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, derived from the Tail Value at Risk and expectiles risk measures. We also analyze the different extreme dependencies present within the system using tail dependence coefficients. The empirical results obtained designate Attijariwafa Bank and Banque Centrale Populaire as the most systemic banks in the Moroccan banking system, posing a risk of triggering systemic crises within it.

Introduction

In a world grappling with sustained inflation and accompanied by risks of economic recession, the stability of banking systems is under serious threat. Many economists believe that we are on the brink of a major financial crisis. Recent events, such as the crisis faced by regional American banks in March 2023, the swift acquisition of Credit Suisse by UBS to avert its collapse, and JPMorgan's takeover of First Republic Bank on May 1st, 2023, to prevent contagion to the entire US financial system, all bolster these analyses.

What strengthens the hypothesis that we may be facing a situation akin to that of Lehman Brothers is the speed at which panic spreads, thereby increasing the risk of contagion with each bank collapse. This is evident, for instance, in the collapse of three American regional banks in just four days. On March 8, Silvergate Bank announced its voluntary liquidation due to losses incurred in its loan portfolio. Subsequently, the banking panic rapidly spread to Silicon Valley Bank, leading to its collapse and takeover by regulators on March 10. On March 12, 2023, merely two days after the collapse of Silicon Valley Bank, Signature Bank was closed by regulators, marking the third-largest banking collapse in the history of the United States.

In response to these bank failures, the US government acted swiftly, implementing strong measures. It promptly announced the guarantee of all deposits with failing banks. The Federal Reserve established the Bank Term Funding Program (BTFP) on March 12, an emergency lending program offering loans with a maximum term of one year to banks, providing liquidity to financial institutions, and reducing the risks associated with unrealized losses in the US banking system. These events once again bring risk management into question. While the origin of risk in the 2008 Lehman Brothers case was related to subprime products, the assets of American regional banks were relatively sound. Instead, it was the concentration of risk in a single sector and on the same type of clients that triggered the crisis and necessitated the intervention of the Fed to halt the panic. The example of Silvergate Bank, considered a victim of the cryptocurrency downturn, illustrates how risks in one component of a financial system can propagate throughout the entire system. Additionally, the increase in central interest rates to cope with inflation exposed the weakness in interest rate risk management at these banks. Regulators have cited systemic risks, but experts have deemed it unlikely that these collapses posed a systemic risk to the US financial system. Nevertheless, the crisis led to a decline in the shares of regional banks. First Republic Bank's shares plummeted by 67% on March 13, 2023. A few weeks later, the bank collapsed due to massive fund withdrawals by its clients, leading to its absorption by banking giant JPMorgan on May 1st to prevent contagion to the entire financial system.

In Europe, the fear of a systemic event is grounded in the increasing probabilities of failure among banks considered systemic. Credit Suisse, which was among the 30 largest global banks and deemed too big to fail, was subject to stricter regulations during times of difficulty. However, it came perilously close to triggering a banking crisis. On March 15, 2023, Credit Suisse's stock experienced its worst decline in history, closing down by 24.24%. This significant drop had repercussions on several other European banks.

Indeed, the collapse of Credit Suisse's stock triggered a chain reaction that affected other financial institutions. Despite Switzerland not being part of the European Union's financial system, European banking stocks fell by over 10%, impacting banks such as Deutsche Bank, Commerzbank, Société Générale, BNP Paribas, Banco Sabadell, and Banca Monte dei Paschi. This situation swiftly led to the announcement of UBS's acquisition of Credit Suisse on March 20, 2023. The stated objective of this acquisition was to avoid a bankruptcy that could have triggered a global stock market panic and restore market confidence.

In parallel, another major bank, Deutsche Bank, also faced a risk of bankruptcy within the next five years, with an estimated probability of 28%. This situation led to a 10% drop in its stock price on March 25, 2023, also impacting other major players like BNP Paribas and Société Générale. Although European regulators ensured the stability of the financial system and minimized the impact of these declines on its health, managing systemic risk remains a challenge.

Despite progress with Basel III, systemic risk still seems difficult to control. Although rapid reactions from regulators and central banks prevented the worst, the measures taken do not appear to be sustainable. Resolving banking crises through acquisitions or mergers can lead to the formation of uncontrollable giants with even greater systemic weight, potentially causing future financial disasters. While the presence of deposit guarantees in the United States and Europe reassures clients, the risk of panic, which leads to immediate withdrawals and threatens banks, remains inadequately controlled. In this concerning context, it is crucial for financial authorities to take appropriate measures to preserve the stability of the banking sector. Increased monitoring of financial institutions is necessary to detect any fragility or vulnerability that could trigger new crises.

In Morocco, the banking system comprises 19 banks, with only 6 listed on the Casablanca Stock Exchange. Regulators continue to draw inspiration from international risk management and control practices. In May 2015, the country established the Moroccan Society for the Management of Bank Deposit Guarantee Funds (SGFG) to manage a collective deposit guarantee fund jointly held by the central bank and local banks. This fund is funded by bank contributions equivalent to 2% of deposits and guarantees accounts up to approximately 8000 dollars (80,000 MAD), while this limit is 100,000 euros in Europe and 250,000 dollars in the USA.

