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Mathematical derivation of a Reynolds equation for
magneto-micropolar fluid flows through a thin domain

Marfa ANGUIANO* and Francisco Javier SUAREZ-GRAU'

Abstract

In this paper we study the asymptotic behavior of the stationary 3D magneto-micropolar fluid flow through
a thin domain, whose thickness is given by a parameter 0 < ¢ < 1. Assuming that the magnetic Reynolds
number is written in terms of the thickness €, we prove that there exists a critical magnetic Reynolds number,
namely ReS, = ¢ 2, such that for every magnetic Reynolds number Re,, with order smaller or equal than
Rey,, the magneto-micropolar fluid flow in the thin domain can be modeled asymptotically when ¢ tends to
zero by a 2D Reynolds-like model, whose expression is also given.

AMS classification numbers: 35Q35, 76W05, 76A20.

Keywords: Magneto-micropolar fluid; thin-fluid film; homogenization; magnetic Reynolds number.

1 Introduction

The magneto-micropolar fluid is the electric conductive micropolar fluid under the presence of a magnetic field.
The equations that describe the motion of a viscous incompressible magneto-micropolar fluid in a domain Q C R3
in a time interval [0,T], 0 < T < +o0, are given by (see [1] and [39] for instance):

du+ (u-Vu— (p+x)Au+V (p+ 3[b*) = (b V)b + 2xrot(w) + f,
Ow + (u - V)w — kAw — AV div(w) + dxw = 2xrot(u) + g,

b —vAb+ (u-V)b+ Vg = (b-V)u, (L)
div(u) =0, div(b) =0,
supplemented with the following boundary conditions
u=0, w=0, b=0 on[0,7] x 09, (1.2)
and initial conditions
u(0,2) =uo(x), w(0,z)=wo(x), b0,z)="0bo(x), =zl (1.3)

Here, u(t,z),w(t,z),b(t,r) € R® denote respectively the velocity field, the microrotational velocity and the
magnetic field, and p(t, x), ¢(¢, z) € R denote respectively the hydrostatic pressure and the magnetic pressure at
a point = €  and in a time ¢ € [0,T]. The parameter u denotes the kinematic viscosity, x the microrotational
viscosity, 1/v the magnetic Reynolds number, and x and X the angular viscosities. From physical reasons, we
assume that these constants should satisfy the condition min{u, x, v,k + A} > 0, see e.g. [1], [39]. The functions
f(t,z),g(t,r) € R? are given external fields.
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We remark that if the microstructure of the fluid and the magnetic field are not taken into account, i.e. w =0
and b = 0, the system (1.1) is the the classical Navier-Stokes equation. If the magnetic field is zero, i.e. b = 0,
then (1.1) coincides with the micropolar fluid system proposed by Eringen [20], which describes the motion of
numerous real fluids better than the classical Navier-Stokes equations, see for example the book of Lukaszewicz
[24]. Also, if w = 0 and x = 0, then (1.1) reduces to the magneto-hydrodymanics (MHD) system, which describes
the motion of electrically conducting fluids such as plasmas, liquid metals, and electrolytes, see for example [19].

The magneto-micropolar model (1.1) was first introduced by Ahmadi and Shahinpoor [1]. Rojas-Medar and
Boldrini [39] proved the existence of weak solutions in a bounded domain and also, the uniqueness for a two-
dimensional domain. We refer to Ortega-Torres and Rojas-Medar [31], Perusato et al. [36], Cruz et al. [17] and
Niche and Perusato [30] for different studies concerning the analysis of the solutions of system (1.1)-(1.3). With
respect to the stationary magneto-micropolar fluids, we refer to Durdn et al. in [18] and Kim and Ko [21].

On the other hand, engineering practice also stresses the interest of studying the effects of a domain with small
thickness, i.e. a thin domain, on the behavior of the fluid flow. For that reason, it is important to deduce
asymptotic models in thin domains. Throughout the mathematical literature, one can find many papers on the
rigorous derivation of the asymptotic models describing the flow of Newtonian, non-Newtonian, micropolar and
MHD fluid flows through thin domains, see e.g. [3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 25, 26, 27, 28, 34, 35, 40, 41,
42, 43] and references therein. However, it seems that there are no rigorous studies of the asymptotic behavior of
magneto-micropolar fluid flows through thin domains, which represents the main objective of the present work.

In this sense, we consider in this paper a magneto-micropolar fluid flow through a thin domain Q. C R3, with
thickness 0 < € <« 1. The thin domain Q. is the set of R? with horizontal variables 2’ = (z1,x2) belonging to a
subset w C R?, and vertical variable z3 such that 0 < 23 < eh(2’), where h is a positive and smooth function
(see Section 2). Thus, the bottom of the domain 2. is described by the points 2’ € w,x3 = 0 and the upper wall
of Q). is described by the points satisfying

¥ Ew, x3=ch(x).

This type of thin domain has been extensively studied for the isothermal flows, see e.g. [10, 16] for the classical
Newtonian fluid flow, see e.g. [15, 29] for the flow of the generalized Newtonian fluid, and see e.g. [11, 33] for the
micropolar fluid flow. In these papers, by using homogenization techniques, they derive different types of lower
dimensional Reynolds equations. As far as the authors know, the flow of a magneto-micropolar fluids has not been
yet considered in the above described setting. Thus, in this paper we consider a stationary magneto-micropolar
fluid flow through the thin domain 2. described above.

The behavior of the magneto-micropolar fluid flow can also be influenced by the order of the magnetic Reynolds
number, as can be observed in several studies, see e.g. [2, 22, 23, 37, 44]. Then, to study its effects we assume that
the magnetic Reynolds number 1/v is proportional to the thickness of the domain and denoted by Ref, =77,
with v € R. As a result, we consider the following system

(e - V) = (1 + ) Az 4+ (pe + 3[bol?) = (b - V)b + 2yrot(wn) + [ in K,
(e - VIwe — kee? Awe — \e?V div(w.) + 4xw. = 2xrot(us) + g.  in Q,
—veeV Abe + (ue - V)be + Vge = (be - V)ue  in g, (1.4)
div(ue) =0, div(be) =0 in €,
u, =0, w,=0, b.=0 on I,

where v, ke, Ae = O(1) and the external forces are of the form f. = (f1(z'), f2(2'),0) and g. = e(g1(2'), g2(2'), 0)
(see Section 2 for more details). The goal of this paper is to study the asymptotic behavior of the weak solutions
of the magneto-micropolar fluid in such domain when the thickness € tends to zero. To do that, we first obtain
the corresponding reduced linear limit system for a restricted range of values of «, and finally, we derive a
generalized 2D magneto-micropolar Reynolds equation for the hydrostatic and magnetic pressures.

More precisely, we first prove that there exists a critical value . = 2, i.e. a critical magnetic Reynolds number
Ref, = 77, such that for every v < 7, (i.e. for every magnetic Reynolds number ReZ, of order smaller or equal
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than ReS, = £72) the nonlinear terms of system (1.4) vanish when e tends to zero (they don’t appear in the

limit system) and so, the fluid will be able to be modeled by a linear 2D Reynolds-type equation, and above this
quantity the nonlinear terms should be taken into account in the limit model. To prove this result, we apply
a dilatation in the vertical variable z3, i.e. we introduce the change of variables 2’ = 2’ and z3 = z3/e, which
let us to introduce the unknowns ., ﬁs,gs, Pe and ¢¢ defined in a fixed domain, independent of ¢, and denoted
by Q = w x (0,h(2')) C R3. By duality arguments and interpolation techniques, we are able to estimate both
pressures and to derive the restriction v < 2. Next, assuming this restriction on v, we prove the homogenization
process when ¢ tends to zero and identify the reduced linear limit system with unique solution denoted by
(u,w,b,p,q) (see Theorem 3.1).

