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Adaptive PI Control of Wave Energy Converters with Force and
Motion Constraints

Hoai-Nam Nguyen†

Abstract—This paper presents the application of adaptive PI
control design to a point absorber - wave energy converter
(WEC) under force and motion constraints. Adaptive PI control
has several features that make it attractive for WEC system.
In particular, it has a clear physical interpretation. The ”P”
component converts the wave energy into useful energy, while
the ”I” component changes the WEC system natural frequency
allowing the absorber to be more in phase with the incoming
waves. However, standard adaptive PI control schemes in the
literature do not have the ability to incorporate the constraints
in the design phase. The main objective of this paper is to fill this
gap by proposing a new adaptive PI control law that can take
the constraints into account. Simulation results show that the
new control law can improve the performance while respecting
system limitations.

Index Terms—Wave Energy Converter, Adaptive Control,
Force Constraints, Motion Constraints, Wave Force Estimation,
Kalman Filter

I. INTRODUCTION

Wave energy converters are devices that convert sea wave
energy into useful mechanical and/or electrical energy. Operat-
ing the WEC in an optimal fashion is a primary task for WECs
to be competitive with other forms of renewable energy such as
wind or solar. There are generally two main requirements for
designing a control law: i) it should exploit the full absorption
potential of an installed WEC; ii) it should respect the device
constraints on force and motions.

Several control strategies have been proposed to improve
energy extraction, such as latching control [1], simple and
effective control (S&E control) [5], multi resonant feedback
control [21], model predictive control (MPC) [11], [15], [19],
[22]. In latching control, the body is locked at some moments
to keep its oscillation in phase with the excitation force. While
latching control is promising, its practical implementation may
be very challenging. This is due to the requirement for a
short-term wave excitation force prediction, and the excessive
loads on the latching mechanism [2]. In MPC, the problem
of maximizing energy capture and of respecting system me-
chanical limits can be naturally formulated as a constrained
optimization problem. MPC allows to achieve high energy
capture. However, the online computational burden for solving
the optimization problem at each time instant can be heavy.
In [22], a way to reduce the online computational complexity
of MPC is proposed. The basic idea is to move as much
as possible part of the control computation offline. Note that
MPC requires a short-term wave excitation force prediction.
If the prediction is not perfect, the MPC performance can
be deteriorated quickly. In multi resonant feedback control
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[21], the strategy consists of three stages. In stage 1, the
spectral decomposition of the measurement WEC outputs is
performed. In stage 2, a proportional derivative (PD) control
law is used for each individual frequency. The PD gains are
computed using the standard unconstrained complex conjugate
control theory [3], [4]. Then in stage 3, the control feedback is
provided by summing all the PD control actions together. The
most notable feature of the multi resonant control law is that it
does not require the information of the wave excitation force.
However, it is not trivial to extend the approach in the presence
of constraints. In S&E control, the idea is to generate a high-
level reference velocity, and then to use a low-level servo
control loop. An ”upgraded” version of of the S&E control is
presented in [6]. The technique is based on real-time envelop
estimation of the excitation force. However, the approaches in
[5], [6] can only deal with the position constraints. In addition,
note that the developments rely on the standard unconstrained
WEC control results in [3], [4]. Consequently, they are not
optimal in the presence of constraints.

Another WEC research line is the adaptive control strategy
[7], [20]. The approach consists of two stages: offline and on-
line. In the offline stage, the control parameters are optimized
for each operating condition, in our case for each sea state.
Then in the online stage, the control parameters are adapted as
a function of sea state. However, the approach [7], [20] is only
able to update the control parameters on a time window that
corresponds to sea state average, e.g., about 15-30 minutes
interval. Hence, this ”intermittent” control strategy is sub-
optimal in terms of energy capture. In [13], [16], an improved
adaptive control law is proposed. The idea is to update the
control parameters in real-time as the sea conditions change
continuously. The control strategy has a root in complex
conjugate control theory [3], [4]. However, it does not require
a short-term wave excitation force prediction as, e.g., in [9],
[10]. The PI structure is chosen as it is simple, and it requires
only straightforward computations. The adaptive PI control
law was tested experimentally in a wave basin at Aalborg
University, Denmark [16]. It is shown that it can harvest
57.14% more energy than the intermittent adaptive control law
in [20]. However, the technique in [13], [16] does not take the
constraints into consideration in the design phase.

We continue the research line [13], [16] in this paper. The
aim is to fill the gap of the results in [13], [16]. By considering
the force and motions constraints in the design phase, four
main features are noted

• We show that the problem of maximizing the harvested
average power in the presence of constraints can be recast
as a convex optimization problem.

• We show how to obtain a closed-form solution for the
optimization problem.



• We show that the standard complex conjugate control
result in [3], [4] is a special case of our solution where
no constraint is considered.

• We give a necessary and sufficient condition for the
following question: ”for a given wave, does there exist
a linear control law with given force constraints that
can keep the WEC position and speed within their
limits?” To the best of the author’s knowledge, this is
the first time such a result is obtained.

This paper presents a rigorous treatment of some preliminary
results in [14]. In [14], the main question is to examine the well
known resonance condition in the presence of constraints. This
is done by using a semi-definite program to analyze the wave
force-to-velocity map. In this paper, the main question is to
propose a control law under the force and motions constraints.

The paper is organized as follows. Section II describes the
problem formulation and early works on adaptive PI control.
Section III contains the main results of the paper. Section III.A
explains how to compute the optimal control law for regular
waves. Section III.B studies the feasibility problem. Section
III.C extends the results in Section III.A and in Section III.B
to realistic irregular waves. Section III.D is concerned with
the stability analysis of the closed-loop system. In Section
IV, simulation results with comparison to earlier solutions are
presented. Finally, some conclusions are drawn in Section V.

