
HAL Id: hal-04180645
https://hal.science/hal-04180645

Preprint submitted on 13 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A parallel compensated Horner scheme for SIMD
architecture

Stef Graillat, Youness Ibrahimy, Clothilde Jeangoudoux, Christoph Lauter

To cite this version:
Stef Graillat, Youness Ibrahimy, Clothilde Jeangoudoux, Christoph Lauter. A parallel compensated
Horner scheme for SIMD architecture. 2023. �hal-04180645�

https://hal.science/hal-04180645
https://hal.archives-ouvertes.fr


A parallel compensated Horner scheme for SIMD
architecture

Stef Graillat
Sorbonne Université, CNRS, LIP6
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Abstract—A parallel algorithm for accurate polynomial eval-
uation is proposed for SIMD architectures. This is a parallelized
version of the compensated Horner scheme using error-free
transformations. The proposed parallel algorithm in this paper
is fast and is designed to achieve a result as if computed in twice
the working precision and then rounded to the working precision.
Numerical results are presented showing the performance of this
new parallel algorithm.
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I. INTRODUCTION

Polynomials appear in almost all areas in scientific
computing. Generally the problem involved is to solve
equations or systems of polynomial equations often in many
variables. The wide range of use of polynomial systems needs
to have fast and reliable methods to solve them. Basically,
there are two general approaches: symbolic and numeric.
The symbolic approach is based either on the theory of
Gröbner bases or on the theory of resultants. For the numeric
approach, it is the use of iterative methods like Newton’s
method or homotopy continuation methods. These iterative
methods need to evaluate polynomials and their derivatives.

One of the three main processes associated with
polynomials is evaluation; the two other ones being
interpolation and root finding. The classic Horner scheme is
the optimal algorithm with respect to algebraic complexity for
evaluating a univariate polynomial p with given coefficients
in the monomial basis. Higham [8, chap. 5] devotes an entire
chapter to polynomials and more especially to polynomial
evaluation.

SIMD stands for ”Single Instruction, Multiple Data”.
It is a type of computer architecture that allows multiple
operations to be performed simultaneously on a whole vector
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of data. In a SIMD architecture, a single instruction is
executed on multiple data items at once, rather than on just
one item at a time. There are different SIMD instruction
sets, including Advanced Vector Extensions (AVX) and
Streaming SIMD Extensions (SSE), which are supported by
modern CPUs and GPUs. AVX2 or AVX512 are more recent
SIMD instruction sets. They support operations on 256-bit
or 512-bit vectors and includes more advanced instructions
for floating-point arithmetic, such as FMA (fused multiply-
add), which allows for a single instruction to perform both
multiplication and addition on a vector of data. Both SSE and
AVX instruction sets are used for a variety of applications,
including multimedia processing, scientific simulations, and
cryptography. They can significantly improve performance in
these applications by allowing the CPU to perform multiple
computations in parallel.

The compensated Horner scheme is a fast and accurate
algorithm to evaluate polynomials. By accurate it means that
it achieves a result as accurate as if computed in twice the
working precision and then rounded to the working precision.
The aim of this paper is to derive a parallel version of
the algorithm that is suited for SIMD architectures. To our
knowledge, literature on polynomials evaluation with SIMD
contains nothing but examples with very small degrees,
such as used for evaluation of elementary functions, where
argument reduction is possible. In the article, we want to
evaluate accurately and fastly polynomials with high degree.
Such polynomials of high degrees which must be evaluated
with high performance and high accuracy are commonly
used for example as proxies for mathematical special
functions, which are not elementary, and given for instance
by differential equations [12]. Obtaining a faithful rounding
is often necessary, which the compensated Horner scheme
can guarantee, without requiring the use of high-precision
arithmetic, such as IEEE754 binary128.

The paper is organized as follows. We introduce assump-



tions on floating-point arithmetic and notations for error analy-
sis as well as review algorithms the error-free transformations
in Section II. Section III is devoted to the presentation of the
compensated Horner scheme. In Section IV we present some
algorithms for accurately computing summation and integer
exponentiation. The new parallel compensated Horner scheme
is presented in Section V. Finally Section VI is devoted to
numerical experiments.

