e m ω = √ σ m f, e F m F = f, µ F . (65) 
Combining ( 64) and ( 65), we get

I m (f ) -Îm (f ) = f, µ -μOKA,x F ≤ f F µ -μOKA,x F . (66) 
Since e m ω = 1, µ ∈ ΣB L2(ω) . Thus by ( 34) and (37), we get

E DPP |I m (f ) -Îm (f )| 2 ≤ 4r N f 2 F , (67) 
and

E CVS |I m (f ) -Îm (f )| 2 ≤ m (N ) f 2 F . (68) 
By taking the sum over m ∈ [M ] in ( 67) and ( 68), and by using (62), we prove ( 47) and (48).

Proof of Proposition 2

Let f ∈ F. We proceed as in Section 3.4.3, and we prove that

∀M ∈ N * , f -fOKQ,M,x 2 ω = m∈[M ] (I m (f ) -Îm (f )) 2 + f -f M 2 ω , (69) 
where I m (f ) = f, e m ω for m ∈ N * , and Î1 , . . . , Îm are given by ( 63). Thus, we only need to prove that m∈

[M ] (I m (f ) -Îm (f )) 2 ≤ f -fOKA,x 2 ω . Now, let m ∈ [M ]. By definition (9), we have fOKA,x = i∈[N ] w i k(x i , •)
, where w = K(x) -1 f (x). Thus, by (63), we have

Îm (f ) = µ m (x) T w = µ m , i∈[N ] w i k(x i , •) F = µ m , fOKA,x F . (70) 
Moreover, we have e F m , ϕ F = e m , ϕ ω / √ σ m for any ϕ ∈ F; see Section 2.1.1. Thus, since

µ em = Σe m = σ m e m = √ σ m e F m , we have µ m , fOKA,x F = √ σ m e m , fOKA,x ω / √ σ m = e m , fOKA,x ω . (71) 
On the other hand, we have I m (f ) = e m , f ω . Combining the latter with (71), we get

(I m (f ) -Îm (f )) 2 = e m , f -fOKA,x 2 ω , (72) so that 
M m=1 (I m (f ) -Îm (f )) 2 = M m=1 e m , f -fOKA,x 2 ω ≤ +∞ m=1 e m , f -fOKA,x 2 ω = f -fOKA,x 2 ω .

Proof of Proposition 3

Let f ∈ F, x = (x 1 , . . . , x N ) ∈ X N , and w = (w 1 , . . . , w N ) ∈ R N . Define

   β(x) := 1 N i∈[N ] q(x i )f (x i ) 2 δ(x) := ( 1 N i∈[N ] q(x i )f (x i )e n (x i )) n∈[N ] ∈ R N γ(x) := ( 1 N i∈[N ] q(x i )e n1 (x i )e n2 (x i )) (n1,n2)∈[N ]×[N ] ∈ R N ×N . (73) We have f - m∈[N ] w m e m 2 q,x = 1 N i∈[N ] q(x i ) f (x i ) - m∈[N ] w m e m (x i ) 2 (74) = β(x) -2w T δ(x) + w T γ(x)w. (75) 
Under the assumption that γ(x) is non-singular, let ŵ = γ(x) -1 δ(x). The function f := m∈[N ] ŵm e m is then the unique function belonging to E N that satisfies

f -f q,x = min f ∈E N f -f q,x . (76) 
Thus fELS,N,q,x = m∈[N ] ŵm e m , and we only need to prove that ŵm = ÎQI

m (f ) for m ∈ [N ], where ÎQI m (f ) = f (x) T K N (x)
-1 e m (x) are the interpolative quadrature rules that define the quasi-interpolant in Section 2.2.2. For this purpose, observe that γ(x) and δ(x) write

γ(x) := 1 N E N (x) T Q(x)E N (x) δ(x) := 1 N E N (x) T Q(x)f (x) , (77) 
where Q(x) := Diag(q(x 1 ), . . . , q(x N )), E N (x) := (e n (x i )

) (i,n)∈[N ]×[N ] , and f (x) = (f (x i )) i∈[N ] .
Thus, still under the assumption that γ(x) is non-singular, we have

ŵ = γ(x) -1 δ(x) = E N (x) -1 Q(x) -1 E N (x) T -1 E N (x)f (x) = E N (x) -1 f (x). ( 78 
)
In particular, for m ∈