To curb inflation and safeguard the MAD exchange rate and balance of payments, the central bank decided to increase the benchmark interest rate three times. It rose from 1.5% on June 21, 2022, to 3% on March 23. While this decision aligns with international financial partners' practices, it carries the risk of slowing down investments funded by bank credits. Risk management of interest rates at the level of Moroccan banks is also put to the test during this period. This observation raises questions about the capacity of the Moroccan banking system to face a future systemic crisis. This article's objective is to quantify systemic risk within the Moroccan banking system, focusing solely on banks listed on the stock exchange. We will use the stock prices of these banks as our sole source of information to measure this risk. We acknowledge that market efficiency is not realistic in its current state, primarily due to the low liquidity related to low transaction volumes. Nevertheless, we use an approach based on modeling the dependence between different banks and their interaction with the banking system to quantify the risk.

The article is divided into 4 distinct sections. The first section is dedicated to the literature review, presenting various measures of systemic risk discussed in works on risk management. The second section explains the methodology adopted for this study in detail. The third section focuses on the presentation and analysis of the data used to obtain the results, which will then be presented and discussed in the fourth and final section.

Literature Review

Since the last global financial crisis, the significance of systemic risk in finance has grown considerably. The subprime financial crisis underscored the importance of enhancing our comprehension and modeling of systemic risk. Financial institutions are deemed systemically risky if their bankruptcy could harm the entire financial system. Several systemic risk measures have been suggested in the literature since the last financial crisis, and a bulk of academic works was dedicated to evaluating this risk in different contexts. [START_REF] Acharya | Measuring systemic risk[END_REF] [START_REF] Acharya | Measuring systemic risk[END_REF] introduced the marginal expected shortfall (MES) as a measure of systemic risk. It is denoted as M ES and defined mathematically for two random variables representing two risks X and Y by:

M ES α (Y | X) = E[Y | X ≥ V aR α (X)],
where V aR (Value at Risk) is a risk measure of a random variable X at the confidence level α:

V aR α (X) = F -1 X (α) := inf{x ∈ R|F X (x) ≥ α}, with F X being the distribution function of X.
Another approach to MES was presented by [START_REF] Acharya | Capital shortfall: A new approach to ranking and regulating systemic risks[END_REF] [START_REF] Acharya | Capital shortfall: A new approach to ranking and regulating systemic risks[END_REF], as well as in [START_REF] Acharya | Measuring systemic risk[END_REF] [START_REF] Acharya | Measuring systemic risk[END_REF]. They introduce an economic model of systemic risk, where the overall undercapitalization of the financial sector adversely affects the real economy, leading to systemic risk externality. To measure each financial institution's contribution to systemic risk, they use the systemic expected shortfall (SES), which indicates the likelihood of an institution being undercapitalized during overall undercapitalization of the financial system. The SES increases based on the institution's leverage and its marginal expected shortfall (MES), reflecting its losses in the tail of the system's loss distribution.

Brownlees and Engle (2012) [START_REF] Brownlees | Volatility, correlation and tails for systemic risk measurement[END_REF] focused on monitoring a financial system comprising d financial institutions, using the capital shortfall defined as

CS it = kA it -W it = k(D it + W it ) -W it ,
as a measure of a firm's distress. Here, W it represents the market value of equity, D it is the book value of debt, A it is the value of quasi assets, and k is the prudential capital fraction. To predict the capital shortfall during a systemic event, defined as a market decline below a threshold C over a time horizon h, they introduce the SRISK index (SRISK it ), which represents the expected capital shortfall conditional on a systemic event:

SRISK it = kD it -(1 -k)W it (1 -LRM ES it ),
where LRM ES it is the Long Run MES, representing the expectation of the firm's equity multiperiod arithmetic return during the systemic event, calculated as

LRM ES it = -E t [R it+1:t+h |R mt+1:t+h < C],
where R it+1:t+h and R mt+1:t+h are respectively the multi-period arithmetic firm equity and market returns between period t + 1 and t + h. Thus, the SRISK index provides a measure of systemic risk for individual financial institutions during potential systemic events. [START_REF] Adrian | Covar[END_REF] [START_REF] Adrian | Covar[END_REF] propose a metric to assess systemic risk: CoVaR, which calculates the financial system's Value at Risk (VaR) under distressed conditions of institutions. They measure an institution's impact on systemic risk by comparing its CoVaR under distress to the CoVaR in a typical state. Through their analysis of publicly traded financial institutions, they evaluate how factors like leverage, size, and maturity mismatch can indicate an institution's contribution to systemic risk. This measure, also studied in [START_REF] Adrian | [END_REF] [START_REF] Adrian | [END_REF], is mathematically defined for two random variables X and Y , representing the risk of two institutions or an institution and the financial system as follows: [START_REF] Mainik | On dependence consistency of covar and some other systemic risk measures[END_REF] [START_REF] Mainik | On dependence consistency of covar and some other systemic risk measures[END_REF] provided explicit formulas for ∆CoV aR in particular cases and presented a new approach to this risk measure that takes into account the dependence between risks. This measure was also studied in Löffler and Raupach (2013) [START_REF] Löffler | Robustness and informativeness of systemic risk measures[END_REF] and [START_REF] Castro | Measuring and testing for the systemically important financial institutions[END_REF] [START_REF] Castro | Measuring and testing for the systemically important financial institutions[END_REF].