We complete the paper by obtaining a generalized 2D magneto-micropolar Reynolds law for the hydrodynamic
and magnetic pressures. Thus, we obtain that the averaged velocity U® = foh(z ) Ue dz3, the averaged microro-

tation We = foh(z/) @e dzs, the averaged magnetic field B® = fh(z

0 )EE dzs and the hydrodynamic and magnetic
pressures p. and ¢. satisfy the following approximations

U.~e?U, W.meW, B.~e? 3B, p.~p, G =~cig,
where U = foh(zl) Udzs, W = foh(zl) Wdzs, B = foh(zl)gdz;g are given by
~ 3 Z/ ~,
U1(+) = “E0(h("), ke, xo 1) (f1(2') — 0, B(2)),

Oa() = "0 (h(2'), ks x ) (fol ) — 0.

Wl(z/) = %qj(h(zl)a Rey X?M)gl(zl)7
WQ(ZI) = %\I}(h(z”/% Rey Xy /l)g2(zl)7

Ws(2') = 0,

~ 3 ’ ~ ~ SZ/ . ~
By (') = -2, G(2"), By(2) = -220.,4(2"), Bs(2') =0,

12v, 12v,

defined for a.e. 2z’ € w, where the functions ® and ¥ are defined in (3.32) (see Theorem 3.4). Moreover, the
limit hydrodynamic and magnetic pressures p and ¢ are independent of z3 and are the solution of the following
generalized 2D magneto-micropolar Reynolds equation given by

div.. (h?)LZ/)@(h(z’),ﬁmX7M)Vz/ﬁ(z')) _ divs (h?’f')@(h(z’),nc,x,u)f’(z’>> |
v (M) <o,

The structure of the paper is as follows. In Section 2 we introduce the domain and make the statement of
the problem. The main results are given in Section 3. More precisely, in Subsection 3.1, we give the main
result concerning the derivation of the reduced limit system (Theorem 3.1) and in Subsection 3.2, we give the
expressions of the limit unknown and the generalized 2D magneto-micropolar Reynolds equation (Theorem 3.4).
The proof of the main results are in Section 4. We finish the paper with a list of references.

2 Formulation of the problem and preliminaries

In this section, we first define the thin domain and some sets necessary to study the asymptotic behavior of the
solutions. Next, we introduce the problem considered in the thin domain and also, the rescaled problem posed
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in the domain of fixed height, together with the respective weak variational formulations.

2.1 The domain and some notation.

Along this paper, the points z € R? will be decomposed as z = (2/,z3) with 2’ € R2, 23 € R. We also use the
notation z’ to denote a generic vector of R2.

We consider w as an open, smooth, bounded and connected set of R?, and a 3D thin domain defined by
Q.={z=(2,23) ER*xR : 2/ €w, 0 <23 <h(a)}.

Here, the function h.(z') = eh(z) represents the real gap between the two surfaces. The small parameter ¢ is
related to the film thickness. Function A is positive and smooth C!' bounded function defined for 2’ such that
1/2 < h < 1. We define the boundaries of €2 as follows

To=wx {0}, I{={(2',23) €eR®: 2’ €w, z3=nh(")}.

We denote by O, a generic real sequence which tends to zero with € and can change from line to line. We denote
by C' a generic positive constant which can change from line to line.

2.2 The problem

We consider the 3D stationary magneto-micropolar fluid equations by setting

ue(r) = (uz(x),use(x)),  be(x) = (0(2),b3(2)),  we(w) = (Wl(2), w3e(2)),

at a point = € ()., and we set additional assumptions, which will be used along the paper:

e To derive coupled effects between velocity and microrotation, we assume (see for instance [11, 32]):

K=Feel, A=X£E> Keyde = O(1).

e To take into account the influence of the magnetic Reynolds number, we assume
v=ve', v.=0(), yeR
e Due to the thickness of the domain, it is usual to assume that the vertical components of the external
forces can be neglected and, moreover, the forces can be considered independent of the vertical variable.

Thus, for sake of simplicity, given f’, ¢’ € L?(w)?, along the paper we consider the following rescaling for
fe, g= (see for instance [42, 43)):

fe=(f"(@),0), g =¢e(g'(z'),0). (2.5)
Thus, as stated in the introduction, the 3D stationary magneto-micropolar system is expressed as follows

(UE : V)ue - (:u + X)Aua +V ( e+ %|b5|2) = (be : v)be + QXYO’E(U}E) + fe in Q.,
(te - V)we — ko2 Aw, — AoV div(we ) + dxw. = 2xrot(us) + g.  in Q.,

—vee  Abe + (ue - V)be + Vge = (be - V)ue  in £, (26)
div(ue) =0, div(b:) =0 in £,
with corresponding boundary conditions
u =0, w,=0, b.=0 on 99,. (2.7)
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Definition 2.1. Fore > 0, we say that (ue, we, be, pe, q-) defined on €. is a weak solution of problem (2.6)-(2.7)
if and only if the functions u., we,b., p and q- satisfy

Ug, be, w,e € H&(Qs)gv Pe; Qe € L%(Qs)v

where LE is the space of functions of L* with zero mean value, and also satisfy the following equations

1
(n+ X)/ Du. : Dpdx +/ (ue - V)ue - odx — / pe div(p) dz — 7/ |be |2div () dz
Qe Qe Q. 2 Qe

(2.8)
:/ (b5~V)b5~<pdx+2x/ rot(ws)ogod:v+/ - du,
Q. Q. Q.
/%52/ Dw, : D¢ dx + )\062/ div(we) div(¢) dz + 4x/ we - pdx +/ (ue - V)we - ¢pdx

Q. Q. Q. Q.

(2.9)
= 2x/ rot(ue) - (;de—i—e/ g - ¢ dx,
Q. Q.

uce'y/ Db, : D dx —I—/ (ug - V)be - da — / qe div(v) dz = / (be - Vue - ¢ dx, (2.10)

Q. Q. Q. Q.
/ us - VOdx =0, / b. - V({dx =0, (2.11)

Qe Q.

every o, 1, ¢ € HA(Q.)* and 6,¢ € HY(Q.).
Remark 2.2. Under previous assumptions, [18, Proposition 3.1] gives the existence of at least one weak solution

(umwe’bmpaaqg) € H&(Qa)?) X H&<Qe)3 X H6<Qe)3 X Lg(Qa) X L(Q)(Qs)-

The objetive of this paper is to study the asymptotic behavior of the sequence of solutions (u.,we, b, pe, g-) of
the problem (2.6)-(2.7) when e tends to zero. To do that, we introduce a classical change of variables in thin

domains, the dilatation
1 / 1

=1, zz=¢e "uzs. (2.12)
This change transforms ). into a fixed domain €2 of heigh of order h, defined as follows
Q={(¢,2) eER*xR : 2 €w, 0<z5 <h(z)}. (2.13)
The boundary of € is denoted by 02, where the the top boundary of the rescaled domain €2 is defined by
Iy ={(,23) ER*x R : 2 €w, 23 =h(z)}.

