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Abstract

We study the approximation of a square integrable function from a finite number of its
evaluations at well-chosen nodes. The function is assumed to belong to a reproducing kernel
Hilbert space (RKHS), the approximation to be one of a few natural finite-dimensional
approximations, and the nodes to be drawn from one of two probability distributions. Both
distributions are related to determinantal point processes, and use the kernel of the RKHS to
favor RKHS-adapted regularity in the random design. While previous work on determinantal
sampling relied on the RKHS norm, we prove mean-square guarantees in L2 norm. We show
that determinantal point processes and mixtures thereof can yield fast rates, and that they
shed some light on how the rate changes as more smoothness is assumed, a phenomenon
known as superconvergence. Besides, determinantal sampling generalizes i.i.d. sampling
from the Christoffel function, a standard in the literature. In particular, determinantal
sampling guarantees the so-called instance optimality property for a smaller number of
function evaluations than i.i.d. sampling.

Keywords— Christoffel sampling; instance optimality property; finite-dimensional approx-
imations; determinantal point processes; reproducing kernel Hilbert spaces.
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1 Introduction

The problem of reconstructing a continuous signal from a set of discrete samples is very com-
mon in signal processing and it has stimulated a considerable literature. This problem aims
at approximating an unknown function f by a surrogate f̂ knowing a set of evaluations of f .
The Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem is arguably the most emblematic
result in the field. It can be seen as an interpolation result for functions that are band-limited
in the Fourier domain [Whittaker, 1928, Shannon, 1949, Kotel’nikov, 2006]. This theorem has
been extended to functions that are band-limited with respect to other transforms than Fourier
transform including for instance Sturm-Liouville transforms [Kramer, 1959, Campbell, 1964],
Laguerre transforms [Jerri, 1976] and Jacobi transforms [Koornwinder and Walter, 1990].

Reproducing kernel Hilbert spaces (RKHSs) and sampling problems have a long common
history. The definition of an RKHS, going back to [Aronszajn, 1943, 1950] can be interpreted
by saying that any signal f ∈ F is a limit of weighted sums of kernel translates k(x, ·). In a
seminal paper, Yao [1967] derived sufficient conditions on a configuration (xi)i∈I of nodes to
achieve exact reconstruction of any element f of the RKHS F , i.e., to ensure that uniformly,

f =
∑
i∈I

f(xi)k(xi, ·). (1)

This is all the more related to signal processing that Yao proved that the spaces of band-limited
signals in the Fourier, Bessel, or cosine domains are all RKHSs. In particular, Yao’s result
generalizes the WSK theorem. Weaker sufficient conditions than Yao’s for (1) to hold have been
studied, see e.g. [Nashed and Walter, 1991].

However the WSK sampling theorem and its extensions to RKHSs are asymptotic: an infinite
number of samples is required in order to guarantee the exact reconstruction of the function. In
applications, only a finite number of evaluations f(x1), . . . , f(xN ), at nodes x1, . . . , xN ∈ X , will
be available. Therefore we seek non-asymptotic guarantees on reconstructions from N samples.
Interestingly, the latter problem arose first in the order of events, as mentioned by Higgins [1985].
Indeed, an early form of sampling theorem may be traced back to an interpolation scheme due
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to de La Vallée Poussin [1908]; see [Butzer and Stens, 1992] for a historical account. Non-
asymptotic sampling have resurged in popularity recently [Cohen and Migliorati, 2017, Bach,
2017a, Avron et al., 2019]. In these works, the nodes x1, . . . , xN are taken to be independent
draws from a particular probability distribution. The latter is closely related to extensions of
the so-called Christoffel function, a classical tool in the theory of orthogonal polynomials [Nevai,
1986]. These configurations of independent particles were shown to yield approximations that
satisfy the instance optimality property, a desirable multiplicative error bound that guarantees
exact recovery on a finite-dimensional subspace, with an almost optimal number of particles. On
the other hand, alternative designs have been proposed to achieve optimal reconstruction, using
boosting [Haberstich et al., 2022] or sparsification techniques [Krieg and Ullrich, 2021, Dolbeault
and Cohen, 2022b, Dolbeault et al., 2023, Chkifa and Dolbeault, 2023].

Our work presents a general approach for signal reconstruction, based on random sets of nodes
drawn from two repulsive point processes. The key idea is to use random nodes sampled from
mixtures of determinantal point processes (DPP). DPPs are distributions over configurations of
points that encode repulsion in the form of a kernel: connecting the DPP’s kernel to the RKHS
kernel allows the nodes to repel by an amount related to the smoothness of the target function.
DPPs were introduced by Macchi [1975] as models for detection times in fermionic optics. Since
then, they have been thoroughly studied in random matrix theory [Johansson, 2005], and have
more recently been adopted in machine learning [Kulesza and Taskar, 2012], spatial statistics
[Lavancier et al., 2015], and Monte Carlo methods [Bardenet and Hardy, 2020].

We have worked on non-asymptotic guarantees for function reconstruction with DPPs mo-
tivated by numerical integration [Belhadji et al., 2019, 2020]. In these works, we measured
reconstruction performance using the RKHS norm, and we had to make a rather strong smooth-
ness assumption that the function belongs to a particular strict subspace of the RKHS. Motivated
this time by applications in signal reconstruction, and to overcome the smoothness assumption
of our previous work, we conduct here an alternative analysis where we replace the RKHS norm
by the L2 norm. In particular, we study various finite-dimensional approximations of a function
living in an RKHS, like the the least-squares approximation with respect to the L2 norm. We
show that its mean square error converges to 0, at a rate that depends on the eigenvalues of
the RKHS kernel. Moreover, we show that the convergence is faster for functions living in a
certain low-dimensional subspace of the RKHS. This sheds the light on the phenomenon of su-
perconvergence observed in the literature of kernel-based approximations [Schaback, 2018], and
gives new insight into the the question of completeness with DPPs [Lyons, 2014]. Yet, in spite
of its remarkable theoretical properties, the least-squares approximation with respect to the L2

norm cannot be evaluated using a finite number of evaluations of the target function. For this
reason, we investigate more practical approximations based on two particular transforms, i.e.
linear operators from the RKHS to finite-dimensional vector spaces, built through a compilation
of quadrature rules. In particular, we prove that the instance optimality property holds for a
particular transform-based approximation using DPPs, even with a minimal sampling budget.
Numerical experiments in dimension one as well as on the hypersphere validate our results and
show the empirical efficiency of the proposed transform-based approach. The performance is
even better than the already interesting theoretical guarantees, which at the same time confirms
the interest of the approach and leaves room for improvement of the bounds.

This article is organized as follows. Section 2 contains notations and definitions of the finite-
dimensional approximations that we will study, as long as a brief review of previous work on
the reconstruction of functions, based on discrete samples, living in RKHSs. In Section 3, we
present the main results of this work. Finally, in Section 4 we illustrate our result and compare
to related work using numerical simulations.
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2 Sampling and reconstruction in RKHSs

In Section 2.1.1, for ease of reference, we introduce some basic notation and assumptions to be
used throughout the paper. In Section 2.1.2, we define fractional subspaces, which correspond to
increasing levels of smoothness within an RKHS. In Section 2.2, we recall the finite-dimensional
approximations that we will work with in the rest of the article. To give historical context,
Section 2.3 and Section 2.4 are devoted to related work on the topic. The contents of these
two sections may be skipped in a first read except for Section 2.3.2 which is necessary for the
statement of the main results presented in Section 3.

2.1 Kernels and RKHS

2.1.1 Notations and assumptions

Let X be a metric set, equipped with a Borel measure ω. Let k : X × X → R be a symmetric,
positive definite kernel, and consider the inner product defined on the space F0 of finite linear
combinations of kernel translates by〈

m∑
i=1

aik(xi, ·),
n∑
j=1

bjk(yj , ·)

〉
F

=

m∑
i=1

n∑
j=1

aibjk(xi, yj), (2)

where a1, b1, · · · ∈ R and x1, y1, · · · ∈ X . In the sequel, [N ] will denote the set of indices ranging
from 1 to N . The completion F of F0 for 〈·, ·〉F is the so-called reproducing kernel Hilbert space
of kernel k. By the Moore-Aronszajn theorem, it is the unique Hilbert space of functions that
satisfies the reproducing property, i.e., for all f ∈ F and x ∈ X , f(x) = 〈f, k(x, ·)〉F ; see e.g.
[Berlinet and Thomas-Agnan, 2011] for a general reference.

The properties of a function in F are often described in terms of the spectral characteristics
of the integral operator of kernel k. More precisely, assume that

Σf(x) =

∫
k(x, y)f(y)dω(y). (3)

defines a compact operator Σ from the space L2(ω) of real-valued square-integrable functions
to itself. A practical sufficient condition for this compactness to hold is given in [Steinwart and
Scovel, 2012, Lemma 2.3].

Assumption 1. The diagonal x 7→ k(x, x) is integrable.

Under Assumption 1, the spectral theorem, see e.g. Chapter 6 in [Brezis, 2010], guarantees
the existence of an orthonormal basis (em)m∈N∗ of L2(ω) and a family of non-increasing non-
negative scalars (σm)m∈N∗ such that Σem = σmem for m ∈ N∗. We now make extra assumptions
to reach a Mercer decomposition.

Assumption 2. The kernel k is continuous, ω has full support, and σm > 0 for all m ∈ N∗.