∆CoV aR α,β (Y | X) = CoV aR = α,β (Y | X) -V aR β (Y ), where CoV aR = α,β (Y | X) = V aR β (Y | X = V aR α (X)).
Similarly, Mainik and Schaanning (2014) [START_REF] Mainik | On dependence consistency of covar and some other systemic risk measures[END_REF] defined the Conditional Expected Shortfall (CoES), based on the definition of the Expected Shortfall risk measure:

ES α (X) = 1 1 -α 1 α V aR u (X)du.
The CoES is defined as:

CoES = α,β (Y | X) = 1 1 -β 1 β CoV aR = α,u (X)du.
A second version is given by:

CoES α,β (Y | X) = 1 1 -β 1 β CoV aR α,u (X)du, where CoV aR α,β (Y | X) = V aR β (Y | X ≥ V aR α (X)).
Other measures based on financial constructions have been introduced in the literature. For example, the tail risk gamma, presented by [START_REF] Knaup | Forward-looking tail risk exposures at us bank holding companies[END_REF] [START_REF] Knaup | Forward-looking tail risk exposures at us bank holding companies[END_REF], utilizes the sensitivity of an institution's equity return to changes in put options on system prices.

Recently, El qalli and Said (2013) [START_REF] Qalli | Some systemic risk indicators[END_REF] introduced some systemic risk indicators based on capital allocation methods used in actuarial practices. They define, for any positive homogeneous risk measure ρ, the Euler systemic risk by

(1.1) SRI Euler ρ (X i |S) = ρ(X i ) d ℓ=1 ρ (X ℓ ) -lim h→0 ρ d ℓ=1 X ℓ -ρ d ℓ=1 X ℓ -hX i ρ d ℓ=1 X ℓ h
where X = (X 1 , . . . , X d ) is a random risk vector, and

S = n k=1 X k . The constructed indicators verify SRI Euler ρ (X i |S) ∈ [-1, 1]
, and the institution represented by X i is considered as systemic in a financial system represented by S when the value of its indicator is negative. The main idea behind the construction of these indicators is to evaluate systemic risk by quantifying the difference between the marginal risk contribution of a component within the entire system, without considering diversification, and its actual participation in the overall risk obtained using the Euler method of risk allocation. Additionally, in [START_REF] Qalli | Some systemic risk indicators[END_REF], other indicators based on the Shapley method and various risk allocation techniques are also presented. From 1.1, one can derive an indicator from any positive homogeneous risk measure. For the VaR risk measure the indicator is given by:

SRI V aRα (X i |S) = V aR α (X i ) d ℓ=1 V aR α (X ℓ ) - E[X i |S = V aR α (S)] V aR α (S) .
An other generalization presented in [START_REF] Qalli | Some systemic risk indicators[END_REF] derived indicators from Wang's risk measures introduced in [27], and defined as:

ρ(X) = 1 0 V aR α (X) dg(α),
where g is an increasing distortion function satisfying g(0) = 0 and g(1) = 1. These measures are homogeneous, translation-invariant, and monotone. The systemic risk indicator in this case is given by

(1.2) SRI g (X i |S) = 1 0 V aR α (X i ) dg(α) 1 0 d k=1 V aR α (X k ) dg(α) - 1 0 E[X i |S = V aR α (S)]dg(α) 1 0 V aR α (S) dg(α)
, where g is the distortion function associated with ρ.

In the context of Morocco, few studies have quantified systemic risk in the banking system. Firano (2015) [START_REF] Firano | Systemic risk and financial contagion in morocco: New approaches of quantification[END_REF] evaluates this risk using two approaches: conditional value at risk for measuring systemic importance and heteroscedasticity models to assess correlations with the financial system. The paper identifies three banks as the most systemic, with the potential to trigger crises. It introduces a systemic risk index and develops a macro-financial model demonstrating procyclical systemic risk contagion. Nechba (2021) [START_REF] Nechba | Moroccan conventional banks' contribution to systemic risk[END_REF] studies systemic risk exposure of Moroccan banks for the period 2005-2017, using CoVaR, MES, and SRISK measures. More recently, [START_REF] Kyoud | Modelling systemic risk in morocco's banking system[END_REF] [START_REF] Kyoud | Modelling systemic risk in morocco's banking system[END_REF] analyze the Moroccan banking system's systemic risk during the COVID-19 crisis using QRNN (Quantile Regression Neural Network) and CoVaR. They find a significant increase in systemic risk due to pandemic-induced market conditions, resulting in higher non-performing loans and reduced asset values.

In this article, our focus lies on the indicators developed by El qalli and Said (2013) [START_REF] Qalli | Some systemic risk indicators[END_REF], which employ the Euler method for capital allocation. Specifically, we utilize Euler indicators derived from common risk measures, such as Tail Value at Risk and Expectiles. In order to rank different banks according to their impact on the overall system, we quantify extreme dependence using the coefficients of tail dependence presented in Joe's study (1997) [START_REF] Joe | Multivariate models and multivariate dependence concepts[END_REF]. These coefficients will be calculated based on estimates of dependence structures using copulas.

