
HAL Id: hal-04180624
https://hal.science/hal-04180624v1

Submitted on 13 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

The Bounded Pathwidth of Control-flow Graphs
Giovanna Kobus Conrado, Amir Goharshady, Chun Kit Lam

To cite this version:
Giovanna Kobus Conrado, Amir Goharshady, Chun Kit Lam. The Bounded Pathwidth of Control-flow
Graphs. ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2023, Oct 2023, Cascais, Portugal. �hal-04180624�

https://hal.science/hal-04180624v1
https://hal.archives-ouvertes.fr

The Bounded Pathwidth of Control-flow Graphs

GIOVANNAKOBUSCONRADO, AMIRKAFSHDARGOHARSHADY, andCHUNKIT LAM,
Hong Kong University of Science and Technology, Hong Kong

Pathwidth and treewidth are standard and well-studied graph sparsity parameters which intuitively model the

degree to which a given graph resembles a path or a tree, respectively. It is well-known that the control-flow

graphs of structured goto-free programs have a tree-like shape and bounded treewidth. This fact has been

exploited to design considerably more efficient algorithms for a wide variety of static analysis and compiler

optimization problems, such as register allocation, 𝜇-calculus model-checking and parity games, data-flow

analysis, cache management, and liftetime-optimal redundancy elimination. However, there is no bound in

the literature for the pathwidth of programs, except the general inequality that the pathwidth of a graph is at

most 𝑂 (lg𝑛) times its treewidth, where 𝑛 is the number of vertices of the graph.

In this work, we prove that control-flow graphs of structured programs have bounded pathwidth and

provide a linear-time algorithm to obtain a path decomposition of small width. Specifically, we establish a

bound of 2 · 𝑑 on the pathwidth of programs with nesting depth 𝑑. Since real-world programs have small

nesting depth, they also have bounded pathwidth. This is significant for a number of reasons: (i) pathwidth

is a strictly stronger parameter than treewidth, i.e. any graph family with bounded pathwidth has bounded

treewidth, but the converse does not hold; (ii) any algorithm that is designed with treewidth in mind can

be applied to bounded-pathwidth graphs with no change; (iii) there are problems that are fixed-parameter

tractable with respect to pathwidth but not treewidth; (iv) verification algorithms that are designed based on

treewidth would become significantly faster when using pathwidth as the parameter; and (v) it is easier to

design algorithms based on bounded pathwidth since one does not have to consider the often-challenging case

of merge nodes in treewidth-based dynamic programming. Thus, we invite the static analysis and compiler

optimization communities to adopt pathwidth as their parameter of choice instead of, or in addition to,

treewidth. Intuitively, control-flow graphs are not only tree-like, but also path-like and one can obtain simpler

and more scalable algorithms by relying on path-likeness instead of tree-likeness.

As a motivating example, we provide a simpler and more efficient algorithm for spill-free register allocation

using bounded pathwidth instead of treewidth. Our algorithm reduces the runtime from 𝑂 (𝑛 · 𝑟2·tw·𝑟+2·𝑟) to
𝑂 (𝑛 · pw · 𝑟pw·𝑟+𝑟+1), where 𝑛 is the number of lines of code, 𝑟 is the number of registers, pw is the pathwidth

of the control-flow graph and tw is its treewidth. We provide extensive experimental results showing that

our approach is applicable to a wide variety of real-world embedded benchmarks from SDCC and obtains

runtime improvements of 2-3 orders of magnitude. This is because the pathwidth is equal to the treewidth, or

one more, in the overwhelming majority of real-world CFGs and thus our algorithm provides an exponential

runtime improvement. As such, the benefits of using pathwidth are not limited to the theoretical side and

simplicity in algorithm design, but are also apparent in practice.

CCS Concepts: • Theory of computation→ Fixed parameter tractability; Graph algorithms analysis;
Discrete optimization; • Software and its engineering→ Formal software verification.

1 INTRODUCTION

Control-flow Graphs [Allen 1970]. A Control-flow Graph (CFG) 𝐺 of a program 𝑃 is a graph

representation of all execution paths in 𝑃 . The graph 𝐺 has one vertex for every statement or

line of code in 𝑃 and a directed edge between two vertices if they can potentially be executed

consecutively in a run of the program. CFGs are highly ubiquitous and almost all flow-sensitive

static analysis and compiler optimization tasks are modeled as graph problems over the CFGs.

This includes data-flow analyses [Khedker et al. 2017; Myers 1981; Reps et al. 1995a; Sharir et al.

1978], alias and pointer analyses [Hind et al. 1999; Smaragdakis et al. 2015], shape analysis [Reps

Authors’ address: Giovanna Kobus Conrado, gkc@connect.ust.hk; Amir Kafshdar Goharshady, goharshady@cse.ust.hk;

Chun Kit Lam, cklamaq@connect.ust.hk, Department of Computer Science and Engineering, Department of Mathematics,

Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

2 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

1995; Wilhelm et al. 2000], model-checking of LTL and 𝜇-calculus [Ferrara et al. 2005; Obdrzálek

2003], register allocation [Callahan and Koblenz 1991; Chaitin et al. 1981], instruction selection and

scheduling [Bernstein and Rodeh 1991; Blindell et al. 2015], invariant generation [Monniaux and

Gawlitza 2012], termination analysis [Zhu and Kincaid 2021], and program synthesis [Srivastava

et al. 2013]. In this work, we consider CFGs that have one vertex per statement/line of code. Some

of the analyses mentioned above use coarser notions of CFGs, e.g. having each vertex correspond

to a basic block of code. Our results trivially extend to such coarser CFGs, too.

Sparsity of CFGs.While many static analysis and compiler optimization tasks are reduced to graph

problems over the CFGs, it is often the case that the resulting graph problem is either NP-hard,

e.g. for register allocation [Chaitin et al. 1981], or has an inefficient polynomial-time algorithm,

e.g. for interprocedural data-flow analysis [Reps et al. 1995a]. However, it is well-known that

control-flow graphs are sparse, since every node of a CFG has bounded outdegree. Hence, applying

algorithms designed for general graphs is extremely wasteful in these scenarios. Instead, there has

been ample research focused on formalizing the sparsity of CFGs, e.g. Thorup [1998], and then

exploiting it to design faster algorithms [Bodlaender et al. 1998; Chatterjee et al. 2020; Obdrzálek

2003].

Graph Width Parameters.Width parameters are a family of parameters that are often used to

formalize the sparsity and structural complexity of a graph. They are ubiquitous in parameterized

complexity [Bodlaender 1988; Cygan et al. 2015; Harvey andWood 2017]. The twomost well-studied

width parameters are pathwidth [Robertson and Seymour 1983] and treewidth [Robertson and

Seymour 1984, 1986, 1990].

Treewidth [Robertson and Seymour 1984]. The treewidth of a graph𝐺 is a measure of its sparsity

and tree-likeness. Only trees and forests have treewidth 1 and any graph that has treewidth tw can

be decomposed into small subgraphs, each containing at most tw + 1 vertices, that are connected
to each other in a tree-like manner. This is called a tree decomposition. See Section 3 for a formal

definition and Figure 3 for an intuitive example. The importance of treewidth stems from the

fact that many NP-hard graph problems are solvable in polynomial time when the treewidth is

bounded [Bodlaender 1997; Cygan et al. 2015; Goharshady and Mohammadi 2020; Robertson and

Seymour 1986]. Moreover, even problems that have polynomial-time solutions on general graphs

can often be solved faster on graphs of bounded treewidth [Fomin et al. 2018; Izumi et al. 2022]. This

is usually due to the fact that one can perform dynamic programming on a bounded-treewidth graph

in virtually the same manner as a tree [Bodlaender 1988]. On the other hand, many well-studied

families of graphs that are often encountered in practice have bounded treewidth [Bodlaender

1998]. Examples include cacti, series-parallel graphs, outerplanar graphs, and, most important in

our context, control-flow graphs of structured programs [Thorup 1998].

Pathwidth [Robertson and Seymour 1983]. The pathwidth of a graph 𝐺 is a measure of its

path-likeness. A graph that has pathwidth pw can be decomposed into small subgraphs, each with at

most pw + 1 vertices, that are connected to each other as a path. This is called a path decomposition.
See Section 3 for details and Figure 4 for an example path decomposition of the graph in Figure 3.

Path decompositions are a special case of tree decompositions, in the same manner that paths are

special cases of trees. More specifically, every path decomposition is also a tree decomposition, but

the converse is not true. This signifies that pathwidth is a stronger parameter than treewidth and

all algorithms that use a tree decomposition of a graph can also use a path decomposition instead

with no need for any modification in the algorithm itself.

Relationship between Treewidth and Pathwidth. Given that every path decomposition is also a

tree decomposition, it is easy to see that the treewidth of a graph is less than or equal to its pathwidth.

The Bounded Pathwidth of Control-flow Graphs 3

Intuitively, if one can decompose a graph into a path of small subsets, the same construction is also

a decomposition into a tree of small subsets. On the other hand, the pathwidth of any graph𝐺 with

𝑛 vertices is at most𝑂 (lg𝑛) times its treewidth [Korach and Solel 1993]. As such, any problem that

is fixed-parameter tractable (FPT) with respect to treewidth
∗
is also FPT for pathwidth. However,

the converse does not hold. There are problems that are FPT when the pathwidth is bounded, but

not when only the treewidth is bounded. While such problems are rare and often handcrafted, the

first natural example was recently found in Belmonte et al. [2022]. More importantly, even when a

problem is FPT with respect to both pathwidth and treewidth, the pathwidth-based algorithms are

often much more efficient, e.g. Obdrzálek [2003] and Meybodi et al. [2022]. Intuitively, dynamic

programming algorithms using pathwidth [Arnborg 1985] and treewidth [Bodlaender 1988] are

similar to dynamic programming over paths and trees, respectively. So, it is no surprise that the

former is more efficient as it does not have to consider any tree branching.

Treewidth of Control-flow Graphs. A fundamental result regarding the sparsity of control-flow

graphs was obtained in Thorup [1998], in which it was shown that all structured, i.e. goto-free,

programs have control-flow graphs with bounded treewidth. This work proved that the treewidth

is at most 3 for Pascal and Algol programs, 5 for Modula, and 7 for C programs
†
. Similar results

were then obtained for Java [Chatterjee et al. 2017; Gustedt et al. 2002], Solidity [Chatterjee et al.

2019a] and Ada [Burgstaller et al. 2004]. In case of Java, it is possible to construct unrealistic and

pathological programs with arbitrary treewidth, but this requires an unreasonably large nesting

depth, e.g. 𝑛 nested for loops to force a treewidth of Ω(𝑛). In practice, the treewidth is rarely

more than 5 [Gustedt et al. 2002]. Finally, the work [Krause et al. 2020] showed that the treewidth

increases by at most 𝑔 if the program has up to 𝑔 goto statements. Based on these bounded treewidth

results, many works designed more efficient algorithms for various compiler optimization and

static analysis problems with the assumption that the treewidth is bounded.

