N
N

N

HAL

open science

FedShop: A Benchmark for Testing the Scalability of
SPARQL Federation Engines
Minh-Hoang Dang, Julien Aimonier-Davat, Pascal Molli, Olaf Hartig, Hala
Skaf-Molli, Yotlan Le Crom

» To cite this version:

Minh-Hoang Dang, Julien Aimonier-Davat, Pascal Molli, Olaf Hartig, Hala Skaf-Molli, et al.. FedShop:
A Benchmark for Testing the Scalability of SPARQL Federation Engines. ISWC 2023, Nov 2023,

Athens, Greece. 10.5281/zenodo.7919872 . hal-04180506

HAL Id: hal-04180506
https://hal.science/hal-04180506
Submitted on 12 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04180506
https://hal.archives-ouvertes.fr

FedShop: A Benchmark for Testing the
Scalability of SPARQL Federation Engines

Minh-Hoang Dang?[0000-0003—3531-0132]
)
Julien Aimonier-Davat?![0000—-0001-6707—0204]
:1[0000—0001—8048—273X : »2[0000—0002—1741—2090
Pascal Molli'l I, Olaf Hartig?! I,

Hala Skaf-Mollj![0000-0003—1062—-6659] " 514 Yotlan Le Crom!

! Nantes Université, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
minh-hoang.dang@univ-nantes.fr
2 Dept. of Computer and Information Science (IDA), Linkoping University, Sweden

Abstract. While several approaches to query a federation of SPARQL
endpoints have been proposed in the literature, very little is known about
the effectiveness of these approaches and the behavior of the resulting
query engines for cases in which the number of federation members in-
creases. The existing benchmarks that are typically used to evaluate
SPARQL federation engines do not consider such a form of scalability.
In this paper, we set out to close this knowledge gap by investigating the
behavior of 4 state-of-the-art SPARQL federation engines using a novel
benchmark designed for scalability experiments. Based on the bench-
mark, we show that scalability is a challenge for each of these engines,
especially with respect to the effectiveness of their source selection &
query decomposition approaches. FedShop is freely available online at:
https://github.com/GDD-Nantes/FedShop

Keywords: Federated Query Processing - Scalability - Source Selection
- SPARQL

1 Introduction

Context and motivation: Several query engines for querying federations of
SPARQL endpoints have been proposed in recent years [2,15,19]. In addition
to different approaches to finding efficient query execution plans, these engines
employ different source selection & query decomposition approaches. These ap-
proaches decompose any given query into subqueries associated with the federa-
tion members from which it is possible to retrieve relevant results for answering
the given query. Any subquery for a federation member whose result will be
either empty or cannot contribute to the overall result of the given query can be
pruned in this step, reducing the effort and time needed to execute the query. Yet,
the challenge is to identify such subqueries. The effectiveness of the approaches
proposed for this task (and also of the query optimization approaches used by
the engines) is typically evaluated using one of two benchmarks: FedBench [21]
or LargeRDFBench [18]. Both of these benchmarks are designed based on a fixed
federation with a few hand-picked federation members.

https://github.com/GDD-Nantes/FedShop

2 MH. Dang et al.

Due to this design choice, these benchmarks cannot be used to study how the
proposed approaches and engines behave if the number of federation members
increases. Consequently, very little is known about this form of scalability of the
proposed approaches and engines. While some authors have partitioned existing
benchmark datasets to overcome this limitation [13,14,16,21,24], the resulting
partitions do not resemble the characteristics of real-world datasets [9].

Contributions: Our main contribution in this paper is FedShop, a novel bench-
mark designed for scalability experiments. FedShop captures an e-commerce sce-
nario with a scalable federation of online shops and rating sites, and with query
workloads that simulate users who explore and search for products and offers
across the federation. More specifically, the benchmark consists of the following;:

— 10 pre-generated federations ranging from 20 to 200 federation members,

— aschema-based dataset generator to generate further federations for which
the scale factor is the number of federation members and for which the dis-
tribution law of every relationship of the data schema can be configured,

— 12 query templates capturing different, use-case-specific types of queries,

— a collection of ten such queries per template (i.e., 120 queries overall), and

— reference source assignments for each of these 120 queries over each of
the ten pre-generated federations, as could be produced by a source selection
approach that has provenance information about the complete query results.

Given the FedShop benchmark (as will be introduced in detail in Section 3), we
make further contributions in this paper. In particular, we analyze the bench-
mark queries based on their Reference Source Assignments (cf. Section 4) and,
then, present a comprehensive experimental study (cf. Section 5). In this study,
we first show that, when using their reference source assignments, each of the
120 queries can be executed in less than 2 secs over each of the 10 pre-generated
federations. This illustrates that effective query decomposition and source selec-
tion can enable a customer to perform interactive queries on a federation of 200
endpoints. Thereafter, we use the benchmark to show novel experimental results
that shed light on the scalability of four state-of-the-art SPARQL federation en-
gines. The main takeaway of this study is that scalability is a challenge for the
engines. None of the engines can deliver reasonable performance when querying
the federation with 200 federation members. The reason for these performance
issues is that the source selection approaches of the engines fail to produce source
assignments that are even close to ideal. By uncovering these issues, we show
that the benchmark provides an important new tool for evaluating the efficiency
and scalability of approaches to query federations of RDF data sources.

The code source of the benchmark, as well as set-up instructions, further
documentation and measurements of our experimental study are available on-
line3.

Furthermore, we provide access to the dataset, queries, and Virtuoso dump
generated for experimentation. .

3 https://github.com/GDD-Nantes/FedShop
4 https://doi.org/10.5281/zenodo . 7919872

https://github.com/GDD-Nantes/FedShop
https://doi.org/10.5281/zenodo.7919872

FedShop 3

In addition to using it for the experimental study presented in this paper,
we contributed a more limited fragment of FedShop (only 12 queries and two
federations) as a use case for a recent hackathon® on query federation. During the
hackathon, developers of query federation engines used this fragment of FedShop
to reveal several implementation issues and weaknesses in their engines.