II. FLOATING-POINT ARITHMETIC AND ERROR-FREE
TRANSFORMATIONS

Throughout the paper, we assume to work with binary
floating-point arithmetic adhering to the IEEE 754 floating-
point standard [9], [13]. We assume that no overflow nor
underflow occurs. We suppose that the prevailing rounding di-
rection (rounding mode) is round-to-nearest-ties-to-even. The
set of floating-point numbers is denoted by F, the relative
rounding error by u. For the IEEE 754 binary64 format
(double precision), we have u = 2−53 and for the binary32
format (single precision), we have u = 2−24.

We denote by fl(·) the result of a floating-point computation,
where all operations inside parentheses are done in floating-
point working precision. In the absence of underflow and
overflow, floating-point operations in IEEE 754 satisfy [8]

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for
◦ = {+,−, ·, /} and |εν | ≤ u.

This implies that

|a ◦ b− fl(a ◦ b)| ≤ u|a ◦ b| and
|a ◦ b− fl(a ◦ b)| ≤ u|fl(a ◦ b)| for ◦ = {+,−, ·, /}.

(1)

We use standard notation for error estimations. The quantities
γn are defined as usual [8] by

γn :=
nu

1− nu
for n ∈ N,

where we implicitly assume that nu ≤ 1. A direct calculation
shows that (1 + γi)(1 + γj) ≤ 1 + γi+j and (1 +u)γi ≤ γi+1.

As a matter of course, for a, b ∈ F, we have a ◦ b ∈ R and
a} b := fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F
– a rounding occurs in general. However, it is known that
for the basic operations +,−, ·, this very rounding error of a
floating-point operation is itself a floating-point number (see
for example [3] for a proof):

x = a⊕ b ⇒ a+ b = x+ y with y ∈ F,
x = a	 b ⇒ a− b = x+ y with y ∈ F,
x = a⊗ b ⇒ a× b = x+ y with y ∈ F.

(2)

We call these operations transforming a pair of floating-point
numbers (a, b) into another pair of floating-point numbers
(x, y) error-free transformations.

Fortunately, the quantities x and y in (2) can be computed
exactly in floating-point arithmetic. For the algorithms, we use
Matlab-like notations. For addition, we can use the following
algorithm by Knuth [11, Thm B. p.236].

Algorithm II.1 (Knuth [11]). Error-free transformation of the
sum of two floating-point numbers

function [x, y] = TwoSum(a, b)
x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

Another algorithm to compute an error-free transformation
is the following algorithm from Dekker [3]. The drawback of
this algorithm is that we have x + y = a + b provided that
|a| ≥ |b|.

Algorithm II.2 (Dekker [3]). Error-free transformation of the
sum of two floating-point numbers.

function [x, y] = FastTwoSum(a, b)
x = a⊕ b
y = (a	 x)⊕ b

For the error-free transformation of a product, we use the
Fused-Multiply-and-Add (FMA) operator which is now widely
available [2], [14]. For a, b, c ∈ F, the result of FMA(a, b, c)
is the nearest floating-point number of a · b + c ∈ R. In the
absence of underflow and overflow, the FMA satisfies

FMA(a, b, c) = (a · b+ c)(1 + ε1)

= (a · b+ c)/(1 + ε2) with |εν | ≤ u.

Algorithm II.3 (Ogita, Rump and Oishi [15]). Error-free
transformation of the product of two floating-point numbers
using an FMA.

function [x, y] = TwoProduct(a, b)
x = a⊗ b
y = FMA(a, b,−x)

The following theorem summarizes the properties of algo-
rithms TwoSum and TwoProduct.

Theorem II.1 (Ogita, Rump and Oishi [15]). Let a, b ∈ F and
let x, y ∈ F such that [x, y] = TwoSum(a, b) (Algorithm II.1).
Then,

a+b = x+y, x = a⊕b, |y| ≤ u|x|, |y| ≤ u|a+b|. (3)

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F such that [x, y] =
TwoProduct(a, b) (Algorithm II.3). Then,

a · b = x+ y, x = a⊗ b, |y| ≤ u|x|, |y| ≤ u|a · b|. (4)

The FMA based algorithm TwoProduct requires 2 flops.

