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In this paper, we consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints that require the minimizers across the network to lie in low-dimensional subspaces. This constrained formulation includes consensus or single-task optimization as special cases, and allows for more general task relatedness models such as multitask smoothness and coupled optimization. In order to cope with communication constraints, we propose and study an adaptive decentralized strategy where the agents employ differential randomized quantizers to compress their estimates before communicating with their neighbors. The analysis shows that, under some general conditions on the quantization noise, and for sufficiently small step-sizes µ, the strategy is stable both in terms of mean-square error and average bit rate: by reducing µ, it is possible to keep the estimation errors small (on the order of µ) without increasing indefinitely the bit rate as µ → 0 when variablerate quantizers are used. Simulations illustrate the theoretical findings and the effectiveness of the proposed approach, revealing that decentralized learning is achievable at the expense of only a few bits.

I. INTRODUCTION

Mobile phones, wearable devices, and autonomous vehicles are examples of modern distributed networks generating massive amounts of data each day. Due to the growing computational power in these devices and the increasing size of the datasets, coupled with concerns over privacy, federated and decentralized training of statistical models have become desirable and often necessary [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]- [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF]. In these approaches, each participating device (which is referred to as agent or node) has a local training dataset, which is never uploaded to the server. The training data is kept locally on the users' devices, which also serve as computational agents acting on the local data in order to update global models of interest. In applications where communication with a server becomes a bottleneck, decentralized topologies (where agents only communicate with their neighbors) are attractive alternatives to federated topologies (where a server connects with all remote devices). Compared to federated approaches [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]- [START_REF] Smith | Federated multi-task learning[END_REF], decentralized implementations reduce the high communication cost on the central server since, in this case, the model updates are exchanged locally between agents without relying on a central coordinator [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF].

In practice, there are several issues that arise in the implementations of decentralized algorithms due to the use of a communication network. For instance, in modern distributed networks comprising a massive number of devices, e.g., thousands of participating smartphones, communication can be slower than local computation by many orders of magnitude (due to limited resources such as energy and bandwidth). Designers are typically limited by an upload bandwidth of 1MB/s or less [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]. While there have been significant works in the literature on solving optimization and inference problems in a decentralized manner [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Zhang | Compressed distributed gradient descent: Communication-efficient consensus over networks[END_REF], with some exceptions [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Nedic | Distributed subgradient methods and quantization effects[END_REF]- [START_REF] Zhang | Compressed distributed gradient descent: Communication-efficient consensus over networks[END_REF], the large majority of these works is not tailored to the specific challenge of limited communication capabilities. Moreover, the existing works on decentralized approaches are often designed only to solve consensus-based optimization problems. And many of these existing approaches rely mainly on quantization rules that assume that some quantities are represented with very high precision and neglect the associated quantization error in the theoretical analyses.

In this work, we do not make any assumptions about the high-precision representation of specific variables. Moreover, we consider quantization for decentralized learning under subspace constraints by studying the effects of quantization on the performance of the following decentralized stochastic gradient approach from [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF], [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part II: Performance analysis[END_REF]:

     ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ) w k,i = ∈N k A k ψ ,i (1a) (1b)
where µ > 0 is a small step-size parameter, N k is the neighborhood set of agent k (i.e., the set of nodes connected to agent k by a communication link or edge, including node k itself), A k is an M k × M matrix associated with link (k, ), w k ∈ R M k is the parameter vector at agent k, and J k (w k ) : R M k → R is a differentiable convex cost associated with agent k. This cost is usually expressed as the expectation of some loss function L k (•) and written as J k (w k ) = E L k (w k ; y k ), where y k denotes the random data at agent k (throughout the paper, random quantities are denoted in boldface). The expectation is computed relative to the distribution of the local data. In the stochastic-optimization framework, the statistical distribution of the data y k is usually unknown and, hence, the risks J k (•) and their gradients ∇ w k J k (•) are unknown. In this case, and instead of using the true gradient, it is common to use approximate gradient vectors such as ∇ w k J k (w k ) = ∇ w k L k (w k ; y k,i ), where y k,i represents the data realization observed at iteration i [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]. We note that a unique feature of algorithm [START_REF] Nassif | Finite bit quantization for decentralized learning under subspace constraints[END_REF] is the utilization of matrix valued combination weights, as opposed to scalar weighting as is commonly employed in conventional consensus and diffusion optimization [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF], [START_REF] Nedic | Distributed subgradient methods for multiagent optimization[END_REF]. As explained in the next paragraph, this generalization allows the network to solve a broader class of multitask optimization problems beyond classical consensus. Multitask learning is suitable for network applications where regional differences in the data require more complex models and more flexible algorithms than single-task or consensus implementations. In multitask networks, agents generally need to estimate and track multiple distinct, though related, objectives. For instance, in distributed power state estimation problems, the local state vectors at neighboring control centers may overlap partially since the areas in a power system are interconnected [START_REF] Kekatos | Distributed robust power system state estimation[END_REF]. Likewise, in weather forecasting applications, regional differences in the collected data distributions require agents to exploit the correlation profile in the data for enhanced decision rules [START_REF] Nassif | Learning over multitask graphs-Part I: Stability analysis[END_REF]. Other multitask network applications include distributed minimumcost flow [START_REF] Mota | Distributed optimization with local domains: Applications in MPC and network flows[END_REF], [START_REF] Nassif | Diffusion LMS for multitask problems with local linear equality constraints[END_REF], distributed active noise control [START_REF] Plata-Chaves | Heterogeneous and multitask wireless sensor networks -Algorithms, applications, and challenges[END_REF], and distributed sub-optimal beamforming [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF].

Let N denote the total number of agents and let W = col{w 1 , . . . , w N } denote the M -th dimensional vector (where M = N k=1 M k ) collecting the parameter vectors from across the network. Let A denote the N × N block matrix whose (k, )-th block is A k if ∈ N k and 0 otherwise. It was shown in [24, Theorem 1] that, for sufficiently small µ and for a combination matrix A satisfying:

A U = U, U A = U , and ρ(A -P U ) < 1,

where ρ(•) denotes the spectral radius of its matrix argument, U is any given M × P full-column rank matrix (with P M ) that is assumed to be semi-unitary, i.e., its columns are orthonormal (U U = I P ), and P U = UU is the orthogonal projection matrix onto Range(U), strategy [START_REF] Nassif | Finite bit quantization for decentralized learning under subspace constraints[END_REF] will converge in the mean-square-error sense to the solution of the following subspace constrained optimization problem :

W o = arg min W J glob (W) N k=1 J k (w k ) subject to W ∈ Range(U). (3) 
In particular, it was shown that lim sup i→∞ E w o k -w k,i 2 = O(µ) for all k, where w o k is the k-th M k × 1 subvector of W o . As explained in [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF], [START_REF] Lorenzo | Distributed signal processing and optimization based on in-network subspace projections[END_REF], [24, Sec. II], by properly selecting U and A, strategy (1) can be employed to solve different decentralized optimization problems such as (i) consensus or single-task optimization (where, as explained in Remark 1 further ahead, the agents' objective is to reach a consensus on the minimizer of the aggregate cost N k=1 J k (w)) [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Sayed | Diffusion strategies for adaptation and learning over networks[END_REF], [START_REF] Nedic | Distributed subgradient methods for multiagent optimization[END_REF], (ii) decentralized coupled optimization (where the parameter vectors to be estimated at neighboring agents are partially overlapping) [START_REF] Plata-Chaves | Heterogeneous and multitask wireless sensor networks -Algorithms, applications, and challenges[END_REF], [START_REF] Mota | Distributed optimization with local domains: Applications in MPC and network flows[END_REF], [START_REF] Kekatos | Distributed robust power system state estimation[END_REF], [START_REF] Alghunaim | Distributed coupled multiagent stochastic optimization[END_REF], [START_REF] Sahu | CIRF E: A distributed random fields estimator[END_REF], and (iii) multitask inference under smoothness (where the network parameter vector W to be estimated is smooth w.r.t. the underlying network topology) [START_REF] Chen | Multitask diffusion adaptation over networks[END_REF], [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF]. For instance, while projecting onto the space spanned by the vector of all ones allows to enforce consensus across the network (see Remark 1), graph smoothness can in general be promoted by projecting onto the space spanned by the eigenvectors of the graph Lapacian corresponding to small eigenvalues (see the simulation section VI for an illustration). Besides being capable of solving singletask or consensus-based optimization problems, the constrained formulation (3) and its decentralized solution [START_REF] Nassif | Finite bit quantization for decentralized learning under subspace constraints[END_REF] are general enough to apply to a wide variety of network applications, including those listed in the previous paragraph.

The first step (1a) in algorithm ( 1) is the self-learning step corresponding to the stochastic gradient descent step on the individual cost J k (•). This step is followed by the social learning step (1b) where agent k receives the intermediate estimates {ψ ,i } from its neighbors ∈ N k and combines them through {A k } to form w k,i , which corresponds to the estimate of w o k at agent k and iteration i. To alleviate the communication bottleneck resulting from the exchange of the intermediate estimates among agents over many iterations, quantized communication must be considered. In this paper, we study the effect of quantization on the convergence properties of the decentralized learning approach (1). First, we describe in Sec. II the class of randomized quantizers considered in this study. Then, we propose in Sec. III a differential randomized quantization strategy for solving problem (3) -see [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] further ahead. Compared with the unquantized version (1), the new approach consists of three steps where a quantization step is added. Interestingly, instead of exchanging compressed versions of the intermediate estimates {ψ ,i }, and due to differential quantization, the agents in the proposed solution exchange compressed versions of the differences between subsequent iterates (which tend to have a reduced range when compared to the intermediate estimates). At the receiver side, prediction rules are implemented in order to reconstruct the intermediate estimates. This step leads to a new set of intermediate estimates {φ ,i } which are then: (i) stored at the receiver in order to be used as predictors in the next iteration, and (ii) combined according to a modified version of the combination step. In the modified version, a mixing parameter γ is introduced in order to control the mixing speed of the algorithm. This allows to control the network stability in situations where quantization can lead to network instability. We establish in Sec. IV that, under some general conditions on the quantization noise and mixing parameter, and for sufficiently small stepsizes µ, the decentralized quantized approach is stable in the mean-square error sense. In addition to investigating the meansquare-error stability, we characterize the steady-state average bit rate of the proposed approach when variable-rate quantizers are used. The analysis shows that, by properly designing the quantization operators, the iterates generated by the quantized decentralized adaptive implementation lead to small estimation errors on the order of µ (as it happens in the ideal case without quantization), while concurrently guaranteeing a bounded average bit rate as µ → 0. While there exist several useful works in the literature that study decentralized learning approaches in the presence of differential quantization [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]- [START_REF] Reisizadeh | An exact quantized decentralized gradient descent algorithm[END_REF], these works investigate standard consensus or single-task optimization, and do not consider the subspace constrained formulation (3) or multitask variants. Moreover, with some exceptions that consider deterministic optimization [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF], [START_REF] Zhang | Compressed distributed gradient descent: Communication-efficient consensus over networks[END_REF], [START_REF] Reisizadeh | An exact quantized decentralized gradient descent algorithm[END_REF], the analyses conducted in these works assume that some quantities (e.g., the norm or some components of the vector to be quantized) are represented with very high precision (e.g., machine precision) and the associated quantization error is neglected. On the other hand, the analysis in the current work is not limited to standard consensus optimization and does not assume a machine precision representation of some quantitiesa detailed discussion of related work is provided in Sec. III-B. Notation: All vectors are column vectors. Random quantities are denoted in boldface. Matrices are denoted in uppercase letters while vectors and scalars are denoted in lower-case letters. The symbol (•) denotes matrix transposition. The operator col{•} stacks the column vector entries on top of each other. The operator diag{•} forms a matrix from block arguments by placing each block immediately below and to the right of its predecessor. The symbol ⊗ denotes the Kronecker product. The M × M identity matrix is denoted by I M . The abbreviation "w.p." is used for "with probability". The Gaussian distribution with mean m and covariance C is denoted by N (m, C). The notation α = O(µ) signifies that there exist two positive constants c and µ 0 such that |α| ≤ cµ for all µ ≤ µ 0 . A vector of all zeros is denoted by 0. For tables, the header is not counted as a row (i.e., "first row" means the first row after the header).

