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In this paper, we consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints that require the minimizers across the network to lie in low-dimensional subspaces. This constrained formulation includes consensus optimization as special case, and allows for more general task relatedness models such as multitask smoothness and coupled optimization. In order to cope with communication constraints, we propose and study a quantized differential based approach where the communicated estimates among agents are quantized. The analysis shows that, under some general conditions on the quantization noise, and for sufficiently small step-sizes µ, the strategy is stable in the meansquare error sense. The analysis also reveals the influence of the gradient and quantization noises on the performance.

I. INTRODUCTION

Mobile phones, wearable devices, and autonomous vehicles are examples of modern distributed networks generating massive amounts of data each day. Due to the growing computational power in these devices and the increasing size of the datasets, coupled with concerns over sharing private data, federated and decentralized training of statistical models have become desirable and often necessary [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]- [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF]. In these approaches, each participating device (which is referred to as agent or node) has a local training dataset, which is never uploaded to the server. Training data is kept locally on users' devices, and the devices are used as agents performing computation on their local data in order to update global models of interest. In applications where communication to a server becomes a bottleneck, decentralized topologies (where agents only communicate with their neighbors) are potential alternatives to federated topologies (where a server connects with all remote devices). Decentralized implementations can reduce the high communication cost on the central server since, in this case, model updates are exchanged between agents without relying on a central coordinator [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF].

There have been significant works in the literature on solving optimization and inference problems in a decentralized manner [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]. However, with some exceptions [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Nedic | Distributed subgradient methods and quantization effects[END_REF]- [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF], the large majority of these works is not tailored to the specific challenge of limited communication capabilities (due to tight energy and bandwidth constraints) encountered in decentralized settings. In this work, we study the effects of quantization on the performance of the following decentralized stochastic gradient approach that has been recently proposed and studied in [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF], [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part II: Performance analysis[END_REF]:

     ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ) w k,i = ∈N k A k ψ ,i (1a) (1b) 
where µ > 0 is a small step-size parameter, N k is the neighborhood set of agent k (i.e., the set of nodes connected to agent k by a communication link or edge), A k is an M k × M matrix associated with the link (k, ), w k ∈ R M k is the parameter vector at agent k, and J k (w k ) : R M k → R is a differentiable convex cost associated with agent k. It is expressed as the expectation of some loss function L k (•) and written as J k (w k ) = E L k (w k ; y k ), where y k denotes the random data (throughout the paper, random quantities are denoted in boldface). The expectation is computed over the data. In the stochastic setting, when the distribution of the data y k is unknown, the risks J k (•) and their gradients ∇ w k J k (•) are unknown. In this case, and instead of using the true gradient, it is common to use approximate gradient vectors by using

∇ w k J k (w k ) = ∇ w k L k (w k ; y k,i )
where y k,i represents the data observed at iteration i [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]. We note that a unique feature of algorithm ( 1) is the utilization of matrix valued combination weights, as opposed to scalar weighting as is commonly employed in conventional consensus and diffusion optimization [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF], [START_REF] Nedic | Distributed subgradient methods for multi-agent optimization[END_REF]. As explained in the following, this generalization allows the network to solve a broader class of multitask optimization problems beyond classical consensus.

Let N denote the total number of agents and let W = col{w 1 , . . . , w N } denote the collection of parameter vectors from across the network. Let A denote the N × N block matrix whose (k, )-th block is A k if ∈ N k and 0 otherwise. It was shown in [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF]Theorem 1] that, for sufficiently small µ and for a combination matrix A satisfying:

A U = U, U A = U , and ρ(A -P U ) < 1, (2) 
where ρ(•) denotes the spectral radius of its matrix argument,

U is an M × P full-column rank matrix (with P M ) that is assumed to be semi-orthogonal (U U = I P ), and P U is the orthogonal projection matrix onto Range(U), strategy [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF] will converge in the mean-square-error sense to the solution of the following problem:

W o = arg min W J glob (W) N k=1 J k (w k ) subject to W ∈ Range(U) (3) 
In particular, it was shown that lim sup i→∞ E w o kw k,i 2 = O(µ) for all k, where w o k is the k-th M k × 1 subvector of W o . As explained in [10, Sec. II], by properly selecting U and A, strategy (1) can be employed to solve different decentralized (single-task and multitask) optimization problems such as consensus optimization [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF], [START_REF] Nedic | Distributed subgradient methods for multi-agent optimization[END_REF], decentralized coupled optimization [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF], and multitask inference under smoothness [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF].