Accordingly, we define the functions u., w. and EE by

Ue(z) = ue (2, e23), We(z) =weo(2,e23), be(z) =be(2,c23) ae. z€Q, (2.14)
and, similarly, the functions p. and ¢. by
Pe(2) = pe(2e23), Ge(2) = qo(2',e23) ae. z €. (2.15)

Let us now introduce some notation which will be useful in the following. For a vectorial function @ = (¢, @3)
and a scalar function ¢ obtained respectively from functions ¢ and ¢ by using the change of variables (2.12), we
introduce the operators A., div., D., V. and rot. by

A=A +e2023, dive() = diva @ +e10,,5s,
(Degﬁ)ij = 821(,51 fOI' Z = 1, 2,37 ] = ]., 27 (DESZ)M = 5_1823957; fOl" Z = ]., 2, 3, (2]_6)

Ved = (Vag,e 18,,0), 1ote(@) = (rot.(@3) + & trot,, (&), Rot. (&),
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where, denoting (@) = (=2, $1), we define

I‘Otz'(@?)) - (8228,53; _821 L),53)7 rOtZg (SZ/) = a2:3 (CO#/)L7 ROtZ’ (5/5/) = 621 SZQ - 822@'1. (217)
Thus, using the change of variables (2.12) and taking into account the rescaling of the forces (2.5), the system

(2.6)-(2.7) can be rewritten as

- ~ ~ . 1= ~ ~ . .
(e - Ve)ue — (1 + x)Actie + Ve <p5 + 2|bs|2> = (be - V)b + 2xrote (we) + f- in Q,

(Ue - Ve)w, — ’fc52Ae7:Uvs - )\c52vedivs(7ﬂa) + dxw. = 2xrot.(U:) + g- in Q, (2.18)
1" Acbe + (e - Vo)be + Vege = (b - V)i in Q,

dive(de) =0, dive(bs) =0 1in Q,

with corresponding boundary conditions

u. =0, w.=0, 55 =0 on 9N. (2.19)

According to the change of variables (2.12) applied to the weak variational formulation (2.8)-(2.10), then, for
e > 0, a rescaled weak solution (ug, W, be, Pe, @) of problem (2.18)-(2.19) satisfies

(1 +x) Deﬂa:DE&dz—F/(ﬂE-VE)ﬂE-(ﬁdz—/
Q Q

1 ~
pedive (@) dz — = / b [*div. (@) dz
Q 2 Ja

(2.20)
= /(bE “Ve)be - pdz + 2)(/ rote (w,) - pdz —|—/ f-¢ dz,
Q Q Q
KVCEQ/ D.w, : Dgadz + )\052/ div. (w,) divs((g) dz + 4x/ W, - (Edz + / (Ue - Vo)W - adz

Q o Q Q (2.21)

= 2)(/ rote (i) - ¢ dz + E/ q ¢ dz,

Q Q
VCEV/ D.b. : Dy dz + / (e - Vo )be - thdz — / G dive(¥) dz = / (be - V)i - ¢ dz, (2.22)
Q Q Q Q
/ .- V.0dz =0, /Ea - V.(dz =0, (2.23)
Q Q

for every @, q~5, 1; and 5, E obtained from ¢, ¢,% and 6, ¢ respectively by the change of variables (2.12).

3 Main results

In this section, we give the main results of this paper. In Subsection 3.1, we describe the asymptotic behavior
of the rescaled u.,w.,b.,p. and ¢., and we obtain the reduced limit system. In Subsection 3.2, we give the
expressions of the solution of the reduced limit system and as consequence, we derive the generalized 2D magneto-

micropolar Reynolds equation. The proof of the corresponding result is given in Section 4.

3.1 Effective system

Below we give the result concerning the asymptotic behavior of the rescaled functions u., w., b, p- and g
together with the restriction of the magnetic Reynolds number.
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Theorem 3.1. Assume v < 2. Then, there exist ﬂ',zﬂ',g’ € HY(0,h(2"); L?(w)?) and p,q € L3(Q?), independent

of z3, such that a solution (u.,We,be,pe,q:) of problem (2.18)-(2.19) satisfies the following convergences
e 2. —~u=(a,0) in HY(0,h("); L*(w)?), e lw.—w=(w',0) in HY(0,h(z");L*(w)?),
Pe =D in L3(),
€32, = b= (V,0) in H'(0,h(z'); L2 (w)*), e 3G —q in L*(Q).
Moreover, (U, {E’,g’,ﬁ, q) is the unique weak solution of the limit system
—(p+X)02,0 + V.p = 2xrot., (@) + [ in Q,
k02, W 4+ 4xW = 2xrot., (W) +g  in

~ (3.24)
—v 020 +V.G=0 inQ,
~

=0 =b=0 onToUT},

together with free divergence conditions

h(2") h(z")
div,/ (/ u'(2) dz;;) =0 inw, </ u'(2) d23> ‘n=0 on dw, (3.25)
0 0
h(z") _ h(z") _
div_/ / b(2)dzz | =0 inw, / b(2)dzz | -n=0 on dw, (3.26)
0 0

with n the outside normal vector to Ow.

Remark 3.2. We have proved that there exists a critical value v, = 2, i.e. a critical magnetic Reynolds number
ReS, = e = 72 such that for every v < 7., the nonlinear terms of the system (2.18)-(2.19) vanish in the
limit. Observe that condition v < . = 2 means that the Ren, is of order smaller or equal that ReS,. Thus,
for v < 2, we have obtained the limit system (8.24)-(5.26), from which we will be able to derive a Reynolds-like
equation for pressures (see Theorem 3.4).

3.2 Generalized magneto-micropolar Reynolds equations

In this subsection, we obtain a generalized 2D magneto-micropolar Reynolds equation associated to the homoge-
nized micropolar system given in Theorem 3.1. For sake of clarity, we rewrite system (3.24) by components,
which will be useful to prove Theorem 3.4. Thus, @' and w' satisfy the following system

—(n+Xx)02 0 (2) + 2x05wa(2) = fi(2') = 8.,5(2),
— 02, Wy (2) + dxWa(2) — 2x0-,Ua (2) = g2(2)), (3.27)
u1(2',0) =u (2, h(z)) = 0,
wa(2',0) = wa(2',h(z')) = 0,
—(p+ x)0202(2) — 2xz5 w1 (2) = fa(2) = 0,D(2"),
—re02, W1 (2) + dxW1(2) + 2x0,U2(2) = g1(2), (3.28)
uz(2',0) = ua(2,h(z)) = 0,
w1 (2,0) =w (2, h(z)) = 0,

together with the free divergence condition

h(z") h(2")
0., / () dzs | + 0., / () dzs | =0, (3.29)
0 0
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while ' satisfies the following one

v 02b1(2) +0.,q(2) = 0
_VcagabQ( ) + azzq( /) = 07 (330)
w1 (2,0) =wi(Z,h(2") = 0

together with the free divergence condition

h(z") _ h(z") _
821 (/0 bl(Z) d23> + 8Z2 (/0 bQ(Z) d23> =0. (331)

In the next lemma, we give the expression of (@', w’) in terms of f' and p, and the expression of v in terms of .

Lemma 3.3. The solution (u1,ws) of system (3.27) is given by the following expressions

~ 2 / .
ui(z) = {_% _ hi;) (k(six) sinh(kz3) — 223)
+2/3EZ(:X))M (cosh(kzz) — 1) COth( )} (f1(2") = 0:,p(2"))

+[ z oy ) (k(iix) sinh(kzg)—223) Ag(2) + mZ) (cosh(kzs) — 1) Ba()| g2(2).

wWa(2) = [—5—; — (cosh(kz3) — )h(z ) 4 h(z ) sinh(kz3) coth (%Z,))] (f1(z") — 0, p(#))

+252 [(cosh(kzg) — 1) A5(2') + sinh(kz3) Ba ()] g2(2)),

where k = Nc?jfix) and the functions Ag, By are given by
1 tanh (%z/))
A =3 B2 =

2 h(z") —

h(z)\’
k(u+x)ta h( )

The solution (g, w1) of system (3.28) is given by the following expressions
~ 22 2’ .
Us(z) = {—ﬁ - hfm) (k(iix) sinh(kz3) — 223)
o (cosh(kzg) — 1) coth (260)] (fa(2') — 0.,5(2")

— [+ B (g sinh(kzs) — 22 ) Aa(2') + iy (cosh(kzg) — 1)Ba(2)] 1 (2).

wy(z) = — [—;—Z — (cosh(kzs) — 1)%/) + hfj) sinh(kz3) coth (%Zg)] (f2(2") — 0.,0(2"))