II. RANDOMIZED QUANTIZERS

In this paper, we study decentralized learning under subspace constraints in the presence of quantized communications. Randomized quantizers Q(•) 1 will be employed instead of deterministic quantizers. As explained in [START_REF] Carpentiero | Adaptive diffusion with compressed communication[END_REF], deterministic quantizers can lead to severe estimation biases in inference problems. To overcome this issue, randomized quantizers Q(•) are commonly used to compensate for the bias (on average, over time) [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]- [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF], [START_REF] Taheri | Quantized decentralized stochastic learning over directed graphs[END_REF]. This section is devoted to describing the class of randomized quantizers considered throughout the study.

For any deterministic input x ∈ R L with L representing a generic vector length, the randomized quantizer Q(•) is characterized in terms of a probability P[Q(x) = y] for any y belonging to the set of output levels of the quantizer. We consider randomized quantizers Q(•) satisfying the following general property, which as explained in the sequel, relaxes the condition on the mean-square error from [START_REF] Alistarh | QSGD: Communication-efficient SGD via gradient quantization and encoding[END_REF], [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF], [START_REF] Taheri | Quantized decentralized stochastic learning over directed graphs[END_REF].

Property 1. (Unbiasedness and variance bound). The randomized quantizer Q(•) satisfies the following two conditions:

E[x -Q(x)] = 0, (4) 
E x -Q(x) 2 ≤ β 2 q x 2 + σ 2 q , (5) 
for some β 2 q ≥ 0 and σ 2 q ≥ 0, and where the expectations are evaluated w.r.t. the randomness of Q(•). When the quantizers 1 Since the output of a randomized quantizer is random even for deterministic input, we use the boldface notation Q(•) to refer to randomized quantizers.

are applied to a random input x, conditions (4) and (5) become:

E[x -Q(x)|x] = 0, (6) 
E[ x -Q(x) 2 |x] ≤ β 2 q x 2 + σ 2 q . ( 7 
)
Property 1 is satisfied by many randomized quantization operators of interest in decentralized learning. Table I further ahead lists some typical choices (a detailed comparison of the various schemes will be provided in Sec. III-B). Many existing works focus on studying decentralized learning approaches in the presence of randomized quantizers that satisfy the unbiasedness condition (4) and the variance bound (5) with the absolute noise term σ 2 q = 0 [5], [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF], [START_REF] Taheri | Quantized decentralized stochastic learning over directed graphs[END_REF]. In contrast, the analysis in the current work is general and does not require σ 2 q to be zero. As we will explain in Sec. III-B, neglecting the effect of σ 2 q requires that some quantities (e.g., the norm of the vector to be quantized) are represented with no quantization error, in practice at the machine precision. In the following, we describe a useful framework for designing randomized quantizers that do not require high-precision quantization of specific variables.

A. Uniform and non-uniform randomized quantizers 1) Quantizers' design: Let x ∈ R L denote the input vector to be quantized with x j representing the j-th element of x. We consider a general quantization rule Q : R L → R L of the following form -see Fig. 1 for an illustration:

[Q(x)] j = y n(xj ) , (8) 
where [Q(x)] j denotes the j-th element of Q(x) and y n(xj ) is the quantization output level (defined further ahead in [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF]) associated with a realization of the random index n(x j ) ∈ {m, m + 1}. The probabilistic rule to choose n(x j ) is as follows:

n(x j ) = m, w.p. ym+1-xj ym+1-ym , m + 1, w.p. xj -ym ym+1-ym . (9) 
Regarding the integer m in [START_REF] Sayed | Adaptive networks[END_REF], and motivated by the socalled companding procedure [START_REF] Gersho | Scalar Quantization I: Structure and Performance[END_REF], which can be conveniently described in terms of a non-linear function and its inverse, it is found according to (the dependence of m on x j is left implicit in [START_REF] Sayed | Adaptive networks[END_REF] for ease of notation):

m = g(x j ) , (10) 
where • denotes the floor function and g : R → R is some strictly increasing continuous function. Given the inverse function h = g -1 , the output level associated with an index m is defined by:

y m = h(m). (11) 
By evaluating the expected value of [Q(x)] j w.r.t. the quantizer randomness, we obtain:

E[Q(x)] j (8),(9) = y m y m+1 -x j y m+1 -y m + y m+1 x j -y m y m+1 -y m = x j , (12) 
which establishes the unbiasedness condition (4) in Property 1.

Example 1. (Randomized uniform or dithered quantizer [START_REF] Reisizadeh | An exact quantized decentralized gradient descent algorithm[END_REF], [START_REF] Aysal | Distributed average consensus with dithered quantization[END_REF]). By choosing: 8)- [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF]. The real axis partition is constructed by choosing the functions g(•) and h(•) according to [START_REF] Dimakis | Gossip algorithms for distributed signal processing[END_REF] with a = 4.17 and b = 10.

g(t) = t ∆ , h(t) = ∆ • t, (13) 
we obtain the uniform quantizer described in Table I (second row) with a quantization step ∆ > 0. Condition (5) (with β 2 q = 0 and σ 2 q = L∆ 2 4 ) can be established by letting p = ym+1-xj ym+1-ym and by evaluating the variance:

E(x j -[Q(x)] j ) 2 = (x j -y m ) 2 p + (x j -y m+1 ) 2 (1 -p) = ∆ 2 p(1 -p) ≤ ∆ 2 4 , (14) 
where we replaced y m+1 -y m by ∆ and we used the fact that p(1 -p) ≤ 1 4 for p ∈ [0, 1]. Example 2. (Randomized logarithmic companding). For non-uniform quantizers, one popular choice is logarithmic companding, which corresponds to the following direct and inverse non-linear functions [START_REF] Gersho | Scalar Quantization I: Structure and Performance[END_REF]:

g(t) = sign(t) a ln(1 + b|t|), h(t) = sign(t) 1 b e |t| a -1 , (15) 
with a > 0 and b > 0. Two useful results were established in [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] regarding this choice. First, it was shown that, by setting the constants a and b according to:

a = 1 2 ln(ω + √ 1 + ω 2 ) , b = ω η , (16) 
we obtain the following bound on the variance:

E x -Q(x) 2 ≤ ω x + √ Lη 2 . ( 17 
)
The choice [START_REF] Plata-Chaves | Heterogeneous and multitask wireless sensor networks -Algorithms, applications, and challenges[END_REF] gives the probabilistic ANQ rule reported in Table I (third row) with the non-linear functions given by:

g(t) = sign(t) ln(1+ ω η |t|) 2 ln(ω+ √ 1+ω 2 ) , h(t) = sign(t) η ω (ω + √ 1 + ω 2 ) 2|t| -1 . (18) 
Second, it was shown in [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] that, for a fixed number of output levels, the choice in ( 16) maximizes the range of the input variable while still satisfying the error bound [START_REF] Mota | Distributed optimization with local domains: Applications in MPC and network flows[END_REF]. This property justifies the efficiency of the choice [START_REF] Plata-Chaves | Heterogeneous and multitask wireless sensor networks -Algorithms, applications, and challenges[END_REF] in terms of quantization bit rate. Now, by taking the limit of g(t) in [START_REF] Nassif | Diffusion LMS for multitask problems with local linear equality constraints[END_REF] as ω → 0 and by applying l'Hôpital's rule, we get:

lim ω→0 g(t) = sign(t) |t| 2η = t 2η , (19) 
from which we conclude that the setting where ω = 0 allows us to recover the uniform quantizer (13) of Example 1. Finally, we can relate the quantizer parameters ω and η to the constants β 2 q and σ 2 q appearing in (5). In fact, by applying Jensen's inequality to [START_REF] Mota | Distributed optimization with local domains: Applications in MPC and network flows[END_REF], we can see that the bound in ( 5) is satisfied with:

β 2 q = ω 2 α , σ 2 q = Lη 2 1 -α , for any α ∈ (0, 1). ( 20 
)
Fig. 2. Illustration of the variable-rate coding scheme. The non-uniform randomized quantization scheme defined by ( 8)-( 11) is used. The function g(•) is chosen according to [START_REF] Dimakis | Gossip algorithms for distributed signal processing[END_REF] with a = 4.17 and b = 10. In this example, the codeword associated with the j-th element of the ordered set P b is given by the b-bit binary representation of the integer j -1. For instance, the codewords associated with the first element in P 3 (which is -7 according to ( 21)) and the sixth element in P 4 (which is -10 according to ( 22)) are 000 and 0101, respectively. Subsequent integers are separated by a parsing symbol p.