Methodology suggested

Let P i,t denote the price of asset i at time t. We consider daily log-returns, which can be expressed as follows:

R i,t = log P i,t P i,t-1 .
We use actuarial notation, which treats risky scenarios as positive variables. Therefore, we define:

X i,t = -α i,t R i,t ,
where

α i,t = n i P i,t 6 k=1 n k P k,t ,
with n k representing the total number of shares of Bank k. Thus, α i,t corresponds to the weight of Bank i in the system composed of these six banks. For the sake of simplicity and without losing generality, the number of shares for each of the six banks is considered fixed based on the values observed on May 19, 2023. The risk associated with the financial system composed of these six banks, denoted as S, is expressed as:

S t = 6 i=1 X i,t = - 6 i=1 α i,t R i,t = -R S,t .
We denote S -i :

S -i,t = - 6 k=1,i̸ =i n k P k,t 6 ℓ=1,ℓ̸ =i n ℓ P ℓ,t R i,t ,
which represents the financial system without the bank i 2.1. Systemic risk index. We first propose the construction of a straightforward systemic risk index that quantifies a bank's capacity to contribute to a substantial loss for the entire system.

To achieve this, we concentrate on analyzing the extreme dependence between a bank's losses and those of the overall system. Mathematically, we model this dependence using the coefficient of tail dependence between -R i (bank's losses) and -R S (system's losses).

We recall the definition of the upper tail dependence coefficient as presented in Joe (1997) [START_REF] Joe | Multivariate models and multivariate dependence concepts[END_REF] for bivariate random variables (X, Y ) with continuous marginal distributions:

λ U = lim u→1 -P(Y > F -1 Y (u)|X > F -1 X (u)
), when the limit exists.

The coefficient λ U does not depend on the marginal distributions of the risks but rather on their dependence structure. To isolate this structure, we resort to copulas. Recall that Sklar's theorem (1959) [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] states the existence and uniqueness of a copula C : [0, 1] 2 → [0, 1] for any pair of continuous random variables (X, Y ), satisfying

P (X ≤ x, Y ≤ y) = C (F X (x), F Y (y)) , ∀(x, y) ∈ R 2 .
The coefficient λ U can thus be expressed in terms of C as follows:

λ U = lim u→1 - 1 -2u + C(u, u) 1 -u ,
when the limit exists.

The main advantage of this approach is to capture non-linear extreme dependencies without making assumptions on the marginal distributions of log-returns.

We focus on estimating copulas using families of usual parametric copulas and their survival copulas. The survival copula C is defined as:

P(X ≥ x, Y ≥ y) = C( FX (x), FY (y)), ∀(x, y) ∈ R 2 ,
where FX and FY are the survival distribution functions of X and Y respectively. C is related to C through the following relation:

C(u, v) = u + v -1 + C(1 -u, 1 -v), ∀(u, v) ∈ [0, 1] 2 .
The upper tail dependence coefficient of C can be expressed as follows:

λ U ( C) = lim u→1 - 1 -2u + C(u, u) 1 -u = lim u→1 - C(1 -u, 1 -u) 1 -u = lim u→0 + C(u, u) u ,
and this expression represents the lower tail dependence coefficient of C, defined by:

λ L = lim u→0 + P(Y ≤ F -1 Y (u) | X ≤ F -1 X (u)) = lim u→0 + C(u, u) u ,
if the limit exists.

To estimate the coefficients λ U , we will first estimate the copulas for the pairs (-R i , -R S ). We will use the semi-parametric Canonical Maximum Likelihood method introduced by Oakes (1994) [START_REF] Oakes | Multivariate survival distributions[END_REF] to estimate these copulas using empirical marginal distribution functions. The families of estimated copulas are presented in Table 1. We will select the most suitable copula using the Akaike Information Criteria (AIC) as the selection criterion. Finally, we will use the analytical expressions, presented in Table 2, to estimate the corresponding λ U coefficients for the selected copulas. Other statistical methods for estimating the tail-dependence coefficient are also presented in the study by [START_REF] Frahm | Estimating the tail-dependence coefficient: properties and pitfalls[END_REF] [START_REF] Frahm | Estimating the tail-dependence coefficient: properties and pitfalls[END_REF].

Copula C Independence C(u, v) = uv Gumbel C(u, v) = exp(-((-log u) θ + (-log v) θ ) 1/θ ), θ ≥ 1. Frank C(u, v) = -1 θ log 1 + (e -θu -1)(e -θv -1) e -θ -1 , θ ̸ = 0. Clayton C(u, v) = u -θ + v -θ -1 -1/θ θ > 0. Gaussian C ρ (u, v) = 1 2π √ 1-ρ 2 Φ -1 (u) -∞ Φ -1 (v) -∞ exp x 2 -2ρxy + y 2 2(1 -ρ 2 ) dxdy. Student C ρ,ν (u, u) = t -1 ν (u) -∞ t -1 ν (v) -∞ 1 πν √ 1 -ρ 2 Γ ν 2 + 1 Γ ν 2 1 + x 2 -2ρxy + y 2 ν(1 -ρ 2 ) -ν 2 +1
dxdy.