II. PROBLEM FORMULATION

A. Point Absorber

In this paper we focus exclusively on a point absorber,
which is a subclass of WECs, see Fig. 1. It consists of a float,
also called buoy, moving on the ocean surface only in the
heave direction. It is axis-symmetric so that the energy con-
version rate is the same for waves coming from all directions.
The relative motion of the float with the sea bottom can be
converted into usable energy through a power take-off (PTO)
system.

Fig. 1: Schematic diagram of the point absorber.

B. WEC Modeling

It is assumed that the oscillation of the WEC relative to the
sea bottom is within some reasonable limit so that the linear
theory is applicable [4]. The external forces acting on the WEC
are the wave excitation force, and the control force produced

by the PTO. Neglecting viscosity, and other losses, the motion
of the WEC system can be described in the frequency domain
as[

jwM +
Khd

jw
+ Zr(jw)

]
V (jw) = Fex(jw)−Fu(jw) (1)

where M is the WEC mass, V (jw) is the heaving velocity,
Fex(jw) is the wave excitation force on the float, and Fu(jw)
is the PTO force. The hydrostatic force gives stiffness force as
deviation from hydrostatic equilibrium. It is modeled by the
coefficient Khd. The radiation force due to radiated waves is
expressed through the radiation impedance Zr(jw), which is
generally decomposed as

Zr(jw) = B(w) + jw [M∞ +Ma(w)] (2)

where B(w) is the radiation resistance, M∞ is the added mass
at infinitely high frequency, and Ma(w) is the added mass after
M∞ is removed. B(w) is an even, real and positive function.

Using (1), (2), the motion response of the WEC system is
given by

V (jw) =
1

Zi(jw)
[Fex(jw)− Fu(jw)] (3)

where

Zi(jw) = B(w) + jw

[
M − Khd

w2
+M∞ +Ma(w)

]
(4)

Zi(jw) is the intrinsic impedance of the system. Rewrite
Zi(jw) as

Zi(jw) = Ri(w) + jXi(w) (5)

with {
Ri(w) = B(w),

Xi(w) = w
[
M − Khd

w2 +M∞ +Ma(w)
] (6)

It is clear that Ri(w) is an even, real and positive function.

C. Control Objective

The control objective is to select fu(t) that maximizes the
extracted average power produced by the WEC

Pa =
1

T

∫ T

0

fu(t)v(t)dt (7)

while respecting the following constraints on the PTO input
fu(t), the WEC velocity v(t), and the WEC position s(t) −Flim ≤ fu(t) ≤ Flim,

−Vlim ≤ v(t) ≤ Vlim,
−Slim ≤ s(t) ≤ Slim

(8)

D. Earlier Works on Adaptive PI Control

If the PI control structure is selected, then fu(t) is given as

fu(t) = Kpv(t) +Ki

t∫
0

v(τ)dτ

where Kp,Ki are the PI gains. Assuming zero initial position,
one has

fu(t) = Kpv(t) +Kis(t) (9)



since s(t) =
t∫
0

v(τ)dτ . In the frequency domain

Fu(jw) =

(
Kp +

Ki

jw

)
V (jw) (10)

In a monochromatic sea state, the wave excitation force is
given as

fex(t) = A0 sin(w0t+ ϕ0) (11)

where A0, w0, ϕ0 are, respectively, the amplitude, the angular
wave frequency, and the phase.

For a given fex(t) in (11), and without the constraints (8),
it was shown in the complex conjugate control theory [3], [4]
that Pa attains the maximum when the PTO input is given as

Fu(jw0) = (Ri(w0)− jXi(w0))V (jw0) (12)

where Ri(w0), Xi(w0) are given in (6) with w = w0.
Using (10), (12), one obtains{

Kp = Ri(w0),
Ki = w0Xi(w0)

(13)

under the monochromatic sea state assumption (11).
There are two problems for the implementation of the

control law (9), (13). The first one is that real sea states are
polychromatic, i.e., fex(t) is not a pure sinusoid. The second
problem is that fex(t) cannot be measured directly when the
WEC system is running.

To address the polychromatic sea state problem, in [13],
[16], the real wave excitation force is modeled as a time-
varying sinusoidal signal, i.e.,

fex(t) = A0(t) sin(w0(t)t+ ϕ0(t)) (14)

where the parameters A0(t), w0(t) and ϕ0(t) are esti-
mated online. Since fex(t) is a nonlinear function of
A0(t), w0(t), ϕ0(t), the estimation problem is nonlinear. A
possible solution to the problem is to employ an unscented
Kalman filter (UKF) [17]. The main advantage of the UKF is
that it is already evaluated experimentally on real wave data
[16] with a good performance.

To address the problem that fex(t) is not directly measur-
able, the concept of soft sensor can be used. The basic idea is
to combine the WEC mathematical model (3) with available
measurements such as fu(t), v(t), s(t) for estimating fex(t).
A possible solution to this problem is to use a linear Kalman
filter (LKF) [12]. It was shown experimentally in [12] that
LKF produces accurate estimates over a large range of sea
states.

The adaptive PI control strategy is summarized in Algorithm
1.

Algorithm 1: Adaptive PI Control

1: At each time instant t.
2: Estimate f̂ex(t) using an LKF.
3: Estimate ŵ0(t) using an UKF.
4: Compute the gains Kp,Ki using (13).
5: Compute the control action fu(t) using (9).

The adaptive PI control algorithm is schematically presented
in Fig. 2. This control law is obtained without considering

the constraints (8). Hence, a saturation block is placed at the
output of the PI control law in order to cope with the input
constraints, see Fig. 2. Note that the position and velocity
constraints are not taken into account in this control strategy.