2) Variable-rate coding scheme and bit budget [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]: Note that the quantization rule ( 8)-( 11) maps a continuous variable to some integer by partitioning the real line into an infinite number of intervals. Thus, a fixed-rate quantizer (i.e., a quantizer that uses the same number of bits for any input) cannot represent all possible intervals of the partition. On the other hand, assuming a finite support for the quantizer input would require some boundedness assumptions (e.g., on the iterates, on the gradient) that are usually violated in stochastic optimization theory [START_REF] Nguyen | SGD and Hogwild! Convergence without the bounded gradients assumption[END_REF]. By following a standard approach in coding theory, we shall instead investigate the use of variable-rate quantizers which are able to adapt the bit rate based on the quantizer input, e.g., assigning more bits to larger inputs and less bits to smaller ones. In this work, we illustrate the main concepts by focusing on the variable-rate coding scheme proposed in [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] and described in the following. This rule has the advantage of not requiring any knowledge about the distribution of the variables to be quantized. This is particularly relevant since such knowledge is typically unavailable in learning applications.

Consider the following partition of the set of integers Z:

P 0 = {0}, P 1 = {-1, 1}, P 2 = {-3, -2, 2, 3}, P 3 = {-7, -6, -5, -4, 4, 5, 6, 7}, . . . (21) 
which can be written more compactly as:

P b =    {0}, if b = 0 {-1, 1}, if b = 1 {-2 b + 1, . . . , -2 b-1 , 2 b-1 , . . . , 2 b -1}, if b ≥ 2.
(22) Note that the ensemble of sets {P b |b = 0, 1, 2, . . .} forms a partition of Z where each set P b has cardinality equal to 2 b . Thus, an integer n ∈ P b can be represented with a string of b bits. Accordingly, from [START_REF] Sahu | CIRF E: A distributed random fields estimator[END_REF], the number of bits to represent an integer n ∈ Z can be determined according to:

b = log 2 (|n| + 1) , (23) 
where • denotes the ceiling function. When the rule ( 8)-( 11) is implemented to quantize an input vector x ∈ R L , a sequence of integers will be generated according ( 8) and [START_REF] Sayed | Adaptive networks[END_REF]. These integers must be encoded before being transmitted over the communication links-see Fig. 2 for an illustration. Thus, we need to encode sequences of integers n 1 , n 2 , . . . , with different integers belonging in general to different partitions P b . At the receiver side, and since the transmitted integers are unknown, 

Quantizer name Rule β 2 q σ 2 q Bit-budget No compression [24] Q(x) = x 0 0 LBHP Probabilistic uniform [Q(x)] j = ∆ • n(xj ) 0 L ∆ 2 4
r(x) defined in [START_REF] Nedic | Distributed subgradient methods and quantization effects[END_REF] or dithered n(xj ) = m, w.p.

(m+1)∆-x j ∆ , m + 1, w.p.

x j -m∆ ∆ , m =

x j ∆ quantizer [START_REF] Reisizadeh | An exact quantized decentralized gradient descent algorithm[END_REF], [START_REF] Aysal | Distributed average consensus with dithered quantization[END_REF] ∆ is the quantization step Probabilistic ANQ [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] [

Q(x)] j = y n(x j ) 2ω 2 2Lη 2 r(x) defined in (27) n(xj ) =    m, w.p. y m+1 -x j y m+1 -ym , m + 1, w.p. x j -ym y m+1 -ym , m = sign(xj ) ln 1+ ω η |x j | 2 ln ω+ √ 1+ω 2 ym = sign(m) η ω ω + √ 1 + ω 2 2|m| - 1 
ω and η are two non-negative design parameters

Rand-c [34] [Q(x)] j = L c • xj , if xj ∈ Ωc 0, otherwise (c ∈ {1, . . . , L}) L c -1 0 cBHP + c log 2 (L) Ωc is a set of c randomly selected coordinates Randomized Gossip [12] Q(x) = x q , w.p. q 0, w.p. 1 -q (q ∈ (0, 1]) 1 q -1 0 (LBHP)q (on average) Gradient sparsifier [40] [Q(x)] j = x j q j , w.p. qj 0, w.p. 1 -qj 1 min j {q j } -1 0 L j=1 qj (BHP + log 2 (L) ) qj is the probability that coordinate j is selected (on average) QSGD [5] [Q(x)] j = x • sign(xj ) • n(x j ,x) s min L s 2 , √ L s 0 BHP + L + L log 2 (s) n(xj , x) =    m, w.p. (m + 1) - |x j | x s, m + 1, w.p. |x j | x s -m, m = s |x j | x
s is the number of quantization levels the decoder does not know the number of bits used for each integer. In order to solve this issue, the work [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] proposes to consider an overall encoder alphabet S made of two binary digits plus a parsing symbol p, namely, S = {0, 1}∪{p}. In this way, we can encode a sequence of integers n 1 , n 2 , . . . , by first encoding each of the individual integers using a number of bits determined by the corresponding partition, and then using the parsing symbol to separate subsequent integers. For example, a string of the form (see also Fig. 2):

111p n1 0101p n2 10p n3 p n4 (24) 
corresponds to integer n 1 ∈ P 3 , followed by n 2 ∈ P 4 , n 3 ∈ P 2 , and n 4 = 0 (only the parsing symbol since partition P 0 = {0} requires 0 bits). Accounting for the parsing symbol, observe that the total number of ternary digits (considering the ternary alphabet S) required to encode an integer n is:

1 + log 2 (|n| + 1) , (25) 
which corresponds to a number of bits equal to:

log 2 (3)(1 + log 2 (|n| + 1) ) (26) 
since one ternary digit is equivalent to log 2 (3) bits of information. Considering now the quantization rule ( 8)-( 11) which is applied entrywise to a vector x ∈ R L , we find from ( 26) that the overall (random) bit budget is equal to:

r(x) = log 2 (3) L j=1 (1 + log 2 (|n(x j )| + 1) ). (27) 

III. DECENTRALIZED LEARNING IN THE PRESENCE OF

QUANTIZED COMMUNICATION

A. Differential randomized quantization approach Motivated by the approaches proposed in [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]- [START_REF] Zhang | Compressed distributed gradient descent: Communication-efficient consensus over networks[END_REF], we equip (1) with a quantization mechanism by proposing the following decentralized multitask learning approach-see Fig. 3:

           ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ) φ k,i = φ k,i-1 + Q k (ψ k,i -φ k,i-1 ) w k,i = (1 -γ)φ k,i + γ ∈N k A k φ ,i (28a) (28b) (28c) 
where γ ∈ (0, 1] is a mixing parameter that tunes the degree of cooperation between agents, and Q k (•) is a randomized quantizer satisfying Property 1. Note that, since the quantizer characteristics can vary with k, the randomized quantizer becomes

Q k (•) instead of Q(•) with a subscript k added to Q.
Observe that differential quantization is used in (28b) to leverage possible correlation between subsequent iterates [START_REF] Carpentiero | Adaptive diffusion with compressed communication[END_REF].

In this case, instead of communicating compressed versions of the estimates ψ k,i , the prediction error ψ k,i -φ k,i-1 is quantized at agent k and then transmitted [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF]- [START_REF] Zhang | Compressed distributed gradient descent: Communication-efficient consensus over networks[END_REF]. At each iteration i, agent k performs the forward quantization (see Fig. 3) by mapping the real-valued vector ψ k,i -φ k,i-1 into a quantized vector δ k,i , sends δ k,i to its neighbors through ideal communication links (i.e., it is assumed that node k can transmit perfectly and reliably δ k,i to its neighbors), receives {δ ,i } from its neighbors ∈ N k , and performs the reconstruction (see Fig. 3) on each received vector δ ,i by first decoding it and then computing {φ ,i } according to step (28b):

φ ,i = φ ,i-1 + Q (ψ ,i -φ ,i-1 ), ∈ N k . (29 
) Observe that implementing [START_REF] Nassif | Diffusion LMS over multitask networks with noisy links[END_REF] requires storing the predictors {φ ,i-1 } ∈N k by agent k. The reconstructed vectors {φ ,i } Fig. 3. (Left) An illustration of a multitask network [START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF]. The objective at agent k is to estimate w o k (of dimension M k × 1), the k-th subvector of W o in (3). In this example, the neighborhood set of agent k is given by N k = {1, k, 3, , 7}. (Right) The implementation of the quantized multitask approach (28) at agent k. The quantization step consists of (i) the forward step where agent k encodes the difference ψ k,i -φ k,i-1 and sends the resulting vector δ k,i (sequence of symbols or bits) to its neighbors, and (ii) the reconstruction step where agent k receives the encoded vectors {δ ,i } ∈N k from its neighbors and decodes them according to [START_REF] Nassif | Diffusion LMS over multitask networks with noisy links[END_REF] to obtain {φ ,i } ∈N k . The resulting vectors are then used in the social learning step (28c).

are then combined according to (28c) to produce the estimate w k,i . As we will see in Secs. IV and V, in the presence of relative quantization noise (i.e., when β2 q = 0), the mixing parameter γ in (28c) will be used to control the network stability. However, in the absence of relative noise (i.e., when β 2 q = 0), the quantization does not affect the network stability, and the parameter γ can be set to one. Remark 1 (Quantized diffusion-type approach): Most prior literature on decentralized quantized learning focuses primarily on single-task consensus optimization where the objective at each agent is to estimate the same L-th dimensional vector w o given by:

w o = arg min w N k=1 J k (w). ( 30 
)
For this reason, and in order to make the paper self-contained for readers interested in problem [START_REF] Thanou | Distributed average consensus with quantization refinement[END_REF], we explain in this remark how to choose the blocks {A k } in [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] in order to solve problem [START_REF] Thanou | Distributed average consensus with quantization refinement[END_REF] as well. In fact, by setting in (3

) P = L and U = 1 √ N (1 N ⊗ I L )
where 1 N is the N × 1 vector of all ones, then solving problem (3) will be equivalent to solving the well-studied consensus problem [START_REF] Thanou | Distributed average consensus with quantization refinement[END_REF]. Different algorithms for solving [START_REF] Thanou | Distributed average consensus with quantization refinement[END_REF] over strongly-connected networks have been proposed [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Sayed | Diffusion strategies for adaptation and learning over networks[END_REF], [START_REF] Nedic | Distributed subgradient methods for multiagent optimization[END_REF]- [START_REF] Dimakis | Gossip algorithms for distributed signal processing[END_REF]. By choosing an N × N doublystochastic matrix A = [a k ] satisfying:

a k ≥ 0, A1 N = 1 N , 1 N A = 1 N , a k = 0 if / ∈ N k , (31) 
the diffusion strategy for instance would take the form [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Sayed | Diffusion strategies for adaptation and learning over networks[END_REF]:

     ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ) w k,i = ∈N k a k ψ ,i (32a) (32b)
This strategy can be written in the form of (1) with A k = a k I L and A = A ⊗ I L . It can be verified that, when A satisfies (31) over a strongly connected network, the matrix A will satisfy [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]. Consequently, by setting A k = a k I L in (28c) with a set of combination coefficients {a k } satisfying (31), we obtain a new quantized diffusion-type approach for solving the consensus optimization problem [START_REF] Thanou | Distributed average consensus with quantization refinement[END_REF].