Algorithm II.4. Computation of the sum of floating-point
numbers

function res = Sum(p)
s1 = p1
for i = 2 : n
si = si−1 ⊕ pi

res = sn



Lemma II.2. Suppose Algorithm Sum is applied to floating-
point number pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi, S :=

∑
|pi|

and nu < 1. Then, one has

|res− s| ≤ γn−1S.

III. COMPENSATED HORNER SCHEME

We now want to accurately compute the evaluation of a
polynomial at a given point. We present hereafter a com-
pensated algorithm for Horner scheme. One can find a more
detailed description of the algorithm in [6], [7]. We first
recall the classic algorithm for Horner scheme and give an
error bound. We then present the compensated Horner scheme
together with an error bound.

The classical method for evaluating a polynomial

p(x) =

n∑
i=0

aix
i,

is the Horner scheme which consists in the following algo-
rithm.

Algorithm III.1. Polynomial evaluation with Horner’s scheme

function res = Horner(p, x)
sn = an
for i = n− 1 : −1 : 0
si = si+1 ⊗ x⊕ ai

end
res = s0

A forward error bound for the result of Algorithm III.1 is
(see [8, p.95]):

|p(x)− res| ≤ γ2n
n∑
i=0

|ai||x|i = γ2np̃(|x|)

where p̃(x) =
∑n
i=0 |ai|xi. It is very interesting to express

and interpret this result in terms of the condition number of
the polynomial evaluation defined by

cond(p, x) =

∑n
i=0 |ai||x|i

|p(x)|
=
p̃(|x|)
|p(x)|

. (5)

The condition number measures the sensitivity of the evalua-
tion with respect to small perturbations of the coefficients of
the polynomial. We will refer to the cond(p, x) quantity as the
condition number in the text and we will use the cond(p, x)
quantity directly in formulas. Thus we have

|p(x)− res|
|p(x)|

≤ γ2n cond(p, x).

If an FMA instruction is available, then the statement
si = si+1 ⊗ x ⊕ ai in Algorithm III.1 can be re-written
si = FMA(si+1, x, ai) which slightly improves the error bound.
Using an FMA this way, the computed result now satisfies

|p(x)− res|
|p(x)|

≤ γn cond(p, x).

One can modify the Horner scheme to compute the rounding
error at each elementary operation that are a sum and a
product. This is done in Algorithm III.2 (see [6], [7]).

Algorithm III.2 ( [6], [7]). Polynomial evaluation with a
compensated Horner’s scheme

function res = CompHorner(p, x)
sn = an
rn = 0
for i = n− 1 : −1 : 0

[pi, πi] = TwoProduct(si+1, x)
[si, σi] = TwoSum(pi, ai)
ri = ri+1 ⊗ x⊕ (πi ⊕ σi)

end
res = s0 ⊕ r0

If one denotes by pπ and pσ the two following polynomials

pπ =

n−1∑
i=0

πix
i, pσ =

n−1∑
i=0

σix
i,

then one can show, thanks to error-free transformations that

p(x) = s0 + pπ(x) + pσ(x).

If one looks at the previous algorithm closely, it is then clear
that s0 = Horner(p, x). As a consequence, one can derive a
new error-free transformation for polynomial evaluation

p(x) = Horner(p, x) + pπ(x) + pσ(x).

The compensated Horner scheme first computes pπ(x)+pσ(x)
which correspond to the rounding errors and then add the
obtained value to the result of the classic Horner scheme
Horner(p, x).

We will show that the results computed by Algorithm III.2
admit significantly better error bounds than those computed
with the classical Horner scheme. We argue that Algo-
rithm III.2 provides results as if they were computed using
twice the working precision. This is summed up in the
following theorem.

Theorem III.1 ( [6], [7]). Consider a polynomial p of degree
n with floating-point coefficients, and a floating-point value
x. The forward error in the compensated Horner algorithm is
such that

|CompHorner(p, x)− p(x)| ≤ u|p(x)|+ γ22np̃(x). (6)

It is interesting to interpret the previous theorem in terms of
the condition number of the polynomial evaluation of p at x.
Combining the error bound (6) with the condition number (5)
for polynomial evaluation gives

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + γ22n cond(p, x). (7)

In other words, the bound for the relative error of the
computed result is essentially γ22n times the condition number
of the polynomial evaluation, plus the unavoidable term u for
rounding the result to the working precision. In particular, if



cond(p, x) < γ−1
2n , then the relative accuracy of the result is

bounded by a constant of the order of u. This means that
the compensated Horner algorithm computes an evaluation
accurate to the last few bits as long as the condition number is
smaller than γ−1

2n ≈ (2nu)−1. Besides that, (7) tells us that the
computed result is as accurate as if computed by the classic
Horner algorithm with twice the working precision, and then
rounded to the working precision.