Fig. 2: Schematic diagram of adaptive PI control.

III. CONSTRAINED ADAPTIVE PI CONTROL

In this section we propose a new adaptive PI control
strategy. Its main distinguished feature is that the force and
motions constraints are taken into consideration in the design
phase.

A. Optimal Control in Regular Waves

Following [3], [4], the PTO input is assumed to be a linear
function of the velocity, i.e.,

Fu(jw) = Zc(jw)V (jw) (15)

where Zc(jw) is a design variable.
Using (3), (15), one obtains

V (jw) =
1

Zi(jw)
(Fex(jw)− Zc(jw)V (jw)) (16)

or, equivalently

V (jw) =
1

Zi(jw) + Zc(jw)
Fex(jw) = G(jw)Fex(jw)

(17)
G(jw) is the closed-loop transfer function with the input
Fex(jw), and with the output V (jw)

G(jw) =
1

Zi(jw) + Zc(jw)
(18)

G(jw) is a complex number. It can be decomposed as

G(jw) = Rg(w) + jXg(w) (19)

where Rg(w), Xg(w) are the real part and the imaginary part
of G(jw), respectively.

For simplicity, the arguments w,w0 will be omitted when-
ever possible. The following theorem holds.

Theorem 1: Given the wave excitation force (11) and the
PTO input (15), the average power is computed as

Pa =
A2

0

2

[
Rg(w0)−Ri(w0)Rg(w0)

2 −Ri(w0)Xg(w0)
2
]

(20)
Proof: See Appendix A. □



Theorem 1 gives an analytical expression of the average
power in terms of the hydrodynamic coefficients. Concerning
the constraints (8), define Ai(w0) =

√
Ri(w0)2 +Xi(w0)2,

i.e., Ai(w0) is the magnitude of Zi(jw0). The following
theorem holds

Theorem 2: Given the wave excitation force (11) and the
PTO input (15), the constraints (8) are satisfied if and only if

• For the input constraint(
Rg −

Ri

A2
i

)2

+

(
Xg +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i

(21)

• For the velocity constraint

R2
g +X2

g ≤ V 2
lim

A2
0

(22)

• For the position constraint

R2
g +X2

g ≤ w2
0S

2
lim

A2
0

(23)

Proof: See Appendix B. □
Using Theorem 1 and Theorem 2, one can rewrite the

problem of maximizing the harvested average power subject
to the constraints (8) as

max
Rg,Xg

{
A2

0

2

[
Rg −RiR

2
g −RiX

2
g

]}
,

s.t.


(
Rg − Ri

A2
i

)2

+
(
Xg +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i
,

R2
g +X2

g ≤ V 2
lim

A2
0
,

R2
g +X2

g ≤ w2
0S

2
lim

A2
0

(24)

Since Ri = B(w0) is positive, (24) can be rewritten as

min
Rg,Xg

{(
Rg − 1

2Ri

)2

+X2
g

}
,

s.t.


(
Rg − Ri

A2
i

)2

+
(
Xg +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i
,

R2
g +X2

g ≤ V 2
lim

A2
0
,

R2
g +X2

g ≤ w2
0S

2
lim

A2
0

(25)

Define

ξ1 = Rg −
1

2Ri
, ξ2 = Xg, ξ = [ξ1 ξ2]

T (26)

Using (26), one can rewrite problem (25) as

min
ξ

{
ξ21 + ξ22

}
(27)

s.t.
(
ξ1 +

1

2Ri
− Ri

A2
i

)2

+

(
ξ2 +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i

, (28)(
ξ1 +

1

2Ri

)2

+ ξ22 ≤ V 2
lim

A2
0

, (29)(
ξ1 +

1

2Ri

)2

+ ξ22 ≤ w2
0S

2
lim

A2
0

(30)

The solution ξ∗ to (27), (28), (29), (30) is unique because
the cost and the constraints are convex. ξ∗ can be found by
using any numerical procedure for convex optimization. Here
we show how to obtain a closed-form for ξ∗.

It is clear that if V 2
lim

A2
0

≤ w2
0S

2
lim

A2
0

then the constraint (30) is
redundant. Otherwise, (29) is redundant. For simplicity, only
the position constraint (30) is considered in the rest of the
paper. Define

a∗ = −

1− Flim

A0Ai

√(
1

2Ri
− Ri

A2
i

)2

+
X2

i
A4

i

[
1

2Ri
− Ri

A2
i

Xi

A2
i

]
,

b∗ = −
[

1
2Ri

− w0Slim

A0

0

]
,

c∗ = −

[
X2

i

RiA2
i
α+ 1

2A2
0Ri

(F 2
lim − w2

0S
2
limA2

i )
Xi

A2
i
α

]
(31)

where {
ζ = A2

0 + w2
0S

2
limA2

i − F 2
lim,

α = 1
2A2

0
ζ + AiRi

A0Xi

√
w2

0S
2
lim − ζ2

4A2
0A

2
i

(32)

The following theorem holds.
Theorem 3: Under the feasibility assumption, the solution

of the following convex optimization problem

min
ξ

{
ξ21 + ξ22

}
(33)

s.t.
(
ξ1 +

1

2Ri
− Ri

A2
i

)2

+

(
ξ2 +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i

, (34)(
ξ1 +

1

2Ri

)2

+ ξ22 ≤ w2
0S

2
lim

A2
0

(35)

is given by,

ξ∗ =

[
0
0

]
, if


(

1
2Ri

− Ri

A2
i

)2

+
(

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i
,

1
2Ri

≤ w0Slim

A0

ξ∗ = a∗, else-if


(

1
2Ri

− Ri

A2
i

)2

+
(

Xi

A2
i

)2

≥ F 2
lim

A2
0A

2
i
,(

a∗1 +
1

2Ri

)2

+ (a∗2)
2 ≤ w2

0S
2
lim

A2
0

ξ∗ = b∗, else-if


(
b∗1 +

1
2Ri

− Ri

A2
i

)2

+
(
b∗2 +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i
,

1
2Ri

≥ w0Slim

A0

ξ∗ = c∗, otherwise
(36)