B. Related work

Table I provides a list of typical compression schemes with the corresponding quantization noise parameters β 2 q and σ 2 q . By comparing the reported schemes, we first observe that the "rand-c", "randomized gossip", and "gradient sparsifier" do not really quantize their input. These methods basically map a full vector into a sparse version thereof. In other words, these methods assume that the non-zero vector components are represented with very high (e.g., machine) precision, and that the overall compression gain lies in representing few entries of the input vector. For instance, under the "rand-c" scheme, c randomly selected components of the input vector are encoded with very high precision (32 or 64 bit are typical values for encoding a scalar), and then the resulting bits are communicated over the links in addition to the bits encoding the locations of the selected components. Such schemes should be more properly referred to as compression operators, rather than quantizers [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF], [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF]. The idea behind sparsification operators is that, when the number of vector components is large, the gain resulting from encoding a few randomly selected components compensates for the high precision required to represent them. The QSGD scheme in Table I uses a different approximation rule. It assumes that the norm of the input vector is represented with high precision. In addition to encoding the norm, this rule requires L-bits to encode the signs of the vector components and L log 2 (s) to encode the levels. It tends to be well-suited for high-dimensional settings where the number of components is large. As it can be observed from Table I, the sparsity-based schemes and the QSGD scheme have an absolute noise term σ 2 q = 0. As explained in [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF], neglecting the effect of σ 2 q requires that some quantities (e.g., the norm of the input vector in QSGD) are represented with no quantization error 2 . In comparison, the probabilistic uniform and ANQ schemes do not make any assumptions on the highprecision quantization of specific variables and have a non-zero absolute noise term σ 2 q . A detailed analysis of the decentralized strategy [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] in the presence of both the relative (captured through β 2 q ) and the absolute (captured through σ 2 q ) quantization noise terms will be conducted in Sec. IV. Consequently, our results apply to a general class of quantizers satisfying Property 1, including all those listed in Table I. Compared to prior works, we provide the following advances. First, the analysis results are novel compared to the works [START_REF] Alistarh | QSGD: Communication-efficient SGD via gradient quantization and encoding[END_REF], [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Singh | SQuARM-SGD: Communication-efficient momentum SGD for decentralized optimization[END_REF] since we do not make any assumptions about the high-precision quantization of specific variables. Although no such assumptions are made in the work [START_REF] Tang | Communication compression for decentralized training[END_REF], the analysis there is performed in the absence of the relative quantization and gradient noise terms. Our results are also novel in comparison to [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] since we consider: i) learning under subspace constraints; ii) a stochastic optimization setting with non-diminishing step-size; iii) combination policies that can lead to non-symmetric combination matrices; and iv) a network global, as opposed to local, strong convexity condition on the individual costs -see condition [START_REF] Singh | SPARQ-SGD: Eventtriggered and compressed communication in decentralized optimization[END_REF] further ahead. Moreover, the work [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF] considers only deterministic optimization and does not deal with gradient approximation or mean-square error stability. In addition, it must be noted that even the works [START_REF] Alistarh | QSGD: Communication-efficient SGD via gradient quantization and encoding[END_REF], [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Tang | Communication compression for decentralized training[END_REF] do not consider our more general setting that simultaneously addresses i), ii), iii), and iv).

As the derivations in the next section will reveal, characterizing the behavior of the decentralized learning system under the aforementioned conditions is challenging due to at least two factors. First, the quantization noise that interferes with the operation of the algorithm. It is therefore important to assess its impact on the algorithm's performance and stability by extending the mean-square analyses of the works [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF], [START_REF] Sayed | Adaptive networks[END_REF], [START_REF] Nassif | Learning over multitask graphs-Part I: Stability analysis[END_REF], [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF], which consider decentralized learning in the absence of quantization. Second, as we will see later, when we remove the common assumption about the high precision quantization of specific variables (in which case we use variable-rate quantization as suggested in Sec. II-A2), then the quantizer resolution is required to increase as µ → 0 to guarantee small mean-square errors. It therefore becomes important to establish the bit rate stability of the network, namely, to show that the average bit rate remains finite as µ → 0. To the best of our knowledge, this analysis has not been carried out before. Existing works investigate either fixed-rate quantizers [START_REF] Koloskova | Decentralized stochastic optimization and gossip algorithms with compressed communication[END_REF], [START_REF] Carpentiero | Distributed adaptive learning under communication constraints[END_REF]- [START_REF] Kovalev | A linearly convergent algorithm for decentralized optimization: Sending less bits for free![END_REF] or variable-rate quantizers without streaming data [START_REF] Michelusi | Finite-bit quantization for distributed algorithms with linear convergence[END_REF].

In summary, we provide the following main contributions.

• We propose a decentralized strategy for learning and adaptation over networks under subspace constraints. This strategy is able to operate under finite communication rate by employing differential randomized quantization. • We provide a detailed characterization of the proposed approach for a general class of quantizers and compression operators satisfying Property 1, both in terms of meansquare stability and communication resources. • The analysis reveals the following useful conclusions.

First, the quantization error does not impair the network mean-square stability. Second, in the absence of the absolute quantization noise term, and at the expense of communicating some quantities with high precision, the iterates generated by the quantized approach (28) lead to small estimation errors on the order of µ, as it happens in the unquantized case [START_REF] Nassif | Finite bit quantization for decentralized learning under subspace constraints[END_REF]. In the presence of the absolute noise term, the situation becomes more challenging. The analysis reveals that, to guarantee the O(µ) mean-squareerror behavior, the absolute noise term must converge to zero as µ → 0. We prove that this result can be achieved with a bit rate that remains bounded as µ → 0, despite the fact that we are requiring an increasing precision as the step-size decreases. In particular, we illustrate one useful strategy (the variable-rate quantization scheme described in Sec. II-A) that achieves the aforementioned goals.

IV. MEAN-SQUARE AND BIT RATE STABILITY ANALYSIS A. Modeling assumptions

In this section, we analyze strategy (28) with a matrix A satisfying (2) by examining the average squared distance between w k,i and w o k , namely, E w o k -w k,i 2 , under the following assumptions on the risks {J k (•)}, the gradient noise processes {s k,i (•)} defined by [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]:

s k,i (w k ) ∇ w k J k (w k ) -∇ w k J k (w k ), (33) 
and the randomized quantizers {Q k (•)}. Assumption 1. (Conditions on individual and aggregate costs). The individual costs J k (w k ) are assumed to be twice differentiable and convex such that:

λ k,min I M k ≤ ∇ 2 w k J k (w k ) ≤ λ k,max I M k , (34) 
where λ k,min ≥ 0 for k = 1, . . . , N . It is further assumed that, for any {w k ∈ R M k }, the individual costs satisfy:

0 < λ min I P ≤ U diag ∇ 2 w k J k (w k ) N k=1 U ≤ λ max I P , (35) 
for some positive parameters λ min ≤ λ max .

As explained in [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF], condition [START_REF] Singh | SPARQ-SGD: Eventtriggered and compressed communication in decentralized optimization[END_REF] ensures that problem (3) has a unique minimizer W o . Assumption 2. (Conditions on gradient noise). The gradient noise process defined in [START_REF] Carpentiero | Adaptive diffusion with compressed communication[END_REF] satisfies for k = 1, . . . , N :

E[s k,i (w k,i-1 )|{φ ,i-1 } N =1 ] = 0, (36) 
E[ s k,i (w k,i-1 ) 2 |{φ ,i-1 } N =1 ] ≤ β 2 s,k w k,i-1 2 + σ 2 s,k , (37) 
for some β 2 s,k ≥ 0 and σ 2 s,k ≥ 0. As explained in [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Sayed | Diffusion strategies for adaptation and learning over networks[END_REF], these conditions are satisfied by many cost functions of interest in learning and adaptation such as quadratic and regularized logistic risks. Condition [START_REF] Singh | SQuARM-SGD: Communication-efficient momentum SGD for decentralized optimization[END_REF] states that the gradient approximation should be unbiased conditioned on the predictors {φ ,i-1 } N =1 . Condition [START_REF] Tang | Communication compression for decentralized training[END_REF] states that the second-order moment of the gradient noise should get smaller for better estimates, since it is bounded by the squared norm of the iterate. Assumption 3. (Conditions on quantizers). In step (28b) of the learning approach, each agent k at time i applies to the difference χ k,i = ψ k,i -φ k,i-1 a randomized quantizer Q k (•) satisfying Property 1 with quantization noise parameters β 2 q,k and σ 2 q,k . It is assumed that given the past history, the randomized quantization mechanism depends only on the quantizer input χ k,i . Consequently, from (6) and (7), we get:

E[χ k,i -Q k (χ k,i )|h i ] = E[χ k,i -Q k (χ k,i )|χ k,i ] = 0, (38) 
E χ k,i -Q k (χ k,i ) 2 |h i = E χ k,i -Q k (χ k,i ) 2 |χ k,i ≤ β 2 q,k χ k,i 2 + σ 2 q,k , (39) 
where h i is the vector collecting all iterates generated by (28) before the quantizer is applied to χ k,i , namely,

{φ ,j } i-1 j=0 , {ψ ,j } i j=1 N =1
.

Assumption 3 formalizes the quantization mechanism (which is in fact a standard mechanism in decentralized learning with randomized quantization) and highlights two fundamental relations ( 38) and (39) that will be useful in the technical derivations.