2 Related Works

The benchmark FedBench [21] is mainly used for testing and analyzing the per-
formance of SPARQL federation engines processing RDF hosted in SPARQL
endpoints. The dataset of FedBench is a collection of 10 datasets from differ-
ent domains: 4 datasets from life-sciences (Kegg, Chebi,...), 6 cross domains
datasets (Dbpedia,Geonames,...), and 14 real queries. To add more datasets
and queries, FedBench proposes a setup FedBench/SP2Bench with a collection
of 16 datasets generated by clustering of the SP2Bench dataset [22] and 11
queries from SP2Bench. To transform SP2Bench into a federated benchmark,
FedBench applied a clustering on the types of the SP2Bench dataset, i.e., each
class of SP2Bench (Person, Article, Inproceedings,...) is assigned to different
SPARQL endpoints, which generates 16 synthetic datasets. The main issue with
this approach is that clustering on classes is limited to 16, and ”the partitions
do not resemble the characteristics of real-world datasets”, as pointed out in [9].

LargeRdfBench[18,11] extends the dataset and workload of FedBench, respec-
tively, to 13 datasets and 40 queries. However, FedBench, FedBench/SP2Bench,
and LargeRdfBench do not allow the evaluation of the behavior of the federated
query engines when the number of federation members increases. It is also pos-
sible to add more federated queries as proposed in QFed [17]. However, having
more federated queries does not address the issue of scalability with the number
of federation members.

To scale on the federation size, Lusail [1], DARQ [16], LHD [24], LILAC [13]
propose partitioning datasets into several datasets. The different techniques for
partitioning a dataset is reported in [14]; it includes horizontal, vertical, and
hybrid partitioning with or without replication. First, as highlighted in [8],
synthetic benchmarks such as BSBM [6], LUBM [10], or SP2Bench [22] can be
highly structured and do not correspond to more realistic data hosted on a public
endpoint. Partitioning/clustering such synthetic data does not solve the problem
of structuredness [8].

In LHD [24], BSBM[6] entities (products, offers, producers,...) have been
hashed on their subjects and distributed over 10 SPARQL endpoints. Such par-
titioning is working but does not correspond to a real use-case. To evaluate
DARQ [16], the LUBM benchmark[10] dataset has been partitioned with LUBM
classes, generating the same issues as FedBench/SP2Bench. In Lusail [1], an
evaluation has been conducted with 256 universities generated using the LUBM
benchmark and distributed over 256 SPARQL endpoints. Interlinks come from

® https://github.com/MaastrichtU-IDS/federatedQueryKG

https://github.com/MaastrichtU-IDS/federatedQueryKG

4 MH. Dang et al.

professors who worked in different universities and students who graduated from
different universities. Given these relations, 3 queries from the LUBM benchmark
can be executed as federated queries (Q2, Q9, and Q13). In this setup, it is pos-
sible to increase the number of sources by adding new universities. Although
this setup is interesting, the LUBM benchmark is designed for evaluating the
reasoning capabilities of SPARQL engines, not with a real-use case in mind as
with the explore use-case of Berlin Benchmark, for example. Consequently, a
few queries make sense in a federated context and are not very challenging for
a federated evaluation. In FedShop, we follow the same approach as Lusail, but
we start from Berlin Benchmark and follow the explore use-case of BSBM.

3 The FedShop Benchmark

The FedShop use-case, inspired by the Berlin Benchmark (BSBM) use-case[6],
involves a customer navigating through a virtual shop that comprises multiple
autonomous shops, each with its own SPARQL endpoint. This exploration is
powered by SPARQL queries executed across the federation, giving the illusion
of one endpoint hosting all the different vendors as in the original BSBM. The
SPARQL queries primarily aim to retrieve products based on certain criteria,
obtain more product information, compare products, find similar products, and
locate product reviews. Customers need to receive real-time feedback when using
the FedShop use-case, which means all queries must processed quickly, within a
few seconds.

The scalability of the benchmark is obtained by incorporating more shops
(or reviewing sites) into the federated shop.

3.1 FedShop Data Generation

The overall schema of RDF data follows the schema described in Figure 1. This
schema is as close as possible to the schema of BSBM. We consider 3 different
components in the schema. The virtual catalog comprises the products and their
features, and it is shared by vendors and reviewing sites.

Each member of the federation (whether a vendor or a rating site) is con-
sidered autonomous and capable of operating independently of other members.
Specifically, all product or review queries must generate results based solely on
the vendor or rating site being queried. To ensure the autonomy of each member,
we adhere to a straightforward guideline: If a shop sells a product, it will have a
local URI for that product, and all related information can be accessed via local
URLs. Essentially, this replicates how producers represent their products in the
vendor domain. We follow the same approach for rating sites.

As entities of type Product, ProductType, Producer, and ProductFeature
are replicated on many sites, all federation members have a sameAs link from
local entities to the global entities of the virtual catalog. To illustrate, suppose
two vendors V1 and V2 are selling the same product P1 named ”tuxphonel4”

FedShop 5

Autonomous Vendors

Virtual Catalog

Fig. 1: The overall schema of BSBM extracted from [6]

product @ ro ucer e

product producer
e @ e http://v1.fr/OCP

”tuxphonel4”

Fig. 2: Virtual catalog and replication of products across vendors

produced by the ”OCP” company. Figure 2 describes the triples hosted by V1
on http://vi.fr and V2 on http://vl.fr. As we can see, products and their
descriptions are replicated with local URLs by each vendor. sameAs links keep
the connection with products of the virtual catalog. Following the FedShop data
generation rules, we are sure that all the subjects of a vendor or a reviewing
site are specific to its web domain, i.e., two different vendors cannot share the
same subjects. We also know that all objects of sameAs predicates are global,
i.e., potentially shared by all endpoints.

Generating a federated shop comprises two steps:

1. First, generate a virtual catalog of products shared by all vendors and rating
sites. This catalog has a fixed size and will not be part of the final data.

http://v1.fr
http://v1.fr

6 MH. Dang et al.

F(10)[F(20)[F(30)[F(40)[F(50)|F(60)[F(70)[F (80)F(90)[F(100)
nquads (M)[5.167 |11.821[17.852(24.335(30.374]37.080|43.827|50.764]56.883[63.079
size GB |0.98 [2.21 [3.35 [4.57 |5.71 |6.97 |8.25 [9.56 [10.71 |11.88

rating site B vendor

12

9,62
10 ERe14) 8,67
825 1773
— a8 [NE:
g 6,63
5,71

2 6 558
3 4,594
] 453
}1] 37
L 4 SO0 363
[a] e 2774

0,982 Siss

0,082 267

F(20) F(40) F(60) F(BO) F{Q100) F(120) F(140) F(160) F(180) F{200)

Federation Configurations

Table 1: Data Volume (#quads and storage) across FedShop sources. The bar
chart breaks down the size of each federation by category.