+24D [(cosh(kzs) — 1)As(2') + sinh(kz3) Ba(2')] g1 (2).
Finally, the solution (51,52) of system (3.30) is given by the following expressions
22 — h(2')23

2 _ h(z' .
CILICOL DYy N WA el COL DYy %)

21/c 2Vc

bi(z) =

As consecuence of the previous result, we give the main result concerning the generalized Reynolds equation.
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Theorem 3.4 (Generalized 2D magneto-micropolar Reynolds equation). Defining the averaged limit velocity,
microrotation and magnetic field respectively by

_ h(z") __ h(z") _ h(z") _
Uz') = / w(z)dzs, W(') = / w(z)dzz, B(Z)= / b(z) dzs,
0 0 0
we have the following expressions

0'() = END(h(!), oo ) (' () = Vo). Tal)) =0,

W(2') = M2 W(h(2'), ke, X )9 (), Ws(2') =0,
~ 3 Z, — ~
B'(z') = -2V, B(2') =0,

where the functions ® and ¥ are respectively defined by

1 Re 1 ReX XH
D(h(2), ke, X, = — - th | h(2), | —— ),
) = 15 gt~ e o O )
1 Ke(ptx) / XI 3.32
1= /= tann (R(2) [ (3.32)
_ X 1 [Ee(ptx) XH '
1 ptx h(z) XK tanh (h(z’) wc(wrx))

The hydrostatic pressure p € H' (Q)NLE(Q) and the magnetic pressure ¢ € HY(Q)NL3(Q) are the unique solution
of the Reynolds equations with Neumann boundary conditions

W(h(2), Key X 1) =

h3(2")

aiv (P () o) V) ) = i

—div, (h3(2/>vzfa(z’)> 0,

¢Wwwwwﬂﬂ)
(3.33)

12v,
whose variational formulation is given as follows

h3(2")

p (h(2"), ke, X, ) f'(2) - V2 0(2) dz’,

[ 0w Vi) Vb @ = [ (334
3.34

h3(z/) ~ 1 ’ ’
/w o0, V.q(z") -V ((2)dz' =0,

for every 0,¢ € HY(w).

4 Proof of the main results

In this section, we will prove the main results. In Subsection 4.1, we derive the estimates of the velocity,
microrotation and magnetic field. Using these estimates, in Subsection 4.2, we derive the corresponding estimates
of the hydrostatic and magnetic pressures together with a restriction of the value of 7. The compactness results
and the proof of Theorem 3.1, corresponding to derivation of the limit system (3.24)-(3.26), will be developed
in Subsection 4.3. Finally, the proof of Theorem 3.4 concerning the magneto-micropolar Reynolds equation is
given in Subsection 4.4.
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4.1 A priori velocity, microrotation and magnetic field estimates

In this subsection we give a priori estimates for the rescaled functions u., w. and 55. First, we recall some
important inequalities in a domain with thickness ¢ (see e.g. [24], [29]).
Lemma 4.1 (Poincaré and Ladyzhenskaya inequalities). For all ¢ € H3 ()3, there hold the following inequal-
ities )

[ellz2(aoye < CellDell2ayzxe,  llellinys < Cetl|Dellr2a.axs. (4.35)

Moreover, from the change of variables (2.12), there hold the following rescaled estimates

< - - 1 -
[@llL2@)e < CellDe@llL2ysxs,  [1@llLiys < Ce2||DellL2(aysxs (4.36)

Lemma 4.2 (See Lemma 2 in [42]). For p € H}(Q.) and ¢ obtained from ¢ by the change of variables (2.12),
the following inequalities hold

[rot ()l 2.y < 1DPllL2ayexss  [rote(@)lL2()s < [1D@llL2(0ysxs- (4.37)

Next, we give the a priori estimates of velocity, microrotation and magnetic fields.

Lemma 4.3 (Estimates for velocity, microrotation and magnetic field). Let (ue,we,b:) be a weak solution of
(2.6)-(2.7) and let v € R. Then, there exists a positive constant C, independent of €, such that we have the
following estimates

5 3
||u5||L2(Q€)3 < (Cez, HDU5||L2(QE)3X3 < Cez2, (4.38)
el p2(.ys < Ce2,  ||Dwe|p2(q.ysxs < Ce?. (4.39)
kil 3—y
HbEHLZ(QE)B <Ce 7, HDbE||L2(QE)3X3 <Ce 7. (4.40)

Moreover, after the change of variables (2.12), we have the following estimates:
||ﬂ€||L2(Q)3 < Csz, HDsﬂ5||L2(Q)3><3 < Ck, (4.41)

||IZE||L2(Q)3 S Cé, ”DEﬁEHLZ(Q)?’X?’ S C. (442)

2—v

- " N
[bell 2z < Ce =, ||Debe|lp2qyexs < Ce 2. (4.43)

Proof. We divide the proof in five steps.
Step 1. In this step, we derive some useful estimates for velocity that will be useful in the rest of the proof.

From (2.8) with ¢ = u., we get

(n+ x)||Du5||%2(QE)3xs = / (be - V)be - ue dz + 2)(/ rot(we) - ue dr + / [l dx, (4.44)
Q. Q. Q.
because st (ue - V)ue - ue dz = 0.
On the other hand, considering (2.10) with ¢ = b., we get
VCEA/”DbEH%Q(QE):}xs = / (be - V)ue - be du, (4.45)
Q.

because ng (uz - V)be - be dz = 0.
Summing (4.44) and (4.45), we get

(n+ X)HDuEHQLQ(QE)Sm + 1/657||Db5||2L2(Q€)3X3 = 2xfﬂ rot(we) - ue dx +/Q -l dz, (4.46)

10
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because st (be - V)ue - be dx + fﬂs (be - V)be - ue dx = 0.

Observe that using Cauchy-Schwarz’s inequality and taking into account that 1/2 < h < 1, we deduce

/Qf"U'sdfv < ez luellzz e
eh(z’) 1/2
— // o) 2da’ dxs lluellz2(0.)8
(4.47)
1/2
_ G/mwwwmw)|mmm»
< e | oy luell 2o s-

Taking now into account that [, rot(w.)-u.dr = [, rot(uc)-w. dx (see Exercise 1.3.3 in [24, Part II]) in (4.46),
applying Cauchy-Schwarz’s inequality, (4.47) and estimates (4.35) and (4.37)1, we get

(1 + )1 Due|[ 2 yaxs + vee” [ Dbe| T2 (g yaxs
1
S 2x||w5||L2(QE)3 ||Du5||L2(QE)3><3 + €2 Hf/HLQ(w)Q Hu5||L2(QE)3 (448)
3
< 2x||we | L2 (.2 | Due || L2 (0. ysxs + €2 C| | L2 ()2 [ Dte || L2 (0. y3 x5
which, in particular, implies
(1 + X)1Duel 20 yoxs < 2xllwell 20,0 + €2 Cl £l 22wy (4.49)

and
Ve [ Dbe 172, ysxs < 2X[we L2002 [ Due || 2 (aysxs + e5C|| |l L2 (w2 | Dutel| L2 (g yaxs- (4.50)

Thus, to derive estimates for velocity, we need to obtain estimates for w., which will be derived in the following
steps. The estimates for the magnetic field will be a direct consequence of the derived estimates for w. and u.
together with (4.50).

Step 2. In this step, we derive some useful estimates for w, that will be useful in the rest of the proof. Similarly
to the previous step, from (2.9) with ¢ = w., we get

n652||Dw5H%2(QE)3X3 + )\C€2||div(w5)||2LQ(QE) + 4x||w5H%2(QE)3 = 2)(/Q rot(ue) - we de + 5/9 g -wldr, (4.51)

because fQE (ue - Vwe - we dz = 0.

Observe that using Cauchy-Schwarz’s inequality and taking into account that 1/2 < h < 1, we deduce

e/gﬂ@w < ellg/ll ey el 2oy
Q.