Treewidth-based Compiler Optimization. The bounded treewidth of CFGs led to efficient algo-

rithms for otherwise NP-hard tasks in compiler optimization. For example, Thorup [1998] provided

a practical linear-time 4-approximation for the classical problem of register allocation, i.e. finding

the optimal number of registers for a program 𝑃 such that no spilling occurs. Without the bounded-

treewidth assumption, this problem is equivalent to graph coloring and hard-to-approximate within

any constant factor unless P=NP [Chaitin et al. 1981; Krause 2014]. In Bodlaender et al. [1998], it

was shown that optimal register allocation can be performed in linear time when the number of

registers is bounded. This work provided an algorithm with the runtime𝑂 (𝑛 · 𝑟 2·tw·𝑟+2·𝑟) that, given
a program with 𝑛 statements whose treewidth is tw, decides whether it is possible to map each

variable of the program to one of 𝑟 registers so that there is no spilling. Note that this algorithm is

linear when both the treewidth tw and the number of registers 𝑟 are bounded. The work Krause

[2013b] provided a linear-time algorithm for a different formulation of the register allocation prob-

lem, in which the number of registers and the treewidth are bounded, but the goal is to minimize a

certain cost function instead of entirely avoiding spills. Using treewidth for compiler optimizations

is already the default behavior in the SDCC compiler which is used for compiling embedded C

programs [Krause 2013b]. Treewidth has also been used for lifetime-optimal speculative partial

redundancy elimination (LOSPRE) [Krause 2021], optimal bank selection [Krause 2013a], instruction

∗
A problem is Fixed-parameter Tractable (FPT) with respect to the parameter 𝑤 if it can be solved in𝑂 (𝑛𝑐 · 𝑓 (𝑤)), where
𝑛 is the size of the input, 𝑐 is a constant, and 𝑓 is any computable function [Cygan et al. 2015]. This definition captures the

idea that on instances in which the parameter is bounded, the problem can be solved in polynomial time𝑂 (𝑛𝑐) . However,
the runtime’s dependence on the parameter can be arbitrarily bad.

†
The work Thorup [1998] claimed a bound of 6 for the treewidth of C programs, but this was later corrected to 7 by Krause

et al. [2020].

4 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

selection [Koes 2009], compiler optimizations based on data-flow [Nordgaard and Meyer 2020] and

reducing cache misses [Ahmadi et al. 2022; Chatterjee et al. 2019c].

Treewidth-based Verification. Treewidth has been used extensively as a sparsity parameter for

program verification, especially in static analysis. In model-checking, the well-known theorem

of Courcelle [1990] shows that any graph property written as a formula in the monadic second

order logic can be decided by a finite-state tree automaton, in linear-time, on any input graph of

bounded treewidth. Moreover, a similarly linear-time algorithm for 𝜇-calculus model-checking and

solving parity games was provided by Obdrzálek [2003]. Treewidth also helps reduce the runtime

complexity in local, but not global, LTL model checking [Ferrara et al. 2005]. Moreover, it is a

central ingredient in iterative-free and catamorphic program analysis [Ogawa et al. 2003a,b]. The

work Chatterjee et al. [2020] shows the bounded-treewidth assumption can reduce the runtime of

on-demand interprocedural data-flow analysis from quadratic to linear. Similar techniques have

been used for computing algebraic path properties in concurrent settings [Chatterjee et al. 2016].

The work Sankaranarayanan [2020] performs reachability analysis using treewidth-based message-

passing. See Aiswarya [2022] for a more comprehensive discussion of how treewidth is exploited

in program verification.

Practical Impacts of Sparsity. The sparsity of control-flow graphs, as formalized by their small

treewidth, is significant in two categories of program analyses:

• NP-hard problems: Certain classical tasks, such as optimal register allocation [Chaitin et al.

1981] or cache management [Calder et al. 1998; Lavaee 2016; Petrank and Rawitz 2002], are

equivalent to graph problems, such as optimal coloring, which are known to be NP-hard or

hard-to-approximate within a constant multiplicative factor unless P=NP. For these problems,

the community mostly gave up on optimal solutions and instead focused on designing

efficient heuristics that work well in practice, but do not provide any optimality guarantees.

Using sparsity parameters, specifically treewidth, one can design optimal algorithms whose

runtimes depend polynomially on the size of the program but exponentially on the width.

Examples of these approaches are Thorup [1998], Chatterjee et al. [2019c] and Ahmadi et al.

[2022]. Simply put, it is possible to push most of the complexity on the treewidth or pathwidth,

finding algorithms that work in polynomial time on all real-world sparse instances. Such

algorithms are the only practical solutions that are guaranteed to output optimal results or

approximations within a constant factor.

• Scalable Lightweight Formal Methods: On the other side of the spectrum, there are lightweight

verification tasks which are known to be solvable in polynomial time, such as interprocedural

data-flow analysis [Reps et al. 1995b] or algebraic program analysis [Kincaid et al. 2021].

Despite being polynomial-time, classical algorithms for these problems are often not scalable

enough for modern huge codebases with millions of lines of code. In these cases, exploiting

sparsity has led to algorithms with polynomial runtimes of a lower degree [Chatterjee et al.

2019b, 2016, 2018; Conrado et al. 2023; Goharshady and Zaher 2023], often linear, which are

much more practical than their classical counterparts that ignore sparsity. Other examples

of problems in this category are 𝜇-calculus model-checking [Obdrzálek 2003] and classical

algorithms for the analysis of Markov chains and MDPs [Asadi et al. 2020; Chatterjee and

Lacki 2013].

Our Pathwidth Bound. In this work, we prove that control-flow graphs of structured programs

have a pathwidth of at most 2 · 𝑑 , where 𝑑 is the nesting depth of the program (Section 4). We

also provide a simple linear-time algorithm that produces a path decomposition of width at most

2 · 𝑑. Since real-world programs have bounded nesting depth, this shows that they also have a

The Bounded Pathwidth of Control-flow Graphs 5

bounded pathwidth. To the best of our knowledge, this is the first constant bound on the pathwidth

of control-flow graphs. Previously, it was known that CFGs have a pathwidth of 𝑂 (lg𝑛), based on

the general bound of Korach and Solel [1993], but this was not useful for compiler optimization

and static analysis algorithms whose runtimes have (super-)exponential dependence on the width.

Intuition. We remark that it is quite intuitive to expect real-world well-written programs to have

control-flow graphs with bounded pathwidth, as they tend to follow an almost-linear structure

in their execution. Moreover, most coding standards discourage or prohibit having many nested

levels of if statements or loops with huge bodies.

Significance of Bounded Pathwidth. Our bounded pathwidth result is significant for a number

of reasons:

• Pathwidth is a strictly stronger parameter than treewidth, i.e. any graph family with bounded

pathwidth has bounded treewidth by definition, but the converse does not hold. Hence, any

compiler optimization or static analysis algorithm that was designed based on treewidth can

be applied using pathwidth with no change in the algorithm.

• Asmentioned, there are problems that are FPTwith respect to pathwidth, but not treewidth [Bel-

monte et al. 2022]. Hence, the bounded-pathwidth assumption allows us to theoretically solve

a strictly larger family of problems over CFGs.

• Several verification algorithms that are designed based on treewidth would become signifi-

cantly faster when using pathwidth as the parameter, i.e. if they are given a path decomposi-

tion as part of their input instead of a tree decomposition. This is a free runtime improvement

that does not even require any change in the algorithm and is due to the fact that these

approaches’ runtimes are dominated by the so-called merge nodes, i.e. nodes of the tree

decomposition that have two or more children. Path decompositions have no merge nodes by

definition. As a concrete example, the runtime of the 𝜇-calculus model-checking algorithm

of Obdrzálek [2003] decreases from𝑂 (𝑛 ·tw2 ·𝑚2 ·𝛿2· ((tw+1) ·𝑚)2) to𝑂 (𝑛 ·pw2 ·𝑚2 ·𝛿 ((pw+1) ·𝑚)2)
by simply using pathwidth instead of treewidth. Here, tw and pw are the treewidth and

pathwidth of the program, respectively, 𝛿 is the alternation depth of the formula,𝑚 is the

formula size and 𝑛 is the number of lines in the program. Although pathwidth can in general

be much larger than treewidth, this is not the case for control-flow graphs since we prove

they have bounded pathwidth. On the experimental side, as we will see in Section 6, most

programs have a pathwidth of at most 3 and the width usually remains the same no matter

we use a tree decomposition or a path decomposition. Note that both runtimes above are

linear in 𝑛, but using a path decomposition provides a significant exponential improvement

in the dependence on 𝛿 and𝑚 and thus the overall runtime.

• Informally speaking, it is much easier to design algorithms based on pathwidth rather than

treewidth. This is because path decompositions have no branching and dynamic programming

over them is similar to paths, whereas in tree decompositions, one has to handle branching

(merge) nodes as well.

Our Contributions. In this work, our contributions are as follows:

• We prove that the control-flow graph of any structured program 𝑃 with nesting depth 𝑑 has

a pathwidth of at most 2 · 𝑑.
• Our result is constructive. We provide an efficient linear-time algorithm that, given the

program 𝑃 , produces a path decomposition of width at most 2 · 𝑑.
• As a motivating example, we consider the problem of register allocation as formalized

in Chaitin et al. [1981]. Using pathwidth, we provide an efficient FPT algorithm with runtime

𝑂 (𝑛 · pw · 𝑟 pw·𝑟+𝑟+1), where pw is the pathwidth and 𝑟 is the number of registers. In contrast,

6 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

the treewidth-based algorithm in [Bodlaender et al. 1998] takes 𝑂 (𝑛 · 𝑟 2·tw·𝑟+2·𝑟) time for the

same problem.

• We provide extensive experimental results over the SDCC benchmarks [Dutta 2000; Dutta

et al. 2003], which are real-world embedded programs written in C. Our experiments show

that our pathwidth-based algorithm significantly outperforms the treewidth-based algorithm

of Bodlaender et al. [1998] and that our approach is the first to achieve enough scalability to

handle real-world instances of the register allocation problem in embedded environments

with up to 8 registers. Note that register allocation is a notoriously hard problem and is

NP-hard even for 3 registers [Chaitin et al. 1981]. Thus, we are providing the first optimal

and non-heuristic algorithm for register allocation that is also applicable to the real-world

instances in embedded systems. However, finding algorithms that can handle larger numbers

of registers remains an elusive and unsolved problem.

In summary, we show that control-flow graphs of structured programs have bounded pathwidth

and that pathwidth-based algorithms are at least as efficient as treewidth-based algorithms and

often significantly more efficient. As such, we invite the compiler optimization and static analysis

communities to adopt pathwidth as their primary parameter instead of, or in addition to, treewidth

when dealing with control-flow graphs.

Limitation.Our bounded pathwidth result applies to intra-procedural control-flow graphs, i.e. flow

graphs of a single function. Thus, its main limitation is that it does not hold for inter-procedural

control-flow graphs (ICFGs). This is a shared limitation with the classical results on treewidth such

as Thorup [1998]. In the inter-procedural setting, one can obtain dense call graphs, and thus dense

ICFGs, e.g. by creating a program in which every function calls every other function. The call graph

of such an adversarial program would be the complete graph 𝐾𝑛 , which has a treewidth/pathwidth

of 𝑛 − 1.