B. Network error vector recursion

In order to examine the evolution of the iterates w k,i generated by algorithm [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] with respect to the minimizer

W o = col{w o k } N k=1 defined in (3)
, we start by deriving the network error vector recusion. Let 33) and the mean-value theorem [44, pp. 24], [8, Appendix D], we can express the stochastic gradient vector appearing in (28a) as follows:

w k,i = w o k -w k,i , ψ k,i = w o k -ψ k,i , and φ k,i = w o k -φ k,i . Using (
∇ w k J k (w k,i-1 ) = -H k,i-1 w k,i-1 +b k -s k,i (w k,i-1 ) (40)
where H k,i-1

1 0 ∇ 2 w k J k (w o k -t w k,i-1 )dt and b k ∇ w k J k (w o k )
. By subtracting w o k from both sides of (28a) and by introducing the following network quantities:

b col {b 1 , . . . , b N } , (41) 
s i col {s 1,i (w 1,i-1 ), . . . , s N,i (w N,i-1 )} , (42) 
H i-1 diag {H 1,i-1 , . . . , H N,i-1 } , ( 43 
) W i-1 col{ w 1,i-1 , . . . , w N,i-1 }, (44) 
we can show that the network error vector ψ i = col{ ψ k,i } N k=1 evolves according to: 

ψ i = (I M -µH i-1 ) W i-1 -µs i + µb. (45) 
w k,i = (1 -γ) φ k,i + γ ∈N k A k φ ,i . (46) 
From [START_REF] Gish | Asymptotically efficient quantizing[END_REF], we can show that the network error vector W i-1 in (44) evolves according to:

W i-1 = (1 -γ) φ i-1 + γA φ i-1 = A φ i-1 , (47) 
where

φ i col{ φ 1,i , . . . , φ N,i }. (48) A (1 -γ)I M + γA, (49) 
By subtracting w o k from both sides of (28b) and by adding and subtracting w o k to the difference ψ k,i -φ k,i-1 , we can write:

φ k,i = φ k,i-1 -Q k ( φ k,i-1 -ψ k,i ). (50) Let χ k,i = φ k,i-1 -ψ k,i . (51) 
By introducing the quantization error vector:

z k,i χ k,i -Q k (χ k,i ), (52) 
we can write:

φ k,i = ψ k,i + z k,i . (53) 
By combining ( 45), (47), and (53), we conclude that the network error vector φ i in (48) evolves according to the following dynamics:

φ i = B i-1 φ i-1 -µs i + µb + z i (54) 
where

B i-1 (I M -µH i-1 ) A , (55) 
z i col {z k,i } N k=1 . (56) 
In Sec. IV-C, we will first establish the boundedness of lim sup i→∞ E φ i 2 and then we will use relation (47) to deduce boundedness of lim sup i→∞ E W i 2 . The analysis of recursion (54) is facilitated by transforming it to a convenient basis using the Jordan canonical decomposition of the matrix A defined in (49). Now, to exploit the eigen-structure of A , we first recall that a matrix A satisfying the conditions in (2) (for a full-column rank semi-unitary matrix U) has a Jordan decomposition of the form A = V Λ V -1 with [24, Lemma 2]:

V = U V R, , Λ = I P 0 0 J , V -1 = U V L, , (57) 
where J is a Jordan matrix with eigenvalues (which may be complex but have magnitude less than one) on the diagonal and > 0 on the super-diagonal [24, Lemma 2], [8, pp. 510]. The parameter is chosen small enough to ensure ρ(J ) + ∈ (0, 1) [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF]. Consequently, the matrix A in (49) has a Jordan decomposition of the form A = V Λ V -1 where:

Λ = I P 0 0 J , with J (1 -γ)I M -P + γJ . ( 58 
)
By multiplying both sides of (54) from the left by V -1 in (57), we obtain the transformed iterates and variables:

V -1 φ i = U φ i V L, φ i φ i q φ i , (59) 
V -1 s i = U s i V L, s i s i q s i , (60) 
V -1 b = U b V L, b 0 q b , (61) 
V -1 z i = U z i V L, z i z i q z i , (62) 
where in (61) we used the fact that U b = 0 as shown in [24, Sec. III-B]. In particular, the transformed components φ i and q φ i evolve according to the recursions:

φ i = (I P -µD 11,i-1 )φ i-1 -µD 12,i-1 q φ i-1 + z i -µs i (63) q φ i = (J -µD 22,i-1 ) q φ i-1 -µD 21,i-1 φ i-1 + q z i + µ q b -µq s i (64) 
where

D 11,i-1 U H i-1 U, (65) 
D 12,i-1 U H i-1 V R, J , (66) 
D 21,i-1 V L, H i-1 U, (67) 
D 22,i-1 V L, H i-1 V R, J . (68) 
In the following, we shall establish the mean-square-error stability of algorithm [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF]. The analysis will reveal the influence of the step-size µ, the mixing parameter γ, and the quantization noise (through {β 2 q,k , σ 2 q,k }) on the network mean-square-error stability and performance, and will provide insights into the design of effective quantizers for decentralized learning under subspace constraints.

C. Mean-square-error stability Theorem 1. (Mean-square-error stability). Consider a network of N agents running the quantized decentralized strategy (28) under Assumptions 1, 2, and 3, with a matrix A satisfying (2) for an M × P (with P M ) full-column rank semi-unitary matrix U. Let γ ∈ (0, 1] be such that:

0 < γ < min 1, 1 -(ρ(J ) + ) 4v 2 1 v 2 2 β 2 q,max (ρ(I -J ) + ) 2 . (69) where v 1 = V -1 , v 2 =
V , and β 2 q,max max 1≤k≤N {β 2 q,k }. Then, the network is mean-square-error stable for sufficiently small step-size µ, namely, it holds that:

lim sup i→∞ E w o k -w k,i 2 = δO(µ) + σ 2 q O(µ -1 ), (70) 
for k = 1, . . . , N and where δ is a constant given by 3 : 1) is given by (61), and σ 2 q = N k=1 σ 2 q,k . Convergence to the steady-state value (70) is linear at a rate given by:

δ 2v 2 1 σ 2 s + 3 q b 2 1 -J + β 2 q,max v 2 1 v 2 2 (2v 2 1 σ 2 s + 12 q b 2 ), (71) 
σ 2 s = N k=1 σ 2 s,k , q b = O(
ρ (Γ) ≤ max 1 -µσ 11 + O(µ 2 ), J + κ I -J 2 + O(µ) < 1, (72) 
for some positive constants σ 11 and κ.

Proof. See Appendix A.

While expression (70) in Theorem 1 reveals the influence of the step-size µ, the quantization noise (captured by {σ 2 q , β 2 q,max }), and the gradient noise (captured by σ 2 s ) on the steady-state mean-square error, expression (69) reveals the 3 Using relation (91) in Appendix A, and since γ > 0 and ρ(J )+ ∈ (0, 1), it can be verified that 1

-J ≥ γ(1 -ρ(J ) -) > 0.
influence of the relative quantization noise term (captured by β 2 q,max ) on the network stability. One main conclusion stemming from expression (70) in Theorem 1 is that the mean-square-error contains an O(µ) term, which is classically encountered in the unquantized case, plus an O(µ -1 ) term, which can be problematic in the small step-size regime (if the quantity σ 2 q = N k=1 σ 2 q,k is not coupled with µ). Since σ 2 q depends on the quantizers' absolute noise components {σ 2 q,k }, this issue can be addressed by ensuring that σ 2 q,k ∝ µ 2 . In this way, we would recover the small estimation error result lim sup i→∞ E w o k -w k,i 2 = O(µ) observed in the unquantized case.

However, this setup requires a careful inspection since small values of σ 2 q,k imply small quantization errors, which might in principle require large bit rates. Consequently, in the small step-size regime (µ → 0), the bit rate might increase without bound when σ 2 q,k ∝ µ 2 . Our goal then becomes to find a quantization scheme that achieves the classical small estimation error result lim sup i→∞ E w o k -w k,i 2 = O(µ) while guaranteeing that the bit rate stays bounded as µ → 0. In the next theorem, we will be able to show that the variable-rate scheme illustrated in Sec. II-A achieves both objectives. This theoretical finding will be further illustrated in the simulation section VI-A.

D. Bit rate stability

Before establishing the bit rate stability, we recall that, at each iteration i and agent k, the quantizer input is given by ψ k,i -φ k,i-1 , which is equal to the vector χ k,i in (51). Consequently, from [START_REF] Nedic | Distributed subgradient methods and quantization effects[END_REF], the bit rate at agent k and iteration i is given by:

r k,i = log 2 (3) M k j=1 1 + E log 2 (|n([χ k,i ] j )| + 1) , (73) 
where [χ k,i ] j denotes the j-th entry of the vector χ k,i .

Theorem 2. (Bit rate stability). Assume that each agent k employs the randomized quantizer with the non-linearities given by [START_REF] Nassif | Diffusion LMS for multitask problems with local linear equality constraints[END_REF], and with the parameters ω k and η k scaling according to:

ω k = c, η k ∝ µ, ( 74 
)
where c is a constant independent of µ, and where the symbol ∝ hides a proportionality constant independent of µ. First, under conditions (74), we have:

σ 2 q,k ∝ µ 2 . ( 75 
)
Second, in steady-state, the average number of bits at agent k stays bounded as µ → 0, namely,

lim sup i→∞ r k,i = O(1). ( 76 
)
Proof. See Appendix B.

To be concrete, we deemed it useful to focus in Theorem 2 on the logarithmic companding rule [START_REF] Nassif | Diffusion LMS for multitask problems with local linear equality constraints[END_REF]. However, it should be noted that the proof in Appendix B can be extended to handle more general non-linear functions.

V. THEOREMS 1 AND 2: INSIGHTS AND OBSERVATIONS

The fundamental conclusion emerging from Theorems 1 and 2 is that, when compared with (1), and when the quantizers are properly designed, the quantized approach (28) can guarantee a finite average bit rate whilst still ensuring small estimation errors on the order of µ. As detailed in the following, there are further insights that can be gained from the theorems.

First, note that in the absence of quantization, the analysis allows us to recover the mean-square-error stability result established in [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part I: Stability analysis[END_REF]Theorem 1] where it was shown that lim sup i→∞ E w o k -w k,i 2 = O(µ) for all k and for γ = 1. To see this, we just set to 0 the quantization noise parameters {β 2 q,max , σ 2 q } in Theorem 1. Second, from our analysis, it is possible to explain the bit rate stability result. Consider, for simplicity, the dithered uniform quantizer from Table I. Then, setting σ 2 q,k ∝ µ 2 is equivalent to requiring that the quantization step-size ∆ is proportional to µ. Our analysis reveals that, when ∆ ∝ µ, the differential input χ k,i = ψ k,i -φ k,i-1 in (28b) is on the order of µ at the steady-state 4 . In this setting, i) the effective range of the inputs used in the differential quantizer scheme vanishes as O(µ) when µ → 0, and ii) the quantizer resolution ∆ ∝ µ scales proportionally to the effective range of the quantizer input. Notably, Theorem 2 reveals that the variable-rate scheme is able to adapt the number of bits to this effective range, in such a way that the expected bit rate stays bounded as µ → 0.