1/2
= / / | dl‘/dﬂfg ||w6||L2(QE)3
(4.52)

1/2
:sG/Mwwwwm) o 22y

20
e2|g'[| L2 (w2 [lwell 20,2

IN

11
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Applying Cauchy-Schwarz’s inequality, (4.52) and estimate (4.37)1, we get
52“c||Dwe||%2(Qs)3x3 + 82/\c||diV(wa)H%2(Q€) + 4XH“’€||%2(QE)3
< 2x|[rot(ue) || 2.2 lwe | 2 (uy + €219 |2 (w2 lwell 22 (. ) (4.53)
< (20Dl r2@oyses + 2 l9 2o ) lwellzacns,

which, in particular, implies

a3l
QXstHLz(QE):s § XHDUEHLZ(QE)SXB + €2 §||g/HL2(w2). (4.54)
Step 3. Let us obtain now the velocity estimates. By putting (4.54) into (4.49), we get

3 3
(1 + ) 1Ducl L2 ysxs < €2 Cllf 2wy + €2 5119l L2 w)2 + X DucllL2)sxs,
i.e., we have
3 3 1
pllDucllr2(@oysxs < €2 Clf 2wy + 2 5119 ll2 (w2

This estimate implies (4.38)2, and by Poincare’s inequality (4.35), we get (4.38)1. From the change of variables
(2.12), we get (4.41).

Step 4. Let us obtain now the microrotation estimates. Using [, rot(ue)-we dz = [, rot(we)-ue dz (see Exercise
1.3.3 in [24, Part II]) in (4.51), Cauchy-Schwarz’s inequality, Poincaré’s inequality, (4.52), and estimates (4.35),
(4.37)1 and (4.38)1, we get

HCSZHDU}&”%?(QEP“ + )\C€2||div(ws)\|%2m€) + 4Xst||%2(QE)3
3
<e?||g lzzyzllwellzz (0.2 + 2xlue |22 0.2 ot (we ) [ 2 () (4.55)
5 5
<C (52 ||ngL2(w)2 + 2X€2> ||Dw5||L2(QE)3><3,

which, in particular, gives
2 5
Kc€ ||Dw5HL2(QE)3x3 < Ce2.

This implies estimate (4.39)2 and by the Poincaré inequality (4.35), we deduce (4.39);. From the change of
variables (2.12), we get (4.42).

Step 5. We finish by deducing estimates for magnetic field (4.40). Putting estimates (4.38)2 and (4.39); into
(4.50), we deduce
VCE’YH ) b5||%2(95)3><3 < nga

which implies estimate (4.40)2, and from the Poincaré inequality, we get (4.40);. From the change of variables
(2.12), we get (4.43) and so, the proof is finished.
O

4.2 A priori pressure estimates

Now, we will derive the estimate of the hydrostatic and magnetic pressures by using the a priori estimates for
velocity, microrotation and magnetic field given in Lemma 4.3.

Lemma 4.4 (Estimates for hydrostatic pressure). Assume v < 2. Then, there exists a positive constant C,
independent of €, such that we have the following estimates

1Pz £ €5 IVebella-1(0)s < C. (4.56)

12
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Proof. Thank to the classical Neckas estimate

1PellLz(0) < ClIVapel mr-1(a)2, (4.57)

and taking into account that ||V.pc|lg-1(q)s < C||Vepellm-1(q)s, then we just need to obtain the estimate for
VDe to derive the estimates for p. given in (4.56) with the restriction imposed on the possible values of ~.

To do this, we consider ¢ € H}(Q)?, and taking into account the variational formulation (2.20), we get

— ~ ~ ~ - o~ 1 ~ 9~
(Vepe, ) = —(u+ X)/ D.u. : Depdz — / (e - Ve)ue - pdz — */ Vs(|bs|2)¢d'z
@ @ 2Ja (4.58)

+/(55-V8)58-&dz+2x/rote(zﬂg)wﬁdz—i—/ P dz
Q Q Q

where brackets are for the duality products between H~! and H}. We estimate the terms on the right-hand side
of (4.58) taking into account that || D.@|12(q)sxs < 5_1H<,5HH3(Q)3:

e First term. Applying Cauchy-Schwarz’s inequality and estimate (4.41), we get

\wx) [ D D) < Dl sl Dol e
Q
< COe M| Detic|| 2 eys s |91 1 ()
<

< COlellmy s

Second term. Applying Holder’s inequality and using estimate (4.36)2 and (4.41), we have

‘/Q(ag . Ve)ﬂg . @dz S ||'EL5||L4(Q)3||D€’L~L€||L2(Q)S><3H95||L4(Q)3
§ C€||D6a6||%2(9)3><3HDs@HLZ(Q)sxs
< O2?(|@ll ua(as-

Third term. Applying Hélder’s inequality and using estimate (4.36)2 and (4.43), we have

1 . S . . )
’2/ Ve(|be|?) @ dz| = ‘/ beVebe pdz| < [bel|La()s [ Debell L2 ()exa | @l La(o)s
Q Q
< C5||Del~76”%2(9)3x3||D695||L2(Q)3x3
< O @l g ays-

Fourth term. Applying Holder’s inequality and using estimate (4.36)2 and (4.43), we have

< bellza(ys [1D=be || 2 (ayaxs || @l Lacays

/(’55 V)b - Gz
Q

IN

OEHDEBEHQLz(Q)SXB HDEQEHL?(Q)?’X?’

A

< 05277H95HH3((2)3-

e Fifth term. Applying Cauchy-Schwarz’s inequality and estimates (4.37)2 and (4.42), we get

’2)(/ rote(we) - @ dz
Q

< Cllrote(we) | L2 ()2 1€l L2 ()3

IN

ClIDwe || L2 @yex2 |1 mp ()8

IA

Cllell s
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e Sixth term. Applying Cauchy-Schwarz’s inequality, we get

‘/f&w
Q

Finally, taking into account all the previous estimates, we get

< Cll@llzzr < Clolla s

c if < 2,
IVebllr-1 0 < 7=
Ce*™7 ify > 2.

To prevent that the nonlinear terms will be those of the highest order, then we only consider that v < 2, which
finishes the proof.

O

Lemma 4.5 (Estimates for magnetic pressure). Assume v < 2. Then, there exists a positive constant C,
independent of €, such that we have the following estimates

ol

2

15 |20y < Ce?,  [IVeGellg-1(q)pe < Ce?. (4.59)

Proof. Analogously to the previous Lemma, we just need to obtain the estimate for V.q. to derive the estimates
for g. given in (4.59) and the restriction on the value of ~.

To do this, we consider 1; € H(9)3, and taking into account the variational formulation (2.22), we get
<V€(}’37$> - —VCSV/ D.b. : Ds{z?dz—/(as-vs)'és -idz+/(g€~vs)ﬂs~$dz. (4.60)
Q Q Q

We estimate the terms on the right-hand side of (4.60) taking into account that it holds the estimate HDE’LZJ||L2(Q)3X3 <
e Ml g eye:

e First term. Applying the Cauchy-Schwarz inequality and estimate (4.43), we get

VCEW/DEEE;DEMZ < OV Debe| L2 qysxs || Detd|| L2 (aysxs
Q
< Ce Y| Debe || 2 ayses 19 2y
< C5%||?L||H5(Q)S-

e Second term. Applying Holder’s inequality and using estimates (4.36)2 and (4.41) and (4.43), we have

[ @ VRG] <l DBy [
< Cel|Deiie|| p2(qysxs | Debell p2ayexe | Do 2 yexs
< CE27%H¢”H&(Q)3~

e Third term. Applying Holder’s inequality and using estimates (4.36)2 and (4.41) and (4.43), we have

< |Ibell a1 Detie || L2 (ysxs 18] Lo oy

/(ZE VL)ii. - D dz
Q

IN

Ce||Debe| 12 (qysxs | Detie || L2 (aysxs | Detd | 12 (yoxs

C52_%W||H5(Q)3~

IN

14
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Finally, taking into account all the previous estimates, then we get for any value of « that
~ Cez if v <2,

IVedllz-1()2 < o
Ce*~z ify> 2.