[N ], ŵm = v T m E N (x) -1 f (x), (79) 
where v m is the m-th element of the Euclidean basis of R N . By observing that e m (x) = E N (x)v m , we deduce from (79) that ŵm = e m (x

) T E N (x) T -1 E N (x) -1 f (x) = e m (x) T (E N (x)E N (x) T ) -1 f (x) (80) = e m (x) T K N (x) -1 f (x) (81) = ÎQI m (f ). ( 82 
)
Finally, we need to check that γ(x) is non-singular if and only if E N (x) is non-singular. This claim can be proved by observing that γ(x) is non-singular if and only if the matrices Q(x) and E N (x) are non-singular. We conclude by observing that Det Q(x) = i∈[N ] q(x i ) > 0, since q is positive by assumption.

Proof of Proposition 4

Let w = (w m ) m∈[N ] ∈ R N . We have

f - M m=1 w m e m 2 ω = f 2 ω -2 M m=1 w m f, e m ω + M m=1 w 2 m . (83) 
Therefore

f -fELS,M,x 2 ω = f 2 ω -2 M m=1 ŵm f, e m ω + M m=1 ŵ2 m , (84) 
where ŵ = γ(x) -1 δ(x), with γ(x) and δ(x) given by (77). By Proposition 3, we get

∀n ∈ [N ], ŵn = ÎQI n (f ). ( 85 
)
Based on ( 85), ( 29) implies that

∀n ∈ [N ], E DPP ŵn = f, e n ω , (86) 
and ( 30) implies that

∀n ∈ [N ], E DPP ŵ2 n = E DPP ÎQI n (f ) 2 = I n (f ) 2 + 2I n (f )E DPP ( ÎQI n (f ) -I n (f )) + E DPP ( ÎQI n (f ) -I n (f )) 2 = f, e n 2 ω + +∞ m=N +1 f, e m 2 ω . (87) 
Finally, combining ( 84),( 86) and ( 87), we get

E DPP f -fELS,M,x 2 ω = f 2 ω -2 M n=1
f, e n f, e m

2 ω = f -f M 2 ω + M f -f N 2 ω .

Numerical illustrations

In this section we illustrate the results of Section 3 on three families of RKHSs.

Periodic Sobolev spaces

Let X = [0, 1] equipped with the uniform measure ω, and define for s ∈ N * the kernel

k s (x, y) = 1 + 2 m∈N * 1 m 2s cos(2πm(x -y)), (88) 
where the convergence holds uniformly on X × X . The kernel k s can be expressed in closed form using Bernoulli polynomials [START_REF] Wahba | Spline Models for Observational Data[END_REF], The corresponding RKHS F = S s is the periodic Sobolev space of order s; an element of S s is a function f defined on [0, 1], that has a derivative of order s in the sense of distributions such that f (s) ∈ L 2 (ω), and ∀i ∈ {0, . . . , s -1},

k s (x, y) = 1 + (-1) s-1 (2π) 2s (2s)! B 2s ({x -y}). (89 
f (i) (0) = f (i) (1); (90) 
see Chapter 7 of [START_REF] Berlinet | Reproducing kernel Hilbert spaces in probability and statistics[END_REF]. This class of RKHSs is ideal to validate the theoretical guarantees obtained in Section 3, since the eigenvalues σ m and the eigenfunctions e m are known explicitly. Figure 2a and Figure 2b show log-log plots of f -fLS,x 2 ω when f = e F m with m ∈ {1, 2, 3, 4, 5} w.r.t. N , averaged over 50 independent draws from the the projection DPP, when F is the periodic Sobolev spaces of order s = 1 and s = 2, respectively. We observe that the expected squared residual converges to 0 at the same rate as σ 2 N +1 = O(N -4s ), which is slightly faster than the rate of convergence of m≥N +1 σ 2 m = O(N 1-4s ) predicted by Theorem 1. Interestingly, this fast rate of convergence is also observed for the kernel-based interpolant fOKA,x , as shown in Figure 2c and Figure 2d. Indeed, these figures show log-log plots of f -fOKA,x 2 ω when f = e F m with m ∈ {1, 2, 3, 4, 5} w.r.t. N , averaged over 50 independent DPP samples. The squared residuals are evaluated using the formula (44). Now, we move to another experiment, and consider f to be a random function

f = M m=1 ξ m e F m , (91) 
where M ∈ N * and the ξ m are i.i.d. standard Gaussians. In other words, f is a random element of the eigenspace E F M . Figure 3a and Figure 3b show log-log plots of f -fLS,x 2 ω w.r.t. N , averaged over 50 independent DPP samples, and for a set of 50 functions f sampled according to (91), when F is the periodic Sobolev spaces of order s = 1. To be clear, for every function f we use different DPP samples. We observe that the empirical convergence rate scales as O(σ 2 N +1 ), which is slightly faster than O( m≥N +1 σ 2 m ). Again, this fast convergence is also observed for the kernel-based interpolant fOKA,x , as shown in Figure 3c and Figure 3d. 