IV. ACCURATE EXPONENTIATION AND SUMMATION

In this section, we present an accurate algorithm to compute
the sum of floating-point numbers [15] as well as another
accurate algorithm to compute the integer exponentiation of
a floating-point number [4].

Algorithm IV.1 ( [15]). Compensated summation algorithm

function res = CompSum(p)
π1 = p1 ; σ1 = 0;
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
σi = σi−1 ⊕ qi

res = πn ⊕ σn
The following proposition shows that the computed result

by CompSum(p) is as accurate as if computed with twice the
working precision and then rounded to the current precision.

Proposition IV.1 ( [15]). Suppose Algorithm CompSum is
applied to floating-point number pi ∈ F, 1 ≤ i ≤ n. Let
s :=

∑
pi, S :=

∑
|pi| and nu < 1. Then, one has

|res− s| ≤ u|s|+ γ2n−1S.

Compensated methods are a possible way to improve the
accuracy. Another possibility is to increase the working pre-
cision. For this purpose, one can use the Bailey’s double-
double [1]: double-double numbers are represented as an
unevaluated sum of a leading double and a trailing double.
More precisely, a double-double number a is the pair (ah, al)
of floating-point numbers with a = ah + al and |al| ≤ u|ah|.

In the sequel, we present two algorithms to compute the
product of two double-double or a double times a double-
double. Those algorithms are taken from [10].

Algorithm IV.2 ( [10]). Multiplication of double-double num-
ber by a double number

function [rh, rl] = prod dd d(a, bh, bl)
[t1, t2] = TwoProd(a, bh)
t3 = (a⊕ bl)⊕ t2
[rh, rl] = TwoProd(t1, t3)

Algorithm IV.3 ( [10]). Multiplication of two double-double
numbers

function [rh, rl] = prod dd dd(ah, al, bh, bl)
[t1, t2] = TwoProd(ah, bh)
t3 = ((ah ⊗ bl)⊕ (al ⊗ bh))⊕ t2
[rh, rl] = TwoProd(t1, t3)

Theorem IV.2 ( [10]). Let be ah + al and bh + bl the
double-double arguments of Algorithm prod dd dd. Then the
returned values rh and rl satisfy

rh + rl = ((ah + al) · (bh + bl))(1 + ε)

where ε is bounded as follows : |ε| ≤ 7u2. Furthermore, we
have |rl| ≤ u|rh|.

We can now use those algorithms to accurately evaluate the
integer power of a floating-point number.

Algorithm IV.4 ( [4]). Power evaluation with a compensated
scheme

function res = CompLogPower(x, n)
% n = (ntnt−1 · · ·n1n0)2

[h, l] = [1, 0]
for i = t : −1 : 0

[h, l] = prod dd dd(h, l, h, l)
if ni = 1

[h, l] = prod dd d(x, h, l)
end

end
res = [h, l]

Theorem IV.3 ( [4]). The two values h and l returned by
Algorithm CompLogPower satisfy

h+ l = xn(1 + ε)

with
(1− 7u2)n−1 ≤ 1 + ε ≤ (1 + 7u2)n−1.

V. PARALLEL COMPENSATED HORNER SCHEME

This algorithm is inspired from the parallel compensated
summation and dot product algorithms of [16]. However, [16]
just presents building blocks for summation, handling the
multiplication part of a dot product in just a couple of lines.
Evaluating a polynomial, which is our task here, is more
challenging, as the multiplication steps require multiplying
a native precision floating-point number, namely x, by a
compensated, “double-double” floating-point number. While
[16] is inspriring, we still need to develop techniques for our
polynomial evaluation problems on our own.

