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Eloïse Baudou1,2,3* , Federico Nemmi1, Patrice Peran1, Fabien Cignetti4, Melody Blais1,5, Stéphanie Maziero1, 
Jessica Tallet1 and Yves Chaix1,2 

Abstract 

Introduction: Neurofibromatosis type 1 (NF1) is considered a model of neurodevelopmental disorder because of the 
high frequency of learning deficits, especially developmental coordination disorder. In neurodevelopmental disor-
der, Nicolson and Fawcett formulated the hypothesis of an impaired procedural learning system that has its origins 
in cortico-subcortical circuits. Our aim was to investigate the relationship between cortico-striatal connectivity and 
procedural perceptual-motor learning performance and motor skills in NF1 children.

Methods: Seventeen NF1 and 18 typically developing children aged between 8 and 12 years old participated in the 
study. All were right-handed and did not present intellectual or attention deficits. In all children, procedural percep-
tual-motor learning was assessed using a bimanual visuo-spatial serial reaction time task (SRTT) and motor skills using 
the Movement Assessment Battery for Children (M-ABC). All participants underwent a resting-state functional MRI 
session. We used a seed-based approach to explore cortico-striatal connectivity in somatomotor and frontoparietal 
networks. A comparison between the groups’ striato-cortical connectivity and correlations between connectivity and 
learning (SRTT) and motor skills (M-ABC) were performed.

Results: At the behavioral level, SRTT scores are not significantly different in NF1 children compared to controls. 
However, M-ABC scores are significantly impaired within 9 patients (scores below the 15th percentile). At the cerebral 
level, NF1 children present a higher connectivity in the cortico-striatal regions mapping onto the right angular gyrus 
compared to controls. We found that the higher the connectivity values between these regions, differentiating NF1 
and controls, the lower the M-ABC scores in the whole sample. No correlation was found for the SRTT scores.

Conclusion: NF1 children present atypical hyperconnectivity in cortico-striatal connections. The relationship with 
motor skills could suggest a sensorimotor dysfunction already found in children with developmental coordination 
disorder. These abnormalities are not linked to procedural perceptual-motor learning assessed by SRTT.

Keywords: Procedural memory, Serial reaction time task, Neurofibromatosis type 1, Resting-state MRI, Cortico-striatal 
connectivity, Neurodevelopmental disorder
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Background
Neurofibromatosis type 1 (NF1) is one of the most com-
mon childhood autosomal dominant neurogenetic disor-
ders, affecting 1 in 2500 to 3000 individuals [1]. Learning 
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deficits are frequent and represent the main neurological 
complication of the disease [2]. Several neurodevelop-
mental disorders may be encountered in NF1, such as 
developmental coordination disorder (DCD), dyslexia, 
specific language impairment, or attention deficit/hyper-
activity disorder [3].

Nicolson and Fawcett proposed the hypothesis that 
children with learning deficits have impairments of the 
procedural learning system [4]. This system subserves the 
learning of sensorimotor and cognitive skills, rules, and 
habits [5]. In their model, the procedural learning system 
(PLS) is divided into a cortico-striatal PLS and a cortico-
cerebellar PLS, which are dissociated in the language and 
motor systems. The motor cortico-striatal PLS is said to 
be impaired in DCD, and the language cortico-cerebel-
lar PLS in dyslexia. In this study, we will be particularly 
interested in the motor cortico-striatal PLS, given that 
about 50% of NF1 children meet the criteria for DCD [6].

The serial reaction time task (SRTT) is the most com-
mon task for assessing procedural perceptual-motor 
learning [7]. In adults with NF1 without cognitive or 
neurological impairments, using an established form of 
non-invasive, double-pulse transcranial magnetic stimu-
lation (dp-TMS) during a finger-tapping task with the 
non-dominant hand, Zimerman et al. found a substantial 
decline in motor skill learning linked to an intracortical 
inhibition, especially after the early acquisition phase [8].

Studies of procedural learning in children are sparse. 
Studies using SRTT to assess procedural learning in neu-
rodevelopmental disorders such as DCD found either 
preserved learning [9, 10] or impaired learning in a 
bimanual condition [11]. Both adults and children with 
alterations in the basal ganglia present deficits in proce-
dural perceptual-motor learning. This is the case in Par-
kinson’s or Huntington’s diseases [12, 13] and in children 
with acquired alteration in the striatum, regardless of the 
etiology of the lesion and the age of occurrence [14].