Proof: See Appendix C. □
Once the solution ξ∗ of (33), (34), (35) is computed, using

(26), one gets

R∗
g = ξ∗1 +

1

2Ri
, X∗

g = ξ∗2 (37)

Using (18), one obtains

Zc(jw) = 1
G(jw) − Zi(jw)

=
(

Rg(w)
Rg(w)2+Xg(w)2 −Ri(w)

)
−j

(
Xg(w)

Rg(w)2+Xg(w)2 +Xi(w)
)

Thus, using (37), the optimal real part and imaginary part of
the control block are computed as R∗

c =
R∗

g

(X∗
g )

2+(R∗
g)

2 −Ri,

X∗
c = − X∗

g

(X∗
g )

2+(R∗
g)

2 −Xi

(38)



Remark 1: Consider the unconstrained case, i.e., there are
no constraints on the PTO force and on the WEC position. In
this case, the optimal solution of (33) is ξ∗1 = ξ∗2 = 0. Using
(37), one obtains R∗

g = 1
2Ri

, X∗
g = 0. Using (38), one gets

R∗
c = Ri, X

∗
c = −Xi (39)

Condition (39) is known as complex conjugate control. It was
obtained in [3], [4]. Therefore the result in [3], [4] is a special
case of Theorem 3. □

Remark 2: The results in this section answer only the
question of how to maximize the harvested power in the
nominal case with force and motions constraints. We do not
take into consideration the model uncertainties in this work.

B. Feasibility Analysis

We study the feasibility problem of (33), (34), (35) in this
section. In other words, we would like to know under what
conditions for Flim, Slim, problem (33), (34), (35) has a
solution for a given wave excitation force (11).

The constraints (34), (35) describe two circles of radius
Flim

A0Ai
, w0Slim

A0
, respectively. Fig. 3 presents the two sets. The

solid blue line describes the PTO force constraint (34). The
dashed red line describes the WEC position constraint (35).
The intersection of the two circles is the feasible set.
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Fig. 3: Feasible set.

The following theorem holds.
Theorem 4: For a given wave excitation force (11),

problem (33), (34), (35) is feasible if and only if

w0AiSlim + Flim ≥ A0 (40)

Proof: See Appendix D. □
In a case, e.g., the amplitude A0 of the wave excitation force

is too large, condition (40) is not satisfied. This implies that
there exists no linear control law with the given constrained
PTO force [−Flim, Flim], that can keep the WEC position
inside the constraints [−Slim, Slim].

The force constraints present physical limitations of the
PTO actuator. They cannot be exceeded. In other words, Flim

is given and cannot be changed. On the other hand, the WEC
position constraints are generally considered for safety reason.
It is desirable to keep the WEC position inside the limits.
However, violation can be tolerated for short time periods, e.g.,
when the wave excitation force is too large. In other words,
Slim can be modified if condition (40) is not satisfied.

In this paper, if the problem (33), (34), (35) is infeasible,
then the WEC position upper bound is modified as

Slim =
A0 − Flim

w0Ai
(41)

In this case, using the proof of Theorem 4, the two circles
touch at the point{

ξ∗1 = − 1
2Ri

+ (A0−Flim)Ri

A0A2
i

,

ξ∗2 = − (A0−Flim)Xi

A0A2
i

(42)

Hence (42) is the solution of (33), (34), (35) with Slim in (41).

C. Extension to Irregular Waves

In this section we show how to extend the results in Section
III-A and in Section III-B to polychromatic sea states. The
idea is the same as in the standard unconstrained adaptive PI
control, i.e., by approximating online fex(t) as

fex(t) = A0(t) sin (w0(t)t+ ϕ0(t))

where A0(t), w0(t), ϕ0(t) are time-varying. We use the LKF
with information from s(t), v(t) and fu(t) to estimate fex(t).
We then use the UKF to estimate A0(t), w0(t).

If the PI structure is selected for the control block Zc(jw)
then

Zc(jw) = Kp +
Ki

jw

Hence
Kp = R∗

c ,Ki = −wX∗
c (43)

where R∗
c , X

∗
c are given in (38). Note that to calculate R∗

c , X
∗
c ,

we need information both from the amplitude A0(t) and from
the frequency w0(t). Recall that in the unconstrained adaptive
PI control algorithm, only information from w0(t) is required.

The constrained adaptive PI control strategy is summarized
in Algorithm 2.

Algorithm 2: Constrained Adaptive PI Control

1: At each time instant t.
2: Estimate f̂ex(t) using an LKF.
3: Estimate Â0(t), ŵ0(t) using an UKF.
4: If condition (40) holds, then calculate ξ∗ using (36).
5: Otherwise, calculate ξ∗ using (42).
6: Calculate R∗

g, X
∗
g using (37).

7: Calculate R∗
c , X

∗
c using (38).

8: Calculate Ki,Kp using (43).
9: The control action is computed as

fu(t) = Kpv(t) +Kis(t)

The constrained adaptive PI control algorithm is schemat-
ically presented in Fig. 4. In comparison with the standard
unconstrained adaptive PI control strategy, see Fig. 2, the new
one does not require the saturation block at its output. This
is because the input constraints are taken into account in the
design phase.



