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Abstract:9

This paper presents methods for the detection and assessment of non-infectious uveitis, a10

leading cause of vision loss in working age adults. In the first part, we propose a classification11

model that can accurately predict the presence of uveitis and differentiate between different stages12

of the disease using optical coherence tomography (OCT) images. We utilize the Grad-CAM13

visualization technique to elucidate the decision-making process of the classifier and gain deeper14

insights into the results obtained. In the second part, we apply and compare three methods15

for the detection of detached particles in the retina that are indicative of uveitis. The first is a16

fully supervised detection method, the second is a marked point process (MPP) technique, and17

the third is a weakly supervised segmentation that produces per-pixel masks as output. The18

segmentation model is used as a backbone for a fully automated pipeline that can segment small19

particles of uveitis in two-dimensional (2-D) slices of the retina, reconstruct the volume, and20

produce centroids as points distribution in space. The number of particles in retinas is used to21

grade the disease, and point process analysis on centroids in three-dimensional (3-D) shows22

clustering patterns in the distribution of the particles on the retina.23

1. Introduction24

The realm of using deep learning (DL) in image recognition, specifically convolutional neural25

network (CNN), exhibits significant potential in multiple medical tasks. Ophthalmology is not26

an exception, as it relies heavily on high-precision imaging techniques for both diagnosis and27

monitoring of disease progression. In fact, artificial intelligence (AI) initiatives have already been28

implemented for various ophthalmic conditions such as glaucoma [1–4], Age-Related Macular29

Degeneration [5–12], and Retinopathy of Prematurity [13–15] with remarkable accuracy.30

Non-infectious uveitis is an inflammatory disease that affects the vascular uveal tract of the eye31

and can lead to serious clinical complications in humans [16]. The condition can involve multiple32

ocular structures, including the retina, which can result in severe visual impairment. Uveitis is a33

major cause of vision loss in individuals aged 20 to 60 years, ranking fifth in prevalence.In the34

United States alone, it is responsible for more than 10% of cases of severe visual impairment [17].35

To better understand the pathogenesis of uveitis and evaluate new therapeutic and diagnostic36

techniques, experimental autoimmune uveitis (EAU) is widely used as animal model for ocular37

autoimmunity. EAU shares essential pathological features with human uveitis and can be induced38

by active immunization with retinal proteins or their peptides of susceptible mouse strains or by39

transferring ocular tissue-specific CD4+ T lymphocytes into naive recipients. Therefore, EAU is40

an effective model for studying the mechanisms underlying human uveitis and for evaluating the41

effectiveness of new therapies and diagnostic methodologies [18, 19].42

Accurate detection and monitoring of disease is a crucial component of the medical treatment43

of human uveitis. It is widely accepted that OCT is the most promising approach for quantification44

of uveitis and useful attempts to define the characteristics of active disease have been reported [20].45



Nevertheless, most current assessments remain subjective and automated algorithms are found in46

some cases to be less robust in the presence of inflammation [21]. The development of automated47

tools to objectively and precisely characterize the pathological changes induced by uveitis is the48

subject of this work. This remains a challenging and important goal in posterior uveitis.49

The first part of our work focuses on applying deep learning to classify ill retinas from 2D50

images in an early stage of the disease and before the ophthalmologists themselves can detect51

the symptoms of the disease in OCT. In addition, we apply a technique that produces a visual52

explanation of what pushes the convolutional neural network to make a particular decision.53

In the second part, we apply different methods for object detection and segmentation and54

notably, we are not limiting ourselves to only obtaining bounding boxes. Instead, we define the55

object detection task as getting a single set of 2-D coordinates corresponding to the location of56

each object. The location of an object can be any key-point, such as its centre. Unlike other57

key-points detection problems, we do not know in advance the number of points in a slice taken58

from a retinal image. To also make the description of the problem as generic as possible, we do59

not assume any constraints between points, unlike cases such as pose estimation, as described60

in [22]. This definition of object location is more appropriate for an application such as ours,61

where the objects are very small and/or overlap. To evaluate the results of the proposed method,62

we compare it to one of our MPP methods then we trained Faster R-CNN [23] on our database63

with bounding boxes as an annotation.64

The final part of this article shows how we can take advantage of the segmentation of retina and65

particles to extract some important information from retinas on individual days of the analysis or66

to perform a point process analysis to study the distribution.67

2. Material and Methods68

2.1. Deep learning approach for classification and explainability69

In this section, our aim is to perform a classification task that involves comparing pairs of images70

captured on different days, as well as performing a collective classification across all available71

days. In addition, we use an explainable AI methodology to gain a comprehensive understanding72

of the classification outcomes and illuminate the underlying factors that contribute to the results73

obtained.74

2.1.1. EfficientNet-B775

The theoretical foundation of deep learning posits that the use of deep architectures leads to76

the extraction of increasingly detailed features, thereby improving classification performance.77