Organization. In Section 2, we fix a syntax for our programs. In Section 3, we formally define

the concepts of treewidth and pathwidth. In Section 4, we show that the control-flow graph of

structured programs has pathwidth of at most 2 · 𝑑 , where 𝑑 is the nesting depth of the program.

In Section 5, we present our pathwidth-based algorithm for spill-free register allocation. Finally,

Section 6 contains our experimental results and a comparison with the previous treewidth-based

algorithm of Bodlaender et al. [1998].

2 STRUCTURED PROGRAMS AND CONTROL-FLOW GRAPHS
In this section, we define an abstract programming language called STRUCTURED, and use it

to formalize the concept of a control-flow graph and present our results in a general language-

independent fashion. Our syntax closely follows Thorup [1998]. The techniques and algorithms in

the sequel are applicable to any structured program written in common high-level languages, such

as C, C++, Java and Pascal. As is standard, we do not allow our programs to have arbitrary goto
statements. Similar to the case of treewidth, if a program has 𝑔 goto statements, then the pathwidth

increases by at most 𝑔. See Krause et al. [2020] for a more detailed treatment of this point.

Syntax. Figure 1 provides the syntax of the STRUCTURED language. Our language contains all

the typical constructs of a structured programming language, such as sequential composition of

statements, conditional branching, nested while loops, and break and continue statements. Note

that our break/continue statements are labeled and allow jumping to the end or next iteration

of any loop in which the statement is contained. We also allow for atomic statements 𝛼 that do

not affect the control-flow graph of the program, e.g. a variable assignment. Finally, it is trivial to

The Bounded Pathwidth of Control-flow Graphs 7

𝑃 ::= program 𝑆 margorp

𝑆 ::= statement

𝑆 ; 𝑆 sequential composition

if𝑙 𝐵 then 𝑆 else 𝑆 fi𝑙 conditional branching

while𝑙 𝐵 do 𝑆 done𝑙 while loop
return termination

break𝑙 breaking loop 𝑙

continue𝑙 jumping to the next iteration of loop 𝑙
𝛼 atomic statement

Fig. 1. Syntax of the STRUCTURED language. 𝐵 is a boolean expression. We drop the label 𝑙 when it is clear
from context. The statements break𝑙 and continue𝑙 can only appear in the body of the loop while𝑙 .

define other common structured constructs such as switch or a for loop as syntactic sugar. We

drop these for brevity.

Semantics. Our programs follow the usual semantics. We do not define comprehensive semantics

for our language. Instead, we simply define the control-flow graph, which is the only semantic

concept we need to reference in the rest of the paper.

Entry and Exit Nodes. Let 𝜎 be a statement. We define ⌈𝜎⌉, the entry node of 𝜎, as follows:

⌈program 𝑆 margorp⌉ = program

⌈𝑆1; 𝑆2⌉ = ⌈𝑆1⌉ sequential composition

⌈if𝑙 𝐵 then 𝑆1 else 𝑆2 fi𝑙 ⌉ = if𝑙 conditional branching

⌈while𝑙 𝐵 do 𝑆 done𝑙 ⌉ = while𝑙 while loop

⌈𝜎⌉ = 𝜎 other cases

(1)

We define ⌊𝜎⌋, the exit node of 𝜎 as follows:

⌊program 𝑆 margorp⌋ = margorp

⌊𝑆1; 𝑆2⌋ = ⌊𝑆2⌋ sequential composition

⌊if𝑙 𝐵 then 𝑆1 else 𝑆2 fi𝑙 ⌋ = fi𝑙 conditional branching

⌊while𝑙 𝐵 do 𝑆 done𝑙 ⌋ = done𝑙 while loop

⌊𝜎⌋ = 𝜎 other cases

(2)

Note that we distinguish between the different words in our program, e.g. two if statements that

appear in different points of the program are not considered the same. Thus, the entry and exit

nodes are well-defined and unique. Whenever needed, we add labels to our if and while statements

to explicitly distinguish them, but we drop the labels if there is no ambiguity.

Control-flow Graph. The control-flow graph of a program 𝑃 is a directed graph 𝐺 = (𝑉 , 𝐸) in
which 𝑉 contains one vertex for every return, break𝑙 , continue𝑙 and 𝛼 statement in 𝑃, as well as

dedicated vertices for the entry and exit nodes of the program, conditional statements, and loop

statements. The edges in 𝐸 are defined as follows:

• If 𝑃 = program 𝑆 margorp, then there is an edge from program to ⌈𝑆⌉ and an edge from ⌊𝑆⌋
to margorp. There is also an edge from every return node to margorp.

8 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

program

whi l e 1 B do

i f 1 B then

break 1

e l s e

𝛼1

f i 1 ;

wh i l e 2 B do

i f 2 B then

break 2

e l s e

𝛼2 ;

c on t i nue 2

f i 2

done2

done1 ;

i f 3 B then

𝛼3

e l s e

𝛼4

f i 3

margorp

while1done1

if1

fi1break1

𝛼1

while2done2

if2

fi2

break2 𝛼2

continue2

if3

fi3 𝛼3

𝛼4

program

margorp

Fig. 2. A STRUCTURED program (left) and its control-flow graph (right). In this example, fi2 is dead code
and will never be reached.

• For every “𝑆1; 𝑆2” that appears in 𝑃, there is an edge from the exit node ⌊𝑆1⌋ to the entry node
⌈𝑆2⌉ .
• For every “if 𝐵 then 𝑆1 else 𝑆2 fi” that appears in 𝑃 , we have an edge from this if node
to each of the entry nodes ⌈𝑆1⌉ and ⌈𝑆2⌉ .We also have edges from ⌊𝑆1⌋ and ⌊𝑆2⌋ to fi.
• For every “while 𝐵 do 𝑆 done” that appears in 𝑃, we have an edge from this while node to
the entry node ⌈𝑆⌉ and an edge from the exit node ⌊𝑆⌋ back to this while node. Moreover,

we have an edge from while to done.
• If the rules above create an outgoing edge from a break𝑙 or continue𝑙 statement, we ignore

that edge and do not add it to the CFG. Instead, we add an edge from every continue𝑙
statement to the corresponding loop node while𝑙 . Similarly, we add an edge from every

break𝑙 statement to the done node corresponding to while𝑙 .

Example. Figure 2 shows an example program in our STRUCTURED language (left) and its control-

flow graph (right).

Nesting Depth. We define the depth 𝑑 (𝑆) of a statement 𝑆 in a natural way, as the maximum

number of nested statements within 𝑆 . Formally,

𝑑 (program 𝑆 margorp) = 1 + 𝑑 (𝑆)
𝑑 (𝑆1; 𝑆2) = max{𝑑 (𝑆1), 𝑑 (𝑆2)}

𝑑 (if 𝐵 then 𝑆1 else 𝑆2 fi) = 1 +max{𝑑 (𝑆1), 𝑑 (𝑆2)}
𝑑 (while 𝐵 do 𝑆 done) = 1 + 𝑑 (𝑆)

𝑑 (𝛼) = 𝑑 (break) = 𝑑 (continue) = 𝑑 (return) = 0

(3)

The Bounded Pathwidth of Control-flow Graphs 9

The nesting depth 𝑑 of the whole program 𝑃 is simply 𝑑 (𝑃) .

Nesting Depth of Real-world Programs. Real-world programs often have a nesting depth of two

or three. A depth of five or more is strictly discouraged or sometimes even prohibited by style

guides and coding standards [Ausnit-Hood et al. 1997; Barr 2009; King et al. 1999; McConnell 2004;

Sutter and Alexandrescu 2004]. This is because a large nesting depth makes the program much

less human-readable and is often the cause of many bugs. Understanding more than three levels

of nesting is generally hard for humans [Marca 1981; Yourdon 1985]. As such, it is reasonable to

assume that the nesting depth 𝑑 is a small constant. This assumption is also confirmed by our

experimental results in Section 6.

3 PATHWIDTH AND TREEWIDTH
In this section, we briefly define the notions of pathwidth and treewidth. We refer to Cygan et al.

[2015] for a more detailed treatment.

Tree decompositions [Robertson and Seymour 1984, 1986, 1990]. A tree decomposition of the

graph 𝐺 = (𝑉 , 𝐸) is a tree 𝑇 = (B, 𝐸𝑇), in which:

• Each node 𝑏 ∈ B has a corresponding subset 𝑉𝑏 ⊆ 𝑉 of vertices of 𝐺 . To avoid confusion,

we use the word bag to refer to the nodes of 𝑇 and reserve the word vertex for vertices of 𝐺 .

Also, with a slight misuse of notation, we sometimes do not distinguish between 𝑏 and 𝑉𝑏
and use the word bag to refer to both of them.

• Every vertex appears in at least one bag, i.e.

⋃
𝑏∈B 𝑉𝑏 = 𝑉 .

• For every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, there is a bag 𝑏 that contains both of its endpoints, i.e. {𝑢, 𝑣} ⊆
𝑉𝑏 .We define 𝐸𝑏 ⊆ 𝐸 as the set of edges whose both endpoints appear in 𝑉𝑏 . So, we must

have

⋃
𝑏∈B 𝐸𝑏 = 𝐸.

• Every vertex appears in a connected subtree of 𝑇 . In other words, if the bag 𝑏3 is on the

unique path between bags 𝑏1 and 𝑏2 in 𝑇 then 𝑉𝑏1 ∩𝑉𝑏2 ⊆ 𝑉𝑏3 , i.e. every vertex that appears

in both 𝑏1 and 𝑏2 has to appear in every bag that is on the path from 𝑏1 to 𝑏2.

Width [Robertson and Seymour 1986]. The width 𝑤 (𝑇) of the tree decomposition 𝑇 is simply

the size of the largest bag minus 1
‡
. More formally,

𝑤 (𝑇) := max

𝑏∈B
|𝑉𝑏 | − 1.

Treewidth [Robertson and Seymour 1986]. The treewidth of the graph 𝐺 is the smallest width

among all tree decompositions of 𝐺 .

Intuition. Informally, a tree decomposition of width 𝑤 is a covering of the graph 𝐺 with small

subsets of vertices, i.e. bags, of size at most𝑤 + 1, such that the bags themselves are connected in a

tree-like manner. The smaller these bags are, the more tree-like our graph 𝐺 looks. Hence, a graph

with bounded treewidth is considered to be tree-like.

Example. Figure 3 shows a graph 𝐺 (left) and a tree decomposition 𝑇 of 𝐺 (right). It also shows

how the bags cover 𝐺 . Note that the width of this tree decomposition is 2. There are no tree

decompositions of 𝐺 of smaller width, therefore the treewidth of 𝐺 is also 2.

PathDecomposition [Robertson and Seymour 1983].A tree decomposition𝑇 = (B, 𝐸𝑇) is called
a path decomposition if the tree 𝑇 is a path. As such, path decompositions are a very special case of

tree decompositions.

‡
The minus 1 is for historical reasons and does not majorly affect any of the results.