Fig. 4: Schematic diagram of constrained adaptive PI control
structure.

D. Stability Analysis

In this section we analyze the stability of the closed-loop
system (17) with the control law in Algorithm 2. Since the
problem treated in the paper is to maximize the harvested
power in (7), the notion of stability is understood in an input-
output sense. That is, we say that the system is stable if
bounded wave excitation force fex(t) supplied to the system
yields bounded speed v(t).

The basic idea to prove the stability of (17) is to show that
system (17) is passive, and therefore stable. For this purpose,
the following lemma is recalled.

Lemma 1: [18] Consider the single-input single-output
system yp(jw) = Gp(jw)up(jw), where yp is the output, up

is the input, and Gp is the transfer function. The system is
passive if and only if Re(Gp(jw)) > 0 at all frequencies w.

It is well known [18] that the negative feedback intercon-
nection of two passive systems yields a passive system. Using
Fig. 4, the system (17) is consisted of two subsystems via the
negative feedback: i) the WEC system; ii) the PI control law. It
is well known [8] that the WEC system is passive. It remains to
show that Zc(jw) is passive. Since the P−component converts
the wave energy into useful energy, one must have Kp > 0.
Hence Re(Zc(jw)) = Kp > 0, or equivalently Zc(jw) is
passive. It follows that the closed-loop system (17) is passive.
Therefore, stability is guaranteed.

Remark 3: An alternative way to prove the passivity of
G(jw) is to show directly that Re(G(jw)) > 0. Note that
Re(G(jw)) = Rg . Using the cost function in (24), one should
have Rg > 0, because Ri > 0 and the harvested power Pa

should be positive. Hence G(jw) is a passive system.

IV. SIMULATION RESULTS

A. WEC Parameters

To illustrate the effectiveness of the proposed control al-
gorithm in Section III, we use a laboratory prototype of a
point absorber WEC on a 1:20 scale with respect to the well-
known Wavestar machine [23]. The motion is rotational for
the Wavestar system. Hence the units of the PTO input, the
position and the speed are Nm, rad and rad/s, respectively.
The WEC parameters are M = 1.44, Khd = 93, and

Zr(jw) =
a3(jw)

3 + a2(jw)
2 + a1(jw) + a0

b3(jw)3 + b2(jw)2 + b1(jw) + b0
(44)

{a3, . . . , a0, b3, . . . , b0} are given in Table I.

Numerator Denominator
a3 = 0.000273 b3 = 1
a2 = 31.04 b2 = 113.5
a1 = 3421 b1 = 1377
a0 = −9.145 b0 = 9061

TABLE I: Radiation model parameters

The constraints are

−0.2 ≤ s(t) ≤ 0.2, −6.25 ≤ fu(t) ≤ 6.25

In other words, Slim = 0.2, Flim = 6.25.
Using the results in Section III, Fig. 5 presents the optimal

Rc, Xc of the control block, and the maximal harvested aver-
age power Pa as a function of w0 and A0 with 0.3 ≤ w0 ≤ 12,
0.1 ≤ A0 ≤ 6. Recall that in the unconstrained case, Rc and
Xc depend uniquely on w0.

Fig. 5: Optimal real part and imaginary part of the control
block and maximal harvested average power.

B. Simulation Results
In this section, we show the simulation results obtained us-

ing the constrained adaptive PI control algorithm. To validate
our concept, we choose three sea states, that represent real life
sea conditions for the Wavestar machine. The wave amplitudes
increase, and the peak wave frequencies decrease from wave
1 to wave 3. The waves were generated by the wave maker of
Aalborg University based on the Pierson-Moskowitz spectrum.
Fig. 6 presents the power spectral density of the three waves.
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Fig. 6: Power spectral density of the waves.

In parallel with the new control law in Algorithm 2, we use
the unconstrained adaptive PI control law in Algorithm 1 for
comparison purpose.



Fig 7 presents the PTO force fu(t), the WEC position s(t),
the WEC velocity v(t), and the harvested energy E(t) for
wave 1 using Algorithm 1 (dashed red line) and Algorithm 2

(solid blue line). E(t) is calculated as E(t) =
t∫
0

fu(τ)v(τ)dτ .

Since the amplitudes of wave 1 are relatively small, the PTO
force and the WEC position constraints are not hit. Hence
it is expected that the performances of Algorithm 1, and of
Algorithm 2 are identical. This can be observed in Fig 7.
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Fig. 7: Performance comparison between Algorithm 1 (dashed
red line) and Algorithm 2 (solid blue line) for wave 1.

Fig. 8 shows fu(t), s(t), v(t), and E(t) for wave 2 as a
function of time using Algorithm 1 (dashed red line) and
Algorithm 2 (solid blue line). Using Fig. 8, the following
remarks can be made

• Using Fig. 8(a), fu(t) is often saturated. This is because
the amplitudes of wave 2 are larger than that of wave 1.

• Using Fig. 8(b), the WEC position constraints are satis-
fied all the time with Algorithm 2, while this is not the
case with Algorithm 1.

• Using Fig. 8(c), the WEC oscillates with much higher
speed using Algorithm 1 than that using Algorithm 2.
Consequently, the mechanical fatique of the WEC sys-
tem is more important with Algorithm 1 than that with
Algorithm 2.

• Using Fig. 8(d), Algorithm 2 harvests slightly more
energy than Algorithm 1.

Fig. 9 presents the zoomed-in fu(t), v(t) and s(t) for the
time interval 100(s) ≤ t ≤ 120(s) for wave 2.

