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I. Introduction

It is well known that the description of the main bulk of hadronic reactions which involve limited transverse momenta (soft processes) is the major challenge to Quantum Chromo Dynamics (QCD) which has been successful in the description of processes involving large transverse momenta (hard processes). The difficulty lies on the fact that when transverse momenta are limited, reaction times and distances can be large, and the running coupling constant becomes large, which prevents to apply perturbative QCD. This difficulty is indeed related to the yet unsolved problem of confinement.

Besides its obvious theoretical interest, the question of the relevance of QCD to account for soft 1 Now at 7A Aharoni Street, Rehovot, Israel hadronic processes, has been raised, on a practical ground, by several recent experimental observations. In fact, various experiments show striking similarities between final state distributions in lepton-hadton processes and in soft multiparticle production [START_REF]Warsaw collaboration: Comparison of hadron production in K P interactions with quark jet behaviour in lepton interactions[END_REF]. The similarities are so important that one cannot escape the following alternative: either the contamination of long distance interactions is overwhelming, and at the highest available value of Q2 one is still observing the effects of these interactions, or there exists a simple description of soft processes, in terms of partons and QCD which has not yet been exhibited.

The purpose of the present paper is to derive such a QCD inspired patton interpretation of soft processes. Our theoretical framework is the correspondence between QCD and Dual Topological Unitarization (DTU), developped in [START_REF] Cohen-Tannoudji | [END_REF] to [6]. In this correspondence approach, the quarks of the duality diagrams which describe the topological expansion of hadronic amplitude in DTU, are interpreted in inclusive processes in terms of a genuine parton model, the DTU patton model. This approach relies on the expression of confinement in terms of the equivalence of two bases to account for unitarity: the parton basis on one hand, which is suited for the description of hard processes by means of perturbative QCD, and the hadron basis, on the other hand, which is suited for the description of soft processes by means of DTU. This definition of confinement, which does not imply any new assumption with respect to the ones which are usually done, is indeed very well suited for our purpose: if one is able to "change the basis", that is to go from the standard basis suited for the description of soft processes, the hadron basis, to the equivalent patton basis, then one is able to describe soft reactions in terms of QCD. 0170-9739/82/0014/0007/$02.80 In Table 1 we sketch the three stages of the line of arguments which allow to perform such a change of basis.

The first stage is described in Sect. II. After a reminder about DTU and the hadron basis, which allows to specify the notations and graphical conventions, we review the parton interpretation of the lowest topologies in DTU. We first recall the results already obtained in [START_REF] Cohen-Tannoudji | [END_REF] to [6] on the association of quark with the zero handle topology. We then show that gluons are associated with the one handle topology. Using s-channel factorization, the DTU parton model which satisfies Feynman's [7] scaling in soft inclusive processes, is extended to the description of hard processes for which it accounts for Bjorken scaling [8]. We show that quark and gluon densities of the DTU parton model extended to hard processes, can be interpreted as the densities of partons of the first generation, or primordial partons which are needed for a complete description of hard processes.

The second stage, which is described in Sect. III, is the description of hard processes in the hadron basis. Having identified the primordial parton densities as corresponding to the lowest topologies in DTU, we are led to identify cascading of hard gluons with the sum of all higher topologies in the topological expansion. We then examine the theoretical implications of this identification. We show how the renormalization group equations in QCD allow to resum the topological expansion in DTU.

Section IV is devoted to the third stage, the one which leads us back to the discussion of soft processes. We first review the basic tools and issues of the dual Pomeron calculus (which is the Reggeon calculus implied by the resummation of the topological expansion of DTU). We then show the rearrangement of the topological expansion of DTU which leads to a topological characterization of quark and gluon jets in the hadron basis. Taking advantage of the identification of the previous stage we parton interpret the effects of multi Pomeron cuts in high energy soft hadronic reactions. We get this way a QCD interpretation of the reggeon vertices which practically explains the similarities experimentally observed between final state distributions in hard and soft processes. As a consequence we predict gluon effects which can occur in low Pr hadronic reactions.