10 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

1

2

3 4

5 6

{2, 3, 4}

{1, 2}

{3, 5}

{3, 4, 6}

Fig. 3. A graph 𝐺 (left) and a tree decomposition of 𝐺 (right).

{1, 2} {2, 3, 4} {3, 4, 6} {3, 5}

Fig. 4. A path decomposition for the graph of Figure 3.

Pathwidth [Robertson and Seymour 1983]. The pathwidth of 𝐺 is the smallest width among its

path decompositions.

Intuition. The intuition behind pathwidth is similar to treewidth, except that the decomposition

is now a path. In other words, if 𝐺 has pathwidth𝑤 , then we can cover it by bags of size at most

𝑤 + 1, such that the bags themselves are connected in a path. Hence, a graph with small pathwidth

𝑤 looks like a path with thickness𝑤 + 1.

Example. Figure 4 shows a path decomposition for the same graph𝐺 as in Figure 3. The bags cover

the graph in the same way as in Figure 3. Note that the width of this path decomposition is 2. There

are no path decompositions of 𝐺 of smaller width, therefore the pathwidth of 𝐺 is also 2.

Dynamic Programming. As mentioned above, the importance of tree and path decompositions

comes from the fact that one can perform dynamic programming on them in essentially the

same manner as dynamic programming on trees and paths, respectively. See Bodlaender [1988]

and Arnborg [1985] for more details.

Merge Nodes. In a tree decomposition𝑇, we say that a bag 𝑏 ∈ 𝐵 is a merge bag, if it has more than

one child or, equivalently, if its degree is larger than two. By definition, there are no merge bags in

a path decomposition. As such, dynamic programming on path decompositions is usually simpler

and more efficient than tree decompositions. This is because the runtime of dynamic programming

algorithms over tree decompositions is often dominated by the the steps that process merge nodes.

As an example, the extra complexity of handling merge nodes is the reason why the algorithm for

𝜇-calculus model-checking in Obdrzálek [2003] is more efficient on a path decomposition than a

tree decomposition. This also applies to Meybodi et al. [2022].

4 PATHWIDTH OF CONTROL-FLOW GRAPHS
In this section, we present a simple formula for obtaining a path decomposition of width 2 · 𝑑 for a

given STRUCTURED program 𝑃 of nesting depth 𝑑 . In contrast to the complexity of the known

algorithms for bounding treewidth, such as Thorup [1998] and Krause et al. [2020], our construction

The Bounded Pathwidth of Control-flow Graphs 11

for bounded pathwidth is surprisingly simple. This is despite the fact that pathwidth is a strictly

stronger parameter than treewidth.

We remark that STRUCTURED does not contain function calls, and thus only represents single

procedures. Our results will also only be applicable to the intra-procedural case. This is a shared

limitation with the classical results on treewidth such as Thorup [1998]. Nevertheless, many

standard analyses are modeled as intraprocedural problems, such as register allocation or LTL

model-checking [Ferrara et al. 2005]. Even for inter-procedural analysis, methods for solving

problems within a single procedure can help make the solutions more scalable. An example of this

is data-flow analysis [Chatterjee et al. 2019c].

Notation. Let ⟨𝑆⟩ be a path decomposition constructed for program fragment 𝑆 and be of the form

⟨𝑆⟩ = ⟨𝑏1, 𝑏2, . . . , 𝑏𝑘⟩, where each 𝑏𝑖 is a bag, i.e. a subset of vertices. Given a vertex 𝑣 ∈ 𝑉 , we define
⟨𝑆⟩ + 𝑣 as the path decomposition that is obtained from ⟨𝑆⟩ by adding 𝑣 to every bag. Formally,

⟨𝑆⟩ + 𝑣 = ⟨𝑏1 ∪ {𝑣}, 𝑏2 ∪ {𝑣}, . . . , 𝑏𝑘 ∪ {𝑣}⟩.

Given two path decompositions ⟨𝑆1⟩ and ⟨𝑆2⟩, we define ⟨𝑆1⟩ · ⟨𝑆2⟩ to be their concatenation.

Path Decomposition of a Program. Given a program 𝑃, we construct a path decomposition for

its control-flow graph using the rules below:

⟨program 𝑆 margorp⟩ = ⟨{program, ⌈𝑆⌉}⟩ · (⟨𝑆⟩ + margorp)
⟨𝑆1; 𝑆2⟩ = ⟨𝑆1⟩ · ⟨{⌊𝑆1⌋, ⌈𝑆2⌉}⟩ · ⟨𝑆2⟩ sequential composition

⟨if 𝐵 then 𝑆1 else 𝑆2 fi⟩ = (⟨𝑆1⟩ + if + fi) · (⟨𝑆2⟩ + if + fi) conditional branching

⟨while 𝐵 do 𝑆 done⟩ = ⟨𝑆⟩ + while + done while loop

⟨𝜎⟩ = ⟨{𝜎}⟩ other cases

(4)

Intuition. Before we formally prove the correctness of our construction, let us first consider the

intuition behind it. Our goal is to obtain a valid path decomposition of the program’s CFG by a

structurally recursive algorithm. Informally speaking, a path decomposition should (i) cover all

vertices, (ii) cover all edges, and (iii) have every vertex in a connected interval. The second property

turns out to be the trickiest here. The idea behind our construction is as follows: Consider a program

of the form while 𝐵 do 𝑆 done. If we take a valid path decomposition ⟨𝑆⟩ of the subprogram 𝑆 , it

already covers all the CFG edges that have both endpoints in 𝑆 , as well as all vertices in 𝑆 . Thus, we

should modify the decomposition ⟨𝑆⟩ by (a) adding the two new vertices corresponding to while
and done, and (b) ensuring that every edge adjacent to these new vertices is covered. We achieve

both (a) and (b) by simply adding the two new vertices to every bag of ⟨𝑆⟩. This way, (a) is trivially
achieved, and (b) holds because ⟨𝑆⟩ already covered all the vertices of 𝑆 . In other words, if there is

an edge with one endpoint 𝑢 in S and the other endpoint 𝑣 in the new vertices, then 𝑢 has already

appeared in some bag in ⟨𝑆⟩ and we are now adding 𝑣 to every bag, including this one. So, the edge

from 𝑢 to 𝑣 is covered. The case of if statements is similar.

Example. Figure 5 shows the path decomposition obtained by our algorithm for the program and

control-flow graph of Figure 2. Each of the vertical segments represents a bag in the decomposition.

For each vertex 𝑣 of the CFG, there is a horizontal segment that shows which bags contain 𝑣 . This

path decomposition has a width of 8.

We now provide a formal proof of correctness and bounded width:

Theorem 4.1. The construction above produces a valid path decomposition ⟨𝑃⟩ of width 2 · 𝑑 for
any given program 𝑃 with nesting depth 𝑑 .

12 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

program

while1

if1

break1

𝛼1

fi1

while2

if2

break2

𝛼2

continue2

fi2

done2

done1

if3

𝛼3

𝛼4

fi3

margorp

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8 𝑏9 𝑏10 𝑏11

Fig. 5. A program and its CFG (left) and the path decomposition generated for this CFG (right). Edge directions
have been omitted.

Proof. First, note that for every fragment 𝑆 of our program 𝑃, the path decomposition ⟨𝑆⟩
contains the entry point ⌈𝑆⌉ in its first bag and the exit point ⌊𝑆⌋ in its last bag. This property

is preserved inductively in the construction above. Further, it is clear by construction that every

vertex 𝑣 ∈ 𝑉 of the control-flow graph 𝐺 appears in some bag. More specifically, every vertex

that corresponds to a statement in a fragment 𝑆 appears in some bag of ⟨𝑆⟩. This is also preserved

inductively. We argue that for every edge (𝑢, 𝑣) ∈ 𝐸 of the control-flow graph 𝐺 there is a bag that

contains both of its endpoints. We can do this by case-work:

• In ⟨program 𝑆 margorp⟩, the edge from program to ⌈𝑆⌉ is covered in the first bag, which only

contains these two vertices. Moreover, the edges from ⌊𝑆⌋ and return nodes to margorp
are covered in ⟨𝑆⟩ + margorp since ⟨𝑆⟩ is a path decomposition that contains all vertices

appearing in 𝑆 and margorp is added to every one of its bags.

• In ⟨𝑆1; 𝑆2⟩ there is a dedicated bag {⌊𝑆1⌋, ⌈𝑆2⌉} that covers the edge from the exit node ⌊𝑆1⌋
to the entry node ⌈𝑆2⌉ .

The Bounded Pathwidth of Control-flow Graphs 13

• In ⟨if 𝐵 then 𝑆1 else 𝑆2 fi⟩, the edge from if to the entry node ⌈𝑆1⌉ is covered in

⟨𝑆1⟩ + if + fi. So is the edge from the exit node ⌊𝑆1⌋ to fi. The case for 𝑆2 is symmetric.

• In ⟨while 𝐵 do 𝑆 done⟩, we add the while and done vertices to every bag. So, any edge

that connects any vertex in 𝑆 to either while or done is covered. This includes all the edges

originating from break and continue statements.

It is straightforward to check that every vertex appears in a connected segment (subpath) of our

path decomposition. Finally, our construction starts with a path decomposition of width 0 for

return, continue, break and atomic statements and its width increases by 2 when handling

conditionals and loops and by 1 when handling a program. Note that the construction for sequential

composition always has a width of at least 1. Hence, the final width of ⟨𝑃⟩ is at most 2 · 𝑑 where 𝑑

is the nesting depth of 𝑃 . □

The theorem above proves that the control-flow graph of a program 𝑃 with nesting depth 𝑑 has

a pathwidth of at most 2 · 𝑑. Moreover, simply following our recursive definition immediately leads

to an algorithm for constructing such a path decomposition in 𝑂 (𝑛 · 𝑑) where 𝑛 is the size of the

program, i.e. number of lines in the program. Hence, we have provided a linear-time algorithm

that finds a path decomposition of constant width for any real-world program 𝑃 that has bounded

nesting depth. Finally, note that our decomposition has 𝑂 (𝑛) bags.
Labeled break and continue statements. Our construction above handles labeled break and

continue statements, such as those in Java. This is in contrast to the classical tree decomposition

constructions in which labeled break/continue statements are as costly as arbitrary goto’s and
break the bounded-width guarantee. Hence, our results are applicable to Java programs, too, and

produce low-width path decompositions not only in practice, but also with a theoretical guarantee.

elif. We remark that our approach can easily be extended to handle multi-part conditionals, such

as elif and switch statements without affecting the bound in Theorem 4.1. Specifically, we let

⟨if 𝐵1 then 𝑆1 elif 𝐵2 then 𝑆2 · · · elif 𝐵𝑛−1 then 𝑆𝑛−1 else 𝑆𝑛 fi ⟩

= (⟨𝑆1⟩ + if + fi) · (⟨𝑆2⟩ + if + fi) · · · (⟨𝑆𝑛⟩ + if + fi).
It is easy to verify that the construction above produces a valid path decomposition since there is

no edge in the control-flow graph going from 𝑆𝑖 to 𝑆 𝑗 when 𝑖 ≠ 𝑗 . There are only edges from if to

⌈𝑆𝑖⌉ and from ⌊𝑆𝑖⌋ to fi. switch statements are a special case of elif and handled similarly.