Fig. 10 shows fu(t), s(t), v(t), and E(t) for wave 3 as
a function of time using Algorithm 1 (dashed red line) and
Algorithm 2 (solid blue line). The amplitudes of wave 3
are largest among the three waves. Hence the PTO force is
saturated much more often with wave 3 than with other waves,
see Fig. 10(a). It can be observed using Fig. 10(d) that we gain
287% more energy with Algorithm 2 than with Algorithm 1.

Fig. 11 presents the zoomed-in fu(t), v(t) and s(t) for the
time interval 1175(s) ≤ t ≤ 1200(s) for wave 3. As discussed
in Section III, while the PTO force constraints cannot be
modified, the WEC position constraints are tolerated to violate
for short time periods. The violation of the constraints on
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Fig. 8: Performance comparison between Algorithm 1 (dashed
red line) and Algorithm 2 (solid blue line) for wave 2.
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Fig. 9: Zoomed-in: fu(t)-Algorithm 2 (solid blue), v(t)-
Algorithm 2 (dashed magenta), fu(t)-Algorithm 1 (solid red),
v(t)-Algorithm 1 (dashed cyan), s(t)−Algorithm 2 (solid
blue), s(t)−Algorithm 1 (dashed red) for wave 2.

s(t) for Algorithm 2 can be observed in Fig. 11 at time
t ≈ 1186[sec].

V. CONCLUSION

In this paper we propose a new adaptive PI control strategy
to the problem of maximizing the harvested energy with a
point absorber under the force and motion constraints. First,
regular waves were considered where the problem of maxi-
mizing the harvested power can be reformulated as a convex
optimization problem. We show how to obtain a closed-form
solution for this problem. We also show the relationship
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Fig. 10: Performance comparison for Algorithm 1 (dashed red
line) and Algorithm 2 (solid blue line) for wave 3.
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Fig. 11: Zoomed-in: fu(t)-Algorithm 2 (solid blue), v(t)-
Algorithm 2 (dashed magenta), fu(t)-Algorithm 1 (solid red),
v(t)-Algorithm 1 (dashed cyan), s(t)−Algorithm 2 (solid
blue), s(t)−Algorithm 1 (dashed red) for wave 3.

between the wave amplitude, the wave frequency and the con-
straints in order to guarantee the feasibility of the optimization
problem. Then, by approximating the real irregular wave as a
time-varying sinusoid, the new control law is proposed. The
gains of the new control law are continuously adapted on-line
on a wave-to-wave basis. A simulation example is given and
compared to an earlier solution from literature.

In the future we will extend the proposed technique to the
case of wave energy converter with uncertain dynamics. We
will also study other types of wave energy converter, and the
multi-float configuration case.
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APPENDIX

Appendix A. (Proof of Theorem 1): Using (15), (18), one
obtains

Fu(jw) =

(
1

G(jw)
− Zi(jw)

)
V (jw)

thus, with (17)

Fu(jw) = (1− Zi(jw)G(jw))Fex(jw) (45)

Without loss of generality, the phase ϕ0 of fex(t) in (11) can
be set to be zero. Because (45) is a linear system, one obtains,
for fex(t) given in (11)

fu(t) = AuA0 sin(w0t+ θu) (46)

where Au and θu are, respectively, the magnitude and the
phase of (1− Zi(jw)G(jw)), evaluated at frequency w0, i.e.,{

Au = |1− Zi(jw0)G(jw0)|,
θu = ∠ (1− Zi(jw0)G(jw0))

Similarly, because (17) is a linear system, one gets

v(t) = AgA0 sin(w0t+ θg) (47)

where Ag = |G(jw0)| and θg = ∠G(jw0) are, respectively,
the magnitude and the phase of G(jw) evaluated at w0.

Combining (46), (47), one gets

Pa = 1
T

T∫
0

v(t)fu(t)dt

= 1
T

T∫
0

AgAuA
2
0 sin(w0t+ θg) sin(w0t+ θu)dt

(48)



Since the wave excitation force (11) is periodic, it is clear that
it suffices to calculate Pa for one period T = 2π

w0
. Therefore

Pa =
w0

2π
AgAuA

2
0

2π
w0∫
0

sin(w0t+ θg) sin(w0t+ θu)dt (49)

Using the following trigonometric identity

sin(α) sin(β) =
1

2
[cos(α− β)− cos(α+ β)]

one obtains from (49)

Pa =

w0

4πAgAuA
2
0

 2π
w0∫
0

cos(θg − θu)dt−
2π
w0∫
0

cos(2w0t+ θg + θu)dt


= w0

4πAgAuA
2
0

[
cos(θg − θu)t− sin(2w0t+θg+θu)

2w0

]∣∣∣ 2π
w0

0

It follows
Pa =

1

2
AgAuA

2 cos(θg − θu) (50)

Using the following product-to-sum trigonometric identity

cos(θg − θu) = cos(θg) cos(θu) + sin(θg) sin(θu)

one obtains, from (50)

Pa = 1
2AgAuA

2 [cos(θg) cos(θu) + sin(θg) sin(θu)] (51)

The following equations hold, see Fig. 12
Ag cos(θg) = Rg,
Ag sin(θg) = Xg,
Au cos(θu) = 1−RiRg +XiXg,
Au sin(θu) = −RiXg −XiRg

(52)

Fig. 12: Graphical illustration for equation (52).