Let us assume p(x) =
∑n
i=0 aix

i with n+ 1 = K ×M

p(x) =

K−1∑
l=0

xlMpl(x) with pl(x) =

M−1∑
k=0

ak+lMx
k.

We first present a parallel version of the classic Horner
scheme. The outline of the algorithm is as follow:

1) distribute the “sub-polynomials” pl to the K SIMD
lanes;

2) each SIMD lane l computes xlM and evaluates pl(x)
and stores their product into a vector q;

3) use a recursive summation algorithm to compute the sum
of the elements of q.

Algorithm V.1. Parallel Horner scheme



function res = PHorner(p, x)
K = (n+ 1)/M
% begin parallel on K SIMD lanes (id = 0, . . . ,K − 1)
y = xid·M

r = Horner(pid, x)
q(id) = y ⊗ r
% end parallel
res = Sum(q)

Theorem V.1. Let p be a polynomial of degree n with floating-
point coefficients, and x be a floating-point value. Then if no
underflow occurs, and res = PHorner(p, x),

|res− p(x)|
|p(x)|

≤
[
(M(K + 1)− 2)u +O(u2)

]
cond(p, x).

Proof. Let us assume p(x) =
∑n
i=0 aix

i with n+1 = K×M
and so

p(x) =

K−1∑
l=0

xlMpl(x) with pl(x) =

M−1∑
k=0

ak+lMx
k.

We have

|res− p(x)| ≤ |res−
K−1∑
l=0

ql|+ |
K−1∑
l=0

ql − p(x)|,

≤ |res−
K−1∑
l=0

ql|+
K−1∑
l=0

|ql − xlMpl(x)|,

≤ γK−1

K−1∑
l=0

|ql|+
K−1∑
l=0

|ql − xlMpl(x)|.(8)

As ql = yl ⊗ rl, we have |ql| ≤ (1 + u)|yl||rl|. Moreover, we
have

|yl − xlM | ≤ γlM−1|xlM | (9)

and
|rl − pl(x)| ≤ γ2(M−1)p̃l(|x|). (10)

As a consequence, mixing the previous inequalities, we obtain

|ql| ≤ (1 + u)(1 + γlM−1)(1 + γ2(M−1))|xlM |p̃l(|x|)
≤ (1 + γ(2+l)M−2)|x|lM p̃l(|x|).

We also have

|ql − xlMpl(x)| ≤ |ql − ylrl|+ |ylrl − xlMpl(x)|,
≤ u|yl||rl|+
|(yl − xlM )rl + (rl − pl(x))xlM |,

≤ u|yl||rl|+
|yl − xlM ||rl|+ |rl − pl(x)||x|lM .

Using (9) and (10), it follows that

|ql − xlMpl(x)| ≤ u(1 + γ(2+l)M−1)|x|lM p̃l(|x|)+
γlM−1|xlM |(1 + γ2(M−1))p̃l(|x|) + γ2(M−1)p̃l(|x|)|x|lM .

Using this and (8), we can deduce that

|res− p(x)| ≤ γK−1(1 + γ(K+1)M−2)p̃(|x|)+
[u(1 + γ(K+1)M−1)+

γ(K−1)M−1(1 + γ2(M−1)) + γ2(M−1)]p̃(|x|) (11)

If we keep only the terms in u, we obtain

|res− p(x)| ≤
[
(M(K + 1)− 2)u +O(u2)

]
p̃(|x|),

which concludes the proof.

We can now outline a parallel compensated Horner scheme
as follow:

1) distribute the “sub-polynomials” pl to the K SIMD
lanes;

2) each lane l computes xlM with CompLogPower and eval-
uates pl(x) with CompHorner and stores their product
computed with double-double into a vector q;

3) use a compensated summation algorithm CompSum to
compute the sum of the elements of q.

Algorithm V.2. Parallel compensated Horner scheme

function res = PCompHorner(p, x)
K = (n+ 1)/M
% begin parallel on K SIMD lanes (id = 0, . . . ,K − 1)
[e, f ] = CompLogPower(x, id ·M)
[r, c] = CompHorner(pid, x)
[q(2 · id− 1), q(2 · id)] = prod dd dd(r, c, e, f)
% end parallel
res = CompSum(q)

Theorem V.2. Let p be a polynomial of degree n with floating-
point coefficients, and x be a floating-point value. Then if no
underflow occurs, and res = PCompHorner(p, x),

|res− p(x)|
|p(x)|

≤ u+

[(7 + 4(
n+ 1−K

K
)2 + 4n2 + 1)u2 +O(u3)] cond(p, x).