The first step (1a) in algorithm ( 1) is the self-learning step corresponding to the stochastic gradient descent step on the individual cost J k (•). This step is followed by the social learning step (1b) where agent k receives the intermediate estimates {ψ ,i } from its neighbors ∈ N k and combines them through {A k } to form w k,i , which corresponds to the estimate of w o k at agent k and iteration i. To alleviate the communication bottleneck resulting from the exchange of the intermediate estimates among agents over many iterations, quantized communication can be considered. In this paper, we study the effect of quantization on the convergence properties of the decentralized learning approach [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]. First, we propose in Sec. II a differential quantization based algorithm for solving problem (3), and then we establish in Sec. III that, under some general conditions on the quantization noise, and for sufficiently small step-sizes µ, the proposed decentralized quantized approach is stable in the mean-square error sense. Our analysis reveals explicitly the influence of the gradient and quantization noises on the network performance. The analysis also shows that, by properly designing the quantization operator, the iterates generated by the quantized decentralized adaptive implementation can still lead to small estimation errors on the order of µ.

II. DECENTRALIZED LEARNING IN THE PRESENCE OF QUANTIZED COMMUNICATIONS

Motivated by the approaches proposed in [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF], we equip strategy (1) with a quantization mechanism by proposing the following decentralized learning approach:

           ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ) φ k,i = φ k,i-1 + Q k (ψ k,i -φ k,i-1 ) w k,i = ζφ k,i + (1 -ζ) ∈N k A k φ ,i (4a) (4b) (4c) 
where ζ ∈ (0, 1) and Q k (•) is the quantization operator (a map from real valued vectors to a finite set of quantized vectors) at agent k. Differential quantization is used. In this case, instead of communicating compressed versions of the estimates ψ k,i , the prediction error ψ k,i -φ k,i-1 is quantized at agent k and then transmitted [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]. At each iteration i, agent k performs quantization by mapping the real-valued vector

ψ k,i -φ k,i-1 into a quantized vector ψ k,i = Q k (ψ k,i -φ k,i-1
), sends ψ k,i to its neighbors through the communication links, receives {ψ ,i } from its neighbors ∈ N k , and computes {φ ,i } according to step (4b):

φ ,i = φ ,i-1 + ψ ,i , ∈ N k .
(5) Observe that implementing (5) requires storing the previous estimates {φ ,i-1 } ∈N k by agent k. The reconstructed vectors {φ ,i } are then combined according to (4c) to produce the estimate w k,i .

We shall analyze algorithm (4) under the following general assumption on the quantizers {Q k (•)}, which relaxes the condition on the mean-square error from [START_REF] Alistarh | QSGD: Communication-efficient SGD via gradient quantization and encoding[END_REF], [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Taheri | Quantized decentralized stochastic learning over directed graphs[END_REF].

Assumption 1. The quantizers {Q k (•)} are random and satisfy: E[x k -Q k (x k )|x k ] = 0, (6) 
E[ x k -Q k (x k ) 2 |x k ] ≤ β 2 z,k x k 2 + σ 2 z,k , (7) 
for some β 2 z,k ≥ 0, σ 2 z,k ≥ 0, and where the expectations are evaluated w.r.t. the randomness of Q k (•). When x k is random, the quantizer is statistically independent of x k .

Note that the conditions in Assumption 1 are satisfied by many random quantization operators of interest in decentralized learning such as the the rand-k and dit-k quantizers [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF]. While many existing works focus on studying decentralized learning approaches in the presence of random quantizers that satisfy the unbiasedness condition (6) and the variance bound condition [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF] with the absolute noise term σ 2 z,k = 0 [3], [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF], [START_REF] Carpentiero | Adaptive diffusion with compressed communication[END_REF], the analysis in the current work is general and does not require σ 2 z,k to be zero. As explained in [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF], neglecting the effect of σ 2 z,k requires that some quantities (e.g., the norm of the vector to be quantized [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF]) are represented with no quantization error, in practice at the machine precision. In the following, we illustrate how a finite-bit random quantizer Q k (•) satisfying conditions ( 6) and ( 7) can be designed. Example 1 (Randomized quantizer [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]): Given a scalar ξ, and two design parameters ω ∈ [0, 1) and η > 0, the quantized value Q(ξ) is computed as follows:

j =     ln 1 + ω η |ξ| 2 ln ω + √ 1 + ω 2     (8a) q j = η ω ω + 1 + ω 2 2j -1 (8b) q =      q j-1 with probability qj -|ξ| qj -qj-1 q j with probability ξ-qj-1 qj -qj-1 (8c) 
Q(ξ) = q • sign(ξ) (8d) 
Step (8a) is a rounding operation, which when coupled with step (8b), produces a reproduction level of the quantizer.