II. Primordial Quarks and Gluons in the Hadron Basis

DTU is a dynamical scheme [9] which, as defined in Fig. 1, allows to implement unitarity in the dual hadronic S-matrix, by means of an iterative procedure, each term being computed as the shadow scattering of the preceding one (see Fig. la). Duality properties are taken into account on one hand by initiating the iteration from the amplitudes of a narrow resonance dual model [10] (see Fig. lb), and on the other hand by keeping at each step of the unitarization the order of particles in the intermediate multiparticle states. One calls "ordered Hilbert space" [9], (OHS), the set of multi-hadron states defined by the order of the hadrons in the sense of duality diagrams. If one restricts unitarity to the OHS one gets what is called "planar unitarity". Full unitarity is restored by DTU by means of a topological expansion. Figure l c shows how one gets from the first iteration the planar reggeon and the cylindrical pomeron. Figure 2a shows how breaking the order in multi-hadron intermediate states (interference effect) leads to a higher topology, involving a handle and 1/N~ suppression" with respect to a planar diagram with three closed quark loops, diagram of Fig. 2 is suppressed by a factor 1/N~-(Nf is the number of quark flavors) since it contains only one closed loop of quark. Figure 2b shows how one can generate a handle from higher iteration in DTU.

The net result of DTU is a topological expansion of hadronic amplitudes in infinite series of topological components characterized by the number of boundaries (quark loops to which external hadrons are attached) and the number of handles of the A~({pi})=(g). 

equation ( 1) is actually an expansion in power of l/N/.

The efficiency of DTU relies on the fact that all non linear unitarity constrains are only concentrated in the simplest topology, the planar one (it is obvious from Fig. 1 that the planar topology is stable in planar unitarity). These non-linear constraints allow, through, the so called "planar bootstrap", to sum over all internal quark loops and to determine the driving term of the iteration, the planar reggeon, from which one determines, through linear equations all the components of higher topologies.

The other property of DTU which makes it efficient is that, once the planar reggeon is constrained by planar bootstrap, the next simplest topology, the cylinder (b =2, h= 0 in n = 4 amplitude) is an excellent candidate to represent the pomeron contribution: indeed, in all calculations based on DTU [11], it comes out as corresponding to a Regge trajectory carrying vacuum quantum numbers and with an intercept equal or close to one. From this interpretation of the cylinder as a "bare" pomeron, the summation of the topological expansion, that is the summation of all multi-pomeron interactions, can be formulated as a Reggeon calculus [12] which will be referred to as the dual pomeron calculus.

The DTU Parton Model a) Review of Quarks

In soft reactions it is known that the topological expansion of (1) generally converges very rapidly: besides a suppression by a factor 1/N/ each extra handle induces a dynamical suppression [9]: the higher the topology, the more complex and the weaker the associated singularities. Actually this argument is not always true: there are situations in which the convergence of the topological expansion is destroyed and in which one must use resummation techniques. We shall come back to this point later on.

Any how, the zero handle approximation satisfies Feynman's scaling and all the required properties of the naive quark parton model. i) Short Range Order. The absence of long range correlations follows from the Regge cut-off on transverse momenta, and from the fact that all Regge trajectories exchanged in multi Regge chains have an intercept smaller than one.

ii) s-Channel Factorization, which leads to the factorization of the parton model: inclusive cross sections are factorized (in the convolution sense) into a cross section of a process involving partons by some parton densities obeying scaling.

iii) Energy Momentum Conservation Sum Rules for inclusive processes, which are consequences of confinement or complete hadronization of partons.

Properties ii) and iii) follow from planar unitarity.

The parton interpretation of total cross sections and one particle inclusive cross sections at the zero handle approximation leads to the DTU parton model [3] which is summarized in Tables 2, 3 and4.

The following comments about Table 2 are in order.

i) The parton interpretation of topological components of total cross sections depicted in Table 2 is a realization of the wee parton exchange model proposed by Feynman [7]. Since the exchanged partons are wee, the produced partons carry all the momentum of the hadron from which they are produced. So in process II1, Pa =PA; Pb=P~, (3) in process II2, pa+pa,=pA; pb+Pb,=Pu.

(4)

ii) The fact that the cylindrical pomeron carries vacuum quantum number and that it has intercept one, justifies the parton interpretation of process II 2 in terms of wee gluon exchange.

iii) The only process which is non vanishing at high energy is process II 2. The interest of considering processes II 1 is to show that there are topological components of one-particle inclusive cross sections which can be expressed in terms of quark densities. This is done in Table 3 for fragmentation functions and in Table 4 for structure functions.