Handling goto. If we are given an unstructured program that has 𝑔 goto statements in it, then

we can simply add the destination of every goto to every bag of the path decomposition. Hence,

a program with 𝑔 goto statements is guaranteed to have a pathwidth of at most 2 · 𝑑 + 𝑔. This is
similar to the case of treewidth [Krause et al. 2020].

Coarser CFGs. If we contract an edge (𝑢, 𝑣) in the graph 𝐺 and merge its two endpoints into a

new vertex𝑤, the pathwidth cannot increase. More specifically, we can replace every occurrence

of either 𝑢 or 𝑣 in the path decomposition with𝑤 and this can only decrease the size of the bags.

Thus, our bounded-pathwidth result is also applicable to coarser CFGs in which every basic block

is contracted into a single vertex.

Further Optimizations.While the construction in (4) is guaranteed to produce a path decomposi-

tion of constant width 2 · 𝑑, the proof of Theorem 4.1 shows that we can make some of the bags in

the path decomposition smaller without violating any of the requirements. Even when the overall

width is unaffected, it might be useful in practice to have smaller bags since many classical dynamic

programming algorithms process each bag separately and the time they spend on it depends on the

bag’s size. Specifically, we can have the following optimizations:

14 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

• We currently compute ⟨if 𝐵 then 𝑆1 else 𝑆2 fi⟩ as (⟨𝑆1⟩ + if + fi) · (⟨𝑆2⟩ + if + fi). We

can optimize this by adding fi not to every bag in ⟨𝑆1⟩, but only to the last bag of ⟨𝑆1⟩. This
is because the only vertex in 𝑆1 that can potentially have an edge to fi is ⌊𝑆1⌋ which appears

in the last bag of ⟨𝑆1⟩. Similarly, we do not need to add if to every bag in ⟨𝑆2⟩ and it suffices

to add it in the first bag. Finally, we can reorder the two parts and put ⟨𝑆2⟩ before ⟨𝑆1⟩ if it
improves the bag sizes.

• We let ⟨while𝑙 𝐵 do 𝑆 done𝑙 ⟩ = ⟨𝑆⟩ + while𝑙 + done𝑙 . As argued above, this is to ensure

we cover every potential edge between any vertex in ⟨𝑆⟩ and {while𝑙 , done𝑙 }. However,
if there is no break𝑙 statement in ⟨𝑆⟩, then done𝑙 can only have an edge from while𝑙 . So,
we do not need to add done𝑙 to every bag and can instead let ⟨while𝑙 𝐵 do 𝑆 done𝑙 ⟩ =
⟨{while𝑙 , done𝑙 }⟩ · (⟨𝑆⟩ + while𝑙), i.e. we add a single bag that only contains the two new

vertices and then add only one of them to every other bag.

5 AN EFFICIENT PATHWIDTH-BASED ALGORITHM FOR REGISTER ALLOCATION
In this section, we consider the classical problem of register allocation as formalized in Chaitin

et al. [1981] as a motivating example for using pathwidth as a parameter. We provide a linear-time

algorithm based on the bounded-pathwidth assumption and show that our algorithm is much

more efficient than the treewidth-based algorithm of Bodlaender et al. [1998]. Note that our main

contribution is the pathwidth bound itself. We use register allocation as a proof-of-concept to show

that the pathwidth bound leads to huge practical improvements. This was a natural choice since it

is also the main motivating problem for the treewidth bound [Thorup 1998].

Register Allocation [Chaitin et al. 1981]. In modern programming languages, the programmer

can define as many variables as they wish. However, the compiler has to decide which variables to

store in the registers of the processor and which to store on the main memory (RAM). Accessing

registers is significantly faster than the main memory, but the number of registers is often very

limited. Given a program 𝑃, and an integer 𝑟 , the register allocation problem asks whether it is

possible to map the variables in 𝑃 to 𝑟 registers such that there is no need to access the main

memory (no spilling). More specifically, if two variables 𝑥1 and 𝑥2 might be alive at the same time,

then they interfere with each other and should be put in different registers. A variable is alive at a

certain point of the program if it has been assigned a value and this value might be used in the

future.

Graph Formulation.Register allocation is classically formulated as a graph coloring problem [Chaitin

et al. 1981]. Consider the control-flow graph 𝐺 of the program 𝑃 . The lifetime of every variable

𝑥 is a connected subset of vertices of 𝐺 that can be computed in linear time using a traditional

gen-kill data-flow analysis [Kildall 1973]. Variables whose lifetimes intersect must be put in different

registers. Hence, we can reformulate the register allocation problem as the graph coloring problem

on the so-called interference graph 𝐻 . The graph 𝐻 has one vertex corresponding to each variable

in 𝑃 and an edge between 𝑥1 and 𝑥2 if their lifetimes have a non-empty intersection. It is now clear

that a valid register allocation map is basically a valid coloring of 𝐻 with 𝑟 colors, such that the

endpoints of each edge have different colors. Thus, we have a reduction from register allocation to

graph coloring. It turns out this reduction works in the other direction, too, i.e. for any given graph

𝐻, one can find a𝐺 and a family of connected subgraphs of𝐺 whose interference graph is 𝐻. Thus,

register allocation inherits all the classical hardness results known for graph coloring [Chaitin et al.

1981]. Specifically, the problem is NP-hard even for 3 registers/colors.

The Bounded Pathwidth of Control-flow Graphs 15

program

𝑥1 ← 100 ;

𝑥2 ← 40 ;

whi l e 𝑥2 > 2 do

𝑥3 ← 𝑥1/2
𝑥1 ← 𝑥1 + 𝑥3
𝑥2 ← 𝑥2 − 𝑥3
done ;

𝑥4 ← 𝑥1/2 · 𝑥2
margorp

{}
{𝑥1 }
{𝑥1, 𝑥2 }
{𝑥1, 𝑥2 }
{𝑥1, 𝑥2, 𝑥3 }
{𝑥1, 𝑥2, 𝑥3 }
{𝑥1, 𝑥2, 𝑥3 }
{𝑥1, 𝑥2 }
{𝑥1, 𝑥2, 𝑥4 }
{}

program

𝑥1 ← 100

𝑥2 ← 40

while 𝑥2 > 2

𝑥3 ← 𝑥1/2

𝑥1 ← 𝑥1 + 𝑥3

𝑥2 ← 𝑥2 − 𝑥3

done

𝑥4 ← 𝑥1/2 · 𝑥2

margorp

𝑥1

𝑥2𝑥3

𝑥4

𝑥4

Fig. 6. A STRUCTURED program (left), its control-flow graph𝐺 (middle) and its interference graph 𝐻 (right).

Connected Lifetimes. In the standard formulations of register allocation, the lifetime of every vari-

able is assumed to be a connected subgraph of 𝐺. If a variable’s lifetime has several connected com-

ponents, we consider each component as a separate variable. This is a standard technique [Chaitin

et al. 1981] which is semantics-preserving. Additionally, there is no downside to assigning different

components of a variable’s lifetime, which are independent of each other, to different registers.

This cannot increase, but might decrease, the number of registers required.

Example. Figure 6 shows a structured program, its control-flow graph and the interference graph

of its four variables. The set of live variables at each line is shown in red. Note that 𝑥3 is only used

within the loop, whereas 𝑥4 is only used at the end of the program, so the lifetime of 𝑥3 is disjoint

from 𝑥4 and there is no edge between them in the interference graph.

Pathwidth of the Interference Graph. Based on the formulation above and Theorem 4.1, we can

assume that we are given a CFG 𝐺 with bounded pathwidth𝑤 ≤ 2 · 𝑑, and a graph 𝐻 whose every

vertex corresponds to a connected subset of vertices of𝐺, and there is an edge between two vertices

in 𝐻 iff their corresponding subgraphs intersect in 𝐺. Our goal is to decide whether 𝐻 can be

colored with 𝑟 colors. Our first step is the following lemma:

Lemma 5.1. If𝐻 can be colored with 𝑟 colors, then the pathwidth of𝐻 is at most𝑤∗ := (𝑤 +1) ·𝑟 −1,
where𝑤 is the pathwidth of 𝐺.

Proof. Consider a vertex 𝑣 of𝐺. At most 𝑟 subgraphs corresponding to vertices in𝐻 can include

𝑣 . Otherwise, there would be clique of size more than 𝑟 in 𝐻 and 𝐻 would not be 𝑟 -colorable. Take

an optimal path decomposition of width𝑤 of𝐺 and replace every vertex 𝑣 in every bag by the set of

vertices of 𝐻 whose subgraph contains 𝑣 . It is straightforward to check that this yields a valid path

decomposition of 𝐻 . There are at most (𝑤 + 1) · 𝑟 vertices in each bag of this path decomposition,

so its width is at most (𝑤 + 1) · 𝑟 − 1. By definition, this is also an upper-bound on the pathwidth of

𝐻. □

Note that the lemma above is also constructive and combining it with our algorithm of Section 4

for obtaining a path decomposition of 𝐺, we can get a path decomposition of 𝐻 of width 𝑤∗ ≤

16 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

{program, 𝑥1 ← 100}

{margorp, 𝑥1 ← 100}

{margorp, 𝑥1 ← 100, 𝑥2 ← 40}

{margorp, 𝑥2 ← 40}

{margorp, 𝑥2 ← 40, while}

{margorp, while, done, 𝑥3 ← 𝑥1/2}

{margorp, while, done, 𝑥3 ← 𝑥1/2, 𝑥1 ← 𝑥1 + 𝑥3 }

{margorp, while, done, 𝑥1 ← 𝑥1 + 𝑥3 }

{margorp, while, done, 𝑥1 ← 𝑥1 + 𝑥3, 𝑥2 ← 𝑥2 − 𝑥3 }

{margorp, while, done, 𝑥2 ← 𝑥2 − 𝑥3 }

{margorp, done, 𝑥4 ← 𝑥1/2 · 𝑥2 }

{margorp, 𝑥4 ← 𝑥1/2 · 𝑥2 }

{𝑥1 }

{𝑥1 }

{𝑥1, 𝑥2 }

{𝑥1, 𝑥2 }

{𝑥1, 𝑥2 }

{𝑥1, 𝑥2, 𝑥3 }

{𝑥1, 𝑥2, 𝑥3 }

{𝑥1, 𝑥2, 𝑥3 }

{𝑥1, 𝑥2, 𝑥3 }

{𝑥1, 𝑥2, 𝑥3 }

{𝑥1, 𝑥2, 𝑥4 }

{𝑥1, 𝑥2, 𝑥4 }

𝑏∗
1

𝑏∗
2

𝑏∗
3

𝑏∗
4

𝑏∗
5

{𝑥1 }

{𝑥1, 𝑥2 }

{𝑥1, 𝑥2, 𝑥3 }

{𝑥1, 𝑥2 }

{𝑥1, 𝑥2, 𝑥4 }

Fig. 7. A path decomposition ⟨𝑃⟩ of the control-flow graph 𝐺 of the program 𝑃 in Figure 6 (left), a path
decomposition ⟨𝐻 ⟩ of the interference graph 𝐻 , produced by substituting each line with the variables that
are live at that line (middle), and the simplified path decomposition ⟨𝐻 ⟩∗ (right).