2. Second, generate vendors and rating sites, each replicating products from
the virtual catalog. The replication process follows a distribution law that
decides how often the same product may appear on different vendors/rating
sites.

To control the distribution laws when creating catalogs, vendors and rating
sites, we rely on schema-based data generators such as WatDiv[4] or gMark[5].
As schema and distribution laws are declared as part of a specification, schema-
generators allows to change the schema and distribution laws easily.

For the catalog, we chose to approximate the original BSBM configuration
with 200,000 products. With this catalog, we generated a first federation of 20
sources F'(20) composed of 10 vendors and 10 rating sites. Next, we generated
F(40) just by adding 10 new vendors and 10 new rating sites; therefore, F'(40)
includes F'(20). We continue this process until we reach F'(200). We described the
overall size of the Federation in Table 1. It should be emphasized that the catalog
itself does not constitute a component of the federation. Since all products are
duplicated across all federation members, maintaining the catalog is unnecessary.

3.2 FedShop Query Generation

We follow the explore use-case of BSBM composed of 12 template queries. The
explore use-case simulates a scenario where a customer is searching for products

FedShop 7

SELECT DISTINCT ?product ?label SELECT DISTINCT ?product ?label

WHERE { WHERE {

?product rdfs : label ?label . ?product rdfs: label ?label .

? o o,

j’prOdUCt a A)ErOdUCtTypeA’ T o o ?product rdf:type ?localProductType .

?product bsbm:productFeature %ProductFeaturel% . ?localProductType owl:sameAs %ProductType% .
?product bsbm:productFeature %ProductFeature2% .

?product bsbm:productPropertyNumericl ?valuel . ?product bsbm:productFeature ?localProductFeaturel .
FILTER (?valuel > %x%) ?localProductFeaturel owl:sameAs %ProductFeaturel% .
ORDER BY ?label ?product bsbm:productFeature ?localProductFeature2 .

?localProductFeature2 owl:sameAs %ProductFeature2% .
?product bsbm:productPropertyNumericl ?valuel .

(a) Q1 BSBM query , FILTER (?valuel > %x%)

ORDER BY ?label
LIMIT 10

LIMIT 10

(b) Q1 FedShop query

Lst. 1: Transformation of the Q1 BSBM template query into the Q1 FedShop
template query

and reviews, e.g., find products for a given set of generic features, retrieve basic
information about a specific product, find products that are similar to a given
product, retrieve in-depth information about a specific product, including offers
and reviews.

Template Federated Queries We transformed the BSBM template queries
to reflect the federated nature of the data in FedShop. For instance, the template
query Q1 of BSBM allows a consumer to search for a product by knowing the
product type and 2 product features. The template query @1 has 4 placeholders:
%ProductType%, %ProductFeaturel%, %ProductFeature2%, %x%, which must
be instantiated to be executed.

Listing 1 describes how we transformed the original Q1 template query of
BSBM (Listing 3a) into the Q1 template query of FedShop (Listing 3b). Since
local entities are linked to global entities, as shown in Section 3.1, we need to
add a new sameAs triple pattern in the Q1 FedShop template query to link local
products to global products. The principle of autonomy enables the execution of
FedShop queries on SPARQL endpoints of any member, thereby returning results
specific to that member. The same queries can also be executed in federation
mode, thus transforming all vendors/rating sites into a virtual federated shop.

We applied this strategy to transform the 12 template queries of BSBM into
12 FedShop template queries.

Instantiate Template Federated Queries To produce executable queries, we
need to replace placeholders in template queries with real values. The objective
is to find combinations of values with various selectivities that return results for
all configurations of FedShop.

8 MH. Dang et al.

query |#tp|#bgp|#join|#union|#var|#nodes|#edges MJVD|#OPT| #regex|#filterR|OB|Distinct |Limit
q01 8 1 7 0 6 9 811,78 0 0 1 1 1 1
q02 16 4 12 0 16 17 16(1,88 3 0 0| 0 0 0
q03 11 2 9 0 9 12 11]1,83 1 0 2| 1 0 1
q04 18 2 16 1 9 13 12|1,85 0 0 20 1 1 1
q05 11 1 10 0 11 12 11(1,83 0 0 5 1 1 1
q06 2 1 1 0 2 3 211,33 0 1 0l 0 0 0
q07 17 5 12 0 15 18 17(1,89 4 0 1 0 0 0
q08 11 5 6 0 11 12 11]1,83 4 0 o 1 0 1
q09 1 1 0 0 1 2 11,00 0 0 0f 0 0 0
ql0 7 1 6 0 6 8 7|1,75 0 0 20 1 1 1
qll 3 3 1 1 4 4 3[1,50 0 0 0l 0 0 0
ql2 10 1 9 0 10 11 10{1,82 0 0 0| 0 0 0

Table 2: Fedshop queries features: #tp: Number of triple patterns, #bgp: Num-
ber of BGP, #join: Number of joins, #union: Number of unions, #var: Number
of variables in a query #nodes: Number of nodes in the graph representation
of the query, #edge: Number of edges in the graph representation of the query,
MJVD: mean join vertices degree, #0OPT: Number of OPTIONAL, #regex: FIL-
TER regexp, #filterR: FILTER relational, OB: order by.

The overall process to instantiate template queries is as follows: (1) rewrite
template queries as generic queries where placeholders are replaced with vari-
ables, (2) execute this queries on the F'(20) configuration, (3) chooses a distinct
combination of values for placeholders randomly among the results of the exe-
cution.

For each of the 12 template queries, we generated 10 instances on the F'(20)
configuration, each with a randomly selected combination of values We adopted
this process for 2 reasons:

1. By instantiating on F(20) we guarantee that the number of results of query
instances can only grow when the number of sources increases, i.e., for con-
figuration > F(20).

2. By randomly selecting 10 combinations of values, we guarantee diversity
w.r.t queries selectivity when the number of sources increases. For instance,
the selectivity of a combination of placeholders can be different for F(20)
and F'(200). Since we do not know when generating F'(20) how the selectivity
will evolve, we randomly choose 10 combinations of placeholders and observe
experimentally how it evolves.