Table 1. Evaluated Copula Families

Copula λ U λ L Independence 0 0 Gumbel 0 2 -2 1 θ Frank 0 0 Clayton 2 -1 θ 0 Gaussian 1 1 {ρ=1} 1 1 {ρ=1} t(ρ, ν) 2 -2t ν+1 (ν+1)(1-ρ) 1+ρ 1 1 {ρ>-1} 2 -2t ν+1 (ν+1)(1-ρ) 1+ρ 1 1 {ρ>-1}

Table 2. Tail dependence coefficients

To disentangle the extreme dependence from the influence of a bank's weight on the entire system, we additionally estimate the upper tail dependence coefficient between each bank and the system constituted by the other banks. This process involves following the same steps and employing the same estimation methods used earlier to measure the extreme dependence between the losses of an individual bank -R i and the system S -i .

The TVaR-based systemic risk indicator.

The second indicator used to assess the level of systemic importance of a bank in the banking system is derived from the Euler indicator, as presented in [START_REF] Qalli | Some systemic risk indicators[END_REF]. Specifically, we have opted to utilize the risk measure known as Tail Value-at-Risk. Unlike VaR, which lacks sub-additivity, this measure adheres to the coherence axiom introduced by Artzner et al. (1999) [START_REF] Artzner | Coherent measures of risk[END_REF], making it a coherent risk measure.

The TVaR at level α is defined as the mean of the VaRs that exceed V aR α (X):

T V aR α (X) = 1 1 -α 1 α V aR µ (X)dµ.
It is a risk measure belonging to the Wang family and is associated with the following distortion function:

g α (x) = x -α 1 -α 1 1 {x∈[α,1]} .
Note that for a fixed α ∈ [0, 1], g α represents the uniform distribution function with support [α, 1]. Hence, we can use (1.2) to derive the expression of the TVaR-based systemic risk indicator. The TVaR systemic risk indicator for (X i ) i=1,...,d is given by:

SRI T V aRα (X i |S) = E[X i |X i ≥ V aR α (X i )] d k=1 E[X k |X k ≥ V aR α (X k )] - E[X i |S ≥ V aR α (S)] E[S|S ≥ V aR α (S)]
.

In the Gaussian case, the explicit expression of this indicator in terms of volatilities and correlations can be readily obtained, thanks to the properties of Gaussian vectors. A similar approach can be extended to the case of a random vector following a Student's t-distribution. However, to maintain a non-parametric stance and avoid assumptions about the distributions of risks, we refrain from adopting specific distributional assumptions in this article. Instead, we employ standard statistical estimators to calculate all the expectations involved in the indicator's expression and the quantile representing the VaR for each risk. The estimation of the indicator can be conducted either statically, considering the entire data period, or dynamically, with a rolling approach over a shorter period. This allows us to capture the dynamics of systemic risk over time without imposing restrictive distributional assumptions on the underlying risks.

The TVaR is a highly effective tail measure for quantifying the risk of losses beyond its threshold. However, it has two minor disadvantages that may introduce bias in risk management decisions based on its value. The first drawback concerns its non-elicitable nature, which means that it cannot be directly backtestable. Let us recall the definition of elicitability presented in [START_REF] Bellini | On elicitable risk measures[END_REF] [START_REF] Bellini | On elicitable risk measures[END_REF]. A risk measure ρ is considered elicitable with respect to the class P if there exists a scoring function S : R 2 → R + such that ρ(P) = arg min x∈R S(x, y)dP(y), ∀P ∈ P.

Elicitability is a desirable statistical property for risk measures. However, in the case of TVaR, its non-elicitable nature is not critical since we can test TVaR using VaR, which is elicitable.

The second point concerns its use in capital allocation, which may penalize risks that perform well in positive scenarios. This is due to its construction, as it measures only one tail of the distribution. These two disadvantages are absent in the case of expectile risk measures. Expectiles are the only risk measures that are both coherent and elicitable, as shown by [START_REF] Bellini | On elicitable risk measures[END_REF] [START_REF] Bellini | On elicitable risk measures[END_REF], and their economic interpretation integrates both the risk behavior in positive and adverse scenarios. From this perspective, it would be interesting to examine the systemic risk indicator derived from expectile measures. [START_REF] Newey | Asymmetric Least Squares Estimation and Testing[END_REF] [START_REF] Newey | Asymmetric Least Squares Estimation and Testing[END_REF]. For a random variable X with a finite second-order moment, the expectile of level α is defined as follows:

The Expectile-based systemic risk indicator. Expectiles were initially introduced within the context of statistical regression models by

(2.1) e α (X) = arg min x∈R E[α(X -x) 2 + + (1 -α)(x -X) 2 + ],
where (x) + = max(x, 0). Expectile risk measures are elicitable by construction and are coherent for all α ⩾ 1/2. However, for α < 1/2, expectiles become super-additive, which makes them incoherent. Notably, when α = 1/2, the expectile corresponds to the mean value. Throughout this paper, we focus on the case where α > 1/2.

Alternatively, the expectile can be defined for any random variable with a finite first-order moment as the unique solution of the following equation:

(2.2) αE[(X -x) + ] = (1 -α)E[(x -X) + ].
This equation arises as an optimality condition using the strict convexity of the scoring function. It can also be expressed as:

1 -α α = E[(X -x) + ] E[(x -X) + ]
.

From this definition, we can provide an economic interpretation for the expectile risk measure as a threshold that represents a profits/losses ratio of value 1-α α .