The continuity of the kernel guarantees that em may be taken to be a continuous function
when σm > 0; see e.g. Theorem 4.7 in [Cucker and Zhou, 2007]. Moreover, the positivity of
all σms and the fact that ω has full support imply that F is dense in L2(ω); see Section 4.2
in [Cucker and Zhou, 2007]. Letting eFm :=

√
σmem, the family (eFm)m∈N∗ is then an orthonormal

basis of F ; see Theorem 4.12 in [Cucker and Zhou, 2007]. In particular, for f ∈ F and m ∈ N∗,
we have 〈f, eFm〉F = 〈f, em〉ω/

√
σm, so that

‖f‖2F =
∑
m∈N∗

〈f, em〉2ω
σm

< +∞. (4)
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Figure 1: A schematic diagram illustrating the relationship between the unit ball BL2(ω) of L2(ω),
the unit ball BF of F , and the image of BL2(ω) by the integration operator Σ.

Moreover, by the reproducing property, for x ∈ X and m ≥ 1, 〈eFm, k(x, ·)〉F = eFm(x). Now, the
decomposition of k(x, ·) on the basis (eFn ) yields the Mercer decomposition of k,

k(x, y) = 〈k(x, ·), k(y, ·)〉F =
∑
m∈N∗

eFm(x)eFm(y) =
∑
m∈N∗

σmem(x)em(y). (5)

Actually, under Assumption 2, the convergence in (5) holds uniformly on any compact A×A ⊂
X × X ; see [Steinwart and Scovel, 2012, Corollary 3.5]. Moreover, under Assumption 2 the
pointwise convergence of the r.h.s. of (5) is equivalent to the injectivity of the embedding
I : F → L2(ω); see [Steinwart and Scovel, 2012, Theorem 3.1] and [Steinwart and Christmann,
2008, Chapter 4]. We assume in this paper that Assumptions 1 and 2 hold.

2.1.2 Increasing levels of smoothness

Equation (4) yields more intuition on why RKHSs are considered spaces of smooth functions.
Indeed, by definition, f lying in such an RKHS means that f has generalized Fourier coeffi-
cients 〈f, em〉ω that decay fast enough in modulus for the sum in (4) to converge, thus ensuring
smoothness. Note also that, for f ∈ F ,

f̃ :=
∑
m∈N∗

〈f, eFm〉F em ∈ L2(ω)

satisfies f = Σ1/2f̃ and ‖f‖F = ‖f̃‖ω. In other words, F = Σ1/2L2(ω), which illustrates the
smoothing nature of the integral operator Σ as well. Similarly, for r ≥ 0, an element g ∈ L2(ω)
belongs to Σr+1/2L2(ω) if and only if

∑
m∈N∗〈g, em〉2ω/σ2r+1

m < +∞. Moreover, since (σm) is a
(non-increasing) sequence of positive real numbers, we have

r ≥ r′ ≥ 0 =⇒ Σr+1/2L2(ω) ⊂ Σr′+1/2L2(ω). (6)

In particular, since F = Σ1/2L2(ω), we know that for r ≥ 0, Σr+1/2L2(ω) ⊂ F : these subspaces
define increasing levels of regularity in the RKHS F . Figure 1 illustrates this hierarchy of
functional spaces and gives some more intuition.
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2.2 Finite-dimensional approximations in RKHSs

The reconstruction of a function f that belongs to an RKHS F based on its evaluations over
a finite set of nodes x1, . . . xN ∈ X can be achieved by different families of finite-dimensional
approximations. The following approximations will be of interest for the rest of the article.

2.2.1 Approximations based on mixtures of kernel translates

By definition of an RKHS, a natural choice of approximation is a weighted sum of kernel functions.
Formally, the objective is thus to build a set of nodes (xi), a.k.a. a design, and weights (wi),
such that a suitable norm of the residual

f −
∑
i∈[N ]

wik(xi, ·) (7)

is small. Assuming the design x = (xi)i∈[N ] is fixed, we now consider two possible choices for
this norm that induce different sets of weights.

Minimizing the L2(ω) norm of the residual (7) yields the classical least-squares (LS) approx-
imation

f̂LS,x = arg min
w∈RN

‖f −
∑
i∈[N ]

wik(xi, ·)‖2ω. (8)

The least-squares approximation typically enjoys strong theoretical properties. However, we
shall see in Section 3.1 that computing the optimal weights in (8) requires the evaluation of
Σf at the nodes x1, . . . , xN . This makes the method impractical, and calls for more tractable
approximations.

The RKHS norm of the residual is a natural alternative objective to minimize, and yields the
so-called optimal kernel approximation (OKA)

f̂OKA,x = arg min
w∈RN

‖f −
∑
i∈[N ]

wik(xi, ·)‖F . (9)

We shall sometimes write f̂OKA for f̂OKA,x when the design x is clear from the context. Let us
observe that the approximation (9) is uniquely defined if the matrix K(x) = (k(xi, xi′))i,i′∈[N ] is
non-singular. The optimal vector of weights is then simply ŵOKA,x := K(x)−1f(x); unlike the
least-squared approximation, computing the weights solely depends on being able to evaluate
f at the nodes. Moreover, OKA comes with a remarkable interpolation property: for i ∈ [N ],

f̂OKA,x(xi) = f(xi).

2.2.2 Approximations living in eigenspaces

Another way to recover a continuous signal f ∈ F from its evaluations f(x1), . . . , f(xN ) at fixed
nodes, is to seek an approximation that belongs to the eigenspace EM = Span(e1, . . . , eM ) for
some M ∈ N∗. We consider two such approaches.

Transform-based approximations. Consider the projection of f on EM ,

fM :=
∑

m∈[M ]

〈f, em〉ωem. (10)
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Note that, for m ∈ [M ], 〈f, em〉ω is the integral Im(f) :=
∫
X f(x)em(x)dω(x). Since we want to

assume only the availability of the evaluation of f at the nodes, we consider approximating each
integral Im(f) by a weighted sum

Îm(f) :=
∑
i∈[N ]

αm,if(xi), (11)

where αm,i are quadrature weights to be discussed shortly. The collection of operators Îm form

a transform Φ, defined as Φ(f) = (Îm(f))m∈[M ] ∈ RM . The resulting approximation f̂Φ will be
called a transform-based approximation of f , and we observe that

f̂Φ :=
∑

m∈[M ]

Îm(f)em =
∑
i∈[N ]

 ∑
m∈[M ]

αm,i

 f(xi), (12)

is a weighted sum of evaluations of f at the nodes (xi).
For the construction of the quadrature weights (αm,i) in (11), this work focuses on inter-

polative quadrature rules [Larkin, 1972]: given a kernel κ : X × X → R, the weights αm,i of an
interpolative quadrature are chosen so that

∀i ∈ [N ],m ∈ [N ], Îm(κ(xi, ·)) = Im(κ(xi, ·)). (13)

Under the assumption that the functions κ(x1, ·), . . . , κ(xN , ·) are linearly independent, the se-
quence (αm,i)(m,i)∈[N ]×[N ] is uniquely defined by (13).

In general, (13) only holds for Î1, . . . , ÎN . Yet, when κ = k, the property (13) extends to Îm
for m > N as well. Indeed, when κ = k, we have Im(κ(x, ·)) = σmem(x) for x ∈ X , so that (13)
implies that the vector αm := (αm,i)i∈[N ] satisfies

αm = σmK(x)−1em(x), (14)

under the assumption that the matrix K(x) is non-singular. In other words, the vector αm
is nothing but the one that minimizes (9) when f is Σem = σmem. We name the resulting
quadrature rule the optimal kernel quadrature (OKQ). In the rest of the article, the corresponding
transform will be called the optimal kernel quadrature transform, the corresponding quadrature
rules denoted by ÎOKQ

1 , . . . , ÎOKQ
M , and the resulting approximation by f̂OKQ,M,x.

Alternatively, by taking κ equal to kN (x, y) :=
∑
n∈[N ] en(x)en(y), (13) boils down to

∀m,m′ ∈ [N ], Îm(em′) = δm,m′ , (15)

which is reminiscent of a property satisfied by Gaussian quadrature [Gautschi, 2004]. Moreover,
for m ∈ [N ], we have

αm = KN (x)−1em(x), (16)

where KN (x) := (kN (xi, xi′))i,i′∈[N ]. Note the similarity with (14). Except for some excep-
tional families of functions such as orthogonal polynomials, the quadrature weights (16) do not
guarantee that (13) can be extended to m > N . Finally, note that the resulting approximation,

denoted by f̂QI,N,x has been called quasi-interpolant or hyperinterpolant in the literature [Sloan,
1995], since

∀f ∈ EM = Span(e1, . . . , eM ), f̂QI,M,x = f = fM . (17)

In the rest of the article, we denote the corresponding quadrature rules by ÎQI
1 , . . . , ÎQI

N .1

1Note that for m ∈ [N ], ÎQI
m depends on N and x. Yet, we drop N and x from the notation for simplicity.

7



The empirical least-squares approximation. Let x ∈ XN and q : X → R∗+. Consider the
so-called empirical semi-norm ‖.‖q,x defined on L2(ω) by

‖h‖2q,x :=
1

N

N∑
i=1

q(xi)h(xi)
2. (18)

The empirical least-squares estimator yields yet another approximation

f̂ELS,M,x := arg min
f̂∈EM

‖f − f̂‖2q,x, (19)

We discuss the choice of q and the design x in Section 2.3.1. For the moment, the intuition is
that, for a well-chosen weight q and design x, the semi-norm ‖.‖q,x is supposed to “mimic” the

‖.‖ω norm as N goes to infinity. Similarly, f̂ELS,M,x is supposed to inherit some of the properties

as fM , the projection of f on EM . Compared to f̂LS,x, the approximation f̂ELS,M,x has the
advantage of being computable given the evaluations of f at the nodes x. Indeed, Cohen et al.
[2013] show that writing f̂ELS,M,x =

∑M
m=1 wmem yields

Gq,xw = dq,x, (20)

where Gq,x = (〈em, em′〉q,x)m,m′∈[M ] ∈ RM×M is the Gramian matrix of the family (em)m∈[M ]

with respect to the inner product defined by (18), and dq,x = (dm)m∈[M ] ∈ RM is defined by

dm :=

N∑
i=1

q(xi)f(xi)em(xi)/N, m ∈ [M ].