However, empirical evidence has demonstrated that after a certain number of layers, the78

performance of such architectures begins to deteriorate. To address this issue, He et al. [24]79

proposed the residual block, which establishes a direct connection, or a "skip" connection,80

between the beginning and the end of a convolution block. This allows the architecture to retain81

features from earlier layers, mitigating overfitting. However, this technique suffers from two82

drawbacks, namely, an increase in the number of layers and the high memory usage associated83

with storing and summing large volumes of characteristics. In response, Tan et al. [25] introduced84

the inverted residual block, which utilizes features with fewer channels, and links them together85

in a "narrow -> wide -> narrow" analogy.86

Beyond simply optimizing the architecture to achieve greater depth with reduced memory87

usage, Tan et al. [25] proposed a method for automatically controlling the three dimensions of an88

architecture (i.e., depth, width, and resolution). This approach is employed in the EfficientNet-B089

architecture introduced in the same work. The proposed method utilizes a coefficient, denoted90

as 𝜓, which regulates the three dimensions to achieve a balance between model accuracy and91

computational efficiency. Specifically, the number of layers, 𝑑, is given by 𝑑 = 𝛼𝜓 , the number of92



filters, 𝑤, is given by 𝑤 = 𝛽𝜓 , and the resolution of the input image, 𝑟 , is given by 𝑟 = 𝛾𝜓 . These93

dimensions are subject to two conditions: i) 𝛼×𝛽2×𝛾2 ≈ 2, which ensures that the increase in94

architecture is proportional to an increase in floating point operations per second (FLOPS) with a95

scaling factor of 2𝜓 , and ii) 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1, which guarantees an increase in the dimension96

in question. In the present work, we consider the EfficientNet-B7 architecture.97

2.1.2. Grad-CAM98

Deeper representations in CNNs can capture higher-level visual structures, which can help to99

identify more complex visual patterns. In addition, convolutional layers in CNNs preserve spatial100

information that is lost in fully connected layers, thus achieving the best compromise between101

high-level semantics and detailed spatial data information. The final convolutional layer in a CNN102

is particularly important because neurons in this layer look for semantic class-specific information103

in the image. Gradient-weighted class activation mapping (Grad-CAM), introduced by Selvaraju104

et al [26], is a technique that uses gradient information flowing into the last convolutional layer105

of the CNN to assign importance values to each neuron for a specific class of interest. This106

technique is general and can be used to explain the activations of any layer of a deep neural107

network. In our work, we use Grad-CAM to obtain insights into how the network is processing108

images, Figure 1 summarize the workflow for obtaining the heat-maps.109
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Fig. 1. The pipeline of Grad-CAM. The input image is fed to a trained neural network
(EfficientNET-B7) in order to obtain the classification result. Back propagation is
performed with ill retina = 1 and healthy retina = 0. Global average pooling of the
gradient is calculated for each channel and used as weights for the network. The weights
are then multiplied with the feature map, summed and passed to the ReLU to obtain the
heatmap.

2.2. Particles detection110

The standardized numerical grading of cells or flare observed during slit-lamp examination by111

ophthalmologists using the standardization of uveitis nomenclature (SUN) grading system is112

currently the widely recognized gold standard method for evaluating the severity of anterior113

uveitis [27]. However, developing automated approaches capable of achieving similar levels of114

accuracy and reliability can significantly enhance the diagnostic and decision-making processes115



associated with this condition. In the ensuing section, we utilize three distinct approaches, ranging116

from MPP to fully supervised techniques, to detect and/or segment uveitis particles. Furthermore,117

we extend the detection process to extract the volume of each particle in 3-D. This additional118

information can serve as a valuable tool in further exploring the underlying characteristics of the119

disease, as we will demonstrate.120

2.2.1. Supervised object detection121

Faster R-CNN, a CNN architecture proposed by Ren et al. [23], is a powerful tool for detecting122

objects of interest within images. The network is composed of two fundamental components:123

a CNN backbone, which serves to extract high-level features from the image, and a region124

proposal network, which generates high-quality proposals for object regions within the image,125

see Figure 2. The latter component leverages another CNN to simultaneously perform object126

boundary regression and objectness classification for each proposal. The resulting proposals are127

subsequently utilized to accurately identify the location of objects of interest, which are assigned128

class labels. In our case, a pre-trained ResNet50 [24] architecture is employed as the backbone to129

extract features.130
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Fig. 2. Faster R-CNN to predict bounding boxes around the particles.