Third, we conclude from Theorem 1 that, while a value γ = 1 could lead to network instability when β 2 q,max = 0, this conclusion does not hold when β 2 q,max = 0. In other words, the absolute quantization noise component does not affect the network stability, and the network remains stable 5for sufficiently small step-size µ when γ = 1.

Fourth, by noting that step (28b) can be written alternatively as:

φ k,i = ψ k,i -z k,i , (77) 
with z k,i given by (52), it can be observed that the impact of quantization in (28c) is similar to the impact of exchanging information over the communication links in the presence of additive noise processes since step (28c) can be written alternatively as (for γ = 1):

w k,i = ∈N k A k (ψ ,i -z ,i ). ( 78 
)
Therefore, in the absence of the relative quantization noise term (i.e., when β 2 q,max = 0), we obtain a setting similar to the one previously considered in the context of single-task [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] and multititask [START_REF] Nassif | Diffusion LMS over multitask networks with noisy links[END_REF] estimation over mean-square-error networks in the presence of noisy links. However, notice that the analysis in [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] and [START_REF] Nassif | Diffusion LMS over multitask networks with noisy links[END_REF] is limited to LMS diffusion algorithms, does not exploit the randomized quantizers design, and does not investigate the average bit rate stability.

Fifth, observe that in the absence of absolute quantization noise term, i.e., when σ 2 q = 0, we obtain: 

lim sup i→∞ E w o k -w k,i 2 = O(µ). ( 79 
)
Thus, the relative quantization noise component does not affect the O(µ) small estimation error result, but affects the network stability through condition (69). Regarding the bit rate, as it can be observed from Table I (column 5, rows 4-7), the reported quantization schemes are characterized by a fixed bit-budget that is independent of the quantizer input, but depends on the high-precision quantization parameter B HP . The theoretical result (79) will be illustrated in Sec. VI-A by considering the QSGD quantizer of Table I (row 7). Finally, and before discussing the stability condition (69), we note that the parameter γ allows to control ρ(A -P U ) (i.e., the spectral radius of the matrix A -P U ), and consequently, the speed of convergence of (A ) i to P U [24, Lemma 2]. To see this, note that (by using the Jordan decomposition of the matrix A ):

A -P U = V 0 0 0 J V -1 , (80) 
from which we obtain ρ(A -P U ) = ρ(J )

≤ (1-γ)+γρ(J ) where ρ(J ) ∈ (0, 1) and γ ∈ (0, 1]. Thus, the larger the mixing parameter γ is, the smaller ρ(A -P U ) tends to be, and consequently, the faster the convergence of (A ) i to P U will be. Now, returning to the stability condition (69), besides requiring γ ∈ (0, 1], the mixing parameter γ must be chosen smaller than a value that is inversely proportional to β 2 q,max . Thus, the larger β 2 q,max is, the tighter the upper bound in (69) is, and the smaller γ should be. If we consider for instance the QSGD quantizer from Table I, it can be observed that the smaller the number of levels s is, i.e., the smaller the number of used bits is, the larger β 2 q,k is. Consequently, the larger β 2 q,k is, the farther the agents (seeking to converge to Range(U)) can get from the subspace due to the quantization noise, and thus, the mixing parameter γ must be chosen small enough to ensure that the quantization noise perturbations will not affect the network stability.

VI. SIMULATION RESULTS

We apply strategy [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] to a network of N = 50 nodes with the link matrix shown in Fig. 4 (left). Each agent is subjected to streaming data {d k (i), u k,i } assumed to satisfy a linear regression model of the form [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]:

d k (i) = u k,i w k + v k (i), (81) 
for some unknown L × 1 vector w k with v k (i) denoting a zero-mean measurement noise and L = 5. A mean-squareerror cost of the form J k (w k ) = 1 2 E|d k (i) -u k,i w k | 2 is associated with each agent k. The regressor and noise processes {u k,i , v k (i)} are assumed to be zero-mean Gaussian with

: i) Eu k,i u ,i = R u,k = σ 2 u,k I L if k = and zero otherwise; ii) Ev k (i)v (i) = σ 2
v,k if k = and zero otherwise; and iii) u k,i and v k (i) are independent of each other. The variances σ 2 u,k and σ 2 v,k are illustrated in Fig. 4 (right). The signal W = col{w 1 , . . . , w N } is generated by smoothing a signal W o , which is randomly generated from the Gaussian distribution N (0.4 × 1 N L , I N L ), by a graph diffusion kernel with τ = 3 -see [START_REF] Nassif | Adaptation and learning over networks under subspace constraints-Part II: Performance analysis[END_REF]Sec. IV] for more details on the smoothing process. The matrix U is generated according to U = U ⊗ I L where U = [u 1 u 2 ], and u 1 and u 2 are the first two eigenvectors of the graph Laplacian L. The Laplacian matrix is generated according to L = diag{C1 N } -C where C is the N × N weighted adjacency matrix chosen such that the (k, )-th entry [C] k = 0.1 if ∈ N k and 0 otherwise. The combination matrix A satisfying the conditions in (2) and having the same structure as the graph is found by following the same approach as in [START_REF] Nassif | Distributed inference over networks under subspace constraints[END_REF].

A. Effect of the small step-size parameter

In Fig. 5 (left), we report the network mean-square-deviation (MSD) learning curves:

MSD(i) = 1 N N k=1 E w o k -w k,i 2 (82) 
for 3 different values of the step-size µ. The results were averaged over 100 Monte-Carlo runs. We used the probabilistic ANQ quantizer of Example 2 with ω k = 0.25 and η k = µ √ 2L . This choice ensures that the quantizer settings of Theorem 2 are satisfied. We set γ = 0.88. We observe that, in steadystate, the network MSD increases by approximately 3dB when µ goes from µ 0 to 2µ 0 . This means that the performance is on the order of µ, as expected from the discussion in Sec. V since in the simulations the absolute noise component is such that σ 2 q,k = µ 2 . In Fig. 5 (middle), we report the average number of bits per node, per component, computed according to:

R(i) = 1 N N k=1 1 L r k,i , (83) 
where r k,i is the bit rate given by (73), which is associated with the encoding of the difference vector χ k,i = ψ k,i -φ k,i-1 transmitted by agent k at iteration i according to (28b). As it can be observed, and thanks to the variable-rate quantization, a finite average number of bits is guaranteed (approximately 2.9 bits/component/iteration are required on average in steadystate). Moreover, it can be observed that the average number of bits scales coherently with the distortion scaling law induced by µ. That is, a smaller MSD in steady-state would require using a larger number of bits, and vice versa.

For comparison purposes, we report in Fig. 5 (right) the MSD learning curves when the QSGD quantizer of Table I (row 7) is employed instead of the probabilistic ANQ. Apart from the quantizer scheme, the same settings as above were assumed. For the QSGD scheme, we set the number of quantization levels s to 2. As it can be observed, this choice allows us to compare the average number of bits for the ANQ and QSGD quantizers for similar values of steady-state MSD. From Table I (row 7, column 5), the bit-budget required to encode a 5 × 1 vector using the QSGD scheme (s = 2) is given by B HP + 10. Now, by replacing B HP by 32 (since we are performing the experiments on MATLAB 2022a which uses 32 bits to represent a floating number in single-precision), we find that the QSGD quantizer requires, at each iteration i, an average number of bits per node, per component, equal to 42 5 = 8.4, which is almost three times higher than the one obtained in steady-state when the probabilistic ANQ is used. This is expected since the QSGD scheme requires encoding the norm of the input vector with very high precision.

Note that, since the results of Theorems 1 and 2 hold for any M × P full-column rank semi-unitary matrix U, similar observations will hold true when applying the quantized approach [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] to solve general constrained optimization problems of the form (3). In the supplementary material, we illustrate this fact by considering a simulation similar to the one considered in the current section VI-A, but instead we consider solving consensus optimization [START_REF] Thanou | Distributed average consensus with quantization refinement[END_REF] 

by choosing U = 1 √ N (1 N ⊗ I L ).

B. Rate-distortion curves

In order to examine the performance of the proposed learning strategy, it is necessary to consider both the attained learning error (MSD) and the associated bit expense. This gives rise to a rate-distortion curve, where the rate quantifies the bit budget and the MSD quantifies the distortion. In Fig. 6, we illustrate the rate-distortion curves for probabilistic uniform and ANQ (for different values of the parameter ω). We set µ = 0.003 and γ = 0.88. For the probabilistic uniform quantizer, each point of the rate/distortion curve corresponds to one value of the quantization step ∆. In the example, we selected 200 values of ∆, uniformly sampled in the interval [0, 0.1]. For each value of ∆ (i.e., each point of the curve), the resulting MSD (distortion) and average number of bits/node/component (rate) were obtained by averaging the instantaneous meansquare-deviation MSD(i) in (82) and averaging the number of bits R(i) in (83) over 500 samples after convergence of the algorithm (the expectations in (82) and (73) are estimated empirically over 50 Monte Carlo runs). For the probabilistic ANQ scheme, we draw three curves corresponding to different values of the parameter ω. For each curve, the different rate/distortion pairs correspond to 200 values of the parameter η, uniformly sampled in the interval [0, 0.5]. The trade-off between rate and distortion can be observed from Fig. 6, namely, as the rate decreases, the distortion increases, and vice versa. For the ANQ, we further observe that the curves move away from the uniform case as ω increases, indicating a superior performance of the uniform probabilistic quantizer. In other words, the simulations show that in the considered example no advantage is obtained by employing non-uniform quantization. One useful interpretation for this behavior is as follows. In the theory of quantization, non-uniform quantizers are typically employed in a fixed-rate context, where the number of bits is determined in advance and does not depend on the input value. Under this setting, allocating high-resolution quantization intervals where the random variable is more likely to be observed provides some advantage in terms of distortion, given the available fixed rate. However, in our case, we are considering a variable-rate quantizer that changes the number of bits depending on the input value. For example, when the quantizer input x belongs to a narrower quantization interval (i.e., smaller distortion), the variable-rate scheme allocates a higher number of bits. This somehow nullifies the distortion gain since we are allocating more bits. Therefore, allocating non-uniform intervals and then adapting the variable rate does not seem rewarding when compared to a uniform quantizer. This bears some similarity to what happens in the theory of quantization when one employs a fixed-rate quantizer followed by an entropy encoder. In this case, the possible advantages of non-uniform quantizers are nullified by the entropy encoder, and it is well known that (in the high resolution regime) the uniform quantizer is the best choice [START_REF] Gish | Asymptotically efficient quantizing[END_REF].