In other words, the numerical evaluation of f̂ELS,M,x requires to solve the linear system (20).
This in turn requires the evaluation of Gq,x and dq,x, which boils down to the evaluation of f ,

the functions em and q on the nodes x1, . . . , xN . Moreover, f̂ELS,M,x is uniquely defined if and
only if Gq,x is non-singular.

2.3 Designs for finite-dimensional approximations

An abundant literature provides theoretical guarantees for the finite-dimensional approximations
presented in Section 2.2; this includes, but is not limited to, [Erdős and Turán, 1937, Sloan, 1995,
Wendland, 2004, Schaback and Wendland, 2006]. These results deal with specific RKHSs, and
cannot be easily generalized to an arbitrary RKHS. Recently, a new tendency has emerged
that looks for a universal sampling approach that is valid for a large class of RKHSs. In this
section, we first provide an overview of this universal sampling literature. In the same spirit,
we then show that determinantal point processes (DPPs) offer an adequate framework to design
configurations of nodes with strong theoretical guarantees for finite-dimensional approximations,
in a wide family of RKHSs.

2.3.1 Independent samples from the Christoffel function

The last decade has seen significant progress in the study of function reconstruction based on
randomized configurations [Cohen et al., 2013, Hampton and Doostan, 2015, Cohen and Miglio-
rati, 2017, Adcock and Cardenas, 2020, Adcock et al., 2022, Dolbeault and Cohen, 2022a]. These
works focused on the study of the empirical least-squares approximation; see Section 2.2.2. In

8



particular, the so-called instance optimality property (IOP) has been a matter of extensive in-
vestigation. The idea is to find assumptions on the configuration x, the function q : X → R∗+,
and the order M ≤ N , under which we can certify that2

∀f ∈ F , ‖f − f̂ELS,M,x‖ω ≤ C‖f − fM‖ω, (21)

where C > 0 is a constant. Instance optimality implies that f̂ELS,M,x = f for f ∈ EM , so that
the reconstruction is exact in the eigenspace EM . Moreover, it provides an upper bound of the
approximation error ‖f − f̂ELS,M,x‖ω for generic functions. Investigating necessary conditions
for the IOP to hold unraveled the importance of the study of the eigenvalues of the Gramian
matrix Gq,x [Cohen and Migliorati, 2017]. In particular, it was proved that

‖Gq,x − IM‖op ≤ δ ⇐⇒ ∀f ∈ EM , (1− δ)‖f‖2ω ≤ ‖f‖2q,x ≤ (1 + δ)‖f‖2ω, (22)

where IM ∈ RM×M is the identity matrix of order M , and ‖.‖op is the operator norm. In
other words, the ‖.‖q,x norm is equivalent to ‖.‖ω on EM if and only if the matrix Gq,x is
close to IM . Interestingly, Gröchenig [2020] showed that the condition (22) was connected to
Marcinkiewicz-Zygmund inequalities, which are common tools in the literature of non-uniform
sampling [Gröchenig, 1993, Ortega-Cerdà and Saludes, 2007, Filbir and Mhaskar, 2011]; see
[Gröchenig, 2020] for more references. Cohen and Migliorati [2017] proved necessary conditions
for ‖Gq,x − IM‖op ≤ 1/2 to hold with high probability, when x1, . . . , xN are i.i.d. draws from
the measure ω̃ defined by dω̃ = 1/qdω. In particular, they proved that the sampling budget N
should scale as ‖q/cM‖∞ log(2M), where cM is the inverse of the so-called Christoffel function

cM (x) :=

M∑
m=1

em(x)2; x ∈ X , (23)

and ‖.‖∞ is the infinity norm on X . Since the required sampling budget grows with ‖q/cM‖∞,
it is preferable to choose the function q in such a way that ‖q/cM‖∞ is minimized, under the
constraint that

∫
X 1/q(x)dω(x) = 1. In particular, if we take q = cM/M , the constant ‖q/cM‖∞

grows linearly with M , and the required sampling budget scales as M log(M). This is to be
compared with the situation when q is taken to be a constant, where the required sampling
budget would scales as O(M‖1/cM‖∞ log(M)). The constant ‖1/cM‖∞, also called the Nikolskii
constant in approximation theory, is known to be at best linear in M for many families of
orthogonal polynomials [Nevai, 1986, Bos, 1994, Xu, 1996, Totik, 2000], hinting at a suboptimal
sampling budget in O(M2 log(M)). Achieving the IOP using a sampling budget that scales
linearly in M was proved to be possible using sparsification techniques [Dolbeault and Cohen,
2022b, Chkifa and Dolbeault, 2023]. These results rely on the extension of techniques developed
to solve the Kadison-Singer problem [Marcus et al., 2015]. However, as was shown in [Dolbeault
and Cohen, 2022b], the algorithmic complexity of these techniques is exponential in N .

Alternately, a similar approach was adopted by Bach [2017a], yet with a kernel-based ap-
proximation that solves a regularized variant of the optimization problem (9). In particular, his
analysis relied on the so-called regularized leverage score function

c̃λ(x) :=

+∞∑
m=1

σm
σm + λ

em(x)2, (24)

where λ > 0 is a regularization constant. In particular, Bach [2017a] showed that when the nodes
are i.i.d. draws from c̃λdω, the resulting approximation converges to 0 at an almost optimal rate,
as λ is made to go to zero with N at a suitable rate. One practical downside, compared to (23),
is the need for an infinite summation.

2This is a specific formulation of the IOP. See Cohen and Migliorati [2017] for a more generic formulation.

9



2.3.2 Determinantal sampling

In [Belhadji et al., 2019] and [Belhadji et al., 2020], we have investigated two random designs
defined using determinants and Gram matrices.

Definition 1 (A projection DPP). Let N ≥ 1, and

kN (x, y) =
∑
n∈[N ]

en(x)en(y), (25)

where (en) are the eigenfunctions in the Mercer decomposition (5) of the RKHS kernel k. The
design x = (x1, . . . , xN ) is said to have for distribution the DPP of kernel kN and reference
measure ω if

x = (x1, . . . , xN ) ∼ 1

N !
Det

(
kN (xi, xj)

)
(i,j)∈[N ]×[N ]

dω(x1) . . . dω(xN ). (26)

Since kN is a projection kernel, the resulting point process is a projection DPP and (26)
integrates to 1. In the remainder of the paper, EDPP is to be understood as an expectation under
(26). DPPs were introduced by Macchi [1975], and possess many interesting properties [Hough
et al., 2006]. For instance, any point of x in (26) has marginal distribution

xi ∼
1

N

N∑
n=1

en(xi)
2dω(xi), (27)

which is related to the inverse of the Christoffel function (23). In that sense, (26) generalizes
previous work on i.i.d. designs sampled from the inverse of the Christoffel function, but adding a
kernel-dependent correlation among the nodes. Another useful property of DPPs with projection
kernels like (26) is that the chain rule for x amounts to a product of explicit “base-times-height”
terms. This yields a polynomial-time, exact sampling algorithm colloquially known as HKPV,
after the authors of [Hough et al., 2006].

Continuous volume sampling, introduced in [Belhadji et al., 2020], is a closely related distri-
bution for nodes.

Definition 2 (continuous volume sampling). Assume that
∫
X k(x, x)dω(x) < ∞. The design

x = (x1, . . . , xN ) is said to have a distribution according to continuous volume sampling if

x = (x1, . . . , xN ) ∼ 1

Z
Det

(
k(xi, xj)

)
(i,j)∈[N ]×[N ]

dω(x1) . . . dω(xN ), (28)

where Z <∞ is a normalization constant.

In the remainder of the paper, ECVS is to be understood as an expectation under (28). Note
that unlike (26), the normalization constant is not explicit. Yet Hadamard’s inequality yields

Zκ,ω =

∫
XN

Det
(
κ(xi, xj)

) ∏
n∈[N ]

dω(xn) ≤
∫
XN

∏
n∈[N ]

κ(xn, xn)dω(xn)

≤
(∫
X
κ(x, x)dω(x)

)N
< +∞.

While the chain rule for continuous volume sampling is not as simple as for the DPP in
(26), continuous volume sampling can actually be shown to be a statistical mixture of projection
DPPs. In words, x in (28) can be drawn by first sampling a N -uplet I ∈ NN proportionally
to
∏
i∈I σi, and then drawing x from (26) with kN replaced by

∑
i∈I ei(x)ei(y). In that sense,

continuous volume sampling is a “soft” modification of the DPP (26), which is the component
with largest weight in the mixture; see [Belhadji et al., 2020] for more details.
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2.4 Existing results on RKHS sampling using DPPs and CVS

This section gathers existing works on function reconstruction using determinantal distributions.
We provide some details because we shall use some results in Section 3.