2.2.2. Weakly supervised segmentation131

In the deep learning literature, convolutional network techniques, specifically the hourglass132

architecture complemented by an augmented loss function, have been identified as an effective133

means of determining both the number and location of objects using only point annotations [28–30].134

In our work we used the method proposed by Laradji et al. [31], where the authors use an135

hourglass architecture to map an image to a matrix of probabilities that represent the probability136

of an pixel to belongs to an objects or the background. The novelty of the work is the use of new137

loss that consists of four terms: image-level loss adjusts the model to determine that at least one138

pixel of the image belongs to each class present in the image, while Point-level loss encourages it139

to correctly identify pixels with point annotations. Split-level loss discourages the model from140

predicting blobs with two or more point annotations, while False Positive loss reduces the number141

of false positive predictions in the model’s output. Figure 3 shows the workflow of the method to142

predict particles.143

2.2.3. MPP for object detection:144

To detect particles using conventional techniques we consider the marked point process framework145

to fit a set of vertical rectangles on the brightest spots on each 2D image of the retina stack [32].146
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Fig. 3. Weakly supervised segmentation with LC-FCN. 2-D OCT images are used as
input. The FCN8 architecture is used to generate probability maps. These represent the
probability of each pixel being part of a particle. The output of FCN8 is thresholded by
0.5 and then passed to a 2-D connected components algorithm to obtain the masks and
corresponding number of particles.

The detection was performed with the software ObjMPP [33]. We estimate a collection of non147

overlapping rectangles. Each object exhibits a contrast with its neighborhood evaluated by the148

normalized difference between pixel means within the rectangle and the crown surrounding it149

respectively.150

Consider the image 𝐼 = {𝑖𝑠 ∈ Λ, 𝑠 ∈ 𝐿}, where Λ ⊂ N is the grey level set and 𝐿 ⊂ R2 is the151

image plane. A vertical rectangle is defined by {𝑟, 𝑤, 𝑙} ∈ 𝑅, 𝑅 = 𝐿×[𝑤𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥]×[𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥],152

𝑤, resp. 𝑙, representing the width, resp. the length, of the rectangle.153

A configuration is a set of rectangles:154

𝜔 = {𝑟𝑖 , 𝑖 ∈ {1, 𝑛}, 𝑟𝑖 ∈ 𝑅} ∈ Ω. (1)

The detection result is the configuration minimizing the following energy function:155

𝐸 =
∑︁

𝑖∈{𝑖,𝑛}
𝐷 (𝑟𝑖)+

∑︁
𝑖, 𝑗∈{𝑖,𝑛}×{1,𝑛}

𝑂 (𝑟𝑖 , 𝑟𝑖) (2)

where 𝐷 (𝑟𝑖) is the data term given by:156

𝐷 (𝑟𝑖) = 𝑄(𝑥) (3)

with Q a quality function defined as follows :157

𝑄(𝑥) =


1− 𝑥
𝑥0
𝑖 𝑓 𝑥 < 𝑥𝑜

exp
(
−(𝑥−𝑥0 )

𝑥0

)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

𝑥0 begin a threshold value and158

𝑥 =
(`(𝑟𝑖)−`(𝑑 (𝑟𝑖)))2√︁
𝜎2 (𝑟𝑖)+𝜎2 (𝑑 (𝑟𝑖))

(5)



where `(𝑟𝑖) (resp. 𝜎2 (𝑟𝑖)) is the mean value (resp. the variance) of pixels in the rectangle159

𝑟𝑖 , and `(𝑑 (𝑟𝑖)) (resp. 𝜎2 (𝑑 (𝑟𝑖))) is the mean value (resp. the variance) of pixels in the160

neighborhood of the rectangle 𝑟𝑖 .161

𝑂 (𝑟𝑖 , 𝑟 𝑗 ) is the non overlapping term:162

𝑂 (𝑟𝑖 , 𝑟 𝑗 ) =


0 𝑖 𝑓 𝑟𝑖∩𝑟 𝑗 = ∅

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

The energy minimization is performed using the multiple births and cut algorithm [34]. The163

parameters have been tuned on three images taken from three different stacks. The same parameter164

values have then been used on the whole datasets.165

2.3. Statistical analysis166

This section involves utilizing 3-D masks of uveitis particles to perform a statistical analysis167

of their cluster patterns in the retina. Additionally, we use a CNN network to detect the retina168

surface, which can facilitate the investigation of particle distribution patterns in relation to the169

retinal surface.170

2.3.1. Extraction of the retinal surface:171

The community has focused on developing automated software to segment distinct retinal layers in172