Human brain imaging studies have demonstrated that 
the cortico-striatal networks are involved in perceptual-
motor sequence learning, while the cerebello-cortical 
networks are involved in motor adaptation [15–17]. 
Motor procedural learning is a process requiring repeti-
tion and time to automatize movement. It can be broken 
down into three steps: fast learning, slow learning allow-
ing consolidation and automatization, and retention. 
The striatum is the main brain area involved in motor 
sequence learning [16]. Functional brain imaging stud-
ies have shown that activations during a motor sequence 
learning task are focused at first on the associative stria-
tum but shift to the sensorimotor striatum with practice. 
The cortical areas involved in the cortico-striatal circuit 
are the motor cortical regions, the parietal cortices, the 
frontal associative region, and the medial temporal lobe 

(hippocampus). Recent results suggest that children with 
developmental coordination disorders present a dys-
function in the cortico-striatal network with overcon-
nectivity in the frontoparietal cortico-striatal networks 
linked to the score on the Movement Assessment Battery 
for Children (M-ABC) [18]. Such a dysfunction may be 
linked to procedural perceptual-motor deficit. In NF1 
children, significant differences have been reported with 
higher volumes, lower fractional anisotropy, and higher 
mean diffusion in the striatum, which includes the puta-
men and the caudate nucleus [19]. These brain areas are 
also prone to present unidentified bright objects (UBOs), 
which are frequently reported (in 2/3 of NF1 children), 
as well as metabolic abnormalities in spectroscopic MRI 
[20]. The presence of these abnormalities is an indication 
of axonal damages associated with an increase in myelin 
turnover in areas of intramyelinic edema [21, 22]. Given 
that NF1 children have both striatal abnormalities and 
frequent associated bimanual coordination disorders 
[23], one could suggest a possible impairment of proce-
dural perceptual-motor learning using a bimanual SRTT.

Resting-state functional MRI has been used to bet-
ter understand the connectivity in patients with basal 
ganglia diseases (Parkinson’s disease [24], Huntington’s 
disease [25]) using a seed-to-voxel analysis based on the 
functional atlas of the striatum. This imaging analysis has 
also been used in typically developing children [26] and 
in neurodevelopmental disorders [18]. In NF1 patients, 
neuroimaging studies have reported abnormal connec-
tivity. Tomson reported reduced anterior-posterior con-
nectivity and altered modularity clustering in NF1 adults 
relative to healthy controls [27]. Using a voxel-to-voxel 
analysis, Nemmi et  al. found a higher local correlation 
in NF1 children compared to TD, specifically in the right 
superior temporal gyrus, the right middle frontal gyrus, 
and the right cuneus [28]. On the other hand, clusters 
in the left and right frontal poles, the left inferior fron-
tal gyrus, the left insula, the left parahippocampal cortex, 
and the bilateral precuneus and cingulate cortex showed 
higher local correlation for typically developing children 
(TD) relative to NF1. Until now, an investigation into the 
connectivity of striatal subregions in NF1 patients has 
not been reported.

The aim of this study is to explore the functional 
connectivity in the cortico-striatal pathways and its 
relationship with motor abilities and procedural percep-
tual-motor learning in NF1 children.

Methods
Participants
This study is part of the DYSTAC-MAP protocol. Seven-
teen children with NF1 and eighteen TD participated in 
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the study. All were right-handed and aged from 8 to 12 
years old. The two groups did not differ in age or sex.

The children did not present a known neurological 
or psychiatric disorder, uncorrectable hearing or visual 
impairment, intellectual disability (WISC total IQ supe-
rior to 70 and/or subtest similarities and picture con-
cept scores greater than 7), or ADHD criteria (DSM-5 
diagnostic criteria). All children underwent motor skills 
assessment using the Movement Assessment Battery for 
Children (M-ABC) in its French translation [29]; a score 
below the 15th percentile was an exclusion criterion for 
the control group. Children with NF1 had been diag-
nosed with NF1 by a pediatric neurologist, in accordance 
with the Neurofibromatosis Conference statement (1988) 
[30]. Demographic, psychomotor, and neuropsychologi-
cal characteristics are presented in Table 1. The study was 
approved by the local ethics committees and was con-
ducted in accordance with the Declaration of Helsinki. 
We obtained written informed consent from the children 
and their parents.