This entire process produces a workload of 120 queries that can run on 10
federations: F'(20) to F'(200). As in FedBench[21], we analyzed the structural
features of our workload in Table 2. In sum, the FedShop queries comprise 1-
18 triple patterns, with UNION, OPTIONAL, and many filters, including Regexp.
Many queries use ORDER BY/LIMIT clauses along with DISTINCT projections.

4 FedShop Reference Source Assignment (RSA)

For each instantiated query, we generated a Reference Source Assignment (RSA)
standard, i.e., an executable SPARQL 1.1 query with service clauses where source

prefix v7: <http://www.vendor7.fr>
SELECT * WHERE { #Q1I12

v7:0ffer858 bsbm:product ?productURI .
?productURI owl:sameAs ?ProductXYZ .
?productURI rdfs: label 7 productlabel
v7:0ffer858 bsbm:vendor ?vendorURI .
?vendorURI rdfs: label ?vendorname .
?vendorURI foaf:homepage ?vendorhomepage .
v7:0ffer858 bsbm:offerWebpage ?offerURL .
v7:0ffer858 bsbm:price ? price

v7:0ffer858 bsbm:deliveryDays ?deliveryDays .

v7:0ffer858 bsbm:validTo ?validTo }
(a) Single Domain Query (Q12)

FedShop 9

prefix v7: <http://www.vendor7.fr>
SELECT DISTINCT x WHERE { #QI12
VALUES ?bgpl { <http://vendorl.fr> <...> }
SERVICE ?bgpl {
<v7/0ffer858> bsbm:product ?productURI .
?productURI owl:sameAs ?ProductXYZ .
?productURI rdfs: label ?productlabel
<v7/0ffer858> bsbm:vendor ?vendorURI .
?vendorURI rdfs: label ?vendorname .
?vendorURI foaf:homepage ?vendorhomepage .
<v7/0ffer858> bsbm:offerWebpage ?offerURL .
<v7/0ffer858> bsbm:price ?price .
<v7/0ffer858> bsbm:deliveryDays ?deliveryDays .
<v7/0ffer858> bsbm:validTo ?validTo }}

(b) Single Domain service query (Q12)

Lst. 2: Single Domain Queries

SELECT DISTINCT ?product ?label

WHERE {

?product rdfs: label ?label .

?product rdf:type ?localProductType .

?localProductType owl:sameAs bsbm:ProductType647 .
?product bsbm:productFeature ?localProductFeaturel .
?localProductFeaturel owl:sameAs bsbm:ProductFeature8774 .
?product bsbm:productFeature ?localProductFeature2 .

?localProductFeature2 owl:sameAs bsbm:ProductFeature16935 .

?product bsbm:productPropertyNumericl ?valuel .
FILTER (?valuel > " 744" ""xsd:integer) }

ORDER BY 7?label

LIMIT 10

(a) Multi Domain Query (Q1)

SELECT DISTINCT ?product ?label WHERE {

VALUES (?bgpl) { <http://www.vendorl.fr/> <..> }
SERVICE ?bgpl {

?product rdfs: label ?label .

?product rdf:type ?localProductType .

?localProductType owl:sameAs bsbm:ProductType647 .
?product bsbm:productFeature ?localProductFeaturel .
?localProductFeaturel owl:sameAs bsbm:ProductFeature8774 .
?product bsbm:productFeature ?localProductFeature2 .
?localProductFeature2 owl:sameAs bsbm:ProductFeature16935 .
?product bsbm:productPropertyNumericl ?valuel .

FILTER (?valuel > "744"""xsd:integer) }}

ORDER BY ?product ?label

LIMIT 10

(b) Multi Domain service query (Q1)

Lst. 3: Multi-Domain Queries: Q1

assignment has been precomputed [7]. Producing RSA queries follow two im-
portant objectives: 1) Verifying that all FedShop queries can be executed with
reasonable execution time, so the use-case of exploring a federated shop is re-
alizable, and 2) observing the gap of performances of existing federated query

engines.

To produce the Reference Source Assignment, we proceed in two steps:

(i) We perform query decomposition queries manually into SPARQL 1.1 sub-
queries with SERVICE clauses [2] and exhaustive source assignment, i.e.,
each subquery is initially assigned to all federation members. We perform
query decomposition by analyzing the join variables of queries, i.e., vari-
ables used by at least 2 triple patterns. Because of the FedShop data gener-
ation rules described in Section 3.1, we know that join variables on subjects
can only be resolved on one endpoint. This corresponds to the notion of
local join variables in [1]. We also know that join variables that need to
be resolved between two endpoints can only appear as objects of sameAs

10 MH. Dang et al.

SELECT DISTINCT ?product ?localProductLabel SELECT DISTINCT ?product ?localProductLabel WHERE {
WHERE { VALUES (7bgpl ?bgp2) {
?localProduct rdfs: label ?localProductlLabel . (<http://www.vendorl.fr/> <http://www.vendorl.fr/>)
?localProduct bsbm:productFeature ?localProdFeature . (<http://www.vendorl.fr/> <http://www.vendor2.fr/>)
?localProduct bsbm:productPropertyNumericl ?simPropertyl . #..)}
?localProduct bsbm:productPropertyNumeric2 ?simProperty2 . SERVICE ?bgpl {
?localProduct owl:sameAs ?product . ?localProductXYZ owl:sameAs bsbm:Product136030 .
?localProdFeature owl:sameAs ?prodFeature . ?localProductXYZ bsbm:productFeature ?localProdFeatureXYZ .
?localProductXYZ bsbm:productFeature ?localProdFeatureXYZ . ?localProdFeatureXYZ owl:sameAs ?prodFeature .
?localProductXYZ bsbm:productPropertyNumericl ?origPropertyl . ?localProductXYZ bsbm:productPropertyNumericl ?origPropertyl .
?localProductXYZ bsbm:productPropertyNumeric2 ?origProperty2 . ?localProductXYZ bsbm:productPropertyNumeric2 ?origProperty2} .
?localProductXYZ owl:sameAs bsbm:Product136030 . SERVICE 7bgp2 {
?localProdFeatureXYZ owl:sameAs ?prodFeature . ?localProduct owl:sameAs 7product .