OCT images of the mouse eye, as evidenced in previous works [35–37]. However, in our current173

study, our objective is limited to obtaining a mask for all retina surfaces in 2D, rendering a more174

targeted approach suitable. Due to the unavailability of ground truth data, a MPP method was175

adopted. Since OCT images of the mouse retina are often afflicted by noise, poor resolution and176

particles or artefacts near the surface of the retina, the task at hand is challenging. The proposed177

method relies on classical image processing techniques and involves the heuristically-based178

pre-setting of certain parameters, such as the image threshold, which is used to achieve image179

binarization. The steps for retinal surface extraction from OCT images are depicted in Figure 4.180

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. A multi-step image processing approach for extracting the retina surface from
an OCT image. (a) Original image, (b) Extracted masks of particles, (c) Image without
particles, (d) Normalization of grayscale on small columns (of 10 pixels) of the image,
(e) Binarization with a threshold, Application of connected components algorithm
in 2-D and removing small regions, then smoothing image with Gaussian filter, (f)
Extracted retina mask, (g) Extracted retina surface.

As classical image processing techniques are not robust to variability in contrast and gray181

scale, modification of thresholds and parameters of the previous technique is a must. For that we182

used the generated masks by the classical approach to train a UNet architecture [38] to map OCT183

images to masks of the retina (Figure 5).184
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Fig. 5. Deep Learning-Based Retina Surface Extraction using U-Net.

2.3.2. Particle distribution185

Extracting particle distribution in 3-D is the base for any study on particle distribution or186

movement in the retina. Figure 6 summarize our proposed approach. First, we pass all slices of187

the retina to our segmentation algorithm (LCFCN), accuracy is enhanced by letting just particles188

inside a bounding box given by Faster R-CNN. Then we construct a 3-D volume of particles, on189

which we apply connected components in 3-D to create a label on each whole particle. The final190

step consists in extracting a centroid of each element to obtain a points distribution.191

VGG16 Encoder Decoder

trained LCFCN

Generating
3D volume

Input 2D slices Generated 3D
volumeOutput 2D masks

Fig. 6. Pipeline to generate 3-D distribution of particles. Generating 3-D volume
step include gathering 2D slices in a unique volume, followed by application of 3-D
connected components algorithm and shape Filtering to enhance particle detection.

The subsequent subsection provides an illustrative example of the functions that can be utilized192

to study the patterns of uveitis distribution. Specifically, we employ k-ripley in 3-D to investigate193

the clustering of uveitis particles across multiple days.194

2.3.3. Clustering index (K-Ripley function):195

Ripley’s K-function is a numerical tool for evaluating the structure of the underlying point pattern196

in a sample. Its non-parametric nature means that it is independent of prior knowledge about197

the distribution family of samples. Regardless of the domain to which it is applied, Ripley’s198

K-function can be expressed as:199

𝐾 (𝑟) = W
𝑛(𝑛−1)

∑︁
𝑖

∑︁
𝑗≠ 𝑗

I{∥xi−xj∥ ≤ 𝑟}𝑐(𝑥𝑖 , 𝑥 𝑗 , 𝑟), (7)

where n is the total number of points in the observation window, I{∥xi−xj∥ ≤ 𝑟} is an indicator200

function which is worth 1 if points i and j are at a distance at most equal to r and 0 otherwise, and201



c(𝑥𝑖 ,𝑥 𝑗 ;r) corresponds to the correction of edge effects proposed in [39] and W to the study area202

represented in Figure 7.203

Fig. 7. The image of segmented particles in 3-D is in white, the volume of the entire
retina is in red, and the studied area where the K-Ripley function is calculated is the
sphere in green.

The full pipeline used for small particles detection and statistical analysis of their distribution204

is summarized in figure 8.205

3. Results206

The present section details the results obtained for all three components of our proposed work,207

which were developed to demonstrate effective tools for the automated quantification of uveitis208

in OCT images of murine retina. By evaluating the performance of these tools across multiple209

metrics, we aim to demonstrate their effectiveness in accurately detecting and quantifying uveitis210

in OCT images.211

3.1. OCT Image Classification212

Prior approaches for the grading or classification of uveitis in OCT images relied on the assessment213

of the presence or absence of distinct particles [40]. Nevertheless, during the initial phases of214

disease progression, images of eyes that will subsequently exhibit uveitis show resemblance to215

those of healthy eyes, while in other instances, healthy retinas manifest particle presence at day216