The properties of expectile risk measures have been studied in several papers. Interested readers can refer to [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF] and [START_REF] Bellini | Risk management with expectiles[END_REF] for more information. A multivariate extension of expectiles is proposed in [START_REF] Maume-Deschamps | Multivariate extensions of expectiles risk measures[END_REF], and their asymptotic behavior is studied in [START_REF] Maume-Deschamps | Extremes for multivariate expectiles[END_REF]. The Expectile-based capital allocation is examined in [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF] and [START_REF] Said | Expectile-based capital allocation[END_REF].

The Expectile-based systemic risk indicator of (X i ) i=1,...,6 is defined as follows:

(2.3) SRI eα (X i |S) = e α (X i ) d k=1 e α (X k ) - αE X i 1 1 {S>eα(S)} + (1 -α)E X i 1 1 {S<eα(S)} αE S1 1 {S>eα(S)} + (1 -α)E S1 1 {S<eα(S)} .
We can clearly observe a substantial difference between the indicator based on TVaR and the one based on expectiles, evident from their respective expressions. The Expectile-based indicator not only considers the contribution of a component to the losses of the system but also its involvement in generating gains, with coefficients α and 1 -α, respectively. It is important to note that this indicator is computationally more demanding compared to the TVaR-based one in terms of estimation, as it requires optimization to determine both the univariate expectiles and the sum expectile.

Data

This article aims to measure the systemic risk in the Moroccan banking system. To accomplish this, we will utilize a publicly available database containing the stock prices of the 6 listed Moroccan banks that are traded on the Casablanca stock exchange market and constitute the MASI Banks sectoral index: Attijariwafa Bank (ATW), Banque Centrale Populaire (BCP), Banque Marocaine du Commerce et de l'Industrie (BMCI), Bank of Africa (BOA), Crédit du Maroc (CDM), and Crédit Immobilier et Hôtelier (CIH). The data spans 5 years from May 21, 2018, to May 19, 2023. Table 3 presents the included banks and their respective market capitalizations as of May 19, 2023. These market capitalizations will be used to analyze the risk composition of our financial system, which is solely represented by these 6 banks. 4 displays a summary of log-returns statistics. It is evident that all kurtosis values are greater than three, indicating heavier tails in the data compared to a normal distribution. Moreover, the Shapiro, Lilliefors, and Jarque-Bera tests indicate significant deviation from a normal distribution, further supporting the presence of non-normality and heavier-tailed distribution. Lastly, the augmented Dickey-Fuller (ADF) test suggests that all the log-returns, as time series, exhibit stationary behavior.

Bank

AWB BCP BMCI BOA CDM CIH Min.

-0. Figure 1 displays the level of bivariate dependence between the log-returns of the six banks' stocks over the studied period, as measured using Pearson's correlation and Kendall's tau. Kendall's tau is a comprehensive measure of concordance that captures various types of dependencies, while Pearson's correlation is more appropriate for quantifying linear correlations. Notably, we observe that the stock returns of bank CDM exhibit negligible dependence with all the other banks, indicating a low systemic impact within the considered banking system.

Results and Discussion

To estimate the upper tail dependence coefficients, we begin by estimating the bivariate copulas between each pair of banks C(-R i , -R j ) i̸ =j,i,j∈{1,...,6} and between each bank and the banking system C(-R i , -R S ) i=1,..., [START_REF] Artzner | Coherent measures of risk[END_REF] . The upper tail dependence coefficients between the banks allow us to quantify the impact of a crash in one bank's value on the other. In the case where the asymptotic dependence is important, we can classify the two banks as being systemic to each other. The bivariate copulas, representing the losses of the banks, are obtained using our entire dataset (n = 1245 log-returns) with the semi-parametric Canonical Maximum Likelihood (CML) as the method and Akaike Information Criteria (AIC) as the selection criterion. The obtained copulas are presented in Table 5. "S-Gumbel" refers to the Survival Gumbel copula. The corresponding bivariate upper tail dependence coefficients are presented in Table 6. We observe the presence of asymptotic dependencies between several pairs of banks. Overall, this dependence remains far from perfect dependence (λ U = 1), which indicates the case of comonotonicity of risks, but it remains significant, especially between the banks ATW-BCP, ATW-BOA, and ATW-BCP. This measure of asymmetric dependence is independent of the nature of the marginal behavior as well as the weight of the bank in the system, thus providing an objective quantification of the capacity of a severe loss in one bank's assets to cause a significant loss in the other. 
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We adopt a similar approach to compute the coefficients of extreme dependence between each bank and the entire system. Figure 2 presents empirical density plots of copulas between the system and two banks, ATW and CDM. The shapes of these densities reveal the presence of positive dependence between bank ATW and the system, with the dependence being prominent at the tail levels. Conversely, the copula linking bank CDM to the system shows asymptotic independence, indicating a lack of significant dependence.