FILTER (bsbm:Product136030 != ?product) FILTER (bsbm:Product136030 != ?product)

FILTER (?simPropertyl < (?origPropertyl + 20) && ?localProduct rdfs : label ?localProductLabel

?simPropertyl > (?origPropertyl — 20)) ?localProduct bsbm:productFeature ?localProdFeature

FILTER (?simProperty2 < (?origProperty2 + 70) && ?localProdFeature owl:sameAs ?prodFeatur_e S

?simProperty2 > (?origProperty2 — 70))} ?localProduct bsbm:producthopertyNumer!cl ?s!mPropevtyl .
ORDER BY ?localProductLabel ?localProduct bsbm:productPropertyNumeric2 ?simProperty2} .

FILTER(?simPropertyl < (?origPropertyl + 20) &&
?simPropertyl > (?origPropertyl — 20))
o : FILTER(?simProperty2 < (?origProperty2 + 70) &&
(a) CI‘OSS Domain Query (Q5) ?simProperty2 > (?origProperty2 — 70))}
ORDER BY ?product ?localProductLabel
LIMIT 5

LIMIT 5

(b) Cross-Domain service query (Q5)

Lst. 4: Cross-Domain Queries: Q5

predicates or as an attribute. This corresponds to the concept of global join
variables in [1]. As there is no query with join variables on attributes, global
join variables can only appear as objects of sameAs predicates. Through
the analysis of the join variables, we can find an efficient decomposition of
template queries.

(ii) We compute the minimal source selection over decomposed queries with a
simple query rewriting and an evaluation over the union of all data.

By analyzing the join variables of the 12 template queries, we observed three
kinds of decomposition:

Single-domain decomposition is applied to queries with no global join vari-
ables and where a subject of a triple pattern is bound as the query Q12 pre-
sented in Listing 3a (the bounded subject is v7:0ffer858). For these queries,
all triple patterns can be grouped into one service clause, and only one end-
point should return results. Consequently, such a query can be rewritten
with only one service clause, as presented in Listing 3b. With no further
information, all endpoints have to be considered to find the one that con-
tains results. Queries Q9, Q11, and Q12 belong to the single domain class of
decomposition.

Multi-domain decomposition is applied to queries with no global join vari-
ables and no bounded subject in triple patterns as the query Q1 in Listing 3a.
For these queries, all the triple patterns can be grouped into one service
clause, but multiple endpoints may return results. Listing 3b describes the
decomposition of query Q1. With no additional information, all endpoints
have to be considered to find those that return results. Queries Q1, Q2, Q3,
Q4, Q6, Q8, and Q10 belong to the multi-domain class of decomposition.

SELECT DISTINCT ?product ?localProductLabel WHERE {
VALUES (7bgpl 7bgp2) {

(<http://www.vendorl.fr/> <http://www.vendorl.fr/>)
(<http://www.vendorl.fr/> <http://www.vendor2.fr/>)

...)}
SERVICE 7bgpl {

?localProductXYZ owl:sameAs bsbm:Product136030 .
?localProductXYZ bsbm:productFeature ?localProdFeatureXYZ .
?localProdFeatureXYZ owl:sameAs ?prodFeature .

?localProductXYZ bsbm:productPropertyNumericl ?origPropertyl .
?localProductXYZ bsbm:productPropertyNumeric2 ?origProperty2} .

SERVICE ?bgp2 {
?localProduct owl:sameAs ?product .
FILTER (bsbm:Product136030 != ?product)
?localProduct rdfs: label ?localProductLabel
?localProduct bsbm:productFeature ?localProdFeature
?localProdFeature owl:sameAs ?prodFeature .
?localProduct bsbm:productPropertyNumericl ?simPropertyl .
?localProduct bsbm:productPropertyNumeric2 ?simProperty2} .
FILTER(?simPropertyl < (?origPropertyl + 20) &&
?simPropertyl > (?origPropertyl — 20))
FILTER(?simProperty2 < (?origProperty2 + 70) &&
?simProperty2 > (?origProperty2 — 70))}
ORDER BY ?product ?localProductLabel
LIMIT 5

(a) Cross-Domain service query Q5

FedShop 11

SELECT DISTINCT ?bgpl ?bgp2 WHERE {
graph 7bgpl {
?localProductXYZ owl:sameAs bsbm:Product136030 .
?localProductXYZ bsbm:productFeature ?localProdFeatureXYZ .
?localProdFeatureXYZ owl:sameAs ?prodFeature .
?localProductXYZ bsbm:productPropertyNumericl ?origPropertyl .
?localProductXYZ bsbm:productPropertyNumeric2 ?origProperty2} .
graph 7bgp2 {
?localProduct owl:sameAs ?product .
FILTER (bsbm:Product136030 != ?product)
?localProduct rdfs : label ?localProductLabel
?localProduct bsbm:productFeature ?localProdFeature
?localProdFeature owl:sameAs ?prodFeature .
?localProduct bsbm:productPropertyNumericl ?simPropertyl .
?localProduct bsbm:productPropertyNumeric2 ?simProperty2} .
FILTER(?simPropertyl < (?origPropertyl + 20) &&
?simPropertyl > (?origPropertyl — 20))
FILTER(?simProperty2 < (?origProperty2 + 70) &&
?simProperty2 > (?origProperty2 — 70))}
ORDER BY ?product ?localProductLabel
LIMIT 5

(b) Provenance query for Q5pron

Lst. 5: Source selection for an instance of Q5

Cross-domain decomposition is applied to queries with global join variables
as the query Q5 described in Listing 3a. Q5 has 2 global join variables:
?product and ?productFeature. Following the decomposition algorithm of
[1], we generate two exclusive groups one related to ?localProductXYZ and
the second is related to ?7localProduct. For this decomposition, we generate
2 service clauses as described in Listing 3b. A filter push-down allows to push
one filter into a service clause. In this decomposition, we consider that all
combinations of pairs of endpoints should be contacted, i.e., all pairs of
sources should be declared in the VALUES clause of the service query. Queries
Q5 and Q7 belong to the cross-domain class of decomposition.

Until now, the query decomposition and source selection produce an ex-
haustive source assignment, i.e., all combinations of endpoints are considered.
For computing minimal source assignment [7], we rewrite service queries into
provenance queries by simply replacing SERVICE clauses with GRAPH clauses and
changing the projection of the query as illustrated in Figure 5 for the query Q5.
The execution of the query 5,0, over the union of RDF data of all federation
members returns the pairs of endpoints that effectively contribute to the results
of query Q5. The results of provenance queries are used to update the VALUES
clauses of RSA queries.