Step (8c) exploits probabilistic quantization and selects randomly one of the nearest quantization points so as to guarantee the unbiasedness condition E[Q(ξ)] = ξ. Finally, step (8d) is used to handle negative inputs in a symmetric way. Vector-valued inputs x ∈ R L are quantized component-wise according to the rule [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF]. Note that the design parameters ω and η in ( 8) are used to tune the degree of non-uniformity and the resolution of the quantizer. It is shown in [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] that the quantizer (8) satisfies Assumption 1 with σ 2 z,k = 2Lη 2 and β 2 z,k = 2ω 2 . Observe that the described quantizer would require an infinite number of bits since the quantization range is unbounded. To overcome this issue, we can resort to a variable-rate scheme that uses a different number of bits depending on the value x to be quantized. To this aim, let us consider an encoder alphabet S {s 0 }, where S is a certain alphabet with |S| ≥ 2, and s 0 is a special symbol reserved to parse the received encoded string. Given a sequence of samples x 1 , x 2 , . . . , the variable-rate encoder: i) determines the number of symbols in S necessary to represent index j in (8a); ii) adds the special symbol s 0 to denote termination of the information string; and iii) repeats the procedure on x 2 , x 3 , and so on. A strategy to implement this type of variable-rate quantizer is proposed in [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]. While the number of bits required to encode x ∈ R L can be evaluated numerically (as we will do in the simulations), the following upper bound on the number of bits is derived in [START_REF] Lee | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]:

B(x) = M log 2 (S + 1) ×   3 + log S   2 + ln 1 + ω η x √ L 2 ln ω + √ 1 + ω 2     . (9) 

III. STOCHASTIC PERFORMANCE ANALYSIS

We analyze strategy (4) with a matrix A satisfying (2) by examining the average squared distance between w k,i and w o k , namely, lim sup i→∞ E w o k -w k,i 2 , under Assumption 1 and the following assumptions on the risks {J k (•)} and on the gradient noise processes {s k,i (•)} defined as [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]:

s k,i (w) ∇ w k J k (w) -∇ w k J k (w).
(10) Assumption 2. The individual costs J k (w k ) are assumed to be twice differentiable and convex such that:

λ k,min I M k ≤ ∇ 2 w k J k (w k ) ≤ λ k,max I M k , (11 
) where λ k,min ≥ 0 for k = 1, . . . , N . It is further assumed that, for any {w k ∈ R M k } the individual costs satisfy:

0 < λ min I P ≤ U diag ∇ 2 w k J k (w k ) N k=1 U ≤ λ max I P , (12 
) for some positive parameters λ min ≤ λ max . Assumption 3. The gradient noise process defined in [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF] satisfies for any w ∈ F i-1 and for k = 1, . . . , N :

E[s k,i (w)|F i-1 ] = 0, (13) 
E[ s k,i (w) 2 |F i-1 ] ≤ β 2 s,k w 2 + σ 2 s,k , (14) 
for some β 2 s,k ≥ 0, σ 2 s,k ≥ 0, and where F i-1 denotes the filtration generated by the random processes {w ,j , φ ,j } for all = 1, . . . , N and j ≤ i -1.

Before proceeding, it should be noted that there exist several useful works in the literature that study decentralized variations of stochastic gradient descent in the presence of differential quantization [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Taheri | Quantized decentralized stochastic learning over directed graphs[END_REF], under different assumptions on the gradient noise, quantization operator, and cost functions. For instance, while the works [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF], [START_REF] Taheri | Quantized decentralized stochastic learning over directed graphs[END_REF] require strongly convex costs at each agent, the works [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF], [START_REF] Carpentiero | Adaptive diffusion with compressed communication[END_REF] relax this assumption by requiring network global strong convexity. In the current work, condition [START_REF] Nedic | Distributed subgradient methods and quantization effects[END_REF] requires the costs to be strongly convex in the range space of U. In terms of consensus optimization, this is equivalent to requiring global strong convexity, namely,