Behavioral tasks
We used a classical visuospatial SRTT to assess proce-
dural perceptual-motor memory and implicit learning 
[7]. A computer with a 24-in. screen was placed 80 cm 
in front of the participant. A yellow square successively 
appeared at one of four positions arranged horizon-
tally 3 cm apart from each other on a black computer 
screen. Each screen position corresponded to a button 
on a response pad: D, F, G, or H. The participant was 
asked to press the corresponding button as quickly as 
possible with the index or middle finger of each hand 
(bimanual responses). As soon as a response was given 
or after a time of 3000 ms without a response, the next 
stimulus appeared after a time interval of 250 ms. The 
task consisted of a sequence of ten visual stimuli that 
were repeated ten times to form a block (1 block = 100 
stimuli). The task was composed of 6 blocks. The first 
four blocks (B1–B4) and the last one (B6) included the 
repeated sequence. The fifth block (B5) was a pseudoran-
domized block in which the visual cue no longer played 

out a repeating pattern of positions. The participant 
was not advised that the visual cues followed a repeated 
sequence of positions, which made learning implicit.

Motors skills were assessed using the total M-ABC 
score. The M-ABC is a test of motor impairment devel-
oped and validated for use with children ages 4–12 years 
old divided into four age categories (4–6 years old, 7–8 
years old, 9–10 years old, 11–12 years old). It includes 
eight items that assess both fine and gross motor skills 
divided into three categories: manual dexterity, balance, 
and ball handling. The sum of the score items gives a 
deterioration score that is transformed and reported 
here, as age-related percentiles.

MRI acquisition
MRI images were acquired using a Philips Achieva 
dStream 3.0-T MRI scanner equipped with a 32-channel 
head coil. Rs-fMRI: echo-planar imaging (EPI) sequence. 
Time repetition (TR)/time echo (TE) = 3000/40 ms, flip 
angle (FA) = 90°, field of view (FOV) = 240 mm, matrix 
= 80 × 80, voxel size = 3.0 × 3.0 × 3.0 mm, 46 axial 
slices. Each scan session was 600 s long and included 200 
volumes. Resting-state data were acquired while each 
subject was asked to stay awake, eyes opened, and not 
thinking about anything in particular.

MRI processing
Rs-fMRI images were preprocessed using the Conn 
software including the following steps: realignment 
and unwarp, slice timing correction, and outlier detec-
tion using strict settings: 97th percentiles in the norma-
tive sample, global signal z-value threshold 5, subject 
motion mm threshold 0.9, direct segmentation and nor-
malization (also applied to T1 images for each subject), 
smoothing with an 8-mm kernel. BOLD time series 
were denoised using the aCompCor method [31–33] of 
the CONN toolbox (www. nitrc. org/ proje cts/ conn; [34]), 
which consisted in regressing out from the functional 
time-series the first two principal components of the 
time-series extracted from white matter and CSF. The 

Table 1 Demographic and psychomotor characteristics of NF1 and typically developing children (TD)

Note that NF1 children had significantly lower M-ABC scores, and nine of them had scores below the 15th percentile. The Mann-Whitney U test was used for the 
M-ABC score, as it was not normally distributed. The results were presented as means (standard deviation)

NF1 (n = 17) TD (n = 18) Statistic p-value

Demographic characteristics
 Mean age in months (SD; range) 116 (20.23; 96–171) 121 (14.65; 96–150) 117.0 0.241

 Sex ratio (male/female) 0.41 0.55 131.0 0.413

Psychomotor characteristics
 Mean M-ABC score (SD) 16.07 (19.56) 50.51 (26.35) 40.0 < 0.001

http://www.nitrc.org/projects/conn
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BOLD time series were finally band-pass filtered (0.008–
0.09 Hz).

Functional connectivity
A seed-to-voxel analysis was performed using the seven-
network striatal atlas [35]. This atlas consists of the par-
cellation of the human striatum into 1000 subjects, based 
on functional connectivity to seven major networks: sen-
sorimotor, ventral attention, dorsal attention, frontopari-
etal, default, visual, and limbic networks. We restricted 
our analysis to the sensorimotor (“striatal seed 2” of 
Choi’s atlas) and frontoparietal (“striatal seed 6” of Choi’s 
atlas) networks based on previous results [18]. Using 
GLM analysis, we first analyzed the maps of connectivity 
in all participants to compare the profiles of connectivity 
obtained in our sample with those from the literature [18, 
35].