Hence, using (51), one obtains

Pa =
A2

2
[Rg(1−RiRg +XiXg)−Xg(RiXg +XiRg)]

or equivalently Pa = A2

2

[
Rg −RiR

2
g −RiX

2
g

]
. The proof is

complete. □
Appendix B. (Proof of Theorem 2): Concerning the input

constraint (8), using (46), (52), one gets

fu(t) = AuA0 sin(w0t+ θu)

=
√
(1−RiRg +XiXg)2 + (RiXg +XiRg)2A0 sin(w0t+ θu)

Hence −Flim ≤ fu(t) ≤ Flim if and only if

(1−RiRg +XiXg)
2 + (RiXg +XiRg)

2 ≤ F 2
lim

A2
0

or equivalently(
Rg −

Ri

R2
i +X2

i

)2

+

(
Xg +

Xi

R2
i +X2

i

)2

≤ F 2
lim

A2
0(R

2
i +X2

i )

since Ai =
√
R2

i +X2
i , one gets(

Rg −
Ri

A2
i

)2

+

(
Xg +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i

Concerning the velocity constraint (8), using (47), (52), one
obtains

v(t) = AgA0 sin(w0t+ θg) =
√

R2
g +X2

gA0 sin(w0t+ θg)

Hence the velocity constraint is satisfied if and only if

R2
g +X2

g ≤ V 2
lim

A2
0

Concerning the position constraint, note that S(jw) =
1
jwV (jw). Thus, with (17), S(jw) = G(jw)

jw Fex(jw). For the
given wave excitation force (11), one gets

s(t) =
Ag

w0
A0 sin(w0t+ θg − π

2 )

=

√
R2

g+X2
g

w0
A0 sin(w0t+ θg − π

2 )

It follows that the position constraint is satisfied if and only if

R2
g +X2

g ≤ w2
0S

2
lim

A2
0

(53)

The proof is complete. □
Appendix C. (Proof of Theorem 3): The Lagrangian L(·)

of (33), (34), (35) is given by

L(ξ, λ) = ξ21 + ξ22

+λ1

[(
ξ1 +

1
2Ri

− Ri

A2
i

)2

+
(
ξ2 +

Xi

A2
i

)2

− F 2
lim

A2
0A

2
i

]
+λ2

[(
ξ1 +

1
2Ri

)2

+ ξ22 − w2
0S

2
lim

A2
0

]
(54)

where λ1 ≥ 0, λ2 ≥ 0 are the dual variables for the constraints
(34), (35). Using Karush-Kuhn-Tucker conditions, the optimal
solution satisfies λ∗

1 ≥ 0, λ∗
2 ≥ 0, and

• Stationary condition {
∂L
∂ξ1

= 0,
∂L
∂ξ2

= 0
(55)

• Complementary slackness condition
λ∗
1

[(
ξ∗1 + 1

2Ri
− Ri

A2
i

)2

+
(
ξ∗2 + Xi

A2
i

)2

− F 2
lim

A2
0A

2
i

]
= 0,

λ∗
2

[(
ξ∗1 + 1

2Ri

)2

+ (ξ∗2)
2 − w2

0S
2
lim

A2
0

]
= 0

(56)
Using (55), one obtains ξ∗1 + λ∗

1

(
ξ∗1 + 1

2Ri
− Ri

A2
i

)
+ λ∗

2

(
ξ∗1 + 1

2Ri

)
= 0,

ξ∗2 + λ∗
1

(
ξ∗2 + Xi

A2
i

)
+ λ∗

2ξ
∗
2 = 0

or, equivalently ξ∗1 = −1
1+λ∗

1+λ∗
2

[
λ∗
1

(
1

2Ri
− Ri

A2
i

)
+

λ∗
2

2Ri

]
,

ξ∗2 = −1
1+λ∗

1+λ∗
2

λ∗
1Xi

A2
i
,

(57)



There are four cases.
Case 1: The constraints (34), (35) are inactive. In this case

λ∗
1 = λ∗

2 = 0. Using (57), one gets ξ∗1 = 0, ξ∗2 = 0. Note that
(34), (35) are inactive if and only if

(
1

2Ri
− Ri

A2
i

)2

+
(

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i
,

1
2Ri

≤ w0Slim

A0

Case 2: (34) is active, (35) is inactive. In this case, λ∗
1 >

0, λ∗
2 = 0, and

ξ∗1 =
−λ∗

1

1+λ∗
1

(
1

2Ri
− Ri

A2
i

)
,

ξ∗2 =
−λ∗

1

1+λ∗
1

Xi

A2
i
,(

ξ∗1 + 1
2Ri

− Ri

A2
i

)2

+
(
ξ∗2 + Xi

A2
i

)2

=
F 2

lim

A2
0A

2
i

Solving this system of equations, one obtains ξ∗1 = a∗1, ξ
∗
2 =

a∗2. We have case 2 if and only if
(

1
2Ri

− Ri

A2
i

)2

+
(

Xi

A2
i

)2

≥ F 2
lim

A2
0A

2
i
,(

a∗1 +
1

2Ri

)2

+ (a∗2)
2 ≤ w2

0S
2
lim

A2
0

Case 3: (34) is inactive, (35) is active. In this case, λ∗
1 =

0, λ∗
2 > 0, and

ξ∗1 =
−λ∗

2

1+λ∗
2

1
2Ri

,

ξ∗2 = 0,(
ξ∗1 + 1

2Ri

)2

+ (ξ∗2)
2 =

w2
0S

2
lim

A2
0

Solving this system of equations, one gets ξ∗1 = b∗1, ξ
∗
2 = b∗2.