To validate our query decomposition and source selection, we verified that all
RSA queries return correct and complete results, i.e., we obtain the same results
as original queries evaluated over the union of all datasets. We also verified that
RSA queries could be executed under 2 secs for all configurations of FedShop
(see Section 5).

12 MH. Dang et al.

5 Experimental Study

The experimental study aims to answer the following questions: (1) What is
the performance of the Reference Source Assignment (RSA) defined in Section 47
Is it possible to run a federated shop of 200 shops with federated queries? (2) How
do the performances of existing federated query engines as the federation size
increases? What is the gap with the RSA 7

Generating Data and queries We used the FedShop data generator to gen-
erate a catalog of 200 000 products following the schema of Figure 1. Next, we
generated 10 federations: F(20) to F(200), where each federation is composed of
half of the vendors and half of the reviewing sites, i.e., F(200) is a federation
of 100 vendors and 100 review sites. All instructions to install, configure, and
run the FedShop benchmark are available on the FedShop GitHub repository. We
used the FedShop query generator to instantiate a workload of 120 queries, where
each template query is randomly instantiated 10 times. The 120 queries are to
be executed on each of the 10 federations: F(20) to F(200). Detailed statistics
on the generated data are available in the Jupyter Notebook of the repository.

Setting up federations Setting up a federation of 200 endpoints raises se-
rious questions about the tractability of the experiment. Starting one physical
endpoint per vendor /reviewing as proposed in KOBE [12] is not realistic if one
considers large federations. We take another approach based on Virtual End-
points as proposed in Virtuoso. All endpoints are represented as Virtual End-
points hosted in one Virtuoso server. Each endpoint is connected to a named
RDF graph corresponding to one vendor or one reviewing site . The monitored
federated query engine is not aware that all endpoints are virtual. The number
of threads of the Virtuoso server is 20, and those of the federated query engines
are 20; they are defined so that all subqueries of a federated query engine are
executed in parallel on the Virtuoso server. Each query in the workload has to
be executed sequentially to get the correct measurement of execution times.

To run the FedShop benchmark, we developed the FedShop runner that au-
tomatically deploys the federations, runs the queries among the different con-
figurations, and monitors the federated query engines under evaluation. All the
instructions to run the benchmark and add a new federated query engine are
available on the FedShop GitHub repository.

Fuvaluated engines To validate the benchmark’s ability to analyze different
engines and to reveal a new class of insights about these engines, we run the 10
configurations of FedShop on engines assessed in CostFed [20], namely: FedX [23],
CostFed [20], ANAPSID [3] and SPLENDID [9]. Lusail[l] is not part of the
evaluation because no implementation is available. We run the RSA queries with
Apache Jena. All evaluated engines were integrated into the FedShop runner to

5 The Virtuoso database used at generation time is reused for execution.

FedShop 13

ensure the reproducibility of results. We relaunch the federated query engine
each time we run a query, i.e., federated query caches are not kept between the
processing of 2 different queries.

Metrics In our experiment, we mainly measure the evolution of 3 metrics when
the number of sources increases: (1) The FEzecution Time is the total time spent
by the federated query engine to produce the query results. Each query is exe-
cuted 4 times, and the reported execution time is the average of the 4 execution
time. (2) The number of queries that timeout. (3) The number of queries that
terminate with errors.

We set the time out to 60 secs per federated query. As the FedShop use-
case corresponds to an interactive exploration of shops and reviews, we consider
that a user does not wait for more than 60 secs for the results of any queries of
FedShop. In the worst case, testing a federated engine requires 4800*60s = 80h,
3 days.

Since the number of sources increases, if a query timeout for a federation
F(i—1), it should also timeout for federation F'(7). To save experiment time, we
execute a query in F'(7) only if it did not timeout in F(i — 1) and if there is no
timeout in other attempts in F'(i).

A query engine may also produce errors when executing a query. These errors
can be caused by unsupported query features or simple runtime exceptions as
out-of-memory. In case of an error, we report the error, but when computing
average execution times, we attribute the timeout value to the query execution
time. This means that having errors when computing the average execution time
degrades the average execution time.

5.1 Experimental Results

The overall results of the experimentation are displayed in Figure 3. More de-
tailed results per query and per engine are available in the Jupyter Notebook of
the FedShop repository.

To improve the readability of the evaluation, we split the results according
to the different classes of query decomposition detailed in Section 4, i.e., Single-
Domain (SD) with 3 template queries and 30 instantiated queries, Multi-Domain
(MD) with 7 template queries and 70 instantiated queries and Cross-Domain
(CD) with 2 template queries and 20 instantiated queries.

For each class (CD/MD/SD), we computed the evolution of 3 metrics on the
Y-axis as the size of the federation increases on the X-axis:

exec_time is the average execution time per query per class. The maximum
value is 60 secs as the timeout is set to 60 secs.

error is the number of queries that finish with errors in the class. As there are
4 measurements per query, the maximum value for errors is respectively:
20x4=80 for the CD class, 70x4=280 for the MD class, and 30x4=120 for
the SD class.

14 MH. Dang et al.

SPARQL Federated Engines

o fedx w costfed A splendid v anapsid & rsa
metric = tpwss metric = status_timeout metric = exec_time metric = status_error_runtime
Lof A 60000 4 2
1500 0.8 50000 0.6 ®
40000 <
£ 1000 067 0.4 'a
s 04l 30000 - >
. | @
500 | 20000 0.2 I
0.2 10000 o
o
o 0.019—0—0—4—44-% ¢ 018000 0o 00 ¢ L= = = =SS i
14004 1.0 60000 0.25
a
1000] 745_/ s00001 ¥ 0201 g
400004 <
2 8004 0.6 0.15 'n
T 600 0.4 300007 0.10 é
’ 20000 4 v
400 I
2001 0.2 10000 4 0.05 z
o 00100000000 Ole—e 0 oo ¢ ¢ 09 0001044909022
0357 40000 071
4 4 a
200 0.30 0.6 2
0.25 300001 0.5
150 4 2
] 0.20 0.4 D
=4 J 200004 | bttt o
S 100 0.15 03 &
04 0104 10000 02 I
0.05 0.1 ©u
o]
o 000199999 99409 oL rerree ey 001920099949
OSSO S OSSO OSSO OSSO S
VREELPPELS VEEESPLESS VREESPPELS VEEESILESS
federation size federation size federation size federation size

Fig. 3: Evolution of engine performance per query class. Each line of the plot
corresponds to a class of queries from top to bottom: Cross-Domain (CD), Multi-
Domain (MD), and Single Domain (SD). Columns correspond to evaluation met-
rics

timeout is the number of queries that time out in the class. The maximum
value per class is the same as for the error metric.