An RKHS with a rotation-invariant kernel on the hypersphere

The RKHS framework allow treating high-dimensional and/or non-Euclidean domains, such as hyperspheres. The definition of a positive definite kernel on a hypersphere dates back to [START_REF] Schoenberg | Positive definite functions on spheres[END_REF] a dot-product kernel if there exists a function ϕ : [-1, 1] → R such that k(x, y) = ϕ( x, y ) for x, y ∈ S d-1 . This defines a large class of rotation-invariant kernels on S d-1 . Moreover, the integration operator Σ associated to a dot-product kernel, when S d-1 is equipped with the uniform measure, decomposes in the basis of spherical harmonics, and Mercer's decomposition holds in the form

k(x, y) = +∞ =0 σ N (d, ) k=1 Y ,k (x)Y ,k (y), (92) 
where for ∈ N, {Y ,k : S d-1 → R, k = 1, . . . , N (d, )} is the basis of spherical harmonics of exact degree and N (d, ) := (2 + d -1)Γ( + d -1)/ Γ(d)Γ( + 1) ; see [START_REF] Groemer | Geometric applications of Fourier series and spherical harmonics[END_REF]. The exact expression of for σ m or the eigenvalue decay may be found in [START_REF] Cui | Equidistribution on the sphere[END_REF][START_REF] Smola | Regularization with dot-product kernels[END_REF], Bach, 2017b[START_REF] Azevedo | Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere[END_REF][START_REF] Scetbon | A spectral analysis of dot-product kernels[END_REF].

In order to illustrate the superconvergence phenomenon of Theorem 1,we consider the kernel obtained by taking d = 3 and σ = (1 + ) -2s in (92). The corresponding RKHS is akin to a Sobolev space of order s; an element of F is a function f defined on S d-1 , which has a derivative of order s in the sense of distributions such that f (s) ∈ L 2 (ω) [START_REF] Hesse | A lower bound for the worst-case cubature error on spheres of arbitrary dimension[END_REF].

Figure 4a and Figure 4b show log-log plots of f -fLS,x 2 ω when f = e F m with m ∈ {1, 10, 20, 30} w.r.t. N , averaged over 50 independent DPP samples, for s = 1 and s = 2 respectively. Again, we observe that the expected squared residual converges to 0 at the same rate as σ 2 N +1 = O(N -4s ), which is slightly faster than the rate of convergence predicted by Theorem 1 of m≥N +1 σ 2 m = O(N 1-4s ). Moreover, the superconvergence regime corresponds to N ≥ m, as predicted by Theorem 1.

The RKHS spanned by the uni-dimensional PSWFs

Let now X = [-T /2, T /2] equipped with ω the uniform measure, and let F > 0. Consider the Sinc kernel

k F (x, y) := Sinc(F (x -y)) = sin(F (x -y)) F (x -y) . (93) 
This kernel defines an RKHS that corresponds to the space of band-limited functions restricted to the interval X . Slepian, Landau, and Pollak proved that the eigenfunctions of the integration operator Σ associated to (93) and the measure ω satisfy a differential equation known in physics as the prolate spheroidal wave equation (PSW; [START_REF] Slepian | Prolate spheroidal wave functions, fourier analysis and uncertainty-i[END_REF]. Since this seminal work, the eponymous functions were subject to extensive research. In particular, a detailed description of the eigenfunctions was carried out in [START_REF] Osipov | Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions[END_REF][START_REF] Bonami | Uniform bounds of prolate spheroidal wave functions and eigenvalues decay[END_REF][START_REF] Osipov | Detailed analysis of prolate quadratures and interpolation formulas[END_REF]. In particular, these functions were shown to be well represented in the orthonormal basis defined by the Legendre polynomials [START_REF] Boyd | Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions-prolate elements[END_REF], Osipov et al., 2013]. The asymptotics of the eigenvalues (σ m ) of Σ in the limit c := T F → +∞ were investigated too [START_REF] Landau | Eigenvalue distribution of time and frequency limiting[END_REF]: for > 0, in this asymptotic limit, Σ has approximately T F eigenvalues in the interval [1 -, 1], O(log(T F ) log(1/ )) eigenvalues in the interval [ , 1 -], and the remaining eigenvalues decrease to 0 at an exponential rate.