We have case 3 if and only if
(
b∗1 +

1
2Ri

− Ri

A2
i

)2

+
(
b∗2 +

Xi

A2
i

)2

≤ F 2
lim

A2
0A

2
i
,

1
2Ri

≥ w0Slim

A0

Case 4: (34) and (35) are active. In this case, λ∗
1 > 0, λ∗

2 >
0, and

ξ∗1 = −α1

(
1

2Ri
− Ri

A2
i

)
− α2

2Ri
,

ξ∗2 = −α1
Xi

A2
i
,(

ξ∗1 + 1
2Ri

− Ri

A2
i

)2

+
(
ξ∗2 + Xi

A2
i

)2

=
F 2

lim

A2
0A

2
i
,(

ξ∗1 + 1
2Ri

)2

+ (ξ∗2)
2 =

w2
0S

2
lim

A2
0

(58)

where α1 =
λ∗
1

1+λ∗
1+λ∗

2
, α2 =

λ∗
2

1+λ∗
1+λ∗

2
. Since λ∗

1 ≥ 0, λ∗
2 ≥ 0,

one has 0 ≤ α1 < 1, 0 ≤ α2 < 1.
By substituting the fourth equation of (58) into the third

equation, one can rewrite (58) as


ξ∗1 = −α1

(
1

2Ri
− Ri

A2
i

)
− α2

2Ri
,

ξ∗2 = −α1
Xi

A2
i
,

−Riξ
∗
1 +Xiξ

∗
2 = 1

2A2
0A

2
i

(
F 2
lim − w2

0S
2
limA2

i

)(
ξ∗1 + 1

2Ri

)2

+ (ξ∗2)
2 =

w2
0S

2
lim

A2
0

thus, by substituting the first two equations into the third one
ξ∗1 = −α1

(
1

2Ri
− Ri

A2
i

)
− α2

2Ri
,

ξ∗2 = −α1
Xi

A2
i
,

α2 = α1 +
1

A2
0A

2
i

(
F 2
lim − w2

0S
2
limA2

i

)(
ξ∗1 + 1

2Ri

)2

+ (ξ∗2)
2 =

w2
0S

2
lim

A2
0

By substituting the first three equations into the last one, one
obtains a quadratic polynomial equation of α1. This equation
has two solutions. By considering the conditions 0 ≤ α1 < 1,
0 ≤ α2 < 1, it gets α1 = α. It follows that ξ∗1 = c1, ξ

∗
2 = c2.

Note that we have case 4 if and only conditions for other cases
do not hold. The proof is complete. □

Appendix D. (Proof of Theorem 4): Problem (33), (34),
(35) is feasible if and only if the feasible set is not-empty.
This is equivalent to the condition

d∗ ≤ F 2
lim

A2
0A

2
i

(59)

where d∗ is the minimum of the following optimization
problem

min
ξ

{(
ξ1 +

1
2Ri

− Ri

A2
i

)2

+
(
ξ2 +

Xi

A2
i

)2
}

s.t.
(
ξ1 +

1
2Ri

)2

+ ξ22 ≤ w2
0S

2
lim

A2
0

(60)

The Lagrangian of (60) is given as

L(ξ, λ) =
(
ξ1 +

1
2Ri

− Ri

A2
i

)2

+
(
ξ2 +

Xi

A2
i

)2

+λ

((
ξ1 +

1
2Ri

)2

+ ξ22 − w2
0S

2
lim

A2
0

) (61)

Using Karush-Kuhn-Tucker conditions, the optimal solution
satisfies λ∗ ≥ 0, and

∂L
∂ξ1

= 2
(
ξ∗1 + 1

2Ri
− Ri

A2
i

)
+ 2λ∗

(
ξ∗1 + 1

2Ri

)
= 0,

∂L
∂ξ2

= 2
(
ξ∗2 + Xi

A2
i

)
+ 2λ∗ξ∗2 = 0,

λ∗
((

ξ∗1 + 1
2Ri

)2

+ (ξ∗2)
2 − w2

0S
2
lim

A2
0

)
= 0

or, equivalently
ξ∗1 = − 1

2Ri
+ 1

1+λ∗
Ri

A2
i
,

ξ∗2 = −1
1+λ∗

Xi

A2
i
,

λ∗
((

ξ∗1 + 1
2Ri

)2

+ (ξ∗2)
2 − w2

0S
2
lim

A2
0

)
= 0

(62)

There are two cases.
Case 1: The constraint in (60) is inactive. In this case λ∗ =

0, and
ξ∗1 = − 1

2Ri
+ Ri

A2
i
,

ξ∗2 = −Xi

A2
i

Hence d∗ = 0. Clearly, the inequality (59) is satisfied. We
have case 1 if and only if(

ξ∗1 +
1

2Ri

)2

+ (ξ∗2)
2 ≤ w2

0S
2
lim

A2
0



or, equivalently

R2
i

A4
i

+
X2

i

A4
i

≤ w2
0S

2
lim

A2
0

Recall that R2
i +X2

i = A2
i . It follows that

A2
0 ≤ w2

0A
2
iS

2
lim (63)

Hence if (40) holds then (63) is satisfied.
Case 2: The constraint in (60) is active. In this case λ∗ > 0.

Substituting the first two equations into the third one of (62),
one obtains

1

(1 + λ∗)2A2
i

=
w2

0S
2
lim

A2
0

Hence
1

1 + λ∗ =
w0AiSlim

A0
(64)

Using (62), (64), one obtains

ξ∗1 = − 1
2Ri

+ w0AiSlim

A0

Ri

A2
i
,

ξ∗2 = −w0AiSlim

A0

Xi

A2
i

Therefore

d∗ =
(
ξ∗1 + 1

2Ri
− Ri

A2
i

)2

+
(
ξ∗2 + Xi

A2
i

)2

=
(
1− w0AiSlim

A0

)2 (
R2

i

A4
i
+

X2
i

A4
i

)
= (A0−w0AiSlim)2

A2
0A

2
i

Using (59), one has |A0 − w0AiSlim| ≤ Flim. Note that we
have case 2 if and only if condition (63) is not satisfied. Hence
A0 ≥ w0AiSlim. It follows that A0−w0AiSlim ≤ Flim. This
is the condition (40). The proof is complete. □
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