Table 7 displays all the estimated copulas between each bank and the system, while Table 8 presents the corresponding Upper Tail Dependence Coefficients. Figure 3 provides a comprehensive summary of all the relationships of extreme dependence between the banks and the considered banking system. BCI BOA CDM CIH S t(0.86, 3) t(0.7, 4) t(0.33, 13) t(0.52, 4) Gaussian(0.14) Gumbel (θ = 1.29) Table 7. Estimations of Ĉn (-R i , S) using the CML Method with AIC Criterion ATW BCP BCI BOA CDM CIH S 0.612 0.387 0.019 0.267 0.000 0.000 Table 8. Upper Tail Dependence Coefficients between Banks and the System λU,n (-R i , S)

Only the two banks, CDM and CIH, are asymptotically independent from the system composed of all the banks. This observation is not directly related to the weight of these banks in the system but rather to the nature of the risk they carry. This is particularly evident in the comparison between the cases of BCI and CIH, for example. However, the strong dependence between the right tails of the losses of the system and those of banks like ATW and BCP is certainly related not only to the nature of the risk but also to their weights in the system, which determine its composition. To confirm these observations, we will also estimate the Upper Tail Dependence Coefficients between each bank and the system composed of the other banks, denoted as λ U (X i , S -i ). The estimated copulas and the corresponding upper tail dependence coefficients are presented in Tables 9 and10, respectively.

ATW

BCP BCI BOA CDM CIH S -i t(0.4, 3) t(0.45, 3) t(0.23, 10) t(0.28, 4) Gaussian(0.08) t(0.25, 5) Table 9. Estimations of Ĉn (-R i , S -i ) using the CML Method with AIC Criterion ATW BCP BCI BOA CDM CIH S -i 0.262 0.286 0.024 0.156 0.000 0.107 Table 10. Upper Tail Dependence Coefficients λU,n (-R i , S -i )

The coefficients obtained in Table 10 indicate, firstly, that the weight of a bank in the system, as measured by its capitalization, can introduce bias in the quantification of the systemic risk it presents. This effect can occur in both directions; for instance, in the case of the ATW bank, the risk was overestimated due to its significant weight, whereas in the case of the CIH bank, this risk was underestimated. With this last estimation method, BCP has emerged as the bank that exhibits the strongest asymptotic dependence with the rest of the system. Both methods confirm that the banks that can potentially cause the most losses to the system in the event of a decline in their values are ATW, BCP, and BOA.

To deepen our analysis, we now shift our focus to the systemic risk indicators derived from the risk measures TVaR and Expectile. These measures are based on the idea of comparing the weight that a bank X i , i = 1, . . . , 6 represents in the system's risk, without considering dependence, or rather considering perfect dependence that neglects the diversification gain within the system, with the actual weight derived from the Euler risk allocation method, which takes into account the dependence structure between the system's components. It should be noted that the difference between the two risk measures used lies in the consideration of the bank's performance through the expectile, while TVaR exclusively measures the risk of losses. The bank's weight is directly taken into account in the construction of the method since X i = -α i R i , i = 1, . . . , 6.

In the first step, we set the threshold to 95% and used the entire database of logarithmic returns. Table 11 presents the values obtained using the two risk indicators. These indicators indicate that a bank exhibits systemic risk when they are negative. In the case of positive values, they suggest that the dependence between the bank and the other components of the system does not generate additional risk. As the indicator's value increases (moving towards positive values), the risk is perceived to decrease. We can set a tolerance threshold of, for example, 5%, in line with the α threshold.

According to the results, Bank ATW is identified as systemic by both indicators, and BCP is also systemic without exceeding the 5% threshold. The other banks are not systemic according to these results, and bank BOA represents the least risky component of the system. These findings also suggest that the bank's weight can contribute to increasing the risk it carries when it is systemic. To confirm these conclusions, we vary the threshold α between 90% and 99.99%. 

ATW
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The banks identified as non-systemic, namely BCI and CDM, maintain this status for all values of the threshold α, indicating low asymptotic dependence with the rest of the system. Conversely, the banks showing significant extreme dependence, such as BOA and CIH, exhibit positive systemic risk indicators that increase as α approaches 1, indicating higher degrees of risk and approaching the negative zone. This behavior is more pronounced for the indicator based on TVaR, as it solely considers contributions to the system's losses. With this indicator, BOA becomes systemic at the asymptotic level.

The two systemic banks, ATW and BCP, maintain their systemic status for all threshold values of α, with a decrease in risk for ATW. This decrease could be influenced by the increase in systemic risk of other banks at the asymptotic level of α, as risk measures severely evaluate all potential loss risks. However, comprehending the asymptotic behavior of the indicators, as α approaches 1, requires specific treatment using extreme value statistics.

In all the previous analyses, we assessed systemic risk using indicators estimated on a 5-year database of stock market quotes. However, this approach does not provide insights into the indicators' behavior over time. To address this limitation, we employ a dynamic estimation approach. We consider a reference period of one financial year with 252 trading days (1Y). The indicators are calculated using a sliding window, and at each date, t, the indicator is estimated using data from the past 252 days (i.e., between dates t -251 and t). This approach enables us to observe the evolution of the two indicators over a span of 4 financial years.

The results obtained from this dynamic estimation process for α = 95% are presented in Figure 6. This approach allows us to gain a better understanding of how our systemic risk indicators fluctuate over time and respond to changing market conditions and economic events. 