Similarly to what happens with the estimate of the hydrostatic pressure, to prevent that the non linear terms
will be those of the highest order, then we only consider that v < 2, which finishes the proof.

O

4.3 Compactness results and proof of Theorem 3.1

First, we give some compactness results about the behavior of the rescaled sequences u.,we,b. and p., g
satisfying respectively the a priori estimates given in Lemmas 4.3, 4.4 and 4.5.

Lemma 4.6. Assume v < 2. Then, there exist:

o A subsequence, still denoted by (U, We,be, Pe,Ge), chosen from a sequence of solutions of system (2.18)-
(2.19).

o U= (u,0) withu' € H(0,h(z'); L*(w)?) and @ = 0 on To UT; such that

e %, —u in HY0,h(2); L*(w)?), (4.61)

h(z') h(z")
div,/ </ u'(2) d23> =0 in w, (/ u'(z) d23> ‘n=0 on Jw, (4.62)
0 0

o w=(w,0) withw' € H*(0,h(z"); L?>(w)?) and w = 0 on To UT'y such that
e tw, =~ w in HY0,h(); L*(w)?), (4.63)
o b= (V,0) witht/ € H'(0,h(z'); L2(w)?) and b=0 on Ty UT; such that

e32b. = b in HY0,h(z'); L*(w)?), (4.64)

h(z") _ h(z") _
div,/ (/ v (2) d23> =0 in w, (/ b'(2) d23> ‘n=0 on Jw, (4.65)
0 0

P,q € L*(Q), independent of z3, such that

pe —p in L*Q), (4.66)

e g —q in L*Q), (4.67)
with

/Q (=) dz = /w hEB() de = 0, /Q G+ d= = /w h(=)3(2') d=' =0, (4.68)

Proof. The convergences given in the lemma are a direct consequence of the estimates given in Lemmas 4.3, 4.4
and 4.5. We will only give some remarks, and for more details we refer the reader to [8, 29, 42]:

15
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— Velocity. Estimates (4.41) imply the existence of a function u € H'(0, h(2'); L?(w)?) such that convergence
(4.61) holds. The continuity of the trace applications from the space of @ such that ||u||z2 and ||0., ]| 2
are bounded to L?(Tg) and to L?(I';) implies that @ = 0 on 'y UT;.

From the condition div.u. = 0 in £2, it can be deduced that w3 is independent of z3, which combined with
the boundary conditions satisfied by uz on I'g UT; implies uz = 0.

Finally, from the free divergence condition and the convergence (4.61) of e~ 2, it is straightforward the
corresponding free divergence condition in a thin domain given in (4.62).

— Microrotation. From estimates (4.42), then convergence (4.63) and @w = 0 on I'y UT'; are obtained directly.
It remains to prove ws = 0. To do this, taking into account that from estimates (4.41) and (4.42) it holds

< e M| L2 auys | Dete || 12 ()3 |0 e (s < Ce — 0,

e! / (ﬂe : Va)aa : %dz
Q

then we consider a test function 5 = (0,0, 5_153) in the variational formulation (2.21), which gives

ncs/ VeWse - ngzg dz + )\C/ 6718z3”[17375 8z3$3 dz + 4x/ 5*1@375 53 dz
“ ¢ “ (4.69)

= 2X/ e "Rot. (7") ¢3 dz + O,
Q

with O, devoted to tend to zero when € — 0. Then, passing to the limit in (4.69) when € — 0 by using
convergences (4.61) and (4.63), we get

("ic“‘)\c)/ 8z3{[73823$3d2+4)(/ w3 (53d75:0a
Q Q

which is equivalent to problem —(x. + )\0)853 ws + 4xws = 0. This equation together with the boundary
conditions w3 = 0 on I'g UT'; implies w3 = 0.

— Magnetic field. This follows similarly to the case of velocity just taking into account estimates (4.43).

— Pressures. Estimates (4.56); and (4.59); imply, up to a subsequence, the existence of p,q € L?(2) such
that convergences (4.66) and (4.67) hold, respectively. Also, from (4.56)2 and (4.59)2, by noting that
e719,,p- and e71-3 ., G also converge weakly in H~1(Q), we deduce 0,,p = 0.,q = 0. Then, p and ¢ are
independent of z3. To finish, it remains to prove that p,q € LZ(Q2), that is properties (4.68). Passing to
the limit when € tends to zero in

/;’D}cl/z:o7 and /5_%q~5dz:07
Q Q

we respectively deduce

/ 5() dx = / W)P() 2 =0, and / 3(2') dz = / W) d2' =0,
Q w Q w
and so that p and ¢ has null mean value in . This ends the proof.
O

Proof of Theorem 3.1. From Lemma 4.6, it remains to prove the equations (3.24)1, (3.24)2 and (3.24)3. To do
this, we divide the proof in four steps.
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Step 1. We pass to the limit in the variational formulation (2.20) for every ¢ € D(Q)? with $3 = 0, which is
given by

~ ~ -~ ~ o~ ~ ~ 1 ~ ~
(,u + X) D.u. : Depdz + / (ue : Vs)ue “pdz — / Pe diVE(‘ﬂ) dz + 5 / V6(|b5‘2)<)0d2
Q Q Q 2 Jo (4.70)

= 2x/ rote (w,) - pdz +/(b5 “Ve)be - pdz —|—/ f o dz.
Q Q Q
To do this, let us pass to the limit when ¢ tends to zero in every terms:

e First term on the left-hand side of (4.70). Taking into account convergence (4.61), we get
(1) /Q Dz : D@ dz = (1 + ) /Q €205, - 02,3 dz + O = (4 ) /Q Oy’ 0, dz + O-.

e Second term on the left-hand side of (4.70). Taking into account that @' € D(2)?, applying Cauchy-
Schwarz’s inequality and estimates (4.41), we get that

< el 222 | Dete| | 2 (ysxa | 8] Lo ()2 < CEP,

/('115 -Ve)te - pdz
Q

which implies
/(ﬂg -Ve)ue - pdz — 0.
Q

e Third term on the left-hand side of (4.70). Taking into account that @3 = 0 and convergence (4.66), we get

/ 5. divo(() dz — / 5. diva (§) dz — / Fdiva (3) dz.
Q Q Q

e Fourth term on the left-hand side of (4.70). Applying the Cauchy-Schwarz inequality and estimates (4.43),
we get

1 ~ o~ - ~ ~ _
\2 [ vappiza: < 1B Lz (2 e 2 e l| Debe s < €,
Q

= ’/ b.V.b. pdz
Q

and since v < 2, then we get
1 ~ ~
f/ V(.3 dz — 0.
2 Jo

e First term on the right-hand side of (4.70). Taking into account the definition of rot.(w.) and convergence
(4.63), we get

2x/ rot.(w.) - pdz = 2x/ e trot,, (W) - @' dz + O, = 2)(/ rot,, (@') - @' dz + O..
Q Q Q

e Second term on the right-hand side of (4.70). Applying the Cauchy-Schwarz inequality and estimates
(4.43), we get

/(55 - Ve)be - @dz| < |[bel 203 | Debel| L2 ysxs |2 | noe 2 < Ce377,
Q

and since 7 < 2, then we get
/(’55 - Vo)be - gdz — 0.
Q
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Finally, from the above convergences when € — 0, we derive the following limit system

(n+ X)/ 0,0 - 0., dz — / pdiv. (@) dz = 2x/ rot, (w') - ¢’ dz —|—/ f @ dz,
Q Q Q Q
for every ¢’ € D(Q)2.