2.4.1 The Ermakov-Zolotukhin quadrature rule

Non-asymptotic reconstruction guarantees for functions living in Hilbert spaces can be traced
back to Ermakov and Zolotukhin [1960]. Indeed, in this work, the authors studied quadrature
rules Î1, . . . , ÎN obtained by taking the configuration of the nodes x to follow the distribution
of the projection DPP as in Definition 1 with κ = kN in Section 2.3.2, and the corresponding
vectors of weights α1, . . . ,αN to be equal to (16). In particular, they proved that for a continuous
function f : X → R living in L2(ω), we have

∀n ∈ [N ],

{
EDPPÎn(f) = In(f)

VDPPÎn(f) =
∑
m≥N+1〈f, em〉2ω

. (29)

Gautier et al. [2019] revisited this result and proved that

∀n1, n2 ∈ [N ], n1 6= n2 =⇒ CovDPP(În1
(f), În2

(f)) = 0. (30)

As it was mentioned in [Kassel and Lévy, 2022], (29) and (30) imply that the resulting transform3

yields an approximation ĥEZ,x that satisfies

∀f ∈ L2(ω), EDPP‖f − f̂QI,N,x‖2ω = N‖f − fN‖2ω. (31)

In other words, the quasi-interpolant satisfies an instance optimality. Yet, the corresponding
constant grows to infinity with N . Observe that (31) holds in L2(ω) and f is not assumed to
live in a particular RKHS.

2.4.2 The optimal kernel approximation using determinantal sampling

The study of quadrature rules instigated the inquiry of non-asymptotic guarantees for finite-
dimensional approximations based on determinantal nodes for functions living in RKHSs. Indeed,
in the context of numerical integration, we have for any function h living in the RKHS F and
for any g ∈ L2(ω) [Muandet et al., 2017]

∣∣∣ ∫
X
h(x)g(x)dω(x)−

N∑
i=1

wih(xi)
∣∣∣2 ≤ ‖h‖2F‖f − N∑

i=1

wik(xi, ·)‖2F , (32)

where f = Σg. Moreover, ‖f −
∑N
i=1 wik(xi, ·)‖2F corresponds to the squared worst case integra-

tion error (WCE) on the unit ball of the RKHS F . In other words, the squared residual provides
an upper bound of the squared error of the approximation of the integral

∫
X h(x)g(x)dω(x) by

the quadrature rule
∑N
i=1 wih(xi). This is especially applicable to the optimal kernel quadra-

ture mentioned at Section 2.2.2: by taking the vector of weights αg is taken to be equal to
K(x)−1f(x), we extend (14) to g and the squared WCE of the corresponding quadrature rule

is equal to ‖f − f̂OKA,x‖2F . Now, it was proven in [Belhadji et al., 2019] that

EDPP sup
f∈ΣBL2(ω)

‖f − f̂OKA,x‖2F = O(N2rN+1), (33)

3See the end of Section 2.2.
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where rN+1 :=
∑
m≥N+1 σm. Moreover, it was proven in Theorem 3 of [Belhadji, 2021] that

EDPP ‖f − f̂OKA,x‖2F ≤ 4‖g‖2ωrN+1. (34)

The first upper bound (33) deals with the worst interpolation error on the set ΣBL2(ω). In con-
trast, the second upper bound (34) is punctual since the expected squared error of interpolation
depends on the function f . These upper bounds highlight the importance of the eigenvalues
σm for the study of the convergence of f̂OKA,x under the projection DPP of Definition 1: these
quantities converge to 0 if the convergence of σm, and moreover of rN , to 0 is fast enough. These
results give convergence rates for the interpolation under the distribution of the projection DPP,
that scale, at the best, as O(rN ), which is slower than the empirical convergence rate O(σN+1)
observed in [Belhadji et al., 2019, Belhadji, 2020]. Indeed, when σN = N−2s for s > 1/2, we
have O(rN ) = O(N1−2s), which is slower, by a factor of N , than O(σN+1), which corresponds
to the optimal rate of convergence in the following sense: for N ∈ N*, there exists g ∈ L2(ω)

such that ‖g‖ω ≤ 1 and ‖f − f̂OKA,x‖2F ≥ σN+1 for x ∈ XN such that Detκ(x) > 0; see Section
2.5. in Belhadji et al. [2020] for a proof.

On the other hand, it is possible to derive better convergence guarantees using continuous
volume sampling. Indeed, Belhadji et al. [2020] showed that

ECVS ‖f − f̂OKA,x‖2F =
∑
m∈N∗

〈g, em〉2ωεm(N), (35)

where

εm(N) = σm

∑
U∈ UN ;m/∈U

∏
u∈U

σu∑
U∈ UN

∏
u∈U

σu
; UN := {U ⊂ N∗; |U | = N}. (36)

The identity (35) gives and explicit expression of ECVS ‖f− f̂OKA,x‖2F in terms of the coefficients
of g on the o.n.b. (em)m∈N∗ and the εm(N) defined by (36). Moreover, by observing that the
sequence (εm(N))m∈N* is non-increasing, the formula (35) implies that

sup
f∈ΣBL2(ω)

ECVS ‖f − f̂OKA,x‖2F ≤ sup
m∈N∗

εm(N) = ε1(N). (37)

Moreover, as it was proven in Theorem 4 of [Belhadji et al., 2020], we have

ε1(N) ≤ σN+1 (1 + βN ) , (38)

where βN := minM∈[2:N+1] [(N −M + 2)σN+1]
−1∑

m≥M σm. In particular, under the assump-
tion that the sequence (βN )N∈N∗ is bounded, which is the case as soon as the sequence (σm)
decreases polynomially or exponentially, (38) yields

sup
f∈ΣBL2(ω)

ECVS ‖f − f̂OKA,x‖2F = O(σN+1), (39)

which corresponds to the optimal rate of convergence.
The results reviewed until now are restricted to functions that belong to ΣL2(ω), are mostly

relevant in the study of kernel-based quadrature using determinantal sampling. Yet, as it was
mentioned , ΣL2(ω) is strictly included in the RKHS F . Still, it is possible to extend (39) to
functions belonging to Σr+1/2L2(ω), where r ∈ [0, 1/2] is a parameter that interpolates between
the set of the embeddings ΣL2(ω) and the RKHS F = Σ1/2L2(ω). Indeed, as it was shown in
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Belhadji et al. [2020], ECVS ‖f − f̂OKA,x‖2F = O(σ2r
N+1) under the assumption that the sequence

(βN )N∈N∗ is bounded. This result is an extension of (39) to r ≤ 1/2: the rate of convergence
is O(σ2r

N+1) which is slower than O(σN+1) and it gets worse as r goes to 0. In other words, an
additional level of smoothness controlled by r > 0 is needed to achieve the convergence with
respect to the RKHS norm ‖.‖F . Nevertheless, we can expect that the convergence hold with
respect to a weaker norm that is ‖.‖ω as we will see in Section 3.

3 Theoretical guarantees

While previous work on determinantal sampling measured performance in RKHS norm, we inves-
tigate here the mean squared reconstruction error in L2(ω) norm. We emphasize that a few key
results play a fundamental role, like the two properties (29) and (30) of the Ermakov-Zolotukhin
quadrature, and the ‘Pythagorean’ formula (35) of continuous volume sampling.

3.1 The least-squares approximation

The following result gives a bound for the mean-square error of f̂LS,x under the projection DPP
of Definition 1.

Theorem 1. Consider N ∈ N∗. Let f ∈ F , and let fN be its projection onto the eigenspace EN
defined by (10). Then

EDPP‖f − f̂LS,x‖2ω ≤ 2
(
‖f − fN‖2ω + ‖fN‖2ω

+∞∑
m=N+1

σ2
m

)
. (40)

The relative importance of the two terms of the r.h.s. of (40) depends on the smoothness of
f , as characterized by the nested spaces in Section 2.1.2. To be more precise, if f ∈ Σ1/2+rL2(ω)
with r ≥ 0, there exists g ∈ L2(ω) such that

∀m ∈ N∗, 〈f, em〉ω = σr+1/2
m 〈g, em〉ω, (41)

so that the first term of the r.h.s. of (40) satisfies

‖f − fN‖2ω =

+∞∑
m=N+1

〈f, em〉2ω =

+∞∑
m=N+1

〈f, em〉2ω
σ2r+1
m

σ2r+1
m (42)

= σ2r+1
N+1

+∞∑
m=N+1

〈g, em〉2ω ≤ σ2r+1
N+1 ‖g‖

2
ω. (43)

Meanwhile, the second term in the r.h.s. of (40) is o(σN+1), upon noting that ‖fN‖ω ≤ ‖f‖ω
and

+∞∑
m=N+1

σ2
m ≤ σN+1

+∞∑
m=N+1

σm.

So whatever r ≥ 0, the r.h.s. of (40) is O(σN+1), and as soon as r > 0, it is even o(σN+1).
As r grows, and more smoothness is assumed, the second term in the r.h.s. gets to dominate.
In particular, if r ≥ 1/2, the first term is O(σ2

N+1): this is the fastest rate we can expect from
the second term, however large r is. This potential change of convergence rate when r increases
is called superconvergence in the literature; see [Schaback, 2018] and references therein. In
particular, we shall observe a convergence in O(σ2

N+1) in the numerical experiments of Section 4.
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The following lemma, which we use to prove Theorem 1, underlines a practical limitation of
the least-squares approximation.

Lemma 1. Let f ∈ F , w ∈ RN and x ∈ XN . Then

‖f −
∑
i∈[N ]

wik(xi, ·)‖2ω = ‖f‖2ω − 2
∑
i∈[N ]

wiµf (xi) +wTK2(x)w, (44)

where µf := Σf and K2(x) is the Gram matrix associated to the kernel

k2(x, y) :=

+∞∑
m=1

σ2
mem(x)em(y), (45)

where the convergence holds uniformly on compact subsets of X × X . In particular, for a given
x ∈ XN such that the matrix K2(x) is non-singular, the associated least-squares approximation

f̂LS,x is equal to
∑
i∈[N ] ŵik(xi, ·), where

ŵ = K2(x)−1µf (x). (46)

As a consequence, the most direct way to evaluate f̂LS,x requires evaluating µf rather than
f , and evaluating the kernel k2 instead of k. Both may not have tractable expressions, which
can be an important practical limitation. The proof of Lemma 1 is based on the Mercer de-
composition (5) and it is given in Section 3.4.1, while the crux of the proof of Theorem 1, given
in Section 3.4.2, is a property of the Ermakov-Zolotukhin quadrature rule proved in [Belhadji,
2021].