II2-Cytindricd Pomeron exchange

The behaviour of quark densities near x=0 and x=l can be derived respectively from the double Regge and triple Regge limits of the corresponding inclusive processes. One gets the following behaviours.

From process IIIx, we obtain for the non singlet quark fragmentation function:

{ ~ exotic* NS x~O ~q~Hqh(X) (1 --X) O:w~--2~wh" ( 5 
)
From process III 2 we get for the singlet quark fragmentation function:

L-o 1 ~ /~h,~ (~) 9 ~,~- (6) 
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From process IV~ we get for the valence or non singlet structure function:

* Process III 1 has no double Regge limit. In [6] the behaviour of non singlet fragmentation functions has been derived from quantum number conservation sum rules

V ~/x~0 GB~q(x)[~2~ 1 (1--x) 7.ww--2~wb.
(7)

From process IV 2 we get for the sea quark structure function: (8) For a pole or a cut trajectory, the notation ~ in (5) to (8) means that the average over PT has been taken into account.
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It is interesting to note that the quantity c~-~ which controls the behaviour of non-singlet fragmentation and structure functions is constrained by planar bootstrap [llb], and that if one takes the value suggested by planar bootstrap one recovers [START_REF] Cohen-Tannoudji | [END_REF]4,5] the spectator counting rules [14].

b) Extension to Gluons

The interpretation of process II 2 in terms of wee gluon exchange, suggests that one can get a process producing the emission of gluons by performing s-t Table 3. Topological components of one particle inclusive distributions, related to quark fragmentation functions. In Tables 3 and4 
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crossing: whereas in process II 2 the exchange of a wee gluon produces the emission of valence quarks, in the process depicted in Table 5 the exchange of the two wee valence quarks produces the emission of gluons. We generalize the method applied to quarks and characterize the topological components of one particle inclusive cross sections which involve gluon densities. This is done in Table 6 for the gluon fragmentation function and in Table7 for the gluon structure function.

Note that the gluon densities appear in topological components which are more complicated than the one involving quarks. Indeed, the quark densities in Tables 3 and4 are derived from zero handle diagrams with one and two boundaries. In contrast the gluons are obtained from three boundaries. Moreover, the gluon diagram in Table7 contributes, through unitarity, to the one handle topology of the AB total cross-section.

From the double and triple Regge limits of processes of Tables6 and 7 one can derive the be-haviours of gluon fragmentation and structure functions near x = 0 and near x = 1. One gets 

L.x~0 " I ~ X-ctP x~O GB~I-~ ~ (l-x) /x~l m O~{agO(a,a, ) --2 ~(~h)(.. h.), (8) 
In order to evaluate the behaviour of gluon distribution near x = 1, one needs to know the effect of the average over Pr on cut trajectories. If we assume cd-~---c~-~=0.75 [11] we get Note that this behaviour which is compatible with the bounds derived from positivity conditions [15] n v <= tlg <= n v -k 1, corresponds to a rather hard distribution of gluons.

The DTU Parton Model in Hard Processes

Using s-channel factorization, one can extend the DTU parton model to hard processes: assuming that the photon (or weak intermediate boson) couples to quarks in a point-like way, (1) represents the topological expansion of the electromagnetic (or weak) hadronic current. The ansatz for this extension has been proposed in [START_REF] Cohen-Tannoudji | [END_REF] and the comparison with data on hard processes has been performed for quark structure functions in [4] and for quark fragmentation functions in [5]. It turns out that the agreement with data is good for values of QZ in the range between about 1 GeV 2 and 5 GeV 2.

The validity of Bjorken scaling at such low values of Q2 is usually referred to as "precocious scaling". So, on a phenomenological ground we may say that the DTU parton model accounts for precocious scaling.

On a theoretical ground, precocious scaling can be formulated in terms of the scale invariant parton model of Kogut and Susskind [16].