Since the size of the federation increases, source selection, execution times,
and timeout should monotonically increase. The number of errors is not pre-
dictable.

We focus first on the execution time plot. We first see that RSA can execute
all queries in less than 1 secs on average with no errors. If we look at the detailed
results in the Jupyter Notebook, the longest query of the RSA takes less than
2 secs. This demonstrates that an adequate query decomposition and source
selection can support interactive querying of a federation of 200 shops by a
customer.

Regarding the execution time of evaluated federated engines, we first observe
that none can support interactive exploration of a federation of 200 shops. Indeed,
the best average execution time for Multi-domain queries is obtained by CostFed
with more than 30 secs. It goes up to 40 secs for cross-domain queries. Only Single
Domain queries are correctly processed by CostFed and FedX with performances
similar to RSA queries. The execution times of Anapsid and Splendid increase
quickly to reach the maximum average time of 60 secs, i.e., all queries timeout.

We observe similar behavior on the timeout curves. No engine can terminate
the workload without a timeout. FedX and CostFed process the SD queries
correctly, but the number of timeouts grows quickly for MD and CD queries.

FedShop 15

Other engines have a high number of timeouts for the first configuration of
FedShop.

Regarding the errors, as federated query engines are exposed for the first
time to many endpoints with quite complex queries, they reveal some bugs in
implementations. However, most errors come from out-of-memory errors. When
federated queries are not properly decomposed, they generate significant data
shipping from endpoints to federated query engines, and memory is quickly ex-
hausted. We observe that the number of errors is decreasing for some engines.
The explanation is that the query timeouts before producing an error when the
federation size increases.

Overall, we observe a significant performance gap between RSA and feder-
ated engines. Current federated engines fail to find the query decomposition of
RSA. If triple patterns are not properly grouped, the number of subqueries sent
to endpoints is high as the number of intermediate results transferred from end-
points to federated query engines. This seriously degrades performances. With
RSA, the number of subqueries sent to endpoints is low as the number of inter-
mediate results. This is the key to the high performance of RSA.

6 Concluding Remarks

FedShop is the first benchmark designed for studying the scalability of query
federation engines. It is based on a well-known use-case of the semantic web
community that makes sense in a federated context. The FedShop generator
is highly configurable and generates a Reference Source Assignment standard
(RSA) that can be used as an independent baseline. The FedShop runner allows
running the experiment with reasonable resources in a reasonable time. It can be
easily extended to integrate new federated query engines, as well as new use-cases
(data and queries). We provided a smaller portion of FedShop (comprising only
12 queries and two federations) as a practical example of a recent query federa-
tion hackathon”. During the hackathon, the query federation engine developers
utilized this FedShop fragment to identify various implementation problems and
shortcomings in their engines®. In this paper, we presented a larger experiment
highlighting the scalability issues for federated query engines and introduced the
Reference Source Assignments (RSA). The RSA reveals ample opportunities for
improvement in federated query engines.

As future work, considering its flexibility, FedShop can be improved in many
different ways. Data generation can be customized to introduce diversity in shops
where shops can have more products than others or shops are specialized in one
category of product. We can also customize distribution laws per shop to control
the structuredness of generated data [8]. It is also possible to introduce some
noise during catalog replication to check semantic heterogeneity. For this paper,
we keep BSBM queries and adapt them to the federated context. Adding new

" https://github.com/MaastrichtU-IDS/federatedQueryKG
8 https://github.com/MaastrichtU-IDS/federatedQueryKG/blob/main/
UneditedReport.pdf

https://github.com/MaastrichtU-IDS/federatedQueryKG
https://github.com/MaastrichtU-IDS/federatedQueryKG/blob/main/UneditedReport.pdf
https://github.com/MaastrichtU-IDS/federatedQueryKG/blob/main/UneditedReport.pdf

16 MH. Dang et al.

queries to have a more diversified query workload is possible. The last perspective
of FedShop is beyond the benchmark. Current federation engines mainly targeted
data integration use-case. A larger perspective for FedShop is to investigate how
federation engines can be used to power federated applications.

Acknowledgments This work is supported by the French ANR project DeKa-
loG (Decentralized Knowledge Graphs), ANR-19-CE23-0014, CE23 - Intelligence
artificielle, the French CominLabs project MikroLog (The Microdata Knowledge
Graph), and by Vetenskapsradet (the Swedish Research Council, project reg. no.
2019-05655)

References

1. Ibrahim Abdelaziz, Essam Mansour, Mourad Ouzzani, Ashraf Aboulnaga, and
Panos Kalnis. Lusail: A system for querying linked data at scale. Proc. VLDB
Endow., 11(4):485-498, 2017.

2. Maribel Acosta, Olaf Hartig, and Juan F. Sequeda. Federated RDF Query Pro-
cessing. In Sherif Sakr and Albert Y. Zomaya, editors, Encyclopedia of Big Data
Technologies. Springer, 2019.

3. Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruck-
haus. ANAPSID: an adaptive query processing engine for SPARQL endpoints. In
Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana
Kagal, Natasha Fridman Noy, and Eva Blomgqvist, editors, The Semantic Web -
ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany, Oc-
tober 23-27, 2011, Proceedings, Part I, volume 7031 of Lecture Notes in Computer
Science, pages 18-34. Springer, 2011.

4. Giines Alug, Olaf Hartig, M. Tamer Ozsu, and Khuzaima Daudjee. Diversified
stress testing of RDF data management systems. In Peter Mika, Tania Tudo-
rache, Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny Vrandecic,
Paul Groth, Natasha F. Noy, Krzysztof Janowicz, and Carole A. Goble, editors,
The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I, volume 8796 of
Lecture Notes in Computer Science, pages 197-212. Springer, 2014.

5. Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien
Lemay, and Nicky Advokaat. gmark: Schema-driven generation of graphs and
queries. In 33rd IEEFE International Conference on Data Engineering, ICDE 2017,
San Diego, CA, USA, April 19-22, 2017, pages 63—64. IEEE Computer Society,
2017.