(12)

Proof. Let us assume p(x) =
∑n
i=0 aix

i with n+1 = K×M
and so

p(x) =

K−1∑
l=0

xlMpl(x) with pl(x) =

M−1∑
k=0

ak+lMx
k.

From the compensated Horner scheme, we deduce that

|(rl + cl)− pl(x)| ≤ γ22(M−1)p̃l(|x|). (13)

With the use of CompLogPower, we can say that

|(el + fl)− xlM | ≤ γlM with γn :=
nu2

1− nu2
(14)

Moreover using prod dd dd yields

|(q2l + q2l+1)− (rl + cl)(el + fl)| ≤ 7u2|(rl + cl)(el + fl)|.



The use of CompSum leads to

|res−
K−1∑
l=0

(q2l + q2l+1)| ≤ u|
K−1∑
l=0

(q2l + q2l+1)|+

γ22n

K−1∑
l=0

(|q2l|+ |q2l+1|).

As a consequence, we can deduce that

|res− p(x)| ≤ |res−
K−1∑
l=0

(q2l + q2l+1)|+

|
K−1∑
l=0

(q2l + q2l+1)−
K−1∑
l=0

xlMpl(x)|,

≤ u|
K−1∑
l=0

(q2l + q2l+1)|+ γ22n

K−1∑
l=0

(|q2l|+ |q2l+1|)+

|
K−1∑
l=0

(q2l + q2l+1)−
K−1∑
l=0

xlMpl(x)|.

Let us now bound

|(q2l + q2l+1)− xlMpl(x)| ≤ |(q2l + q2l+1)− (rl + cl)(el + fl)|+
|(rl + cl)(el + fl)− xlMpl(x)|
≤ 7u2|(rl + cl)(el + fl)|+
|(el + fl)||(rl + cl)− pl(x)|+
|pl(x)||(el + fl)− xlM |

As

|el + fl| ≤ (1 + γlM )|xlM |,
|rl + cl| ≤ (1 + γ22(M−1))p̃l(|x|),

and with (13) and (14), we can deduce that

|(q2l + q2l+1)− xlMpl(x)| ≤ 7u2(1 + γlM )(1 + γ22(M−1))·
|xlM |p̃l(|x|) + (1 + γlM )γ22(M−1)|x

lM |p̃l(|x|)+
γlM |xlM |p̃l(|x|). (15)

As a consequence, we have

|
K−1∑
l=0

(q2l + q2l+1)−
K−1∑
l=0

xKMpl(x)| ≤ (7u2(1 + γKM )·

(1 + γ22(M−1)) + (1 + γKM )γ22(M−1) + γKM )p̃(|x|).

If we can keep only the terms in u2, we have

|
K−1∑
l=0

(q2l + q2l+1)−
K−1∑
l=0

xKMpl(x)| ≤ [(7 + 4(M − 1)2+

KM)u2 +O(u3)]p̃(|x|).

Besides,

|
K−1∑
l=0

(q2l + q2l+1)| ≤ |p(x)|+ |
K−1∑
l=0

(q2l + q2l+1)− p(x)|

By definition, |q2l+1| ≤ u|q2l| and fl(q2l + q2l+1) = q2l so
|q2l| + |q2l+1| ≤ (1 + u)|q2l| and then |q2l| + |q2l+1| ≤ (1 +
u)2|q2l + q2l+1|. It follows that

|res− p(x)| ≤ u|p(x)|+ (1 +u)|
K−1∑
l=0

(q2l + q2l+1)− p(x)|

γ22n

K−1∑
l=0

(|q2l|+ |q2l+1|).

We also have

|q2l + q2l+1| ≤ (1 + 7u2)|el + fl||rl + cl|
≤ (1 + 7u2)(1 + γlM )(1 + γ22(M−1))|x

lM |p̃l(|x|)

so
K−1∑
l=0

(|q2l|+|q2l+1|) ≤ (1+7u2)(1+γKM )(1+γ22(M−1))p̃(|x|).