3.2 The transform based on the optimal kernel quadrature

To bypass the practical limitations of the least-squares approximation, we study the transform
f̂OKQ,M,x based on the optimal kernel quadrature, defined in Section 2.2.2. The latter transform

can be seen as a surrogate of f̂LS,x, and has the advantage to only require evaluating f at the
design. The following result makes use of the recent progress in the field of numerical integration
using determinantal sampling to prove bounds on the mean square error of this approximation.

Proposition 1. Let f ∈ F and N ∈ N∗. For a given x ∈ XN , denote by f̂OKQ,M,x the approxi-
mation obtained through the optimal kernel quadrature transform of order M ∈ N∗ associated to
the configuration x, which is defined by (12) where the vectors αm := (αm,i) are defined by (14)
for m ∈ [M ]. Then

EDPP‖f − f̂OKQ,M,x‖2ω ≤MrN+1‖f‖2F + ‖f − fM‖2ω (47)

and
ECVS‖f − f̂OKQ,M,x‖2ω ≤Mε1(N)‖f‖2F + ‖f − fM‖2ω, (48)

where fM :=
∑M
m=1〈f, em〉ωem, rN+1 :=

∑
m≥N+1 σm and ε1(M) is given by (36).

Two comments are in order. First, the two upper bounds (47) and (48) both involve the
squared residual ‖f − fM‖2ω and a term that depends on ‖f‖F . The residual can be seen
as a trace of approximating fM instead of f , while the RKHS norm is a trace of performing
numerical quadrature. Note that the two upper bounds are not multiplicative in the squared
residual ‖f − fM‖2ω: for f = eF1 , the residual is zero as long as M ≥ 1, while the RKHS term
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is positive. In other words, a priori the IOP4 does not hold. We will see in Section 3.3 that
the quasi-interpolant satisfies the IOP under the distribution of the projection DPP. Second, the
upper bounds (47) and (48) yield convergence rates. Indeed, observe that

‖f − fM‖2ω =
∑

m≥M+1

〈f, em〉2ω =
∑

m≥M+1

σm
〈f, em〉2ω
σm

≤ σM+1‖f − fM‖2F . (49)

In particular, when M = N , (47) yields a convergence rate under the DPP in O((N + 1)rN ),
while (48) yields a convergence rate under CVS that scales as O((N + 1)σN+1) when ε1(N) =

O(σN+1). Both are slower than the rate of convergence of EDPP‖f − f̂LS,x‖2ω = O(σN+1) proved
in Theorem 1. It would be interesting to investigate whether (47) and (48) can be sharpened.
Indeed, the RHS of (47) and (48) goes to infinity as M → +∞. The following result shows that

for a given configuration x ∈ XN such that K(x) is non-singular, ‖f − f̂OKQ,M,x‖ω seen as a
function of M is bounded.

Proposition 2. Let f ∈ F and N ∈ N∗. For a given x ∈ XN such that the matrix K(x) is non-

singular, denote by f̂OKQ,M,x the approximation defined through the optimal kernel quadrature
transform of order M ∈ N∗ associated to the configuration x, which is defined by (12) where the
vectors αm := (αm,i) are defined by (14) for m ∈ [M ]. Then

∀M ∈ N∗, ‖f − f̂OKQ,M,x‖2ω ≤ ‖f − f̂OKA,x‖2ω + ‖f − fM‖2ω, (50)

where fM :=
∑M
m=1〈f, em〉ωem.

Compared to (47) and (48), the first term of the RHS of (50) is independent of M . In

particular, f̂OKA,x can be seen as limit of f̂OKQ,M,x as M → +∞. This result would yield an

improved convergence rate of the squared mean error of f̂OKQ,M,x if we manage to prove sharp

upper bounds of the squared mean error of f̂OKA,x under one of the two distributions defined

in Section 2.3.2. Such a result is not yet available. However, the study of f̂LS,x in Section 3.1,

which is close to f̂OKA,x in the construction, suggests that the squared mean error of f̂OKA,x,
under determinantal sampling, scales as O(σN+1). This intuition is corroborated by numerical
simulations presented in Section 4.1. The proof of Proposition 1, given in Section 3.4.3, is based
on (34) and (37). The proof of Proposition 2 is given in Section 3.4.4.

3.3 The instance optimality property under projection DPPs

The empirical least-squares approximation (19) was extensively studied in the literature as men-
tioned in Section 2.3.1. A large proportion of these works focus on the study of the instance
optimality property of f̂ELS,M,x as defined by (21) when x is a random configuration of N nodes
of X . It was shown that the IOP holds when the nodes are i.i.d. draws according to the inverse of
the Christoffel function defined by (23) and when the sampling budget N scales as O(M log(M)),
which is optimal up to the logarithmic factor. Seeking alternative sampling algorithms that re-
quire a minimal budget of sampling that scale linearly with M is an active topic of research as
it was mentioned in Section 2.3.1. To this aim, the projection DPP defined in Section 2.3.2 is
a good candidate as a non-i.i.d. extension of the Christoffel sampling with a negative correla-
tion property. This section investigates the IOP of the empirical least-squares approximation
under this determinantal distribution. More precisely, this section studies a variant of this ap-
proximation which is amenable to theoretical analysis under the distribution of the projection

4Defined in Section 2.3.1 for the empirical least square approximation f̂ELS,x, but it can be extended to any
finite-dimensional approximation.
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DPP of Definition 1. Given a positive function q : X → R∗+, and given N,M ∈ N∗ such that
M ≤ N , we define the truncated empirical least-squares approximation of order M associated to
the configuration x ∈ XN as

f̂tELS,M,x :=

M∑
m=1

〈f̂ELS,N,x, em〉ωem, (51)

where f̂ELS,N,x is the empirical least-squares approximation of f of dimension N associated to
the function q and the configuration x of size N . A subtle but important remark is that, in
general, f̂tELS,M,x 6= f̂ELS,M,x: f̂tELS,M,x is the projection on EM of the ELS approximation in

EN while f̂ELS,M,x is the ELS approximation in EM . As we shall now see, f̂tELS,M,x is even

invariant to the choice of the function q, which is not the case of f̂ELS,M,x.

Proposition 3. Consider N ∈ N∗ and let q : X → R∗+ a positive function. Let x ∈ XN such
that the matrix EN (x) := (em(xi))(i,m)∈[N ]×[N ] is non-singular, then

f̂ELS,N,x = f̂QI,N,x, (52)

where f̂QI,N,x is the quasi-interpolant defined in Section 2.2.2. As a result,

∀M ∈ [N ], f̂tELS,M,x =

M∑
m=1

〈f̂QI,N,x, em〉ωem. (53)

In other words, the empirical least-squares approximation of dimension N is invariant to
the choice of the function q and coincides with the quasi-interpolant defined in Section 2.2.2.
As a result, f̂tELS,M,x

5 is nothing but the projection of f̂QI,N,x on the eigenspace EM . There-

fore, the numerical evaluation of f̂tELS,M,x boils down to the evaluation of the quadrature rules

Î1(f), . . . , ÎM (f) defined by (15) that implies the evaluation of α1, . . . ,αN via (16). Compared

to the evaluation of (20) to get f̂ELS,M,x, this involves an N × N rather than M ×M matrix.

Therefore the evaluation of the coefficients of f̂tELS,M,x in the o.n.b. (em)m∈N∗ is numerically

more expensive than f̂ELS,M,x. However, this newly introduced approximation can be studied
theoretically when the configuration x is a projection DPP, which yields the following result.

Proposition 4. Consider N,M ∈ N∗ such that M ≤ N . Then, for f ∈ F

EDPP‖f − f̂tELS,M,x‖2ω = ‖f − fM‖2ω +M‖f − fN‖2ω, (54)

As a direct consequence,

EDPP‖f − f̂tELS,M,x‖2ω ≤ (1 +M)‖f − fM‖2ω. (55)

In other words, under the projection DPP, f̂tELS,M,x satisfies the IOP with constant (1+M),
for any sampling budget that satisfies N ≥ M . For comparison, the required sampling budget
for i.i.d. Christoffel sampling scales as O(M log(M)). We emphasize that this approximation
bound in O(M) is a concrete benefit of the negative correlation property of projection DPPs for
sampling.

The proof of Proposition 3 is given in Section 3.4.5, and the proof of Proposition 4, based on
the identities (29) and (30), is given in Section 3.4.6.

5We drop q from the notation thanks to the invariance with respect to q.
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3.4 Proofs

3.4.1 Proof of Lemma 1

Let f ∈ F , w ∈ RN and x ∈ XN . The squared residual ‖f −
∑
i∈[N ] wik(xi, ·)‖2ω writes

‖f‖2ω − 2〈f,
∑
i∈[N ]

wik(xi, ·)〉ω + ‖
∑
i∈[N ]

wik(xi, ·)‖2ω. (56)

The identity (44) follows from evaluating the latter two terms. First note that

µf = Σf =
∑
m∈N∗

σm〈f, em〉ωem.

Moreover, by (5), we have k(xi, ·) =
∑+∞
m=1 σmem(xi)em(·) for i ∈ [N ], so that

〈f, k(xi, ·)〉ω =
∑
m∈N∗

〈f, em〉ωσmem(xi)

=
∑
m∈N∗

〈µf , em〉ωem(xi) = µf (xi), (57)

and
∀i, i′ ∈ [N ]2, 〈k(xi, ·), k(xi′ , ·)〉ω = k2(xi, xi′). (58)

Plugging (57) and (58) into (56) yields the desired formula.