Starting from the remark that Bjorken scaling can be obtained only in the framework of a field theory involving a transverse cut off (super-renormalizable field theory), these authors have proposed a scheme to generalize the parton model to scale invariant field theories, that is theories involving only dimensionless couplings (strictly renormalizable field theories). In this scheme, hadrons are composed of partons of the first generation, these partons themselves, are composed of partons of the second generation, etc... In this "fractal" [START_REF] Konishi | CERN Preprint[END_REF] pattern one goes from one generation to the next one by a space-time self similarity operation of ratio p. The resolution allowing to explore the Nth-generation can be derived from

N A p ~-~, N ~ LOgLogQ/A.p (10) 
The first generation is defined by the resolution Q0 obeying

A p =-- (11) 
Qo where A and Q are respectively a parton interaction scale and the mass of the probing current. This scheme provides a physical explanation of scaling violations: when one improves the resolution, one continuously reveals new substructures, and scaling is never reached.

However scaling can work approximately provided that p is small enough. Scaling can even be precocious if Qo also is small. In such a case, Bjorken scaling works at the first generation level, namely the generation at which all nonperturbative effects are concentrated.

It is very natural to identify the parton densities obtained from the lowest topologies of DTU with the corresponding densities of the first generation. Taking for Qo the value at which the DTU parton model works with a value of A~-150MeV provided by QCD phenomenology, we get from (11) a value of p compatible with precocious scaling zez .

III. QCD Parton Cascading and Higher Topologies in DTU

I. Scaling l/iolations and Breakdown of the Topological Expansion

We continue to pay attention to hard processes in the hadron basis.

The identification of primordial partons with the ones of the DTU parton model (lowest topology approximation) necessarily implies the identification of QCD parton cascading with the sum of all handle corrections.

Let F(x,Q 2) be a parton density obeying QCD evolution equations. For simplicity we consider a non-singlet structure function, for which the evolution equation diagonalizes and for which the lowest topology approximation is the zero handle approximation. The Q2 evolution [18] is easily expressed in terms of the moments of the parton density:

1 F,(Q 2) = ~ dx x"-'F(x, Q2), (12) o F~(Q 2 ) =F~(Q 2) e ~)e, e~(g' ) dg' ( 13 
)
where 7n(g) is the anomalous dimensions of the nonsinglet quark operator, g(Q) is the running coupling constant, fi(g) is the renormalization function of the coupling, and Qo is defined in (11).

In the hadron basis we write the topological expansion of the parton density:

F(x'Q2)=F~ h=l ~ ~) hFh(x'Q2'b:')' ( 14 
)
where, as in (1), h is the number of handles, c( denotes the set of dimensioned parameters which provides transverse momentum cut-offs in each term of the topological expansion. According to our identification of the DTU parton model with the primordial parton model, = V~ (15) which, in terms of moments becomes, From ( 14) and ( 15) we get the equation which expresses, in terms of moments, the identification of QCD corrections with the sum of handle corrections:

h=l \X~] n',z,a, , ,'
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This last equation may look paradoxal since the right hand side contains no explicit dependance on )Vs. Moreover it is known that, in an axial gauge, all the dominant contributions to scaling violations appearing in the right hand side are contained in the sum of planar Feynman diagrams. However, in [6] we have proposed the solution to this paradox. We have derived a relation which links the QCD scale A to N, the number of flavors or colors, through a relation which involves (20, namely

A 2 = Q2 o exp (-cN 2) ( 17 
)
where c is a numerical constant independant of N.

The QCD scale parameter occurs in g(Qo) and g(Q), so (17) induces a dependance on N in the r.h.s, of (16). Moreover, since (2o has to be considered as fixed in the hadron basis, A has to be considered as depending on N and thus, diagrams which are planar in the parton basis, have no reason to be planar in the hadron basis. Actually (16) shows that in order to get QCD scaling violations one has to sum over all handle corrections in the hadron basis. This is not surprising since it is known that, in QCD, scaling violations come from the cascading of hard gluons (that is gluons with a Pr 2 transverse distribution). Now, each term in the topological expansion has an explicit transverse cutoff. However, the higher the topology, (that is the higher the h), the weaker the transverse cut-off: for instance one knows that if the behaviour of a Regge pole contribution is, at large Pr, given by e-aP2, then the term with h handles has a behaviour typical of a h-pomeron cut, that is:

a# e h So, it is only through divergences of the topological expansion that one can expect QCD effects, like hard gluon cascading, to be expressed in the hadron basis.