0 [41]. This renders differentiation based solely on such approach a challenging task.217

We transferred 2 million disease-causing T cells into healthy mice of the C57BL/6 strain on218

day 0. This triggered the development of experimental autoimmune uveitis in the mice. To track219

the progression of the disease, we used OCT to obtain images of the mice’s eyes. We took images220

from two separate groups of mice at different time points: before the T cell transfer (day 0) and221

then on days 2, 6, and 14 after the transfer. We obtained from each retina a 3-D image with 512222

2-D slices.223

3.1.1. Binary classification:224

Our database comprises a set of 19 mouse retinas, acquired sequentially at day0, day2, day6,225

and day14, during the course of disease evolution. Specifically, day0 samples represent healthy226

retinas, while the subsequent scans correspond to different stages of the disease. Each retina227

consists of 512 2-D frames of size 1024×512. Our primary objective is to perform binary228



Fig. 8. Flowchart illustrating the sequential stages and processing steps employed in
the study.

classification of the disease by distinguishing days with uveitis (i.e., day2, day6, and day14)229

from the initial day. For this purpose, we utilize Efficient-Net7 as our underlying architecture,230

performing two-by-two classification, targeting day 0 - day 2, day 0 - day 6, and day 0 - day 14,231

respectively. We maintain the original images without any pre-processing, except for resizing each232

frame to 600×300 to match the model’s input shape. To improve generalization performance, we233

apply data augmentation techniques, such as random vertical flips, random zooms between 0 and234

10%, and random rotations relative to the centre, within an angle range of 0 to 7°.235

To optimize the model’s performance, we train it with a batch size of 5, using the Adam236

optimizer with a learning rate of 10−4 [42], and binary-cross entropy as the loss function. Due237

to the limited amount of data available, we employ a cross-validation technique on retinas.238

Specifically, in each experiment, we select 17 retinas from each day for training and reserve 2239

retinas for testing. This is motivated by the fact that images from the same retina may resemble240

each other. To prevent over-fitting, we perform out-of-sample testing at the retinas level.241

In particular, we use the entire original images, we take two healthy retinas on day 0 and242

another two with uveitis for different days, one by one. For each case of classification, we run 5243

separate experiments and we calculate the accuracy of classification (equation 8). The metrics244

obtained are summarized in table 1 for further analysis and interpretation.245

Accuracy =
True positives+True negatives

Total number of images
(8)

Sensitivity =
True positives

True positives+False negatives
(9)



Specificity =
True negatives

True negatives+False positives
(10)

Days Day0-Day2 Day0-Day6 Day0-Day14

mean of accuracy ± std 0.8058 ± 0.071 0.94 ± 0.089 0.972 ± 0.01

mean of sensitivity ± std 0.794 ± 0.12 0.9374 ± 0.127 0.984 ± 0.023

mean of specificity ± std 0.834 ± 0.075 0.992 ± 0.014 0.964 ± 0.023

Table 1. Mean and standard deviation of accuracy, sensitivity and specificity obtained
from 5 experiences for each case on original images.

After training the deep neural network, we utilized the Grad-CAM technique from Section 1 to246

provide interpretability and identify the important image regions that were most discriminative247

in the classification process. The Grad-CAM output for our images is illustrated in Figure 9,

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. OCT images and their corresponding Grad-CAM outputs. (a) and (b) show the
first image and its corresponding Grad-CAM output, while (c) and (d) show the second
image and its Grad-CAM output.

248

where the Figures 9(b), 9(d), 9(f) and 9(h) depicts the attention of the neural network. Notably,249

we observe that the network’s focus is consistently on the retina surface, even when the images250

contain particles, as evidenced by the image of Figure 9(h). Hence, we proceeded to curate251

a new database by extracting the retina surface from the original dataset. An example of this252

process is demonstrated in Figure 10. We replicated the training conditions outlined previously,253

with the exception of the database utilized. In this instance, we trained our network to perform254



(a) (b) (c) (d) (e) (f)

Fig. 10. Original OCT images (a), (c), (e) and the extracted surface of the retina
corresponding to each image (b), (d), (f).

classification solely on the extracted retinal images (Like images in Figure 10(b), 10(d), 10(f)).255

The obtained results are presented in Table 2.256

Days Day0-Day2 Day0-Day6 Day0-Day14

mean of accuracy ± std 0.84 ± 0.126 0.9099 ± 0.077 0.8895 ± 0.0288

mean of sensitivity ± std 0.826 ± 0.145 0.885 ± 0.125 0.972 ± 0.04

mean of specificity ± std 0.866 ± 0.139 0.9708 ± 0.06 0.8356 ± 0.062

Table 2. Mean and standard deviation of accuracy, sensitivity and specificity obtained
from 5 experiments for each case on images containing only retina surfaces.