Then it follows that

|res− p(x)| ≤ u|p(x)|
[(7 + 4(M − 1)2 +KM + 4n2)u2 +O(u3)]p̃(|x|),

and as n+ 1 = KM , we conclude that

|res− p(x)| ≤ u|p(x)|+

[(8 + 4(
n+ 1−K

K
)2 + n+ 4n2)u2 +O(u3)]p̃(|x|),

VI. NUMERICAL EXPERIMENTS

All the tests were done on a computer under
Linux Debian with 11th Gen Intel Core i5-1145G7
processor (4 cores) at 2.60GHz. The code is
compiled with clang version 11.0.1-2 with the option
-Wall -O3 -march=native -ftree-vectorize.
The SIMD architecture used is AVX2 (registers with 256
bits). For all the experiments with native Horner, compensated
Horner and parallel compensated Horner, we used IEEE 754
binary64 (double) precision. We compare the preformance
and accuracy as well to a classical Horner when using
IEEE754 binary128 (quad) precision. The code is available at

https://gitlab.com/cquirin/parallel-compensated-horner.

We did some performance evaluation work with ARM sys-
tems, trying to leverage their NEON units. The results have
been inconclusive so far; the culprit is not with our algorithm
but with lacking compiler support. These results are presented
at the conference; further analysis of non-x86 systems is left
to future work.

Figure 1 represents a comparison between the classic Horner
scheme, the compensated Horner sheme (CHS) and the parallel
compensated Horner scheme (PCHS) with SIMD. The CHS
and PCHS have a similar behavior and so share a similar
accuracy that is as accurate as if computed with twice the
working precision and then rounded to the working precision.



The degree of the polynomial used for the experiment is 1023.
The x-axis corresponds to the condition number defined by
Equation (5).
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Figure 1. Comparison of the accuracy of evaluation algorithms with respect
to condition number

Figure 2 shows of comparison of Horner scheme, CHS and
PCHS in term of computing time depending on the degree
of the polynomial. As expected, CHS is slower than the
classical Horner scheme but PCHS is far more efficient than
the classical Horner scheme and CHS. The SIMD architecture
used is 16 virtual lanes. AVX2 has four physical lanes but
the compiler can multiply that number by four, leveraging
the different scheduling slots in the floating-point pipeline; we
use all these 16 virtual lanes. Beyond 16 virtual lanes, register
pressure becomes too high to allow for any additional benefits.
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Figure 2. Comparison of the computing time with respect to the polynomial
degree

Figure 3 shows the speedup of PCHS compared to CHS
with respect to the number of SIMD lanes. As seen, the best
result is obtained with 16 lanes that makes it possible to obtain
a speedup of 4 for a polynomial with a large degree.

Figure 4 shows a comparison of the speedup with respect
ot the degree of the polynomial. One can see that this speedup
is better when one uses polynomials of large degree.
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Figure 3. Comparison of the speedup with respect to the number of SIMD
lanes
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VII. CONCLUSION

In this paper, we proposed a parallel algorithm to efficiently
and accurately evaluate a polynomial. The algorithm provides
a computed result which is as accurate as if computed in twice
the working precision. The numerical experiments confirm
that the proposed algorithm is fast in a SIMD environment.
While the algorithm scales perfectly in theory, SIMD register
pressure is a limiting factor to scalability in practice. This
parallel algorithm can also be used to accurately evaluate
rational functions [5]. This algorithm could also be used on
shared memory computers with OpenMP or pthreads and
even with MPI for distributed memory systems. However, it
is expected that the overhead cost of these higher layers of
parallelization can be compensated by the inherent speed of the
algorithm only for very high degrees, for which other issues
of floating-point arithmetic, such as limited exponent range,
become preponderant. This will be developed in a future work.
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[14] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-
point matrix arithmetic provably accurate to the penultimate digit. ACM
Trans. Math. Software, 29(1):27–48, 2003.

[15] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[16] N. Yamanaka, T. Ogita, S. M. Rump, and S. Oishi. A parallel algorithm
for accurate dot product. Parallel Comput., 34(6-8):392–410, 2008.