3.4.2 Proof of Theorem 1

First, observe that when x follows the distribution of the projection DPP of Definition 1, the
Gram matrix KN (x) associated to the kernel kN defined by (25) is almost surely non-singular.

Similarly, the Gram matrix K2,N (x) associated to the kernel k2,N (x, y) =
∑N
m=1 σ

2
mem(x)em(y)

is almost surely non-singular. Now, observe that

K2,N (x) =

N∑
m=1

σ2
mem(x)em(x)T ≺K2(x) =

+∞∑
m=1

σ2
mem(x)em(x)T, (59)

so that the matrix K2(x) is also almost surely non-singular.
Now, let f ∈ F , x ∈ XN such that the matrices KN (x),K2,N (x) are non-singular. In short,

we use the Ermakov-Zolotukhin quadrature of Section 2.4.1 as a pivot. Define

f̂EZ,x :=

N∑
i=1

ŵEZ
i k(xi, ·),

where ŵEZ := KN (x)−1fN (x) and fN is defined by (10). By definition of f̂LS,x, ‖f − f̂LS,x‖2ω ≤
‖f − f̂EZ,x‖2ω, so that

‖f − f̂LS,x‖2ω ≤ 2
(
‖f − fN‖2ω + ‖fN − f̂EZ,x‖2ω

)
.

Therefore
EDPP‖f − f̂LS,x‖2ω ≤ 2

(
‖f − fN‖2ω + EDPP‖fN − f̂EZ,x‖2ω

)
.
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Now, using the identity (44) of Lemma 1, ‖fN − f̂EZ,x‖2ω writes

‖fN‖2ω − 2
∑
i∈[N ]

ŵEZ
i µfN (xi) + ŵEZT

K2(x)ŵEZ, (60)

which is equal to ‖µfN −
∑
i∈[N ] ŵ

EZ
i k2(xi, ·)‖2F2

, where µfN = ΣfN , and F2 is defined to be

the RKHS associated to the kernel k2 and ‖.‖F2 its norm. Indeed, for i, i′ ∈ [N ], we have
k2(xi, xi′) = 〈k2(xi, ·), k2(xi′ , ·)〉F2

. Moreover, denote by Σ2 the integration operator associated

to the kernel k2 and the measure ω, and observe that Σ
1/2
2 = Σ, so that

‖fN‖2ω = ‖Σ1/2
2 fN‖2F2

= ‖ΣfN‖2F2
= ‖µfN ‖2F2

.

Now, since fN ∈ EN = Span(e1, . . . , eN ), Theorem 3 in [Belhadji, 2021] yields

EDPP‖µfN −
∑
i∈[N ]

ŵEZ
i k2(xi, ·)‖2F2

= ‖fN‖2ω
+∞∑

m=N+1

σ2
m.

To sum up, we obtain

EDPP‖f − f̂LS,x‖2ω ≤ 2
(
‖f − fN‖2ω + ‖fN‖2ω

+∞∑
m=N+1

σ2
m

)
.

3.4.3 Proof of Proposition 1

Let f ∈ F . We have f =
∑
m∈N∗ Im(f)em, where Im(f) := 〈f, em〉ω. Moreover, by defini-

tion (12), any transform-based approximation writes

f̂Φ =
∑

m∈[M ]

Îm(f)em,

where Îm are quadrature rules. In particular,

f − f̂Φ =
∑

m∈[M ]

(Im(f)− Îm(f))em +
∑

m≥M+1

〈f, em〉ωem (61)

and

‖f − f̂Φ‖2ω =
∑

m∈[M ]

(Im(f)− Îm(f))2 + ‖f − fM‖2ω. (62)

Now, when Φ corresponds to the transform based on the optimal kernel quadrature, we have
by (12) and (14)

∀m ∈ [M ], Îm(f) =
∑
i∈[N ]

αm,if(xi) = µm(x)TK(x)−1f(x), (63)

where µm := σmem = Σem.
Now, let m ∈ [M ] and define µ := µm. By definition (9), we have µ̂OKA,x =

∑
i∈[N ] wik(xi, ·),

where w = K(x)−1µ(x). Thus, by (63), we have

Îm(f) = f(x)Tw = 〈f,
∑
i∈[N ]

wik(xi, ·)〉F = 〈f, µ̂OKA,x〉F . (64)
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Moreover, we have 〈eFm, ϕ〉F = 〈em, ϕ〉ω/
√
σm for any ϕ ∈ F ; see Section 2.1.1. Thus

Im(f) = 〈f, em〉ω =
√
σm〈f, eFm〉F = 〈f, µ〉F . (65)

Combining (64) and (65), we get∣∣Im(f)− Îm(f)
∣∣ =

∣∣〈f, µ− µ̂OKA,x〉F
∣∣ ≤ ‖f‖F‖µ− µ̂OKA,x‖F . (66)

Since ‖em‖ω = 1, µ ∈ ΣBL2(ω). Thus by (34) and (37), we get

EDPP|Im(f)− Îm(f)|2 ≤ 4rN‖f‖2F , (67)

and
ECVS|Im(f)− Îm(f)|2 ≤ εm(N)‖f‖2F . (68)

By taking the sum over m ∈ [M ] in (67) and (68), and by using (62), we prove (47) and (48).

3.4.4 Proof of Proposition 2

Let f ∈ F . We proceed as in Section 3.4.3, and we prove that

∀M ∈ N∗, ‖f − f̂OKQ,M,x‖2ω =
∑

m∈[M ]

(Im(f)− Îm(f))2 + ‖f − fM‖2ω, (69)

where Im(f) = 〈f, em〉ω for m ∈ N∗, and Î1, . . . , Îm are given by (63). Thus, we only need to

prove that
∑
m∈[M ](Im(f)− Îm(f))2 ≤ ‖f − f̂OKA,x‖2ω.

Now, let m ∈ [M ]. By definition (9), we have f̂OKA,x =
∑
i∈[N ] wik(xi, ·), where w =

K(x)−1f(x). Thus, by (63), we have

Îm(f) = µm(x)Tw = 〈µm,
∑
i∈[N ]

wik(xi, ·)〉F = 〈µm, f̂OKA,x〉F . (70)

Moreover, we have 〈eFm, ϕ〉F = 〈em, ϕ〉ω/
√
σm for any ϕ ∈ F ; see Section 2.1.1. Thus, since

µem = Σem = σmem =
√
σme

F
m, we have

〈µm, f̂OKA,x〉F =
√
σm〈em, f̂OKA,x〉ω/

√
σm = 〈em, f̂OKA,x〉ω. (71)

On the other hand, we have Im(f) = 〈em, f〉ω. Combining the latter with (71), we get

(Im(f)− Îm(f))2 = 〈em, f − f̂OKA,x〉2ω, (72)

so that

M∑
m=1

(Im(f)− Îm(f))2 =

M∑
m=1

〈em, f − f̂OKA,x〉2ω ≤
+∞∑
m=1

〈em, f − f̂OKA,x〉2ω

= ‖f − f̂OKA,x‖2ω.
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3.4.5 Proof of Proposition 3

Let f ∈ F , x = (x1, . . . , xN ) ∈ XN , and w = (w1, . . . , wN ) ∈ RN . Define
β(x) := 1

N

∑
i∈[N ] q(xi)f(xi)

2

δ(x) := ( 1
N

∑
i∈[N ] q(xi)f(xi)en(xi))n∈[N ] ∈ RN

γ(x) := ( 1
N

∑
i∈[N ] q(xi)en1(xi)en2(xi))(n1,n2)∈[N ]×[N ] ∈ RN×N .

(73)

We have

‖f −
∑
m∈[N ]

wmem‖2q,x =
1

N

∑
i∈[N ]

q(xi)
(
f(xi)−

∑
m∈[N ]

wmem(xi)
)2

(74)

= β(x)− 2wTδ(x) +wTγ(x)w. (75)

Under the assumption that γ(x) is non-singular, let ŵ = γ(x)−1δ(x). The function f̂ :=∑
m∈[N ] ŵmem is then the unique function belonging to EN that satisfies

‖f − f̂‖q,x = min
f̃∈EN

‖f − f̃‖q,x. (76)

Thus f̂ELS,N,q,x =
∑
m∈[N ] ŵmem, and we only need to prove that ŵm = ÎQI

m (f) for m ∈ [N ],
where

ÎQI
m (f) = f(x)TKN (x)−1em(x)

are the interpolative quadrature rules that define the quasi-interpolant in Section 2.2.2. For this
purpose, observe that γ(x) and δ(x) write{

γ(x) := 1
NEN (x)TQ(x)EN (x)

δ(x) := 1
NEN (x)TQ(x)f(x)

, (77)

where Q(x) := Diag(q(x1), . . . , q(xN )), EN (x) := (en(xi))(i,n)∈[N ]×[N ], and f(x) = (f(xi))i∈[N ].
Thus, still under the assumption that γ(x) is non-singular, we have

ŵ = γ(x)−1δ(x) = EN (x)−1Q(x)−1EN (x)T−1

EN (x)f(x) = EN (x)−1f(x). (78)

In particular, for m ∈ [N ],
ŵm = vT

mEN (x)−1f(x), (79)

where vm is the m-th element of the Euclidean basis of RN . By observing that em(x) = EN (x)vm,
we deduce from (79) that

ŵm = em(x)TEN (x)T−1

EN (x)−1f(x) = em(x)T(EN (x)EN (x)T)−1f(x) (80)

= em(x)TKN (x)−1f(x) (81)

= ÎQI
m (f). (82)

Finally, we need to check that γ(x) is non-singular if and only if EN (x) is non-singular. This
claim can be proved by observing that γ(x) is non-singular if and only if the matrices Q(x) and
EN (x) are non-singular. We conclude by observing that DetQ(x) =