3.1.2. Multi-class classification:257

Previous work on grading systems for uveitis, based on 3D images, has relied on quantifying258

the number of particles [41]. In this study, we propose a CNN approach to classify disease259

progression across multiple time points simultaneously. We utilized the same network as in260

previous section (EfficientNet-B7), adapted the output layer to comprise four neurons, and261

implemented cross-entropy loss with soft-max as the output activation function. Our classes262

were based on the days of disease development, specifically day 0, day 2, day 6, and day 14. To263

ensure data balance, we utilized 17 retinas comprising 512 slices from each class, and employed264

identical pre-processing steps as in section 3.1.2. For testing, we set aside two retinas from265

each day. As for binary classification, we trained our model using two distinct databases, one266

containing original images and another containing only retina. The obtained accuracy for both267

scenarios is presented in Table 3. To further understand where the model struggled or became268

confused in the case of multi-class classification, confusion matrices for both cases are depicted269

in Figure 11.270

3.2. Small particles detection on 2-D OCT images:271

In this study, we proposed three distinct methods for particle detection on 2-D images. Deep272

learning approaches differ in terms of their labeling and output capabilities. To begin with, we273

trained a Faster R-CNN model (Figure 2), which is a supervised method that uses bounding274

boxes for detection. However, due to the substantial time required to annotate data for supervised275



Database Original images Images with retina only

mean ± std 0.742 ± 0.0151 0.704 ± 0.0233

Table 3. Mean and standard deviation of accuracy obtained from 5 experiences on
original images and images only with retina.
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Fig. 11. Confusion matrices for multi-day classification of original images. (a) Using a
dataset of original images; (b) Using a dataset of images with retina surface only.

learning, we suggest the use of a weakly supervised approach called LCFCN (Figure 3), which276

only requires point annotations to obtain per-pixel segmentation of particles as output. In addition,277

we employed a MPP technique [32] that utilizes parameter fixation and retina surface masks to278

output bounding boxes around objects of interest.279

The training of the first two methods was performed on a data-set of 250 2D OCT images,280

with bounding boxes and point annotations provided sequentially. We utilized stochastic gradient281

descent as an optimizer with a learning rate of 10−3. For testing, we used 20 images that were not282

used during training and contained a considerable number of particles (> 10). The test images283

were labeled by two other specialists.284

To evaluate the performance of the particle detection methods using the same technique, we285

transformed the predicted bounding boxes into squared shape masks (segmentation), and used286

the center of ground-truth bounding boxes as the annotation point. We calculated the metrics287

using an existing software dAccuracy [43], which uses points as the ground truth and masks as288

the output. The metrics that we calculated included precision, recall, and the F1 Score, which is289

the harmonic mean of precision and recall. The obtained results are presented in Table ??.290

Precision =
TP

TP+FP
, (11)

Recall =
TP

TP+FN
, (12)

F1 score =
2×TP

2×TP+FP+FN
, (13)



Where TP are true positives, FP are false positives and FN are false negatives.291

Annotation of 1st expert Annotation of 2nd expert

Method ObjectMPP F-RCNN LCFCN ObjectMPP F-RCNN LCFCN

Precision 64.27% 80.92% 52.02% 61.55% 68.49% 57.79%

Recall 72.92% 86.13% 94.71% 89.21% 95.94% 81.43%

F1 score 67.98% 82.75% 66.73% 72.19% 79.51% 67.18%

Table 4. Results of particle detection using the MPP, supervised (F-RCNN), and weakly
supervised (LCFCN) methods. Ground truth is given on the same dataset by two
experts.

(a) (b) (c) (d)

Fig. 12. Different particle detection methods. (a) Original OCT images. (b) MPP
method. (c) weakly supervised method. (d) supervised method. Green points on
images represents annotation points or the ground truth. In red we have predictions
(bounding boxes or masks).

3.2.1. Particle counting:292

The LCFCN method was selected for particle detection due to its ability to generate per-pixel masks293

for accurate localization of particles, and subsequent refinement of metrics by discarding false294

positives via a bounding box provided by Faster R-CNN. To obtain a volumetric representation295

of detected particles, we reconstructed detections in 3-D by applying a connected components296

algorithm for labelling. In order to mitigate the effects of false positives, particles that were297

found to exist on only a single slice were eliminated from consideration. This step was based on298

the minimum expected size of a particle, as determined by the longitudinal resolution of the OCT299

system. We present the results of the number of particles between different days as a box plot in300

Figure 13.301

In the following subsection we investigate the distribution of uveitis particles and the variations302

in their numbers across different days, with respect to their distance from the retina.303
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Fig. 13. Box plot analysis of number of particles in retinas by days.