6. 1Y -SRI T V aR 95% (α i,t X i,t |S t ) (Left) and 1Y -SRI e 95% (α i,t X i,t |S t ) (Right)
With only slight differences in values between the two indicators, resulting from the distinction between TVaR and Expectile as risk measures, the overall behavior follows similar trends for both indicators. However, we observe significant variations in the corresponding systemic risk indicators, particularly for the two banks ATW and BCP. The other banks remain relatively non-systemic during the 4-years period. To better understand the reasons for these changes for ATW and BCP, which were previously identified as the most systemic within the Moroccan banking system, we compare the evolution of the indicators in their cases with their rolling annual returns: The most notable behavior is observed in the indicators for the BCP bank, which tends to exhibit a higher level of systemic risk during periods of negative performance. In such periods, its systemic risk indicators also become positive, and their evolution closely follows the performance of its returns. On the other hand, the ATW bank remains consistently within the systemic zone throughout the entire 4-year period. Its systemic level decreases (the value of the indicator increases) during periods of losses and increases during periods of gains. This finding suggests that the systemic nature of ATW bank is likely influenced by its weight within the system. During periods of positive returns, its weight in the system increases, leading to a higher systemic risk level. Conversely, during periods of negative returns, the risk decreases due to its reduced weight in the system caused by a decrease in its capitalization. Finally, this study identifies two banks, ATW and BCP, as systemic within the Moroccan banking system, consisting of listed banks. The analysis reveals that ATW significantly contributes to the systemic risk, primarily due to its substantial weight within the system, surpassing that of all other components. Similarly, BCP exhibits considerable systemic risk and demonstrates significant extreme dependence with the rest of the system. Consequently, based on these findings, it can be inferred that BCP carries a higher level of systemic risk compared to ATW. The different banks are thus ranked in ascending order of their systemic levels, from the most systemic to the least systemic, as follows: BCP, ATW, BOA, CIH, BCI, and CDM. Notably, the last two banks, BCI and CDM, do not demonstrate an empirical level of risk that qualifies them as systemic within the analyzed context.

R i,t _1Y = 251 ℓ=0 (1 + R i,t-ℓ ) -1, i = 1, . . . , d.

Conclusion

In this article, we have proposed simple indicators to identify systemic banks and quantify the degree of systemic risk they present. Financial regulators strive to limit the risk of each bank and financial institution. However, when the systemic risk of a component within the financial system is poorly assessed, it can propagate various risks throughout the entire system. The primary limitation of these indicators stems from their failure to consider that risk can be endogenous and cannot be fully captured by the stock market values of the banks. Nonetheless, they provide a relevant and informative measure for quantifying systemic risk.

The results emphasize the importance for regulators to carefully consider banks' risk exposures while implementing measures to mitigate systemic risk. Such measures may include actions like raising banks' capital requirements, increasing the proportion of high-quality liquid assets, and enhancing their participation in deposit guarantee funds. Being attentive to the specific risk profiles of individual banks can help in formulating more effective regulatory strategies.

Particular attention should be given to systemic banks with majority foreign capital and banks with international branches, as they can propagate external risk within the Moroccan banking system. This highlights the need for regulators to address potential cross-border risks and ensure a comprehensive approach to systemic risk management.

In conclusion, our proposed indicators offer valuable insights for identifying systemic risks and guiding regulatory efforts to maintain a stable and resilient financial system. However, a comprehensive assessment considering the endogeneity of risk and other factors is essential to implement more robust risk management practices.
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  Figure 4 displays the results obtained for the two systemic risk indicators.
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 3 Composition

	Ticker	Instrument	Number of shares Price (MAD)	Capitalization
	ATW ATTIJARIWAFA BANK	215,140,839	408.50	87,885,032,731.50
	BCP	BCP	203,312,473	231.00	46,965,181,263.00
	CIH	CIH	30,519,784	330.00	10,071,528,720.00
	BCI	BMCI	13,279,286	460.00	6,108,471,560.00
	CDM	CDM	10,881,214	675.00	7,344,819,450.00
	BOA	BANK OF AFRICA	208,769,827	165.00	34,447,021,455.00

of MASI Banks Index -May 19, 2023 -Source: Casablanca Stock Exchange Table

Table 5 .

 5 Estimations of Ĉn (-R i , -R j ) using the CML Method with AIC Criterion

		BCI	BOA	CDM	CIH
	ATW t(0.41, 3) t(0.18, 10) t(0.24, 5)	Independence	Gumbel (θ = 1.18)
	BCP	t(0.22, 18) t(0.27, 5)	Frank (θ = 0.6)	t(0.21, 5)
	BCI		t(0.12, 14) S-Gumbel (θ = 1.07) Gumbel (θ = 1.09)
	BOA			Frank (θ = 0.53)	t(0.1, 6)
	CDM				S-Gumbel (θ = 1.04)

Table 6 .

 6 Bivariate Upper Tail Dependence Coefficients between Banks λU,n (

	CIH

10.44% -0.66% +3.01% +3.38 % +2.91% +1.80% SRI

  95% (α i X i |S) -

	BCP	BCI	BOA	CDM	CIH
	SRI T V aR				

e 95% (α i X i |S) -10.62% -1.60% +3.11% +4.49 % +3.03% +1.60% Table 11. SRI T V aR 95% (α i X i |S) and SRI e 95% (α i X i |S)

  T V aR 95% (α i,t X i,t |S t ) vs SRI e 95% (α i,t X i,t |S t )