∏
i∈[N ] q(xi) > 0, since q is

positive by assumption.
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3.4.6 Proof of Proposition 4

Let w = (wm)m∈[N ] ∈ RN . We have

‖f −
M∑
m=1

wmem‖2ω = ‖f‖2ω − 2

M∑
m=1

wm〈f, em〉ω +

M∑
m=1

w2
m. (83)

Therefore

‖f − f̂ELS,M,x‖2ω = ‖f‖2ω − 2

M∑
m=1

ŵm〈f, em〉ω +

M∑
m=1

ŵ2
m, (84)

where ŵ = γ(x)−1δ(x), with γ(x) and δ(x) given by (77). By Proposition 3, we get

∀n ∈ [N ], ŵn = ÎQI
n (f). (85)

Based on (85), (29) implies that

∀n ∈ [N ], EDPPŵn = 〈f, en〉ω, (86)

and (30) implies that

∀n ∈ [N ], EDPPŵ
2
n = EDPPÎ

QI
n (f)2

= In(f)2 + 2In(f)EDPP(ÎQI
n (f)− In(f)) + EDPP(ÎQI

n (f)− In(f))2

= 〈f, en〉2ω +

+∞∑
m=N+1

〈f, em〉2ω. (87)

Finally, combining (84),(86) and (87), we get

EDPP‖f − f̂ELS,M,x‖2ω = ‖f‖2ω − 2

M∑
n=1

〈f, en〉2ω +

M∑
n=1

(
〈f, en〉2ω +

+∞∑
m=N+1

〈f, em〉2ω
)

=

+∞∑
n=M+1

〈f, en〉2ω +

M∑
n=1

+∞∑
m=N+1

〈f, em〉2ω

= ‖f − fM‖2ω +M‖f − fN‖2ω.

4 Numerical illustrations

In this section we illustrate the results of Section 3 on three families of RKHSs.

4.1 Periodic Sobolev spaces

Let X = [0, 1] equipped with the uniform measure ω, and define for s ∈ N∗ the kernel

ks(x, y) = 1 + 2
∑
m∈N∗

1

m2s
cos(2πm(x− y)), (88)

where the convergence holds uniformly on X ×X . The kernel ks can be expressed in closed form
using Bernoulli polynomials [Wahba, 1990],

ks(x, y) = 1 +
(−1)s−1(2π)2s

(2s)!
B2s({x− y}). (89)
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(a) The residual ‖f − f̂LS,x‖2ω vs. N (s = 1).
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(b) The residual ‖f − f̂LS,x‖2ω vs. N (s = 2).

10 20 30 40 50
N

5

4

3

2

1

lo
g 1

0
(S

qu
ar

ed
 e

rro
r)

m= 0
m= 1
m= 2
m= 3
m= 4
m= 5

N + 1
2
N + 1

(c) The residual ‖f − f̂OKA,x‖2ω vs. N (s = 1).
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(d) The residual ‖f − f̂OKA,x‖2ω vs. N (s = 2).

Figure 2: The reconstruction error for f = eFm, when F is the periodic Sobolev space of order
s ∈ {1, 2}.

The corresponding RKHS F = Ss is the periodic Sobolev space of order s; an element of Ss is
a function f defined on [0, 1], that has a derivative of order s in the sense of distributions such
that f (s) ∈ L2(ω), and

∀i ∈ {0, . . . , s− 1}, f (i)(0) = f (i)(1); (90)

see Chapter 7 of [Berlinet and Thomas-Agnan, 2011]. This class of RKHSs is ideal to validate
the theoretical guarantees obtained in Section 3, since the eigenvalues σm and the eigenfunctions
em are known explicitly.

Figure 2a and Figure 2b show log-log plots of ‖f−f̂LS,x‖2ω when f = eFm with m ∈ {1, 2, 3, 4, 5}
w.r.t. N , averaged over 50 independent draws from the the projection DPP, when F is the
periodic Sobolev spaces of order s = 1 and s = 2, respectively. We observe that the expected
squared residual converges to 0 at the same rate as σ2

N+1 = O(N−4s), which is slightly faster
than the rate of convergence of

∑
m≥N+1 σ

2
m = O(N1−4s) predicted by Theorem 1. Interestingly,

this fast rate of convergence is also observed for the kernel-based interpolant f̂OKA,x, as shown

in Figure 2c and Figure 2d. Indeed, these figures show log-log plots of ‖f − f̂OKA,x‖2ω when
f = eFm with m ∈ {1, 2, 3, 4, 5} w.r.t. N , averaged over 50 independent DPP samples. The
squared residuals are evaluated using the formula (44).
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Now, we move to another experiment, and consider f to be a random function

f =

M∑
m=1

ξme
F
m, (91)

where M ∈ N∗ and the ξm are i.i.d. standard Gaussians. In other words, f is a random element
of the eigenspace EFM . Figure 3a and Figure 3b show log-log plots of ‖f − f̂LS,x‖2ω w.r.t. N ,
averaged over 50 independent DPP samples, and for a set of 50 functions f sampled according
to (91), when F is the periodic Sobolev spaces of order s = 1. To be clear, for every function f we
use different DPP samples. We observe that the empirical convergence rate scales as O(σ2

N+1),
which is slightly faster than O(

∑
m≥N+1 σ

2
m). Again, this fast convergence is also observed for

the kernel-based interpolant f̂OKA,x, as shown in Figure 3c and Figure 3d.

10 20 30 40 50
N

5

4

3

2

1

lo
g 1

0
(S

qu
ar

ed
 e

rro
r)

m {1, , 50}
median

N + 1
2
N + 1

(a) The residual ‖f − f̂LS,x‖2ω vs. N for M = 10.
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(b) The residual ‖f − f̂LS,x‖2ω vs. N for M = 20.
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(c) The residual ‖f − f̂OKA,x‖2ω vs. N for M = 10.
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(d) The residual ‖f − f̂OKA,x‖2ω vs. N for M = 20.

Figure 3: The reconstruction error for 10 samples of f from the distribution defined by (91)
when F is the periodic Sobolev space of order s = 1.

4.2 An RKHS with a rotation-invariant kernel on the hypersphere

The RKHS framework allow treating high-dimensional and/or non-Euclidean domains, such as
hyperspheres. The definition of a positive definite kernel on a hypersphere dates back to [Schoen-
berg, 1942]. According to Schoenberg’s seminal work, a kernel k : Sd−1×Sd−1 → R is said to be
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10 20 30 40 50 80
N

7
6
5
4
3
2

lo
g 1

0(
Sq

ua
re

d 
er

ro
r)

m= 1
m= 10
m= 20
m= 30

N + 1
2
N + 1

(b) The residual ‖f − f̂LS,x‖2ω vs. N (s = 2).

Figure 4: The reconstruction error for f = eFm, when F is the periodic Sobolev space of order
s ∈ {1, 2} in the hypersphere Sd−1 where d = 3.

a dot-product kernel if there exists a function ϕ : [−1, 1] → R such that k(x, y) = ϕ(〈x, y〉) for
x, y ∈ Sd−1. This defines a large class of rotation-invariant kernels on Sd−1. Moreover, the inte-
gration operator Σ associated to a dot-product kernel, when Sd−1 is equipped with the uniform
measure, decomposes in the basis of spherical harmonics, and Mercer’s decomposition holds in
the form

k(x, y) =

+∞∑
`=0

σ`

N(d,`)∑
k=1

Y`,k(x)Y`,k(y), (92)

where for ` ∈ N, {Y`,k : Sd−1 → R, k = 1, . . . , N(d, `)} is the basis of spherical harmonics of exact
degree ` and N(d, `) := (2`+ d− 1)Γ(`+ d− 1)/

(
Γ(d)Γ(`+ 1)

)
; see [Groemer, 1996]. The exact

expression of for σm or the eigenvalue decay may be found in [Cui and Freeden, 1997, Smola
et al., 2000, Bach, 2017b, Azevedo and Menegatto, 2014, Scetbon and Harchaoui, 2021].

In order to illustrate the superconvergence phenomenon of Theorem 1,we consider the kernel
obtained by taking d = 3 and σ` = (1 + `)−2s in (92). The corresponding RKHS is akin to a
Sobolev space of order s; an element of F is a function f defined on Sd−1, which has a derivative
of order s in the sense of distributions such that f (s) ∈ L2(ω) [Hesse, 2006].

Figure 4a and Figure 4b show log-log plots of ‖f − f̂LS,x‖2ω when f = eFm with m ∈
{1, 10, 20, 30} w.r.t. N , averaged over 50 independent DPP samples, for s = 1 and s = 2
respectively. Again, we observe that the expected squared residual converges to 0 at the same
rate as σ2

N+1 = O(N−4s), which is slightly faster than the rate of convergence predicted by The-
orem 1 of

∑
m≥N+1 σ

2
m = O(N1−4s). Moreover, the superconvergence regime corresponds to

N ≥ m, as predicted by Theorem 1.