3.2.2. Measuring distance between particles and surface of the retina:304

To measure the distance between each particle and the surface of the retina, we adopted an305

alternative approach to the conventional perpendicular projection method. Specifically, we306

utilized the negative values of the retina mask to compute the distance between each point in the307

3-D space and the nearest background point. In other words, the lowest distance between each308

point and the retina was calculated, thereby enabling accurate particle distance measurements.309

The distance value was subsequently extracted using the centroid coordinates of each particle.310

Figure 14 presents the results obtained after applying this method.311

Fig. 14. Measuring distance between particles and the surface of the retina. Images
from left to right represent: the original image, extracted retina mask, negative values
of the mask, and heat-map of the distance between each point and the retina surface.

Accurate measurement of the distance between the centroids of particles and the retina is312

a critical aspect in understanding the relationship between the particle distribution and the313

progression of the disease. To this end, Figure 15 displays a box plot of the number of particles314

detected in each slice of the OCT image at various time points. By examining the distribution of315

particle counts over time, we can better comprehend how the disease manifests and progresses316

within the eye.317
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Fig. 15. Box plot summarizing results comparing the distribution of different days in
terms of the number of particles in each slice of distance from the retina surface.

3.2.3. Analysis of Distribution of particles in the vitreous above the retina:318

To analyse the spatial distribution of a group of points, we adopted the K-Ripley function [44], a319

popular method for spatial point pattern analysis. The K-Ripley function enables us to determine320

whether the observed point pattern is more or less clustered than expected from a given distribution.321

In our case, we compared the set of points with a random distribution. We applied the 3D322

K-Ripley function with edge correction, as described in [39], to the analysed point set. The323

study area was defined as a sphere with a radius equal to the width of the image, as shown in324

Figure 7. The obtained results for different retinas on different days are presented in Figure 16.325

The K-Ripley function plot for a given radius (r) between 0 and 70 pixels consistently exceeded326

the complete spatial randomness (CSR) plot, which is defined by 4𝜋
3 ×𝑟3, i.e. the entire volume327

of the sphere. This suggests that the uveitis particles exhibit a clustered pattern.328

The heatmaps of the particle distribution projected onto the retina surface (xy) axis are329

presented in Figure 17. The results indicate that on day 2, the particles exhibited a higher degree330

of clustering in comparison to the other observed days. These findings are consistent with the331

higher values obtained for the K-function (Figure 16) of particles on this particular day, thus332

providing evidence for the greater clustering tendency of particles during this period.333

4. Discussion334

4.1. Early detection of uveitis335

The clinical assessment of uveitis is informed by OCT, but quantifying the extent of disease336

and applying this metric to therapeutic decision making remains a challenge [21] [45]. To337

address this challenge, we proposed the use of convolutional neural networks (CNNs) for the338

early detection of uveitis. Our model exhibits promising performance in differentiating between339

healthy and diseased retinal images. Specifically, in early stages of the disease, where clinical340

assessment of tissue state is difficult, our approach achieves up to 80% accuracy in binary341

classification between day 0 and other days, measured on a per-slice basis using 2D retinal342

images. To gain an overall understanding of the retina, we recommend utilizing a voting ensemble343

method. Our proposed CNN-based approach offers a novel solution to aid in the early detection344

and management of uveitis. Enabling interpretability in deep learning models is paramount to345

providing clinical intuition regarding the salient features of an OCT image. In this study, we346
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Fig. 16. 3D K-Ripley function for 8 different retinas of different days of evolution of
the disease.

employed the Grad-CAM technique, which generates visual explanations for model decisions.347

Our findings indicate that, at this time point, the model primarily discriminates between the348

two classes based on the analysis of the retinal surface and subsurface tissue. To validate this349

observation, we employed the same images utilized in previous experiments and isolated the350

segmentation of the retina, effectively removing all information above and below it. The model351

was then retrained on this reduced dataset. Encouragingly, our results demonstrate that the352

model can accurately classify retinal images using solely the retinal surface, with performance353

metrics comparable to the original experiments conducted on the full images. These findings354

highlight the potential utility of our approach for clinical decision-making and demonstrate355

the potential of interpretability techniques to enhance the understanding and usability of deep356

learning models in the medical field, in ophthalmology in particular. Expanding the scope of357

our classifier to encompass multiple classes allowed us to investigate the capability of the model358