C. Tracking ability

To illustrate the tracking ability of the quantized approach [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF], we modify w k in (81) at time instants 1000 and 2000 by modifying W o such that W o is randomly generated from N (1.4 × 1 N L , I N L ) at i = 1000 and from N (2.4 × 1 N L , I N L ) at i = 2000. Apart from varying W o (and, consequently, W o in (3)) and from fixing the step-size µ to 0.006, the same settings as in Sec. VI-A were assumed. The resulting MSD learning curves and average number of bits/node/component curves are reported in Fig. 7 (left) and (right), respectively, for both the probabilistic ANQ and the QSGD quantizers. As it can be observed, approach [START_REF] Zhao | Diffusion adaptation over networks under imperfect information exchange and non-stationary data[END_REF] is able to track changes in the solution of the constrained optimization problem (3) despite quantization. VII. CONCLUSION In this work, we considered inference problems over networks where agents have individual parameter vectors to estimate subject to subspace constraints that require the parameters across the network to lie in low-dimensional subspaces. The constrained subspace problem includes standard consensus optimization as a special case, and allows for more general task relatedness models such as multitask smoothness. To alleviate the communication bottleneck resulting from the exchange of the intermediate estimates among agents over many iterations, we proposed a new decentralized strategy relying on differential randomized quantizers. We studied its mean-square-error stability in the presence of both relative and absolute quantization noise terms. The analysis framework is general enough to cover many typical examples of probabilistic quantizers such as QSGD quantizer, gradient sparsifier, uniform or dithered quantizer, and non-uniform compandor. We showed that, for small step-sizes, and under some conditions on the quantizers (captured by the terms β 2 q,k , σ 2 q,k ), on the network topology (captured by the eigendecomposition of the combination matrix A), and on the mixing parameter γ, the decentralized quantized approach is able to converge in the mean-square-error sense within O(µ) from the solution of the constrained optimization problem, despite the gradient and quantization noises.

APPENDIX A MEAN-SQUARE-ERROR ANALYSIS We consider the transformed iterates φ i and q φ i in (63) and (64), respectively. Computing the second-order moment of both sides of (63), we get:

E φ i 2 =E (I P -µD 11,i-1 )φ i-1 -µD 12,i-1 q φ i-1 2 + µ 2 E s i 2 + E z i 2 , (84) 
where, from Assumptions 3 and 2 on the quantization and gradient noise processes, we used the fact that:

E[x i-1 z i ] = E E[x i-1 z i |h i ] = E x i-1 E[z i |h i ] = 0 (85) E[x i-1 s i ] = E E x i-1 s i {φ ,i-1 } N =1 = E x i-1 E s i {φ ,i-1 } N =1 = 0 (86) E[s i z i ] = E E[s i z i |h i ] = E s i E[z i |h i ] = 0 (87) with x i-1 = (I P -µD 11,i-1 )φ i-1 -µD 12,i-1 q φ i-1 .
Using similar arguments, we can also show that:

E q φ i 2 =E (J -µD 22,i-1 ) q φ i-1 -µD 21,i-1 φ i-1 + µ q b 2 + µ 2 E q s i 2 + E q z i 2 . ( 88 
)
Before proceeding, we show that, for small enough , the 2-induced matrix norm of J in (58) satisfies J ∈ (0, 1). This property will be used in the subsequent analysis. To establish the property, and by following similar arguments as in [8, pp. 516-517], we can first show that the block diagonal matrix J , which is given by (58), satisfies:

J 2 ≤ (ρ(J ) + γ ) 2 . (89) 
From (58), we can also show that:

ρ(J ) ≤ (1 -γ) + γρ(J ). (90) 
Using the fact that ρ(J ) ∈ (0, 1) from [24, Lemma 2] and the fact that γ ∈ (0, 1], we obtain ρ(J ) ∈ (0, 1). Since ρ(J )+γ is non-negative, by replacing (90) into (89), we obtain:

J ≤ (1 -γ) + γρ(J ) + γ = 1 -γ(1 -ρ(J ) -). (91) 
This identity will also be used in the subsequent analysis.

Regarding the block diagonal matrix I -J , which will appear in the following analysis, we can establish (by following similar arguments as in [8, pp. 516-517]):

I-J 2 (58) = γ(I-J ) 2 = γ 2 I-J 2 ≤ γ 2 (ρ(I-J )+ ) 2 , (92) 
where ρ(I -J ) ∈ (0, 2) since ρ(J ) ∈ (0, 1). Now, returning to the error recursions (84) and (88), and using similar arguments as those used to establish inequalities (119) and (124) in [24, Appendix D], we can show that:

E φ i 2 ≤(1 -µσ 11 )E φ i-1 2 + µσ 2 12 σ 11 E q φ i-1 2 + E z i 2 + µ 2 E s i 2 , (93) 
and

E q φ i 2 ≤ J + 3µ 2 σ 2 22 1 -J E q φ i-1 2 + 3µ 2 σ 2 21 1 -J E φ i-1 2 + 3µ 2 1 -J q b 2 +E q z i 2 +µ 2 E q s i 2 (94) 
for some positive constant σ 11 and non-negative constants σ 12 , σ 21 , and σ 22 independent of µ. As it can be seen from ( 61), q b = V L, b depends on b in [START_REF] Gersho | Scalar Quantization I: Structure and Performance[END_REF], which is defined in terms of the gradients {∇ w k J k (w o k )}. Since the costs J k (w k ) are twice differentiable, then b 2 is bounded and we obtain q b 2 = O(1).

For the gradient noise terms, by following similar arguments as in [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]Chapter 9], [24, Appendix D] and by using Assumption 2, we can show that:

E s i 2 +E q s i 2 = E V -1 s i 2 ≤ v 2 1 β 2 s,max E W i-1 2 +v 2 1 σ 2 s , (95) where v 1 = V -1 , β 2 
s,max = max 1≤k≤N β 2 s,k , and σ 2 s = N k=1 σ 2 s,k . Using expression (47) and the Jordan decomposition of the matrix A in (49), we obtain:

E s i 2 + E q s i 2 ≤ v 2 1 β 2 s,max E A φ i-1 2 + v 2 1 σ 2 s ≤ v 2 1 β 2 s,max E V Λ (V -1 φ i-1 ) 2 + v 2 1 σ 2 s ≤ v 2 1 β 2 s,max v 2 2 (E φ i-1 2 + E q φ i-1 2 ) + v 2 1 σ 2 s , (96) 
where v 2 = V . Using the bound (96) into ( 93) and (94), we obtain:

E φ i 2 ≤ (1 -µσ 11 + µ 2 v 2 1 β 2 s,max v 2 2 )E φ i-1 2 + µσ 2 12 σ 11 + µ 2 v 2 1 β 2 s,max v 2 2 E q φ i-1 2 + E z i 2 + µ 2 v 2 1 σ 2 s , (97) 
and

E q φ i 2 ≤ J + 3µ 2 σ 2 22 1 -J + µ 2 v 2 1 β 2 s,max v 2 2 E q φ i-1 2 + 3µ 2 σ 2 21 1 -J + µ 2 v 2 1 β 2 s,max v 2 2 E φ i-1 2 + 3µ 2 1 -J q b 2 + E q z i 2 + µ 2 v 2 1 σ 2 s . (98) 
Now, for the quantization noise, we have:

E z i 2 + E q z i 2 = E V -1 z i 2 (56) ≤ v 2 1 N k=1 E z k,i 2 . 
(99)

From (52) and Assumption 3, and since χ k,i = φ k,i-1 -ψ k,i , we can write:

E z k,i 2 ≤ β 2 q,k E φ k,i-1 -ψ k,i 2 + σ 2 q,k , (100) 
and, therefore,

E z i 2 ≤ β 2 q,max E φ i-1 -ψ i 2 + σ 2 q , (101) 
where β 2 q,max = max 1≤k≤N {β 2 q,k } and σ 2 q = N k=1 σ 2 q,k . Since the analysis is facilitated by transforming the network vectors into the Jordan decomposition basis of the matrix A , we proceed by noting that the term E z i 2 can be bounded as follows:

E z i 2 (101) ≤ β 2 q,max E V V -1 ( φ i-1 -ψ i ) 2 + σ 2 q ≤ β 2 q,max V 2 E V -1 ( φ i-1 -ψ i ) 2 + σ 2 q ≤ v 2 2 β 2 q,max [E χ i 2 + E q χ i 2 ] + σ 2 q , (102) 
where

χ i U ( φ i-1 -ψ i ), (103) 
q χ i V L, ( φ i-1 -ψ i ). (104) 
Therefore, by combining (99) and (102), we obtain:

E z i 2 + E q z i 2 ≤ v 2 1 v 2 2 β 2 q,max [E χ i 2 + E q χ i 2 ] + v 2 1 σ 2 q . (105)
We focus now on deriving the network vector transformed recursions χ i and q χ i . Subtracting φ i-1 from both sides of (45) and using (47), we obtain:

φ i-1 -ψ i = (I M -A + µH i-1 A ) φ i-1 + µs i -µb. (106) 
By multiplying both sides of (106) by V -1 and by using ( 59)-( 61), ( 65)-( 68), and the Jordan decomposition of the matrix A , we obtain:

χ i q χ i = µD 11,i-1 µD 12,i-1 µD 21,i-1 I M -P -J + µD 22,i-1 φ i-1 q φ i-1 + µ s i q s i -µ 0 q b .
(107) Again, by using similar arguments as those used to establish inequalities (119) and (124) in [24, Appendix D] and by using Jensen's inequalities x + y 2 ≤ 2 x 2 + 2 y 2 and x + y + z 2 ≤ 3 x 2 + 3 y 2 + 3 z 2 , we can verify that:

E χ i 2 ≤2µ 2 σ 2 11 E φ i-1 2 + 2µ 2 σ 2 12 E q φ i-1 2 + µ 2 E s i 2 , (108) 
and E q χ i 2 ≤ 6µ 2 σ 2 21 E φ i-1 2 + 2 I -J 2 + 3µ 2 σ 2 22 E q φ i-1 2 + 6µ 2 q b 2 + µ 2 E q s i 2 . (109) By combining expressions (108) and (109), we obtain:

E χ i 2 + E q χ i 2 ≤ 2µ 2 σ 2 11 + 6µ 2 σ 2 21 E φ i-1 2 + 2µ 2 σ 2 12 + 2 I -J 2 + 6µ 2 σ 2 22 E q φ i-1 2 + 6µ 2 q b 2 + µ 2 E s i 2 + E q s i 2 .
(110) Now, by using the bound (96) in (110), we obtain:

E χ i 2 + E q χ i 2 ≤ 6µ 2 q b 2 + µ 2 v 2 1 σ 2 s + 2µ 2 σ 2 11 + 6µ 2 σ 2 21 + µ 2 v 2 1 β 2 s,max v 2 2 E φ i-1 2 + 2µ 2 σ 2 12 + 2 I -J 2 + 6µ 2 σ 2 22 + µ 2 v 2 1 β 2 s,max v 2 2 E q φ i-1 2 
. (111) Using (111) and (105) in (97) and (98), we finally find that the variances of φ i and q φ i are coupled and recursively bounded as:

E φ i 2 E q φ i 2 Γ E φ i-1 2 E q φ i-1 2 + e + v 2 1 σ 2 q f + v 2 1 σ 2 q , ( 112 
)
where Γ is the 2 × 2 matrix given by:

Γ = a b c d , (113) 
with

a = 1 -µσ 11 + O(µ 2 ) = 1 -Θ(µ), ( 114 
) b = 2v 2 1 v 2 2 β 2 q,max I -J 2 + O(µ), (115) 
c = O(µ 2 ), (116) d = J + 2v 2 1 v 2 2 β 2 q,max I -J 2 + O(µ 2 ), (117)

e µ 2 6 q b 2 v 2 1 v 2 2 β 2 q,max + v 2 1 σ 2 s v 2 1 v 2 2 β 2 q,max + v 2 1 σ 2 s , (118) 
f µ 2 3 q b 2 1 -J + 6v 2 1 v 2 2 β 2 q,max q b 2 +v 4 1 σ 2 s v 2 2 β 2 q,max + v 2 1 σ 2 s ( 119 
)
where the notation g(µ) = Θ(µ) signifies that there exists a positive constant c such that lim µ→0 g(µ) µ = c. If the matrix Γ is stable, i.e., ρ(Γ) < 1, then by iterating (112), we arrive at:

lim sup i→∞ E φ i 2 E q φ i 2 (I -Γ) -1 e + v 2 1 σ 2 q f + v 2 1 σ 2 q . ( 120 
)
As we will see in the following, for some given data settings (captured by {σ 2 11 , σ 2 12 , σ 2 21 , σ 2 22 , β 2 s,max , σ 2 s }), small step-size parameter µ, network topology (captured by the matrix A and its eigendecomposition {v 2 1 , v 2 2 , J }), and quantizer settings (captured by {β 2 q,max , σ 2 q }), the stability of Γ can be controlled by the mixing parameter γ used in step (28c). As it can be observed from (58), (91), and (92), this parameter influences J 2 and I -J 2 . Generally speaking, and since the spectral radius of a matrix is upper bounded by its 1-norm, the matrix Γ is stable if:

ρ(Γ) ≤ max{|a| + |c|, |b| + |d|} < 1. (121) 
Since σ 11 > 0 and γ = 0, a sufficiently small µ can make |a| + |c| strictly smaller than 1. For |b| + |d|, observe that if the mixing parameter γ is chosen such that:

J + 4v 2 1 v 2 2 β 2 q,max I -J 2 < 1, (122) 
then |b| + |d| can be made strictly smaller than one for sufficiently small µ. It is therefore clear that the RHS of (121) can be made strictly smaller than one for sufficiently small µ and for a mixing parameter γ = 0 satisfying condition (122). Now, to derive condition (69) on the mixing parameter γ, we start by noting that the LHS of (122) can be upper bounded by: J + 4v 2 1 v 2 2 β 2 q,max I -J 2 (91),(92)

≤ 1 -γ(1 -ρ(J ) -) + 4v 2 1 v 2 2 β 2 q,max γ 2 (ρ(I -J ) + ) 2 .

(123) The upper bound in the above inequality is guaranteed to be strictly smaller than 1 if: 4v 2 1 v 2 2 β 2 q,max γ 2 (ρ(I -J )+ ) 2 -γ(1-ρ(J )-) < 0. (124) Now, by using the above condition and the fact that γ must be in (0, 1], we obtain condition (69).

Under condition (69), ρ(Γ) < 1, and consequently, the matrix Γ is stable. Moreover, it holds that:

(I -Γ) = Θ(µ) O(1) O(µ 2 ) Θ(1) , (125) 
and:

(I -Γ) -1 = Θ(µ -1 ) O(µ -1 ) O(µ) Θ(1) . ( 126 
)
Now, using (118), (119), and (126) into (120), we arrive at:

lim sup i→∞ E φ i 2 E q φ i 2 β 2 q,max σ 2 s O(µ)+β 2 q,max q b 2 O(µ)+σ 2 s O(µ)+ q b 2 O(µ)+σ 2 q O(µ -1 ) O(µ 2 ) + σ 2 q O(1) (127) 
By noting that:

lim sup i→∞ E W i 2 (47) = lim sup i→∞ E A φ i 2 = lim sup i→∞ E V Λ V -1 φ i 2 ≤ lim sup i→∞ V 2 Λ 2 [E φ i 2 + E q φ i 2 ], (128) 
and by using (127), we can finally conclude (70).

APPENDIX B BIT RATE STABILITY Equation (75) follows straightforwardly from [START_REF] Alghunaim | Distributed coupled multiagent stochastic optimization[END_REF]. Regarding (76), we first note from (18) that g(t) ≥ 0 for non-negative arguments, and that: |n(t)| = n(t) ≤ g(t) + 1 ≤ g(t) + 1, for t ≥ 0 (129) where the first inequality follows from ( 9) and [START_REF] Sayed | Diffusion strategies for adaptation and learning over networks[END_REF], and the fact that the random index n(t) can be either equal to g(t) or to the integer g(t) + 1 . The second inequality follows from the definition of the floor operator. Likewise, for t < 0, we obtain: n(t) ≥ g(t) = -g(-t) = -g(-t) ≥ -g(-t) - (134) By choosing t = [χ k,i ] j in (134) and by using the fact that ([χ k,i ] j ) 2 ≤ χ k,i 2 , we can upper bound the individual summand in (73) by the quantity:

2 + log 2     ln 1 + ω η E χ k,i 2 
2 ln ω + √ 1 + ω 2 + 2     .
(135)

By taking the limit superior of (111) as i → ∞ and by using (127), we obtain l k = lim sup i→∞ E χ k,i 2 = O(µ 2 ). Consequently, we find that the limit superior of (135) as i → ∞ is:

2 + log 2     ln 1 + ω η l k 2 ln ω + √ 1 + ω 2 + 2     . (136) 
where we have used the fact that the function in (135) is continuous and increasing in the argument E χ k,i 2 and, hence, the limit superior is preserved. Under the conditions in (74), the above quantity is O(1), and consequently, the rate in (73) satisfies (76).
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 1 Fig. 1. An illustration of the non-uniform randomized quantization scheme defined by (8)-[START_REF] Nassif | Multitask learning over graphs: An approach for distributed, streaming machine learning[END_REF]. The real axis partition is constructed by choosing the functions g(•) and h(•) according to[START_REF] Dimakis | Gossip algorithms for distributed signal processing[END_REF] with a = 4.17 and b = 10.
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 4 Fig. 4. Experimental setup. (Left) Link matrix (N = 50 nodes). (Right) Regressor and noise variances.

Fig. 5 .

 5 Fig. 5. Network performance w.r.t. W o in (3) for three different values of the step-size (µ 0 = 0.003). In the left and middle plots, the probabilistic ANQ quantizer of Example 2 is employed. (Left) Evolution of the MSD learning curves. (Middle) Evolution of the average number of bits per node, per component, when the variable-rate scheme described in Sec. II-A is used to encode the difference χ k,i = ψ k,i -φ k,i-1 in (28b). (Right) Evolution of the MSD learning curves when the QSGD quantizer (with s = 2) of Table I is used.
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 6 Fig. 6. (Left) Rate-distortion curves for the probabilistic uniform and ANQ.

Fig. 7 .

 7 Fig. 7. Network performance in non-stationary environment (i.e., the solution W o in (3) is changing over time due to changes in the individual costs {J k (w k )}) when the probabilistic ANQ quantizer of Example 2 and the QSGD quantizer of Table I are used. (Left) Evolution of the MSD learning curves. (Right) Evolution of the average number of bits per node, per component. The variable-rate scheme described in Sec. II-A is used in the probabilistic ANQ case.

TABLE I EXAMPLES

 I OF QUANTIZERS Q : R L → R L SATISFYING PROPERTY 1. FOR EACH SCHEME, WE REPORT THE QUANTIZATION RULE, THE PARAMETERS β 2 q AND σ 2 q IN (5), AND THE BIT-BUDGET. B HP DENOTES THE NUMBER OF BITS REQUIRED TO ENCODE A SCALAR WITH HIGH PRECISION (TYPICAL VALUES FOR B HP ARE 32 OR 64).

  which can be verified to be a concave function w.r.t. to the argument t 2 . Therefore, if we consider a random input t in (132), take the expectation, and use Jensen's inequality, we get:

							1.
							(130)
	Combining (129) and (130), we obtain:
	|n(t)| ≤ g(|t|) + 1,	(131)
	and, consequently, we can write:	
	log 2 (|n(t)|+1) ≤ log 2 (|n(t)|+1)+1 ≤ log 2 (g(|t|)+2)+1.
							(132)
	Now, from (18), we can write:		
	log 2 (g(|t|) + 2) = log 2	   	ln 1 + 2 ln ω +	ω η √ 1 + ω 2 √ t 2	+ 2	    , (133)
	E [ log 2 (|n(t)| + 1) ] ≤ log 2	   	ln 1 + 2 ln ω + ω η √	E[t 2 ] 1 + ω 2	+ 2	    +1.

In particular, it is shown in[31, corollary 9] that the design of unbiased quantizers satisfying condition (7) with σ 2 q = 0 using a finite number of quantization points is not feasible.

This can be seen by taking the limits on both sides of relation (111) and by using (127).

In fact, from (113)-(117) and (121), when β 2 q,max = 0 and γ = 1, one can observe that a sufficiently small step-size µ can ensure the stability of the matrix Γ.
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