Statistical analysis
Data were analyzed using the JAMOVI (1.6.15.0) soft-
ware [36] or the GLM analysis option of the Conn 
toolbox.

Comparison of the behavioral task between groups
For the procedural perceptual-motor memory assess-
ment, we performed a repeated measures ANOVA on 
reaction times between B1 and B4 (general learning), 
B4 and B5 (specific learning), and B5 and B6 (retention), 
with the group as the intersubject factor and the blocks as 
intrasubject factors. The normality of data was assessed 
by the Shapiro-Wilk test, the homogeneity of variance 
with Levene’s test, and the sphericity with Mauchly’s test. 
As the variable “number of errors” for each block was not 
normally distributed, we used a non-parametric Fried-
man test on each group with the blocks as intrasubject 
factors for general learning and a paired sample t test for 
specific learning and retention.

To compare the performance on motor skills in the two 
groups, we used the Mann-Whitney U test, because the 
distribution of variables assessed by the Shapiro-Wilk 
test was not normal. For each analysis, the p-value was 
set at p < 0.05.

Comparison of functional connectivity between the groups
We explored the group differences between the NF1 and 
TD groups, including the following covariables: age, sex, 
and GCOR (average global correlation). All analyses were 
thresholded by applying the cluster-forming threshold p 
< 0.001 and the cluster-extent threshold P-FDR < 0.05.

Correlation between functional connectivity values 
and behavioral scores
Correlations were performed between the connectiv-
ity values, expressing a significant difference between 
NF1 and TD children and [1] learning SRTT scores, [2] 
the M-ABC score, and then [3] between SRTT scores 
and M-ABC score. Correlations were performed using 
Pearson or Spearman correlations, depending on the 
normal distribution of variables assessed by the Shap-
iro-Wilk test. Bonferroni corrections for multiple com-
parison corrections had been done. Learning scores 
were calculated for reaction times, i.e., the difference 
in the results between B1 and B4 for general learning, 
between B4 and B5 for specific learning, and between 
B5 and B6 for retention.

Results
SRTT 
The results of the SRTT are presented in Fig. 1.

The repeated ANOVA measures showed a block 
effect, but no group effect or interaction. There was a 
significant difference between B1 and B4 (F (3.08) = 
52.01; p = 0.015) with better performance with prac-
tice, as well as between B5 and B4 (F(− 2.85) = − 48.05; 
p = 0.019) with lower performance in the random 
block representing specific learning and between B5 
and B6 (F (5.45) = 92.128; p < 0.001) with better perfor-
mance on repeated sequences than on the pseudorand-
omized sequence, expressing retention of the repeated 
sequence. There were no significant results concerning 
the number of errors in each group.

Cortico-striatal estimated functional network
The estimated topography of somatomotor and parieto-
frontal networks in our child groups (Fig. 2) was quali-
tatively closed to topography previously found in adults 
[35] and children [19] with connection respectively 
with primary motor, somatosensory cortices, and pre-
frontal and posterior parietal cortices.

Impact of NF1 on the cortico-striatal functional circuit
Cortico-striatal connectivity significantly differed 
between NF1 and controls in a 148-voxel region (MNI 
coordinates, + 36 − 50 + 30) in the right angular gyrus 
connected with the somatomotor striatal seed (Fig. 3).

Relationship between connectivity in the cerebral regions 
of the cortico-striatal functional circuits that expressed 
a significant difference between NF1 and TD children 
and behavioral scores
No correlation was found between SRTT scores and 
the average connectivity values between the second 
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Fig. 1 Serial reaction time performances in neurofibromatosis type 1 (NF1) and typically developing children (TD). Vertical bars represent 
interindividual variability (standard errors)

Fig. 2 Areas showing significant positive connectivity with the striatal seeds in the somatomotor network (in blue) and in the parietofrontal 
network (in orange) (p < 0.001, family-wise error-corrected, cluster size > 100)
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striatal seed and the right angular gyrus cluster. Moreo-
ver, there was no correlation between learning scores in 
SRTT and M-ABC scores. However, as shown in Fig. 4, 
the average connectivity significantly decreased as the 

M-ABC score increased (Spearman’s rho = − 0.525; 
p-value < 0.001; Bonferroni correction applied). That 
is to say that children with lower motor skills had a 
higher connectivity score between the somatomotor 