to differentiate between different disease stages, as captured by 2D images of either the full359

retina or its surface. Our results indicate an accuracy ranging between 70% and 74% in this360

task. However, the model demonstrated some ambiguity in discerning between certain disease361

stages, which may be attributed to differences in the severity of the disease at different time362

points. Specifically, the response of the retina to the disease may vary in duration, leading to a363

delayed manifestation of its severity. To address this limitation, we suggest the development of a364

novel database that accounts for the gravity of the disease through the incorporation of histologic365

information. Such a database would enable the training of deep learning models with greater366

sensitivity and specificity, ultimately improving the diagnosis and management of uveitis.367
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Fig. 17. Heatmaps display the distribution of particles across different days, with the
first row corresponding to day 2 (Images from (a) to (e)), the second row to day 6
(Images from (f) to (j)), and the third row to day 14 (Images from (k) to (o)).

4.2. Segmenting and counting particles in OCT368

We used a weakly supervised method, LCFCN, which utilizes points as ground truth and369

outputs per-pixel segmentation of particles. We compared this approach to a well-established370

supervised object-detection method, Faster R-CNN, which employs bounding boxes as annotations.371

Additionally, we assessed a MPP technique that utilizes only the mask of the retina and a372

handcrafted parameter. Although the metrics of LCFCN were suboptimal due to false positives,373

we leveraged this approach for object detection by retaining only masks that were present in a374

bounding box generated by Faster R-CNN. This decision was motivated by the fact that LCFCN375

produces masks that are used to calculate the volume of each particle in 3D. We further annotated376

the 3-D reconstructed particles using the connected components algorithm, and removed particles377

present in only a single frame, based on the particle’s shape and the resolution of our OCT.378

We emphasize that our approach represents the first pipeline in the literature that utilizes deep379

learning to count the number of particles in a 3-D retina. Box plots of particle counts for each380

day suggest the possibility of finding particles in healthy retinas, while the number of particles381

shows significant variability during days 6 and 14. Notably, our findings indicate that the day382

cannot be accurately predicted based solely on the number of particles.383

4.3. Segmenting retina surface and statistical analysis384

To accurately classify retinas or study the distribution of particles with respect to the retina,385

a reliable segmentation of the retina surface is crucial. In this regard, we presented a novel386

method that employs fundamental image processing techniques to overcome the inherent noise387

present in mouse OCT retina images. While our approach has shown promise, we acknowledge388

its limitations, including the need to carefully select an appropriate threshold of binarization,389

given the considerable variability in grey levels observed between different retinas. To address390



this issue, we propose the use of a deep learning architecture, specifically a UNet, trained on391

well-generated masks derived from the image processing technique. Compared to our initial392

method, this new approach is visually more robust, produces better results, and eliminates the393

need to manually adjust parameters. To determine the spatial relationship between the centroids394

of the particles and the surface of the retina, we computed the shortest Euclidean distance395

between the non-zero points (i.e., those belonging to the particles) and the nearest zero point (i.e.,396

background) on the retinal image. This method offers several practical advantages over direct397

projection onto the surface of the retina, as it avoids the potential for bias that may arise due398

to variations in the orientation of the retina in the image. In our final analysis, we investigated399

the spatial distribution of the centroids of particles as a point process, utilizing the 3D K-Ripley400

function with edge correction. The K-Ripley function was computed over a range of radii, and the401

resulting values were compared to those obtained for complete spatial randomness. Our analysis402

revealed a significant clustering effect of particles in 3D, as indicated by the deviation from the403

complete spatial randomness. It is providing important insights into the spatial organization of404

particles, which may have implications for understanding the underlying mechanisms of disease405

progression. However, it is important to note that this method is not capable of describing the406

movement or interaction of particles, and further studies should focus on these aspects to gain a407

more comprehensive understanding of the disease process.408

5. Conclusion409

We presented a fully automated framework for the evaluation and quantification of uveitis in410

OCT images of the mouse retina. Upon future adoption in humans, clinicians may be able to use411

it to speed up diagnostic as it enables the classification of 2D images into sick or healthy, even in412

the early stages of the disease. Moreover, we tried to justify neural network results by applying413

an explainable artificial intelligence method that provides a visual depiction of important features414

that our model uses to choose a class. The multi-class classification shows that deep learning415

can capture some characteristics that differentiate between days. We showed that important416

discriminative features peculiar to uveitis, are within the retina and not in the number of particles.417

Our framework can be used to detect, and extract centroids of particles in space to perform418

statistical analysis on the distribution of points, which in the future can prove beneficial to track419

particles and understand the evolution of the disease.420
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