(𝑤 + 1) · 𝑟 − 1 = (2 · 𝑑 + 1) · 𝑟 − 1 in linear time with respect to the size of the program. More

specifically, we first apply the construction in the proof above to obtain a path decomposition of

width at most𝑤∗ for 𝐻. If this construction fails, then the lemma guarantees that 𝑟 registers are

not enough and thus the answer to the register allocation instance is negative. Otherwise, the

construction provides us a path decomposition of 𝐻 with small width 𝑤∗, which we can use for

dynamic programming (as shown further below).

Example. Figure 7 shows how a path decomposition of the interference graph𝐻 (middle) is obtained

from a path decomposition of the CFG 𝐺 (left). We then further simplify this decomposition to

obtain the decomposition ⟨𝐻 ⟩∗ (right).

Graph Coloring in Bounded Pathwidth.Now that we know the graph𝐻 has bounded pathwidth

𝑤∗, our problem is reduced to coloring a graph of bounded pathwidth with a constant number 𝑟 of

colors. We apply a standard dynamic programming technique to obtain an algorithm with runtime

The Bounded Pathwidth of Control-flow Graphs 17

𝑏∗
1

𝑏∗
2

𝑏∗
3

𝑏∗
4

𝑏∗
5

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2𝑥3

𝑥1

𝑥2

𝑥1

𝑥2

𝑥4

..

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2𝑥3

𝑥1

𝑥2𝑥3

𝑥1

𝑥2𝑥3

𝑥4

Fig. 8. The vertices and edges appearing in every bag of the path decomposition ⟨𝐻 ⟩∗ of Figure 7 (top) and
the canonical subgraphs (bottom).

𝑂 (𝑛 · 𝑤∗ · 𝑟𝑤∗+1). Let the obtained path decomposition of 𝐻 be ⟨𝐻 ⟩ = ⟨𝑏1, 𝑏2, . . . , 𝑏𝑛⟩§. We first

preprocess and simplify ⟨𝐻 ⟩ to remove repeated bags and make sure that for every index 𝑖, we have

𝑉𝑏𝑖Δ𝑉𝑏𝑖+1 = 1. In other words, we would like to ensure that every bag differs from its neighbors

in at most one vertex. See Figure 7 (right) as an example. This can be done in time 𝑂 (𝑛 ·𝑤∗) by
adding intermediate bags between any pair of neighboring bags that differ by two or more vertices.

As a result, we get a new tree decomposition ⟨𝐻 ⟩∗ = ⟨𝑏∗
1
, 𝑏∗

2
, . . . , 𝑏∗𝑡 ⟩ where 𝑡 ∈ 𝑂 (𝑛).We note that

𝑡 ∈ 𝑂 (𝑛) since every bag differs with each of its neighbors in at most one vertex. In other words,

every 𝑏∗𝑖+1 either introduces a new vertex that was not present in 𝑏∗𝑖 or forgets a vertex that existed
in 𝑏∗𝑖 . On the other hand, every vertex appears in a connected subpath and is thus introduced and

forgotten exactly once. Hence, the number of bags is at most twice the number of vertices.

Canonical Subgraphs. We define the 𝑖-th canonical subgraph 𝐻𝑖 of 𝐻 as the part of 𝐻 that

corresponds to ⟨𝑏∗
1
, . . . , 𝑏∗𝑖 ⟩. More formally, we have 𝐻𝑖 := (𝑉𝑖 , 𝐸𝑖) where 𝑉𝑖 :=

⋃𝑖
𝑗=1𝑉𝑏∗𝑗 is the set of

vertices that appear in the first 𝑖 bags and 𝐸𝑖 :=
⋃𝑖

𝑗=1 𝐸𝑏∗𝑗 is the set of edges appearing in these bags.

Example. Figure 8 shows the path decomposition ⟨𝐻 ⟩∗ of Figure 7 with some extra information.

The top portion depicts the vertices and edges appearing in every bag 𝑏∗𝑖 . The bottom portion

depicts the canonical subgraphs 𝐻𝑖 .

Dynamic Programming. For every index 1 ≤ 𝑖 ≤ 𝑡 and every partial coloring map 𝑐 : 𝑉𝑏∗
𝑖
→

{1, 2, . . . , 𝑟 } that assigns a color to every vertex in the bag 𝑏∗𝑖 , we define a boolean dynamic pro-

gramming variable dp[𝑖, 𝑐] . At the end of its computation, dp[𝑖, 𝑐] should satisfy the following

invariant:

dp[𝑖, 𝑐] =
{
1 if there is a valid coloring of 𝐻𝑖 with 𝑟 colors in which 𝑉𝑏∗

𝑖
is colored according to 𝑐

0 otherwise

Computing the dp Values. We compute our dp values from left to right, i.e. in the order of

increasing 𝑖 .

§
We are using 𝑛 both for the number of vertices of𝐺 and 𝐻 . This is justified by the fact that a program with 𝑛 statements

can have at most 𝑛 variable declarations and hence at most 𝑛 variables. So, there is no need to distinguish between the

number of variables and lines of code. Similarly, our algorithm in Section 4 produces a path decomposition with linearly

many bags, so we can assume the number of bags is also 𝑛.

18 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

• At 𝑖 = 1, the only vertices in𝐻1 are those that appear in the bag 𝑏∗
1
, i.e.𝑉𝑏∗

1

. Hence, dp[𝑖, 𝑐] = 1

iff 𝑐 is a valid coloring of 𝑉𝑏∗
1

. This can be checked by simply taking any edge in 𝐸𝑏∗
1

and

verifying that 𝑐 assigns a different color to its two endpoints.

• If 𝑉𝑏∗
𝑖
has a vertex 𝑢 that is not in 𝑉𝑏∗

𝑖−1
, i.e. 𝑉𝑏∗

𝑖
= 𝑉𝑏∗

𝑖−1
⊔ {𝑢}, then the only vertices that

can potentially be neighbors of 𝑢 in 𝐻𝑖 are the other vertices in 𝑉𝑏∗
𝑖
. This is because every

vertex appears in a contiguous subpath of the path decomposition. Hence, to compute

dp[𝑖, 𝑐], we first check the edges between 𝑢 and its neighbors in 𝑉𝑏∗
𝑖
to ensure that 𝑐 assigns

different colors to their endpoints. If not, we set dp[𝑖, 𝑐] = 0. If all the checks pass, we set

dp[𝑖, 𝑐] = dp[𝑖, 𝑐 |𝑉𝑏∗
𝑖−1
] . This is because 𝑐 is already fixing the colors in 𝑉𝑏∗

𝑖
and 𝑉𝑏∗

𝑖−1
⊆ 𝑉𝑏∗

𝑖
, so

all the colors in 𝑉𝑏∗
𝑖−1

are also fixed by 𝑐.

Example. The bag 𝑏∗
3
in Figure 8 contains 𝑥3 which was not included in 𝑏∗

2
. If 𝑐 is a coloring

that assigns the same color to both 𝑥3 and 𝑥2 or both 𝑥3 and 𝑥1, then we have dp[3, 𝑐] = 0

since 𝑐 is an invalid coloring. Otherwise, we simply use the same colors as in 𝑐 and set

dp[3, 𝑐] = dp[2, {(𝑥1, 𝑐 (𝑥1)), (𝑥2, 𝑐 (𝑥2))}] .
• Finally, if 𝑉𝑏∗

𝑖
has one vertex fewer than 𝑉𝑏∗

𝑖−1
, i.e. if 𝑉𝑏∗

𝑖
= 𝑉𝑏∗

𝑖−1
\ {𝑢}, then we again have

𝐻𝑖 = 𝐻𝑖−1. The only problem in computing dp[𝑖, 𝑐] is that 𝑐 is only assigning colors to 𝑉𝑏∗
𝑖

and not to 𝑢. Hence, we have to try every possible color for 𝑢. In other words, we set

dp[𝑖, 𝑐] =
𝑟∨

𝑞=1

dp [𝑖 − 1, 𝑐 ∪ {(𝑢, 𝑞)}] .

Example. The bag 𝑏∗
4
in Figure 8 has one vertex fewer than 𝑏∗

3
, i.e. it lacks the vertex 𝑥3 .

However, note that 𝐻4 = 𝐻3. Let 𝑐 = {(𝑥1, 1), (𝑥2, 2)} be the coloring that assigns color 1 to 𝑥1
and color 2 to 𝑥2.We simply iterate over every possible color 𝑞 for 𝑥3 and take the disjunction

of the values of dp[3, 𝑐 ∪ {(3, 𝑞)}] .

Final Answer. Our final answer to the coloring problem is∨
𝑐 :𝑉𝑏∗𝑡

→{1,2,...,𝑟 }
dp[𝑡, 𝑐] .

This is because we have 𝐻𝑡 = 𝐻 and any coloring of the entire graph 𝐻 has to conform with a

partial coloring 𝑐 at bag 𝑏∗𝑡 .

Runtime Analysis. In the dynamic programming algorithm above, we defined a total of𝑂 (𝑡 · 𝑟𝑤∗)
dp variables. The time we spent for computing each variable is 𝑂 (𝑤∗ + 𝑟), except that the variables
in the first bag take 𝑂 (𝑤∗2) each. The final answer is computed in 𝑂 (𝑟𝑤∗), trying every possible

partial coloring 𝑐. So, our overall runtime is 𝑂 (𝑡 ·𝑤∗ · 𝑟𝑤∗+1). Recall that 𝑡 ∈ 𝑂 (𝑛), i.e. a nice path
decomposition has a linear number of bags, regardless of the pathwidth. So, our overall runtime for

the coloring algorithm is 𝑂 (𝑛 ·𝑤∗ · 𝑟𝑤∗+1).

Theorem 5.2. Given a program 𝑃 with nesting depth 𝑑 and pathwidth 𝑤 ≤ 2 · 𝑑, the algorithm
above decides whether 𝑟 registers are sufficient in 𝑂 (𝑛 ·𝑤 · 𝑟𝑤 ·𝑟+𝑟+1).

Proof. Based on Lemma 5.1 and Theorem 4.1, we have𝑤∗ ≤ (𝑤 + 1) · 𝑟 − 1. □

Note that, in comparison, the treewidth-based algorithm of Bodlaender et al. [1998] for the

same problem takes 𝑂 (𝑛 · 𝑟 2·tw·𝑟+2·𝑟) time. While this is still linear in terms of the program size

𝑛, our dependence on the pathwidth (instead of treewidth) and 𝑟 is exponentially better than the

treewidth-based algorithm. This has significant practical ramifications as shown in Section 6 below.

The Bounded Pathwidth of Control-flow Graphs 19

6 EXPERIMENTAL RESULTS

Implementation.We implemented (i) our pathwidth-based register allocation algorithm of Sec-

tion 5 and (ii) the treewidth-based algorithm of Bodlaender et al. [1998] for the same problem
¶
,

and integrated them within the Small Device C Compiler (SDCC) [Dutta 2000; Dutta et al. 2003].