Fig. 3 Cerebral regions of the cortico-striatal functional circuits that expressed any difference between NF1 and typically developing children. The 
right angular gyrus (AG) is significantly more connected with the somatomotor striatal seed “striatum 2” of Choi’s functional atlas in NF1 children 
than in typically developing children. Age, sex, and GCOR are used as covariables; voxel threshold p < 0.001 p-uncorrected and cluster threshold p < 
0.05

Fig. 4 Correlation between the M-ABC score and the average connectivity values within a significant cluster between the NF1 and TD groups
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striatal seed and the right angular gyrus cluster differ-
entiating the NF1 and TD groups. In the NF1 group, 11 
children have positive connectivity values while in the 
TD group, all participants have negative connectivity 
values.

Discussion
The aim of this study was to explore the functional 
connectivity in the cortico-striatal pathways and its 
relationship with motor abilities and procedural per-
ceptual-motor learning in NF1 children. We found that 
NF1 children present higher connectivity in the cortico-
striatal regions mapping onto the right angular gyrus 
compared to controls and a relationship between this 
hyperconnectivity and motor skills but not with pro-
cedural learning. The results are discussed in terms of 
abnormal connectivity of the angular gyrus in NF1 chil-
dren, the absence of correlation between learning scores 
and this abnormal connectivity, and the heterogeneous 
performance of NF1 children at the end of learning (spe-
cific learning and retention).

The angular gyrus is located in the posterior part of the 
inferior parietal lobule. This area is involved in numer-
ous functions, and it is considered a cross-modal hub 
where converging multisensory information is combined 
and integrated to comprehend and give sense to events, 
manipulate mental representations, solve familiar prob-
lems, and reorient attention to relevant information [37]. 
Numerous studies have evaluated the link between the 
angular gyrus and perceptual-motor sequential learning. 
Using gray matter density, volumes, or cortical thickness 
analyses, studies have shown structural plasticity in the 
angular gyrus when healthy adults learn new skills rela-
tive to spatial coordination, verbal storage, and creativ-
ity [38–40]. Moreover, functional MRI studies during 
SRTT in healthy adults have reported activations in the 
motor and premotor cortices [41–44], the parietal cortex 
[41–45], and the basal ganglia [41, 42, 44–46]. However, 
a recent neuroanatomical metanalysis of neural cor-
relates of learning with SRTT showed that if visual and 
motor parameters were correctly controlled, specific 
sequence learning yielded consistent activation only in 
the basal ganglia, across the striatum (anterior/mid-cau-
date nucleus and putamen), and in the globus pallidus 
[16]. Cerebellar and premotor regions appear to contrib-
ute to the aspects of the task not related to learning of 
the sequence itself: executive, working memory, or other 
attention-related functions for cerebellar regions and 
sensorimotor integration for premotor regions.

Based on the hypothesis of an alteration in procedural 
learning in neurodevelopmental disorders, we explored 
whether the difference in cortico-striatal connectivity 
could be linked with scores in a visuo-spatial sequence 

learning task. This relationship was not found in our 
study. Firstly, at a behavioral level, NF1 children did not 
have significantly lower results in the different SRTT 
scores, suggesting no deficit in procedural learning of 
perceptual-motor sequences. Thus, the hyper-connec-
tivity in the cortico-subcortical circuit in NF1 could be 
viewed as a compensatory mechanism allowing them to 
learn as well as controls but at the cost of increased con-
nectivity. However, the absence of a relationship between 
the learning score and hyper-connectivity does not allow 
this hypothesis to be validated. In fact, hyperconnectiv-
ity in the cortico-subcortical circuit in NF1 seems to be a 
characteristic of patients with neurodevelopmental disor-
ders presenting sensorimotor dysfunction. Cignetti et al. 
showed that intrinsic cortico-subcortical functional con-
nectivity is affected in children with developmental coor-
dination disorder (DCD), including abnormalities in the 
cortico-striatal connections mapping onto the posterior 
parietal cortex (angular gyrus and supramarginal gyrus), 
not present in developmental dyslexia [18]. Cerliani et al. 
also reported resting-state hyper-connectivity in the cor-
tico-subcortical pathways targeting sensorimotor regions 
(both the cerebellum and the basal ganglia) in male sub-
jects from 7 to 50 years with autism spectrum disorder 
(ASD) [47]. The strength of the interaction between net-
works was associated with age and autistic traits indexed 
by the Social Responsiveness Scale. The authors sug-
gested that this association is compatible with the idea of 
a relationship between sensory abnormalities and repeti-
tive behaviors in ASD patients. Motor skills were not 
reported in this study, but the results suggest that hyper-
connectivity in the cortico-subcortical pathways is par-
ticularly associated with atypical sensorimotor behaviors, 
which are found in some NF1 children.