Step 2. We pass to the limit in the variational formulation (2.21) for every ¢ € D(Q)3 with ¢3 = 0, which after
dividing by ¢, is given by

ncs/ D.w, : Dsgdz + /\Ce/ div(w,) divs(g) dz + 4)(/ e ta, - adz +/ 671(175 -Ve)we - gdz
Q Q Q Q (4.71)

= 2x/ e 'rote (4. - ¢ dz +/ g ¢ dz.
Q Q
To do this, let us pass to the limit when ¢ tends to zero in every terms:

e First term on the left-hand side of (4.71). Taking into account convergence (4.63), we get

ke | Detie: Depdz = nc/ e 10,0 - 0.,¢ dz+ 0. = ke | 0,0 - 02,4 dz + O..
Q Q Q

e Second term on the left-hand side of (4.71). Taking into account that qz~53 = 0 and convergence (4.63), we
get

Aot / div. (@.) dive (3) dz = Aee / div. (@) div, (&) dz = Ao / 0., s div.(3') dz + O. = 0.
Q Q Q
e Third term on the left-hand side of (4.71). Taking into account convergence (4.63), we get

4x/5*1ﬁ€~$dz:4x/sfliuvé-a'dz:4x/iuv~q~$dz+06.
Q Q Q

e Fourth term on the left-hand side of (4.71). By using Cauchy-Schwarz’s inequality and estimates (4.41)
and (4.42), we get

< et ||¢/||LOO(Q)2 ||ﬂ€||Lz(Q)3 ||D51ﬂ€||L2(Q)3><3 < Ce,

/ E_l(ﬂe : va)'@e : (Edz
Q

which implies
/ e N, - Vo). - ¢dz — 0.
Q

e First term on the right-hand side of (4.71). By using the definition of rot.(u.) and convergence (4.61), we
get

2x/ e rot. (u.) - bdz = 2x/ e %rot, (ul) - ¢ dz+ 0. = 2)(/ rot, (o) - ¢ dz + O..
Q Q Q
Finally, from the above convergences, we get the limit variational formulation

/sc/323117/-8235’d2+4x/{E'w;'dz:%(/rotz3(ﬂ’)-$’dz+/g’-%’dz,
Q Q Q Q

for every ¢/ € D(Q)2.
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Step 3. We pass to the limit in the variational formulation (2.22) for every ¢ € D()® with 5 = 0, which after
dividing by €7 is given by

vee? / D.be : Dopdz +e 3 / (e - Ve)be - thdz —e 2 / Gedive(Y)dz=¢"3 /(’b} Vo )ie - pdz. (4.72)
Q Q Q Q
To do this, let us pass to the limit when ¢ tends to zero in every terms:

e First term on the left-hand side of (4.72). Taking into account convergence (4.64), we get
vee? / D.b. : Doapdz = z/c/ 5%_28235’6 . 8Z312’ dz 4+ O, = I/c/ 8335' . 82312' dz + O,..
Q Q Q

e Second term on the left-hand side of (4.72). Applying the Cauchy-Schwarz inequality and taking into
account estimates (4.41) and (4.43), we get

g3 / (@ - V)be - ¥ dz < & 2|0/ || oo 2 llie | 203 | Debe || L2 yoxs < C*7,
Q

and since v < 2, then we get

X
E 2

/(ae V)b - D dz — 0.
Q

e Third term on the left-hand side of (4.72). Taking into account that 13 = 0 and convergence (4.67), we get

e / Ge divo(¢) dz = / e 3o div. (¢)dz + O, = / Gdiv. (') dz + O..
Q Q Q
e First term on the right-hand side of (4.72). Applying the Cauchy-Schwarz inequality and taking into
account estimates (4.41) and (4.43), we get

< e 3 ||| poo ()2 1Bell L2 (3 || Deie || 2 ey s < Ce377,

e3 / (gs - Ve)ue -’LZdZ
Q

and since v < 2, then we get
3 / (5. V.)ii. - $dz — 0.
Q

Finally, from the above convergences, we get the limit variational formulation
Vc/ (’L_;l;’ . 8231;’ dz — / g div, ({/;') dz =0,
Q Q
for every ¢’ € D(Q)%.

Step 4. From the previous steps and by density, we deduce that the limit variational formulation are the following

(u—i—x)/8zgﬂ’-8Z3<Z’dz—/ﬁdivz/(@')dz:2x/rotz3(1]7’)-<5/dz+/f'-(ﬁ'dz,
Q Q Q Q
mc/8z3@’~8235'dz+4x/7’[)’-gz~5’dz:2x/rotzs(ﬂ’)~$’dz+/g’-q;’dz,
Q Q Q Q

Z/C/ 8233’ . 8Z37Z’ dz — / ’quivz/({/)v’) dz =0,
Q Q

for every @’,(E’JZ’ € H}(Q)?, which are respectively equivalent to the equations (3.24)1, (3.24)2 and (3.24)3.
From the uniqueness of solution of (3.24) (see Lemma 3.3 and Theorem 3.4), it follows that the whole sequences

Ue, We, be, P and ¢. converge weakly. This ends the proof.
O
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4.4 Proofs of Lemma 3.3 and Theorem 3.4

Proof of Lemma 3.3. We divide the proof in three steps.

Step 1. We derive the expressions of @ and ws, as solution of system (3.27). First, from the first equation in
(3.27), we have

1 ’ ~_!
—m (f1(2") = 0.,0(2")) 23 + p

with K3 an unknown function. Putting this into the second equation in (3.27), we have

823171 (Z) =

?Xﬁg@i) + Kl(z'), (473)

~ dxp - 2x ~ 2x 1
0> N - =X (f(¢) = 0.,p(2) 23 — 2K (2)) — —galz 4.74
2 (2) = o Sia(e) = S ()~ 0L 2 - K () — o). (0T
whose solution is
(=) = CL()eM + Col)e ™ — = (F() = 94 i()) 72 + L2y () + £ X g ) (4.75)
24 ' 2u dxp ’
with k = ncé(lffﬁx) and Cy and Cy are unknowns functions. Using this expression in (4.73), we rewrite 0,,u; as
follows
- 2x 2 k2 1 ~ X+ p 1
0zy11(2) = Tt (C1(2)e" + Co(z")e ™ 22) — u (f(z') = 0:,p(2")) 25 + TKl(Z’) + 592(2'), (4.76)

and integrating with respect to z3, we obtain

~ 2x N kz N,—kz
Ur(z) = ———— (C1(z)e" — Ca(2")e ")
k(1 + x) (4.77)
1 X+ u

~5 () = 03 5 + X ()5 4 5oa ()2 + Kol

with K5 an unknown function.

Now, denoting A(z") = C1(2') + C2(2') and B(z') = C1(2') — C2(2’), we rewrite the expressions of u; and Wy as
follows

Wz = ﬁ(A(z')smh(kzg)+Bcosh(kz3))
b 2 =0, p(") 22 Xtnp 2z 1 2Nz 5(2'
o ) = ) A+ b ()24 a2 + Ko, -
wa(z) = A(2')cosh(kzs) + B(2') sinh(kz3)
1

4 N T B+ X ’ B+ X /
o (f(=) 3ZIP(Z))Z3+72H Ki(2") + T 92(2"),

where A, B and K, Ko are unknown functions to be determined using the boundary conditions.

From the boundary condition w;(z’,0) = 0 and ws(z’,0) = 0, we get

Ki(z')=——"—A{") — —g(2), Ki(')=—-———"=B(). (4.79)
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Then, (4.78) are rewritten as follows

U _ (2 sinh(kzs) — 22 2 _ 2 cosh(kz3) — 2
u(z) = (k(ﬂ Y h(kzz) — 2 3) A(Z) + i+ X)( h(kz3) — 1)B(2')

5 () = 0.5()) 3 = 5ol (4.80)
Wo(z) = (cosh(kzz) —1) A(2) +sinh(kz3)B(2") — i (f(2") = 0:,p(2)) 2.