Our implementations are in C++. We used SDCC to obtain the control-flow graphs, lifetimes of

the variables, and also tree decompositions of control-flow graphs. SDCC uses a modified and

highly-optimized variant of the algorithm of Thorup [1998] to obtain the tree decompositions.

See Krause et al. [2020] for details. The choice of SDCC is due to the fact that both our algorithm

and Bodlaender et al. [1998]’s have an exponential dependence on the number of registers. Thus,

the main use-case is when the number of registers is small, which is naturally the case in embedded

systems. To the best of our knowledge, SDCC is one of the most commonly-used C compilers

for such programs. Solving register allocation with a large number of registers remains an open

problem

Computing Path Decompositions. To obtain path decompositions, we used our construction

from Section 4 with minor heuristic optimizations. Specifically, if a vertex 𝑣 appears in a bag 𝑏,

but removing it from 𝑏 keeps the decomposition valid, we will remove this vertex and simplify

our decomposition, potentially also reducing its width. Similarly, if a bag is a subset of one of its

neighboring bags, then it does not contribute anything to the decomposition and can be safely

discarded. This is especially helpful for removing bags from the beginning and end of the path

decomposition. These heuristics can be applied in linear time to reduce the number of bags in the

decomposition. We first apply these heuristics and then generate the nice path decomposition.

Although the process of making a nice tree decomposition might add back some of the bags that

were removed by the heuristics, it guarantees that the final decomposition is nice so that we can

apply the dynamic programming algorithm of Section 5 and that the path decomposition has 𝑂 (𝑛)
bags so that the desired time complexity is achieved. We apply the exact same heuristics in our

implementation of Bodlaender et al. [1998], as well.

Machine. Our experiments were performed on an Intel i9-12900HK (3.8 GHz) machine running

NixOS Linux with 32 GB of RAM.

Benchmarks and Experimental Setup.We used the programs in the SDCC regression test suite as

our benchmarks. These benchmarks are real-world embedded programs. In embedded environments,

register allocation has a significant effect on the efficiency and avoiding spilling is a natural and

important goal. Moreover, as these programs are meant to be executed in small embedded devices

with few registers, they are the perfect real-world candidates for comparing pathwidth-based

and treewidth-based algorithms for register allocation. For each function in our benchmark set,

we computed a path decomposition and a tree decomposition as explained above, and found the

least number of registers required to allocate all variables without spilling, using our algorithm of

Section 5 and the treewidth-based algorithm of Bodlaender et al. [1998]. We limited the number of

registers to 8 and the maximal memory usage per instance to 4 GB. We also set a time limit of 10

minutes per instance.

Width Distributions. For every value𝑤, Figure 9 (left) shows the number of instances in which

the width of the tree decomposition, resp. the width of the path decomposition, was𝑤. The plots

in Figure 9 (middle and right) show the distribution of widths based on instance size. As expected,

¶
We had to implement Bodlaender et al. [1998]’s algorithm on our own, since there is no available implementation or tool

support for it, presumably due to the fact that the treewidth-based algorithm is not practical and our pathwidth-based

approach is the first to be able to handle real-world instances (in embedded environments).

20 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

tree decompositions generally have the same or smaller width than path decompositions. However,

the difference is not significant and the vast majority of the benchmarks have a pathwidth of 4 or

smaller. Moreover, in 4, 143 benchmarks, the tree decomposition and the path decomposition had the

same width. There are only 10 benchmarks for which our algorithm obtains a path decomposition

with a width of 7 or higher. These 10 benchmarks are not structured programs and have goto
statements in their code.

Width Instances
TD PD

1 3276 3276

2 1228 849

3 55 238

4 0 119

5 0 42

6 1 26

7 0 3

8 0 3

11 0 1

12 0 1

14 0 1

17 0 1

0 200 400 600 800
Number of nodes in the CFG

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 Width of Tree Dec.

Width of Path Dec.

0 100 200 300
Number of nodes in the CFG

1

2

3

4

5

6

Width of Tree Dec.
Width of Path Dec.

Fig. 9. Distribution of the widths of obtained tree decompositions and path decompositions. Each dot
corresponds to one instance. The right plot is a zoomed-in version of the middle plot. We have added small
perturbations to increase readability.

Number of Registers. Our benchmark set contained 4, 560 programs. Of these, 564 required more

than 8 registers. On each benchmark, we only tried 1 ≤ 𝑟 ≤ 8, until we found the smallest 𝑟 that

sufficed or concluded that more than 8 registers are necessary. This is because both our algorithm

and the treewidth-based algorithm of Bodlaender et al. [1998] have an exponential dependence on

the number of registers and are only applicable to embedded systems with few registers. Figure 10

shows the distribution of the number of required registers based on instance size. Our benchmarks

are spread-out well and cover all possible values of 𝑟 . As expected, larger benchmarks generally

tend to need more registers.

Failures. In our experiments, the algorithm of Bodlaender et al. [1998] ran out of memory on 53

benchmarks and timed out on 300 other benchmarks. In contrast, our algorithm ran out of memory

on only 6 benchmarks and never timed out. There was no benchmark on which Bodlaender et al.

[1998] succeeded and our algorithm failed.

Runtimes. The average runtime of Bodlaender et al. [1998] was 41.395 seconds per instance,

whereas our average runtime was only 0.073 seconds. Hence, our algorithm is more than 500 times

faster than its treewidth-based counterpart. Figure 11 shows the runtimes for each instance. Note

that the 𝑦 axis is in logarithmic scale. Hence, it is clear that our approach is several orders of

magnitude faster and that Bodlaender et al. [1998] times out regularly even on small benchmarks

with less than 100 lines of code.

Register Allocation Heuristics. We remark that SDCC has its own implementation of register

allocation for a different formulation of the problem in which a cost is assigned to each spill.

However, it often falls back on heuristics and is neither guaranteed to use the optimal number

The Bounded Pathwidth of Control-flow Graphs 21

0 100 200 300 400 500 600 700 800
Number of nodes in the CFG

1
2
3
4
5
6
7
8

>8

Nu
m

be
r o

f r
eg

ist
er

s r
eq

ui
re

d

0 20 40 60 80 100
Number of nodes in the CFG

1
2
3
4
5
6
7
8

>8

Nu
m

be
r o

f r
eg

ist
er

s r
eq

ui
re

d

Fig. 10. Number of registers required for spill-free register allocation over each benchmark. The bottom figure
is a zoomed-in version of the top figure. We have added small perturbations to increase readability.

of registers nor to avoid spills, and therefore has not been considered in our experiments. It is

not straightforward to experimentally compare our register allocation algorithm with standard

heuristics mainly because we solve the problem optimally, i.e. find the minimum number of registers

for spill-free allocation, whereas the heuristics are (i) not guaranteed to use the minimum number

of registers, and (ii) not guaranteed to be spill-free but instead try to minimize the number of spills,

usually on a best-effort basis. The idea behind optimal register allocation is to spend more time

in compilation to ensure the program itself runs as fast as possible. This is not achievable with

heuristics and the previous treewidth-based algorithm was also too slow to be applied in practice,

as evidenced by the many timeouts in Figure 11. Thus, we provide the first algorithm for optimal

spill-free register allocation that can handle embedded benchmarks. We note that, if applied to the

same input, the program compiled using heuristics will run less efficiently and need more registers.

It is not possible to provide concrete numbers for the speedup since it inherently depends on the

underlying architecture and the relative cost of spills in comparison with cache hits. However,

there are results in the literature showing that optimal register allocation significantly reduces the

compiled code’s size, by almost 10% compared to the heuristics [Krause 2013b]. This is of particular

importance in embedded systems with limited storage.

22 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

0 100 200 300 400 500 600 700 800
Number of nodes in the CFG

101
102
103

104
105
106

107
108
TO

Ru
nt

im
e

(µ
s)

[Bodlaender et al. 1998]
Our Algorithm

0 25 50 75 100 125 150 175 200
Number of nodes in the CFG

101

102

103

104

105

106

107

108
TO

Ru
nt

im
e

(µ
s)

[Bodlaender et al. 1998]
Our Algorithm

Fig. 11. Comparison of the runtimes of our algorithm and that of Bodlaender et al. [1998]. Note that the 𝑦
axis is in logarithmic scale. The bottom figure is a zoomed-in version of the top figure.

Discussion.Our experimental results illustrate that our pathwidth-based algorithm for the problem

of register allocation is significantly faster than the previous treewidth-based method. This is despite

the fact that the pathwidth is always greater than or equal to the treewidth (by definition). Our

algorithm has a runtime of 𝑂 (𝑛 · pw · 𝑟 pw·𝑟+𝑟+1) whereas Bodlaender et al. [1998] takes 𝑂 (𝑛 ·
𝑟 2·tw·𝑟+2·𝑟) time. Hence, although our widths can be larger, this is more than compensated for by

the exponentially better dependence on 𝑟 and the widths. Moreover, in the vast majority of the

benchmarks, the path decomposition and the tree decomposition have the same width. In this case,

our algorithm is faster than the treewidth-based algorithm by a factor of 𝑂 (𝑤−1 · 𝑟𝑤 ·𝑟+𝑟−1), where
𝑤 is the width of the decompositions. Finally, since pathwidth-based algorithms are much simpler,

the constant factor hidden by the 𝑂 notation is expected to be smaller for our algorithm. These

factors all contribute to the gained efficiency. As a bonus, our algorithm also uses much less space.

7 CONCLUSION
In this work, we proved that control-flow graphs (CFGs) of structured programs have a bounded

pathwidth of at most 2 · 𝑑 , where 𝑑 is the nesting depth of the program. We argued that pathwidth

should be adopted as the parameter of choice for compiler optimization and static analysis tasks

that are reduced to graph problems over the CFGs. From a theoretical standpoint, pathwidth is a

The Bounded Pathwidth of Control-flow Graphs 23

stronger parameter and there are problems that are FPT with respect to pathwidth but not treewidth.

Apart from being a stronger parameter, adopting pathwidth is beneficial in the sense that it often

reduces the runtime complexity of the problems, e.g. in the case of 𝜇-calculus model-checking, and

also leads to simpler and more elegant algorithms. On the other hand, using the classical problem

of register allocation as a motivating example, we showed that the benefits of using pathwidth are

not limited to theory and are also apparent in practice. Thus, we invite the compiler optimization

and static analysis communities to consider the bounded-pathwidth property when they design

algorithms that exploit the sparsity of a CFG.

ACKNOWLEDGMENTS AND NOTES
The authors are grateful to the anonymous reviewers for detailed comments which significantly

improved this work. The research was partially supported by Hong Kong Research Grants Council

ECS Project 26208122. G.K. Conrado and C.K. Lam were supported by the Hong Kong PhD Fellow-

ship Scheme (HKPFS). Following the norms of theoretical computer science, authors are listed in

alphabetical order.

24 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

REFERENCES
Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. 2022. Efficient approximations for

cache-conscious data placement. In PLDI. 857–871.
C. Aiswarya. 2022. How treewidth helps in verification. SIGLOG News 9, 1 (2022), 6–21.
Frances E Allen. 1970. Control flow analysis. SIGPLAN Notices 5, 7 (1970), 1–19.
Stefan Arnborg. 1985. Efficient algorithms for combinatorial problems on graphs with bounded decomposability—a survey.