In this set of experiments, we study the influence of the design x on the convergence of fOKA,x to f with respect to the norm . ω . We compare the following random designs: (i) the projection DPP defined in Section 2.3.2 associated to the first PSW functions (DPP-PSWF), (ii) the projection DPP associated to the first normalized Legendre polynomials (DPP-Legendre), and iii) Christoffel i.i.d. sampling (ChS). Figure 5 shows log-log plots of f -fOKA,x 2 ω when f = e F m with m ∈ {1, 2, 3} w.r.t. N , averaged over 50 independent samples of each of the three distributions. We observe that both DPP-PSWF and DPP-Legendre significantly improve over Christoffel sampling. Moreover, the expected squared residual f -fOKA,x 2 ω under the two DPPs converges to 0 at an exponential rate when N ≥ T W , which corresponds to the asymptotics described in [START_REF] Landau | Eigenvalue distribution of time and frequency limiting[END_REF].

Discussion

In this article, we established guarantees in L 2 norm for the reconstruction of functions living in an RKHS, based on repulsive nodes defined by determinantal distributions. In the following, we give further high-level comments and discuss possible extensions.

First, we insist that generating different random designs requires access to different quantities. Christoffel sampling in general will require rejection sampling. One should thus be able to evaluate the density x → N m=1 e m (x) 2 /N , as well as find a suitable proposal. The study of the 'shape' of the Christoffel function is thus crucial for sampling, and is an active topic of research [START_REF] Pauwels | Relating leverage scores and density using regularized christoffel functions[END_REF][START_REF] Avron | A universal sampling method for reconstructing signals with simple fourier transforms[END_REF], Dolbeault and Cohen, 2022b]. A good sampler for the Christoffel function is also relevant to simulate the DPP of Equation ( 26), as the p.d.f. of Christoffel sampling can be used as a proposal distribution when sampling the sequential conditionals of the HKPV algorithm [START_REF] Hough | Determinantal processes and independence[END_REF]; see [START_REF] Gautier | On two ways to use determinantal point processes for monte carlo integration[END_REF]. When the p.d.f. of Christoffel sampling cannot be evaluated, one can still resort to continuous volume sampling. Indeed, while the only known exact sampling algorithm for CVS still relies on possibly hard-to-evaluate projection kernels, there are approximate samplers that leverage the fact that evaluating the p.d.f. of CVS in Equation ( 28) only requires evaluating the RKHS kernel k. In particular, [START_REF] Rezaei | A polynomial time MCMC method for sampling from continuous determinantal point processes[END_REF] have studied a natural Markov chain Monte Carlo sampler, whose mixing time scales as O(N 5 log(N )). Moreover, while each iteration of their Markov chain requires a rejection sampling step, the expected number of rejections is shown to be O(1/ m≥N +1 σ m ). In other words, the smoother the kernel, the harder it is to run the MCMC algorithm. It would be interesting to investigate whether alternative MCMC algorithms can circumvent this 'smoothness curse'.

Second, we comment on the instance optimal property (IOP), which motivated the introduction of Christoffel sampling [START_REF] Cohen | Optimal weighted least-squares methods[END_REF]. In particular, it was proven that for some variants of the empirical least-squares approximation, the IOP holds when the sampling budget is as low as O(M log(M )). These variants essentially exclude configurations of nodes x for which the Gramian matrix G q,x is ill-conditioned. Similarly, determinantal sampling implicitly favors configurations of nodes x so that Det G q,x is large. Moreover, Proposition 4 shows that the IOP holds under a suitable projection DPP, with a minimum sampling budget N ≥ M . The price to pay is the constant M + 1 in the IOP. Now, when N = M , this constant is N + 1, which actually improves upon the constant N 2 + 1 proven in [START_REF] Chkifa | Randomized least-squares with minimal oversampling and interpolation in general spaces[END_REF] for an algorithm based on the so-called effective resistances. The latter algorithm generates randomized configurations x in a greedy fashion so that the 'redundancy' of sampling is reduced.