6. Christian Bizer and Andreas Schultz. The berlin SPARQL benchmark. Int. J.
Semantic Web Inf. Syst., 5(2):1-24, 2009.

7. Sijin Cheng and Olaf Hartig. Fedqpl: A language for logical query plans over
heterogeneous federations of RDF data sources. In Maria Indrawan-Santiago, Eric
Pardede, Ivan Luiz Salvadori, Matthias Steinbauer, Ismail Khalil, and Gabriele
Kotsis, editors, iiWAS ’20: The 22nd International Conference on Information
Integration and Web-based Applications € Services, Virtual Event / Chiang Mai,
Thailand, November 30 - December 2, 2020, pages 436-445. ACM, 2020.

8. Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea.
Apples and oranges: a comparison of RDF benchmarks and real RDF datasets. In

10.

11.

12.

13.

14.

15.

16.

17.

FedShop 17

Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis Vele-
grakis, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages
145-156. ACM, 2011.

Olaf Gorlitz and Steffen Staab. SPLENDID: SPARQL endpoint federation exploit-
ing VOID descriptions. In Olaf Hartig, Andreas Harth, and Juan F. Sequeda, edi-
tors, Proceedings of the Second International Workshop on Consuming Linked Data
(COLD2011), Bonn, Germany, October 23, 2011, volume 782 of CEUR Workshop
Proceedings. CEUR-WS.org, 2011.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. J. Web Semant., 3(2-3):158-182, 2005.

Ali Hasnain, Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, and Dietrich
Rebholz-Schuhmann. Extending largerdfbench for multi-source data at scale for
SPARQL endpoint federation. In Elena Demidova, Amrapali Zaveri, and Elena
Simperl, editors, Emerging Topics in Semantic Technologies - ISWC 2018 Satel-
lite Events [best papers from 13 of the workshops co-located with the ISWC 2018
conference], volume 36 of Studies on the Semantic Web, pages 203—-218. 10S Press,
2018.

Charalampos Kostopoulos, Giannis Mouchakis, Antonis Troumpoukis, Nefeli
Prokopaki-Kostopoulou, Angelos Charalambidis, and Stasinos Konstantopoulos.
KOBE: cloud-native open benchmarking engine for federated query processors. In
Ruben Verborgh, Katja Hose, Heiko Paulheim, Pierre-Antoine Champin, Maria
Maleshkova, Oscar Corcho, Petar Ristoski, and Mehwish Alam, editors, The Se-
mantic Web - 18th International Conference, ESWC 2021, Virtual Event, June 6-
10, 2021, Proceedings, volume 12731 of Lecture Notes in Computer Science, pages
664-679. Springer, 2021.

Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. De-
composing federated queries in presence of replicated fragments. J. Web Semant.,
42:1-18, 2017.

Gabriela Montoya, Maria-Esther Vidal, Oscar Corcho, Edna Ruckhaus, and Car-
los Buil Aranda. Benchmarking federated SPARQL query engines: Are existing
testbeds enough? In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudo-
rache, Jérome Euzenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler,
Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, The Semantic
Web - ISWC 2012 - 11th International Semantic Web Conference, Boston, MA,
USA, November 11-15, 2012, Proceedings, Part II, volume 7650 of Lecture Notes
in Computer Science, pages 313—-324. Springer, 2012.

Damla Oguz, Belgin Ergenc, Shaoyi Yin, Oguz Dikenelli, and Abdelkader
Hameurlain. Federated Query Processing on Linked Data: A Qualitative Survey
and Open Challenges. Knowl. Eng. Rev., 30(5):545-563, 2015.

Bastian Quilitz and Ulf Leser. Querying distributed rdf data sources with sparql.
In Sean Bechhofer, Manfred Hauswirth, Jorg Hoffmann, and Manolis Koubarakis,
editors, The Semantic Web: Research and Applications, pages 524-538, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

Nur Aini Rakhmawati, Muhammad Saleem, Sarasi Lalithsena, and Stefan Decker.
Qfed: Query set for federated SPARQL query benchmark. In Maria Indrawan-
Santiago, Matthias Steinbauer, Hong-Quang Nguyen, A Min Tjoa, Ismail Khalil,
and Gabriele Anderst-Kotsis, editors, Proceedings of the 16th International Con-
ference on Information Integration and Web-based Applications € Services, Hanoi,
Vietnam, December 4-6, 201/, pages 207-211. ACM, 2014.

18

18.

19.

20.

21.

22.

23.

24.

MH. Dang et al.

Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. Largerdfbench:
A billion triples benchmark for SPARQL endpoint federation. J. Web Semant.,
48:85-125, 2018.

Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-
Cyrille Ngonga Ngomo. A Fine-Grained Evaluation of SPARQL Endpoint Fed-
eration Systems. Semantic Web, 7(5):493-518, 2016.

Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-
Cyrille Ngonga Ngomo. Costfed: Cost-based query optimization for sparql endpoint
federation. In 14th International Conference on Semantic Systems (SEMANTICS),
pages 163-174. Elsevier, 2018.

Michael Schmidt, Olaf Gorlitz, Peter Haase, Giinter Ladwig, Andreas Schwarte,
and Thanh Tran. Fedbench: A benchmark suite for federated semantic data query
processing. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham
Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist, editors, The
Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn,
Germany, October 23-27, 2011, Proceedings, Part I, volume 7031 of Lecture Notes
in Computer Science, pages 585-600. Springer, 2011.

Michael Schmidt, Thomas Hornung, Michael Meier, Christoph Pinkel, and Georg
Lausen. Sp2bench: A SPARQL performance benchmark. In Roberto De Virgilio,
Fausto Giunchiglia, and Letizia Tanca, editors, Semantic Web Information Man-
agement - A Model-Based Perspective, pages 371-393. Springer, 2009.

Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
Fedx: Optimization techniques for federated query processing on linked data. In
International Semantic Web Conference (ISWC). Springer, 2011.

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis. LHD: optimising linked
data query processing using parallelisation. In Christian Bizer, Tom Heath, Tim
Berners-Lee, Michael Hausenblas, and Séren Auer, editors, Proceedings of the
WWW2013 Workshop on Linked Data on the Web, Rio de Janeiro, Brazil, 14
May, 2018, volume 996 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

	FedShop: A Benchmark for Testing the Scalability of SPARQL Federation Engines
	Introduction
	Related Works
	The FedShop Benchmark
	FedShop Data Generation
	FedShop Query Generation

	 FedShop Reference Source Assignment (RSA)
	Experimental Study
	Experimental Results

	Concluding Remarks