Numerical Mathematics 25, 1 (1985), 1–23.
Ali Asadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Kiarash Mohammadi, and Andreas Pavlogiannis. 2020. Faster

Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth. In ATVA, Vol. 12302. 253–270.
Christine Ausnit-Hood, Kent A Johnson, Robert G Pettit IV, and Steven B Opdahl. 1997. Ada 95 Quality and Style. Springer.
Michael Barr. 2009. Embedded C Coding Standard. Netrino.
Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. 2022. Grundy distinguishes treewidth from

pathwidth. SIAM Journal on Discrete Mathematics 36, 3 (2022), 1761–1787.
David Bernstein and Michael Rodeh. 1991. Global instruction scheduling for superscalar machines. In PLDI. 241–255.
Gabriel Hjort Blindell, Roberto Castañeda Lozano, Mats Carlsson, and Christian Schulte. 2015. Modeling Universal Instruction

Selection. In CP, Vol. 9255. 609–626.
Hans L Bodlaender. 1988. Dynamic programming on graphs with bounded treewidth. In ICALP. 105–118.
Hans L Bodlaender. 1997. Treewidth: Algorithmic techniques and results. In MFCS. 19–36.
Hans L Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1-2

(1998), 1–45.

Hans L. Bodlaender, Jens Gustedt, and Jan Arne Telle. 1998. Linear-Time Register Allocation for a Fixed Number of Registers.

In SODA. 574–583.
Bernd Burgstaller, Johann Blieberger, and Bernhard Scholz. 2004. On the tree width of Ada programs. In Ada-Europe. 78–90.
Brad Calder, Chandra Krintz, Simmi John, and Todd M. Austin. 1998. Cache-Conscious Data Placement. In ASPLOS. 139–149.
David Callahan and Brian D. Koblenz. 1991. Register Allocation via Hierarchical Graph Coloring. In PLDI. 192–203.
Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and Peter W. Markstein. 1981.

Register Allocation Via Coloring. Comput. Lang. 6, 1 (1981), 47–57.
Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. 2019a. The treewidth of smart

contracts. In SAC. 400–408.
Krishnendu Chatterjee, Amir Kafshdar Goharshady, Prateesh Goyal, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2019b.

Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth. ACM Trans. Program. Lang.
Syst. 41, 4 (2019), 23:1–23:46.

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2016. Algorithms for

algebraic path properties in concurrent systems of constant treewidth components. In POPL. 733–747.
Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2020. Optimal and

Perfectly Parallel Algorithms for On-demand Data-Flow Analysis. In ESOP. 112–140.
Krishnendu Chatterjee, Amir Kafshdar Goharshady, Nastaran Okati, and Andreas Pavlogiannis. 2019c. Efficient parameter-

ized algorithms for data packing. In POPL. 53:1–53:28.
Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. 2017. JTDec: A Tool for Tree Decompositions

in Soot. In ATVA, Vol. 10482. 59–66.
Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. 2018. Algorithms for

Algebraic Path Properties in Concurrent Systems of Constant Treewidth Components. ACM Trans. Program. Lang. Syst.
40, 3 (2018), 9:1–9:43.

Krishnendu Chatterjee and Jakub Lacki. 2013. Faster Algorithms for Markov Decision Processes with Low Treewidth. In

CAV, Vol. 8044. 543–558.
Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Kerim Kochekov, Yun-Chen Tsai, and Ahmed Khaled Zaher. 2023.

Exploiting the Sparseness of Control-flow and Call Graphs for Efficient and On-demand Algebraic Program Analysis. In

OOPSLA.
Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and

computation 85, 1 (1990), 12–75.

Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and

Saket Saurabh. 2015. Parameterized algorithms. Springer.
Sandeep Dutta. 2000. Anatomy of a Compiler: A Retargetable ANSI-C Compiler. Circuit Cellar 121 (2000), 5.
Sandeep Dutta, Daniel Drotos, Kevin Vigor, Johan Knol, Scott Dattalo, Karl Bongers, Bernhard Held, Frieder Ferlemann,

Jesus Calvino-Fraga, Borut Razem, et al. 2003. Small device C compiler. http://sdcc.sourceforge.net

Andrea Ferrara, Guoqiang Pan, and Moshe Y Vardi. 2005. Treewidth in verification: Local vs. global. In LPAR. 489–503.

http://sdcc.sourceforge.net

The Bounded Pathwidth of Control-flow Graphs 25

Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin Wrochna. 2018. Fully polynomial-time

parameterized computations for graphs and matrices of low treewidth. TALG 14, 3 (2018), 1–45.

Amir Kafshdar Goharshady and Fatemeh Mohammadi. 2020. An efficient algorithm for computing network reliability in

small treewidth. Reliab. Eng. Syst. Saf. 193 (2020), 106665.
Amir Kafshdar Goharshady and Ahmed Khaled Zaher. 2023. Efficient Interprocedural Data-Flow Analysis Using Treedepth

and Treewidth. In VMCAI. 177–202.
Jens Gustedt, Ole A Mæhle, and Jan Arne Telle. 2002. The treewidth of Java programs. In ALENEX. 86–97.
Daniel J Harvey and David R Wood. 2017. Parameters tied to treewidth. Journal of Graph Theory 84, 4 (2017), 364–385.

Michael Hind, Michael G. Burke, Paul R. Carini, and Jong-Deok Choi. 1999. Interprocedural pointer alias analysis. TOPLAS
21, 4 (1999), 848–894.

Taisuke Izumi, Naoki Kitamura, Takamasa Naruse, and Gregory Schwartzman. 2022. Fully Polynomial-Time Distributed

Computation in Low-Treewidth Graphs. In SPAA. 11–22.
Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. 2017. Data flow analysis: theory and practice. CRC.
Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In POPL. 194–206.
Zachary Kincaid, Thomas Reps, and John Cyphert. 2021. Algebraic Program Analysis. In CAV. 46–83.
Peter King, Patrick Naughton, Mike DeMoney, Jonni Kanerva, Kathy Walrath, and Scott Hommel. 1999. Code Conventions

for the Java Programming Language.

David Ryan Koes. 2009. Towards a more principled compiler: Register allocation and instruction selection revisited. Ph.D.
Dissertation. Carnegie Mellon University.

Ephraim Korach and Nir Solel. 1993. Tree-width, path-width, and cutwidth. Discrete Applied Mathematics 43, 1 (1993),
97–101.

Philipp Klaus Krause. 2013a. Optimal placement of bank selection instructions in polynomial time. In M-SCOPES. 23–30.
Philipp Klaus Krause. 2013b. Optimal register allocation in polynomial time. In CC. 1–20.
Philipp Klaus Krause. 2014. The complexity of register allocation. Discret. Appl. Math. 168 (2014), 51–59.
Philipp Klaus Krause. 2021. LOSPRE in linear time. In SCOPES. 35–41.
Philipp Klaus Krause, Lukas Larisch, and Felix Salfelder. 2020. The tree-width of C. Discrete Applied Mathematics 278 (2020),

136–152.

Rahman Lavaee. 2016. The hardness of data packing. In POPL. 232–242.
David Marca. 1981. Some Pascal style guidelines. SIGPLAN Notices 16, 4 (1981), 70–80.
Steve McConnell. 2004. Code complete. Pearson.
Mohsen Alambardar Meybodi, Amir Kafshdar Goharshady, Mohammad Reza Hooshmandasl, and Ali Shakiba. 2022. Optimal

Mining: Maximizing Bitcoin Miners’ Revenues from Transaction Fees. In Blockchain. 266–273.
David Monniaux and Thomas Martin Gawlitza. 2012. Invariant generation through strategy iteration in succinctly repre-

sented control flow graphs. LMCS 8 (2012).
Eugene M Myers. 1981. A precise inter-procedural data flow algorithm. In POPL. 219–230.
Sigve Nordgaard and Jan Christian Meyer. 2020. Feasibility of Optimizations Requiring Bounded Treewidth in a Data Flow

Centric Intermediate Representation. (2020).

Jan Obdrzálek. 2003. Fast Mu-Calculus Model Checking when Tree-Width Is Bounded. In CAV, Vol. 2725. 80–92.
Mizuhito Ogawa, Zhenjiang Hu, and Isao Sasano. 2003a. Iterative-free program analysis. In ICFP. 111–123.
Mizuhito Ogawa, Zhenjiang Hu, Isao Sasano, and Masato Takeichi. 2003b. Catamorphic Approach to Program Analysis.
Erez Petrank and Dror Rawitz. 2002. The hardness of cache conscious data placement. In POPL. 101–112.
Thomas W. Reps. 1995. Shape Analysis as a Generalized Path Problem. In PEPM. 1–11.

ThomasW. Reps, Susan Horwitz, and Shmuel Sagiv. 1995a. Precise Interprocedural Dataflow Analysis via Graph Reachability.

In POPL. 49–61.
ThomasW. Reps, Susan Horwitz, and Shmuel Sagiv. 1995b. Precise Interprocedural Dataflow Analysis via Graph Reachability.

In POPL. 49–61.
Neil Robertson and Paul D Seymour. 1983. Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35,

1 (1983), 39–61.

Neil Robertson and Paul D Seymour. 1984. Graph minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B
36, 1 (1984), 49–64.

Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. Algorithmic aspects of tree-width. Journal of algorithms 7, 3
(1986), 309–322.

Neil Robertson and Paul D Seymour. 1990. Graph minors. IV. Tree-width and well-quasi-ordering. Journal of Combinatorial
Theory, Series B 48, 2 (1990), 227–254.

Sriram Sankaranarayanan. 2020. Reachability analysis using message passing over tree decompositions. In CAV. 604–628.
Micha Sharir, Amir Pnueli, et al. 1978. Two approaches to interprocedural data flow analysis. Courant Institute of Mathematical

Sciences.

26 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam

Yannis Smaragdakis, George Balatsouras, et al. 2015. Pointer analysis. Foundations and Trends in Programming Languages 2,
1 (2015), 1–69.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2013. Template-based program verification and program synthesis.

Software Tools for Technology Transfer 15, 5 (2013), 497–518.
Herb Sutter and Andrei Alexandrescu. 2004. C++ coding standards: 101 rules, guidelines, and best practices. Pearson.
Mikkel Thorup. 1998. All structured programs have small tree width and good register allocation. Information and

Computation 142, 2 (1998), 159–181.

Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps. 2000. Shape analysis. In CC. 1–17.
Edward Yourdon. 1985. Managing the Structured Techniques: Strategies for Software Development. Prentice Hall.
Shaowei Zhu and Zachary Kincaid. 2021. Termination analysis without the tears. In PLDI. 1296–1311.

	Abstract
	1 Introduction
	2 Structured Programs and Control-flow Graphs
	3 Pathwidth and Treewidth
	4 Pathwidth of Control-flow Graphs
	5 An Efficient Pathwidth-based Algorithm for Register Allocation
	6 Experimental Results
	7 Conclusion
	References