N k=1 ∇ 2 w k J k (w k ) > 0.
While we also assume global strong convexity, it should be noted that the analysis of strategy (4) differs from the analysis conducted in [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF], [START_REF] Carpentiero | Adaptive diffusion with compressed communication[END_REF] in three different ways. First, approach (4) uses matrix-valued combination coefficients A k instead of scalar valued coefficients a k . As we previously explained, this generalization allows us to solve general constrained problems of the form (3). Second, instead of using the damping coefficient ζ in the quantization step (4b) as in [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF], [START_REF] Carpentiero | Adaptive diffusion with compressed communication[END_REF], it is used in the social learning step (4c). Consequently, under Assumption 1, the network quantization error vector z i (defined in (28)), which collects the individual quantization error vectors, will be zero mean in the subsequent analysis. Third, and unlike the previous works [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Taheri | Quantized decentralized stochastic learning over directed graphs[END_REF], the current analysis is conducted in the presence of the absolute noise term σ 2 z,k . Theorem 1. (Network mean-square-error stability) Consider a network of N agents running the quantized decentralized strategy (4) with a matrix A satisfying (2). Let 1 -ζ = O(µ γ ) with γ ∈ (0, 0.5). Under Assumptions 1, 2, and 3, the network is mean-square-error stable for sufficiently small step-size µ, namely, it holds that:

lim sup i→∞ E w o k -w k,i 2 = β 2 z,max O(µ 1-γ ) + σ 2 s O(µ) + ϕ 2 O(µ) + σ 2 z O(µ -1 ), (15) 
for k = 1, . . . , N and where

σ 2 s N k=1 2β 2 s,k w o k 2 + σ 2 s,k , β 2 z,max max 1≤k≤N {β 2 z,k }, σ 2 z N k=1 σ 2 z,k
, and ϕ 2 is a term that depends on β 2 z,max and b 2 = O(1) where the vector b is given by [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF].

Proof. Let w k,i = w o k -w k,i , ψ k,i = w o k -ψ k,i , and φ k,i = w o k -φ k,i .
Using similar arguments as in [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF], we can show that the vector ψ i = col{ ψ k,i } N k=1 evolves according to:

ψ i = (I M -µH i-1 ) W i-1 -µs i + µb, (16) where 
b col {∇ w k J k (w o k )} N k=1 , (17) 
s i col {s k,i (w k,i-1 )} N k=1 , (18) 
H i-1 diag {H k,i-1 } N k=1 , (19) 
with H k,i-1 

1 0 ∇ 2 w k J k (w o k -t w k,i-
w k,i = ζ φ k,i + (1 -ζ) ∈N k A k φ ,i . (20) 
From (20), we can show that the network error vector W i-1 = col{ w k,i-1 } N k=1 evolves according to:

W i-1 = ζ φ i-1 + (1 -ζ)A φ i-1 , (21) 
where

φ i = col{ φ k,i } N k=1
. By subtracting w o k from both sides of (4b) and by adding and subtracting w o k to the difference ψ k,i -φ k,i-1 , we can write:

φ k,i = φ k,i-1 -Q k ( φ k,i-1 -ψ k,i ). ( 22 
) Let δ k,i = φ k,i-1 -ψ k,i
. By introducing the quantization error vector:

z k,i (δ k,i ) δ k,i -Q k (δ k,i ), (23) 
we can write:

φ k,i = ψ k,i + z k,i (δ k,i ). (24) 
By using ( 16)-(24), we can show that the network error vector φ i evolves according to the following dynamics:

φ i = B i-1 φ i-1 -µs i + µb + z i (25) 
where

B i-1 (I M -µH i-1 ) A , (26) 
A ζI M + (1 -ζ)A, (27) 
z i col {z k,i (δ k,i )} N k=1 . (28) 
For a semi-orthogonal U, the matrix A satisfying the conditions in (2) has a Jordan decomposition of the form

A = V Λ V -1 with [10, Lemma 2]: V = U V R, , Λ = I P 0 0 J , V -1 = U V L, , (29) 
where J is a Jordan matrix with eigenvalues λ (which may be complex but have magnitude less than one) on the diagonal and > 0 on the first lower sub-diagonal. Consequently, the matrix A in (27) has a Jordan decomposition of the form A = V Λ V -1 where

Λ = I P 0 0 J , with J ζI M -P +(1-ζ)J . ( 30 
)
It can be shown that, for small enough, J ∈ (0, 1). In fact, the block diagonal matrix J , which is given by (30) satisfies:

J 2 ≤ (ρ(J ) + (1 -ζ) ) 2 . ( 31 
)
Using the fact that ρ(J ) ∈ (0, 1) and ζ ∈ (0, 1), we obtain ρ(J ) ∈ (0, 1). We can also show that ρ(J ) ≤ ζ + (1ζ)ρ(J ), which implies that ρ(J ) ∈ (ζ, 1) and that:

J ≤ ζ + (1 -ζ)ρ(J ) + (1 -ζ) = 1 -(1 -ζ)(1 -ρ(J ) -) (32) 
By multiplying both sides of (25) by V -1 and by partitioning the transformed iterate V -1 φ i into col{φ i , q φ i } with φ i = U φ i and q φ i = V L, φ i , we obtain:

φ i = (I P -D 11,i-1 )φ i-1 -D 12,i-1 q φ i-1 + z i -s i (33) q φ i = (J -D 22,i-1 ) q φ i-1 -D 21,i-1 φ i-1 + q z i + q b -q s i (34) 
where

s i µ U s i , z i U z i , q s i µ V L, s i , q z i V L, z i , q b = µV L,
b, and:

D 11,i-1 µ U H i-1 U, D 12,i-1 µ U H i-1 V R, J , D 21,i-1 µV L, H i-1 U, D 22,i-1 µV L, H i-1 V R, J ,
and where we used the fact that U b = 0 as shown in [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF].

Using similar arguments as in [5, Theorem 9.1] and [10, Theorem 1], we can show that, under Assumptions 1, 2, and 3, when 1 -ζ = O(µ γ ) with γ ∈ (0, 0.5), the variances of φ i and q φ i are coupled and recursively bounded as:

E φ i 2 E q φ i 2 Γ E φ i-1 2 E q φ i-1 2 + e + v 2 1 σ 2 z f + v 2 1 σ 2 z ( 35 
)
where Γ is a stable matrix given by: The ϕ 2 -term depends on the bias ( b /µ) 2 and β 2 z,max . It follows that,

lim sup i→∞ E φ i 2 E q φ i 2 β 2 z,max O(µ 1-γ ) + σ 2 s O(µ) + ϕ 2 O(µ) + σ 2 z O(µ -1 ) β 2 z,max O(µ 3-3γ ) + σ 2 s O(µ 2-γ ) + ϕ 2 O(µ 2(1-γ) ) + σ 2 z O(µ -γ ) (37) 
Using (21) and the fact that A = V Λ V -1 , we can write:

lim sup i→∞ E W i 2 ≤ lim sup i→∞ V 2 [E φ i 2 +E q φ i 2 ]. (38) 
Combining (37) and (38), we obtain [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]. The proof of (35)-(37) is omitted due to space limitations.

Expression [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF] reveals the influence of the step-size µ, the relative quantization noise term (captured by β 2 z,max ), the absolute quantization noise term (captured by σ 2 z ), and 

v 1 =

 1 V -1 , a = 1-O(µ), b = O(µ 2γ ), c = O(µ 2-γ ), d = J +β 2 z,max • O(µ 2γ ) + O(µ 2-γ ) = 1 -O(µ γ ) e = O(µ 2-γ ) • β 2 z,max + O(µ 2 ) • σ 2 s f = O(µ 2-γ ) • ϕ 2 + O(µ 2 ) • σ 2 s .

Fig. 1 .

 1 Fig. 1. (Left) Link matrix. (Right) Performance of (4) when quantizers (8) are used with β 2 z,k = 0 (solid curve) and β 2z,k = 0 (dashed curve). the gradient noise term (captured by σ 2 s ), on the steady-state mean-square error. Several conclusions can be drawn from our analysis. For instance, if the quantizers are designed such thatβ 2 z,k = O(µ γ ) and σ 2 z,k = O(µ 2 ), we obtain lim sup i→∞ E w o k -w k,i 2 = O(µ). This means that, compared with (1), approach (4) can reduce the communication cost whilst still ensuring small estimation errors on the order of µ. Furthermore, in the absence of the absolute noise, i.e., when σ 2 z = 0, small estimation errors of O(µ) can also be ensured by choosing γ small enough.

β 2 z,k = 0 (dashed curve). the gradient noise term (captured by σ 2 s ), on the steady-state mean-square error. Several conclusions can be drawn from our analysis. For instance, if the quantizers are designed such that

. This means that, compared with (1), approach (4) can reduce the communication cost whilst still ensuring small estimation errors on the order of µ. Furthermore, in the absence of the absolute noise, i.e., when σ 2 z = 0, small estimation errors of O(µ) can also be ensured by choosing γ small enough.

IV. SIMULATION RESULTS

We apply strategy (4) to a network of N = 50 nodes, generated randomly with the link matrix shown in Fig. 1 (left). Each agent is subjected to streaming data {d k (i), u k,i } assumed to satisfy a linear regression model of the form z,k = 0.25 when µ = 0.01. In each case, we report the average number of bits per agent/dimension/iteration. By comparing solid and dashed curves, we observe that, for a fixed value of σ 2 z,k , setting the compression parameter β 2 z,k to a non-zero value allows for reducing the number of bits, at the expense of an increase in the steady-state MSD.