4.3 The RKHS spanned by the uni-dimensional PSWFs

Let now X = [−T/2, T/2] equipped with ω the uniform measure, and let F > 0. Consider the
Sinc kernel

kF (x, y) := Sinc(F (x− y)) =
sin(F (x− y))

F (x− y)
. (93)

This kernel defines an RKHS that corresponds to the space of band-limited functions restricted
to the interval X . Slepian, Landau, and Pollak proved that the eigenfunctions of the integration
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operator Σ associated to (93) and the measure ω satisfy a differential equation known in physics
as the prolate spheroidal wave equation (PSW; Slepian and Pollak, 1961). Since this seminal
work, the eponymous functions were subject to extensive research. In particular, a detailed
description of the eigenfunctions was carried out in [Osipov, 2013, Bonami and Karoui, 2014,
Osipov and Rokhlin, 2012]. In particular, these functions were shown to be well represented in
the orthonormal basis defined by the Legendre polynomials [Boyd, 2005, Osipov et al., 2013].
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(a) The residual ‖f − f̂OKA,x‖2ω vs. N (m = 1).
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(b) The residual ‖f − f̂OKA,x‖2ω vs. N (m = 2).
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(c) The residual ‖f − f̂OKA,x‖2ω vs. N (m = 3).
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(d) The residual ‖f − f̂OKA,x‖2ω vs. N (m = 4).

Figure 5: The reconstruction error for f = eFm in the RKHS associated to the Sinc kernel.

The asymptotics of the eigenvalues (σm) of Σ in the limit c := TF → +∞ were investigated
too [Landau and Widom, 1980]: for ε > 0, in this asymptotic limit, Σ has approximately TF
eigenvalues in the interval [1− ε, 1], O(log(TF ) log(1/ε)) eigenvalues in the interval [ε, 1− ε], and
the remaining eigenvalues decrease to 0 at an exponential rate.

In this set of experiments, we study the influence of the design x on the convergence of
f̂OKA,x to f with respect to the norm ‖.‖ω. We compare the following random designs: (i) the
projection DPP defined in Section 2.3.2 associated to the first PSW functions (DPP-PSWF), (ii)
the projection DPP associated to the first normalized Legendre polynomials (DPP-Legendre),

and iii) Christoffel i.i.d. sampling (ChS). Figure 5 shows log-log plots of ‖f − f̂OKA,x‖2ω when
f = eFm with m ∈ {1, 2, 3} w.r.t. N , averaged over 50 independent samples of each of the
three distributions. We observe that both DPP-PSWF and DPP-Legendre significantly improve
over Christoffel sampling. Moreover, the expected squared residual ‖f − f̂OKA,x‖2ω under the
two DPPs converges to 0 at an exponential rate when N ≥ TW , which corresponds to the
asymptotics described in [Landau and Widom, 1980].
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5 Discussion

In this article, we established guarantees in L2 norm for the reconstruction of functions living in
an RKHS, based on repulsive nodes defined by determinantal distributions. In the following, we
give further high-level comments and discuss possible extensions.

First, we insist that generating different random designs requires access to different quantities.
Christoffel sampling in general will require rejection sampling. One should thus be able to
evaluate the density x 7→

∑N
m=1 em(x)2/N , as well as find a suitable proposal. The study

of the ‘shape’ of the Christoffel function is thus crucial for sampling, and is an active topic
of research [Pauwels et al., 2018, Avron et al., 2019, Dolbeault and Cohen, 2022b]. A good
sampler for the Christoffel function is also relevant to simulate the DPP of Equation (26), as
the p.d.f. of Christoffel sampling can be used as a proposal distribution when sampling the
sequential conditionals of the HKPV algorithm [Hough et al., 2006]; see [Gautier et al., 2019].
When the p.d.f. of Christoffel sampling cannot be evaluated, one can still resort to continuous
volume sampling. Indeed, while the only known exact sampling algorithm for CVS still relies on
possibly hard-to-evaluate projection kernels, there are approximate samplers that leverage the
fact that evaluating the p.d.f. of CVS in Equation (28) only requires evaluating the RKHS kernel
k. In particular, Rezaei and Gharan [2019] have studied a natural Markov chain Monte Carlo
sampler, whose mixing time scales as O(N5 log(N)). Moreover, while each iteration of their
Markov chain requires a rejection sampling step, the expected number of rejections is shown
to be O(1/

∑
m≥N+1 σm). In other words, the smoother the kernel, the harder it is to run the

MCMC algorithm. It would be interesting to investigate whether alternative MCMC algorithms
can circumvent this ‘smoothness curse’.

Second, we comment on the instance optimal property (IOP), which motivated the introduc-
tion of Christoffel sampling [Cohen and Migliorati, 2017]. In particular, it was proven that for
some variants of the empirical least-squares approximation, the IOP holds when the sampling
budget is as low as O(M log(M)). These variants essentially exclude configurations of nodes x
for which the Gramian matrix Gq,x is ill-conditioned. Similarly, determinantal sampling implic-
itly favors configurations of nodes x so that DetGq,x is large. Moreover, Proposition 4 shows
that the IOP holds under a suitable projection DPP, with a minimum sampling budget N ≥M .
The price to pay is the constant M + 1 in the IOP. Now, when N = M , this constant is N + 1,
which actually improves upon the constant N2 + 1 proven in [Chkifa and Dolbeault, 2023] for an
algorithm based on the so-called effective resistances. The latter algorithm generates randomized
configurations x in a greedy fashion so that the ‘redundancy’ of sampling is reduced.

Third, we might seek approximation schemes that are optimal in some worst-case sense,
rather than looking for ones that satisfy the IOP. This is the approach adopted in [Krieg and
Ullrich, 2021, Dolbeault et al., 2023], where the authors investigate the sampling numbers

gN (F ) := inf
x1,...,xN∈X

ϕ1,...,ϕN∈L2(ω)

sup
f∈F
‖f −

N∑
i=1

f(xi)ϕi‖ω. (94)

The sampling numbers measure the complexity of the recovery of a function f ∈ F based on
its discrete samples f(x1), . . . , f(xN ). It was shown by Dolbeault et al. [2023] that there is a
universal constant c ∈ N∗ such that

∀N ∈ N∗, gcN (BF ) ≤
√

1

N

∑
m≥N+1

d2
m(BF ), (95)
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where the dm are the Kolmogorov widths defined by

dN (BF ) := inf
`1,...,`N :BF→R
ϕ1,...,ϕN∈L2(ω)

sup
f∈BF

‖f −
N∑
i=1

`i(f)ϕi‖ω. (96)

The Kolmogorov N -width corresponds to the lowest worst-case approximation error by a linear
subspace of dimension N . Because F is an RKHS, the Kolmogorov N -width (96) corresponds
to the so-called linear N -width, defined by restricting the functions `1, . . . , `N to be linear; see
Remark 5 in [Dolbeault et al., 2023]. In particular, in this case, dN (BF ) = σN+1, so that the
RHS of (95) scales as O(σN+1) for many sequences (σm)m∈N∗ , although this is not always the
case [Krieg and Ullrich, 2021]. Moreover, the bound (95) is optimal [Hinrichs et al., 2022]. Our
results in Section 3 can match these rates, but only for a single f so far; Theorem 1, for instance,
implies that EDPP‖f − f̂LS,x‖2ω = O(σN+1) for every function f in the RKHS F . Such a worst-
case optimality would further connect to a string of results on the completeness of DPPs [Lyons,
2003, Ghosh, 2015, Bufetov et al., 2021], which look for conditions under which a sample x from
a DPP is a uniqueness set in the sense that two elements of F that coincide on x are equal.
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P. Erdős and P. Turán. On interpolation i. Annals of mathematics, pages 142–155, 1937.

S. M. Ermakov and V.G. Zolotukhin. Polynomial approximations and the monte-carlo method.
Theory of Probability & Its Applications, 5(4):428–431, 1960.

F. Filbir and H. N. Mhaskar. Marcinkiewicz–zygmund measures on manifolds. Journal of Com-
plexity, 27(6):568–596, 2011.

G. Gautier, R. Bardenet, and M. Valko. On two ways to use determinantal point processes for
monte carlo integration. Advances in Neural Information Processing Systems, 32, 2019.

W. Gautschi. Orthogonal polynomials: computation and approximation. OUP Oxford, 2004.

29



S. Ghosh. Determinantal processes and completeness of random exponentials: the critical case.
Probability Theory and Related Fields, 163(3-4):643–665, 2015.
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J. Ortega-Cerdà and J. Saludes. Marcinkiewicz–zygmund inequalities. Journal of approximation
theory, 145(2):237–252, 2007.

A. Osipov. Certain upper bounds on the eigenvalues associated with prolate spheroidal wave
functions. Applied and Computational Harmonic Analysis, 35(2):309–340, 2013.

A. Osipov and V. Rokhlin. Detailed analysis of prolate quadratures and interpolation formulas.
arXiv preprint arXiv:1208.4816, 2012.

A. Osipov, V. Rokhlin, and H. Xiao. Prolate spheroidal wave functions of order zero. Springer
Ser. Appl. Math. Sci, 187, 2013.

E. Pauwels, F. Bach, and J.-P. Vert. Relating leverage scores and density using regularized
christoffel functions. Advances in Neural Information Processing Systems, 31, 2018.

A. Rezaei and S. O. Gharan. A polynomial time MCMC method for sampling from continuous
determinantal point processes. In International Conference on Machine Learning, pages 5438–
5447, 2019.

M. Scetbon and Z. Harchaoui. A spectral analysis of dot-product kernels. In International
conference on artificial intelligence and statistics, pages 3394–3402. PMLR, 2021.

R. Schaback. Superconvergence of kernel-based interpolation. Journal of Approximation Theory,
235:1–19, 2018.

31



R. Schaback and H. Wendland. Kernel techniques: from machine learning to meshless methods.
Acta numerica, 15:543–639, 2006.

I. J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):
96 – 108, 1942. doi: 10.1215/S0012-7094-42-00908-6. URL https://doi.org/10.1215/

S0012-7094-42-00908-6.

C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
1949.

D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, fourier analysis and uncer-
tainty—i. Bell System Technical Journal, 40(1):43–63, 1961.

I. H. Sloan. Polynomial interpolation and hyperinterpolation over general regions. Journal of
Approximation Theory, 83(2):238–254, 1995.
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