Several hypotheses can be made to explain the absence 
of a correlation between behavior and brain connectivity. 
Firstly, SRTT is a task exploring only a part of procedural 
memory involving visuo-spatial motor sequence learn-
ing in an early stage. It would be interesting to explore the 
long-term retention, consolidation, and automatization of 
SRTT and their relations with the hyperconnectivity in the 
cortico-subcortical pathways. Secondly, we selected NF1 
patients without intellectual disability and ADHD in this 
study, which represents about 5 and 30% of NF1 children, 
respectively. This strict exclusion criterion allows motion-
induced artifacts to be prevented in our analyses and focal-
ization on the motor sequence learning process, excluding 
conditions which themselves contribute to the difficulties 
in learning but limit the generalization of our results to 
the whole NF1 population. However, the NF1 phenotype 
is quite heterogeneous, and great variability had been 
shown both in cognitive results and in brain characteris-
tics [19]. In line with these results, it is interesting to note 
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that NF1 children presented a heterogeneous performance 
at the end of learning (see errors during blocks 4, 5, and 6 
that correspond to specific learning and retention in Sup-
plementary data), which could suggest that a subgroup of 
NF1 children present a learning deficit. Further studies 
with larger samples are required to explore this hetero-
geneity. Lastly, functional connectivity differences linked 
with procedural learning between NF1 children and typi-
cally developing children may be a dynamic process that 
could not be highlighted at rest but only when children 
were scanned while performing the task.

The level of motor skills does not seem to be the best can-
didate to predict the level of procedural learning. Indeed, 
our results failed to find a relationship between the learning 
scores and the level of motor skills using the total M-ABC 
score. The SRTT is a short learning task that assesses the 
first step of learning (fast learning) and not consolidation, 
long-term retention, and other cognitive and motor pro-
cesses such as motor adaptation, visuo-spatial abilities [48], 
global coordination of the whole body, or manual dexter-
ity that is needed in perceptual-motor skills already con-
solidated, assessed in the M-ABC. It is possible that the 
absence of correlation between these two scores comes 
from a discrepancy between the ability to improve motor 
skills (SRTT) and the ability to perform them (M-ABC). A 
source of heterogeneity, in our NF1 population, is that nine 
children met the criteria for DCD (particularly, M-ABC 
score < 5th percentile). Another source of heterogeneity is 
the possible presence of UBOs (abnormalities in myelina-
tion) appearing in 75% of children in the first two years of 
life and disappearing at the end of adolescence [49]. UBOs 
are considered a radiologic marker of demyelination. While 
some studies have found a correlation between thalamo-
striatal UBOs and cognitive deficit (lower IQ and visuospa-
tial performances) [50], most of them have failed or results 
have not been reproduced, making the real impact of UBOs 
on cognitive functions unclear. However, the impact of 
UBOs specifically on procedural learning had not been 
studied. As children with acquired brain lesions in the basal 
ganglia had altered sequence learning scores [14], we can 
question the impact of UBOs, which can be considered a 
marker of dynamic alteration of the brain microstructure in 
NF1 children. Unfortunately, in our functional MRI study, 
the impact of UBOs on cortico-striatal connectivity is not 
evaluable because of the small sample size (only six NF1 
patients presented UBOs in the basal ganglia in our study).

Conclusion
NF1 children present overconnectivity in the cortico-
striatal connections mapping onto the right angular 
gyrus, linked to M-ABC scores but not with SRTT scores. 
These results reinforce the importance of considering 

NF1 a neurodevelopmental disorder, given that the same 
pattern of results has been found in children with devel-
opmental coordination disorder. Such a modification of 
the cortico-striatal connectivity has been found in other 
neurodevelopmental disorders with atypical sensorimo-
tor behaviors (e.g., ASD), with the hypothesis of a loss 
of GABAergic projection neurons within the striatum. 
Future studies using magnetic resonance spectroscopic 
and functional MRI examination during SRTT could 
improve our understanding of the involvement of the 
cortico-striatal circuit in procedural learning in neurode-
velopmental disorders.
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