Third, we might seek approximation schemes that are optimal in some worst-case sense, rather than looking for ones that satisfy the IOP. This is the approach adopted in [Krieg andUllrich, 2021, Dolbeault et al., 2023], where the authors investigate the sampling numbers g N (F ) := inf x1,...,x N ∈X ϕ1,...,ϕ N ∈L2(ω)

sup f ∈F f - N i=1 f (x i )ϕ i ω . ( 94 
)
The sampling numbers measure the complexity of the recovery of a function f ∈ F based on its discrete samples f (x 1 ), . . . , f (x N ). It was shown by [START_REF] Dolbeault | A sharp upper bound for sampling numbers in l2[END_REF] that there is a universal constant c ∈ N * such that

∀N ∈ N * , g cN (B F ) ≤ 1 N m≥N +1 d 2 m (B F ), (95) 
where the d m are the Kolmogorov widths defined by d N (B F ) := inf 1,..., N :B F →R ϕ1,...,ϕ N ∈L2(ω)

sup f ∈B F f - N i=1 i (f )ϕ i ω .
(96)

The Kolmogorov N -width corresponds to the lowest worst-case approximation error by a linear subspace of dimension N . Because F is an RKHS, the Kolmogorov N -width (96) corresponds to the so-called linear N -width, defined by restricting the functions 1 , . . . , N to be linear; see Remark 5 in [START_REF] Dolbeault | A sharp upper bound for sampling numbers in l2[END_REF]. In particular, in this case, d N (B F ) = σ N +1 , so that the RHS of (95) scales as O(σ N +1 ) for many sequences (σ m ) m∈N * , although this is not always the case [START_REF] Krieg | Function values are enough for l2-approximation: Part ii[END_REF]. Moreover, the bound ( 95) is optimal [START_REF] Hinrichs | Lower bounds for integration and recovery in l2[END_REF]. Our results in Section 3 can match these rates, but only for a single f so far; Theorem 1, for instance, implies that E DPP f -fLS,x 2 ω = O(σ N +1 ) for every function f in the RKHS F. Such a worstcase optimality would further connect to a string of results on the completeness of DPPs [START_REF] Lyons | Determinantal probability measures[END_REF][START_REF] Ghosh | Determinantal processes and completeness of random exponentials: the critical case[END_REF][START_REF] Bufetov | Kernels of conditional determinantal measures and the lyons-peres completeness conjecture[END_REF], which look for conditions under which a sample x from a DPP is a uniqueness set in the sense that two elements of F that coincide on x are equal.
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 1 Figure 1: A schematic diagram illustrating the relationship between the unit ball B L2(ω) of L 2 (ω), the unit ball B F of F, and the image of B L2(ω) by the integration operator Σ.
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  in terms of the coefficients of g on the o.n.b. (e m ) m∈N * and the m (N ) defined by (36). Moreover, by observing that the sequence ( m (N )) m∈N * is non-increasing, the formula (35) implies that sup f ∈ΣB L 2 (ω)

  The residual f -fLS,x 2 ω vs. N (s = 2).

  The residual f -fOKA,x 2 ω vs. N (s = 1).

  The residual f -fOKA,x 2 ω vs. N (s = 2).
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 2 Figure 2: The reconstruction error for f = e F m , when F is the periodic Sobolev space of order s ∈ {1, 2}.

  The residual f -fOKA,x 2 ω vs. N for M = 20.

Figure 3 :

 3 Figure 3: The reconstruction error for 10 samples of f from the distribution defined by (91) when F is the periodic Sobolev space of order s = 1.

  . According to Schoenberg's seminal work, a kernel k : S d-1 × S d-1 → R is said to be

Figure 4 :

 4 Figure 4: The reconstruction error for f = e F m , when F is the periodic Sobolev space of order s ∈ {1, 2} in the hypersphere S d-1 where d = 3.

Figure 5 :

 5 Figure 5: The reconstruction error for f = e F m in the RKHS associated to the Sinc kernel.

Note that for m ∈ [N ], ÎQI m depends on N and x. Yet, we drop N and x from the notation for simplicity.

This is a specific formulation of the IOP. See[START_REF] Cohen | Optimal weighted least-squares methods[END_REF] for a more generic formulation.

See the end of Section 2.2.

Defined in Section 2.3.1 for the empirical least square approximation fELS,x , but it can be extended to any finite-dimensional approximation.

We drop q from the notation thanks to the invariance with respect to q.
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