Using the boundary conditions @1 (2’, h(z’)) = 0 and we (2, h(z’)) = 0 in (4.80), we get the following system
AN _Voonien o s [ PED doon on( !
(5 ) =g -0 (T )+ grene) (g ) (4.51)
where () is the matrix defined by
( % sinh(kh(z")) — 2h(2") ﬁ(cosb(kh(z’)) -1) )

cosh(kh(z")) — 1 sinh(kh(z"))

The solution of this system is given by

A = ih(z’)(f(z’) — 0. B )AL () + %h(zl)gz(zl)flz(z/)a
(4.82)
B(x') = ih(z’)(f(z’) 0B By () + ih(zsgz(z’)&(z’),

where A, By and A, By are respectively solutions of

o(3)-(%) w a()-(3)

To compute A;, B;, i = 1,2, we take into account that

O] = —2h(+')sinh(kh(2')) — ﬁ(l ~ cosh(kh(=')))
- o g )
that Q! is given by
. sinh(kh(2")) g (1 — cosh(kA(2")))
Q= ,
@1\ 1~ cosh(kh(=") 52 sinh(kh(=')) — 2h(=')

and that

kh(z") sinh(kh(z"))  cosh(kh(z")) — 1
tanh( 2 > ~ 1+cosh(kh(2’))  sinh(kh(2'))
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Thus, we get that A;, B;, i = 1,2, are given by

M) =3,
(Z/) — Slnh(kh(zl)) _ _1 1
’ —2h(2") sinh(kh(2')) — gl (1 = cosh(kh(2))) 2 p(zr) — 2 tanh (’“’ng')) ’

Bi(2) = %coth <kh;z’)> , (4.83)
tanh (M)

h(z") — k(u+x) tanh ( h(z )) ’

and then u; and ws are obtained by (4.80) as functions of p, f1 and ga, by the desired expressions given in Lemma
3.3.

Bo(+) = 1- cosh(kh( #) _
—2h(2’) sinh(kh(z")) — k(#+x) (1 — cosh(kh(z")))

NN

Step 2. We derive the expressions of uy and w;, as solution of system (3.28). To do this, we note that (a1, ws)
with external forces (f1,92), and (uy, —w;) with external forces (f2, —g1) satisfy the same equations and bound-
ary conditions. Then, by using this fact and the expressions of (u1,ws) given in Lemma 3.3, then we easily
deduce expressions for (ug,w;) given in Lemma 3.3.

Step 8. We derive the expressions of 51 and 52, as solution of system (3.30). To do this, we rewrite (3.30) as
follows,
- 1 B
agsb'(z) = —V.q(2).

Integrating twice with respect to z3, we deduce

- 2
V(2) = 22 Vai(Z) + Cu(2)zs + Ca(2),

with Cy and Cy unknown functions. By using the boundary conditions ' (z’,0) = b'(2/, h(z')) = 0, we deduce

22 — h(2')z3

2v,

E;/(Z) = vz'a(zl)a

which is the desired expression and concludes the proof.
Proof of Theorem 3.4. We divide the proof in five steps.

Step 1. We derive the expression for the averaged U. First, since ug = 0, then (73 = 0, so it only remains to
derive the expression for U’. Integrating with respect to z3 between 0 and h(z’) the expressions of u;, i = 1,2,
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given in Lemma 3.3, we get
Ti(+) = /Oh(z)wz)dzg = [P M (L (eosh(kh(2)) ~ 1) — B3())
AL (sinh(kh(2)) — h(2) coth (2E2)] (£1(2) - 0., (=)
[ 4 M) (B (cosh(kR(2))) — 1) — A(2')) 4o
+ R0y (Esinh(kh(=)) — h(z')) Bz g2(+')
= Ou(Ai(=) ~ 0 B()) + Ongal2),

~ h(z/) 3 ’ ’
Us(2) = /O Up(2)dzs = [_hg;)_hfly <k2(iﬁx)(cosh(kh(z’))—1)—h2(z’))

+2k)EZ(+X))# (£ sinh(kh(2)) — h(2")) coth (%Z/))] (f2(2") = 02,p(2"))
a [ hZ(z + h(i) <k2(u+><) (cosh(kh(2)) = 1) — h(zl)) A2

iy (3 sinh(kh(=') — h(=))) Ba| 91(+)
= 01(falz) = 0uB()) — O21(").

Now, we develop © as follows

O = —ELD RN (L (cosh(kh(+) — 1) — B2(="))

6 dp \ k2 (ptx)

o (1 sinb(kh(=")) — h(/)) coth (M)

_  R*D h(z') h? (=) kh(z")
- 12 +uk2(u+xx) QZk(uﬂO COth( 2 )

_BE) kh(z')
= (12+h2<z TR~ IR COth( 5 ))

and O, as follows

0 = |1 4 M2 (i (cosh(kh(=') — 1) — h3(2))) Ao
+ D) (L sinh(kh(2")) — h(2')) 32] = 0.
Then, we get
rr / h3(zl) / / ~ /
Ul(z ) = L (I)(h(z )7M7Xayc)(f1(z ) - az1p('z ))7
- 3 o
02(") = D001, ) (o) - 02,501,

where ® is defined in (3.32).

Step 2. We derive the expression for the averaged w. First, since ws = 0, then Wg = 0, so it only remains to
derive the expression for W’. Integrating with respect to z3 between 0 and h(z’) the expressions of w;, i = 1,2,
given in Lemma 3.3, we get

__ h(z") o .
() = / Ti()dzs = —B1 (fole)) — 0s5(2) + Bo g (7).

__ h(z") . .
Wy (2') = /o wy(z)dzz = O1(f1(2) — 05, p(2")) + O2 g2(2"),
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where
O = M)~ M) (Lsinh(kh(2") = h(=)) + 45 (cosh(kh(=")) — 1) coth (216
= — =) sinh(kh(2)) + 52 (cosh(kh(2")) — 1) 2l = o,
0, =" (Lsinh(kh(2')) — h(2)) Az + 42 (cosh(kh(2')) — 1) By
kh(z")
B h(z’) 1-— kh%z’) tanh ( )
4 h(z)\ "
X 1-— u+x kh(z,) tanh ( )
Then, we get
—~ h(z' —~ h(z
4(2) = w0 e s)an (), Tl = LW v,

where ¥ is defined in (3.32).

Step 3. We derive the expression for the averaged B. First, since bg = 0, then Bg = 0, so it only remains to
derive the expression for B Integrating with respect to z3 between 0 and h(z') the expressions of b27 1=1,2,
given in Lemma 3.3, we get

~ h(z") _ h3( 2!
B'(z) = / b (2)dzg = VZ/E](,Z’).
Step 4. Finally, taking § € H'(w) as test function in (3.29), and integrating by parts, we deduce

3 P ) )
/w h /S )‘I)(h(zl)ﬂqu7 VC)azlﬁ(Z/) aZle(Z/) 4 +/w h L )

D(h(2'), iy X, ve)02,0(2") 0.,0(2") d2’

h3(zl) / !/ / ! h’B(zl) ! ! / AN
f/w TCIJ(Z )f1(2") 0,,0(2") d= f/w . O(2") f2(2") 0,0 d2' (") = 0,

which is equivalent to the equation for the hydrostatic pressure given in (3.33);. It has a unique solution because
p € L3(2). Observe that from the expression of U’ and its regularity, it holds p € H* ().

Step 5. We derive the equation for the magnetic pressure. Putting this expression in (3.31) and integrating by
parts, we deduce for every ¢ € H'(w) that

h3 Z - h3 o
[ g+ [ o a0, =0,

which is equivalent to the equation for the magnetic pressure given in (3.33)2. It has a unique solution because
q € L3(2). Observe that from the expression of B’ and its regularity, it holds ¢ € H().

O
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