Scale Invariance in DTU

One can now understand the theoretical interest of our identifications. In the hadron basis, DTU is a genuine perturbation expansion. Apart from the zero handle approximation, unitarity leads to linear equations to determine higher topologies from the lower ones. At moderate values of Q, this "perturbation" expansion converges, so, the zero handle approximation, which satisfies an approximate form of unitarity, that is planar unitarity, represents a good approximation to the actual amplitudes; this is the naive quark parton model derived from DTU. Now, if one increases Q, one starts getting divergences of the topological expansion, at least in the large Pr region (Pr~-Q.). One is thus faced with a problem of resummation of a divergent expansion. Our identification, which is a consequence of our definition of confinement, implies that the renormalization group technique, which is a resummation technique of the perturbative expansion in QCD, allows also to resum the topological expansion in DTU.

This feature allows us to express, in the hadron basis, one of the most basic properties of QCD, that is renormalizability or scale invariance. This property is well expressed by means of the generalized parton model.

Originally, the patton model is designed for the phenomenological description of hard processes in the framework of an underlying local field theory. It is remarkable that this model has survived to the discovery of QCD as the underlying field theory, although this theory predicts the breakdown of the most characteristic property of the parton model, that is scaling.

Actually, it has been shown, thanks to a theorem about factorization of mass singularities in QCD [19] that the structure of the parton model remains valid in the framework of perturbative QCD for the inclusive cross sections of hard processes. Indeed one can show that they factorize, as in the ordinary parton model, into a cross section for a process involving partons with parton densities depending on relative longitudinal momenta. With respect to the ordinary parton model, the only change is that, now, parton densities depend on Q2 through running cut offs and that, this dependence is given by the renormalization group equations. Coming back to the example discussed in the preceding subsection, one sees that our identifications mean that, from the renormalizability of QCD, the sum of all handle corrections to the primordial parton density F~ just amounts to rescale or renormalize this parton density:

F(x, &o)= F~ .3 F(x, Q2)= FO(x, F~ c()+h~l= Fh(x, Q2, c() = F~ (x, c((Q2)). (18)
We thus see that the summation of all handle corrections is a genuine renormalization procedure in the framework of DTU: all the dynamical information about processes is contained in parton densities derived from the DTU parton model, but with rescaled dimensioned parameters [20].

IV. QCD and Dual Pomeron Calculus

The main problem with which one is faced in the theoretical description of soft processes is also to sum the topological expansion of (1). At asymptotic energies, even at low Pr, the convergence of this expansion can be questionned. When the energy is large enough to allow large rapidity gaps in the multiplicity distribution, each extra-handle, corresponding to an extra pomeron loop is indeed suppressed by a topological factor 1/N~ but it is enhanced by a dynamical logarithmic factor (see Fig. 3). The problem of summing all multi pomeron contributions is referred to as the reggeon calculus or pomeron calculus. In the present section we intend to exploit the outcomes of the identifications of Sect. III to give a QCD interpretation of hadronic distribution in high energy hadronic reactions.

I. Basic Ingredients and Issues of the Dual Pomeron Calculus

We first tist the basic ingredients and issues of the reggeon calculus in general which also occur in the dual pomeron calculus.

i) Any reggeon calculus needs, to start with, an underlying local field theory. Usually one considers a (p3 field theory. From this field theory one generates a dominant Regge trajectory, the bare pomeron. In the case of the (p3 theory the bare pomeron is generated through the summation over ladder diagrams.

In the case of the dual pomeron calculus, according to our DTU-QCD correspondence program, the underlying local field theory is obviously QCD. The problems of generating a bare pomeron from QCD, currently appears to be extremely difficult because of the confinement problem [START_REF] White | VIII th Moriond proceedings[END_REF]. But, with our conception of confinement this problem is by-passed, since, in the hadron basis, the bare pomeron emerges at the h=0 level of the topological expansion (see Fig. 1 c and process II 2 in Table 2).

ii) From a t-channel point of view the problem of summing all multi pomeron contributions is formulated in terms of an analog field theoretical problem, the so called reggeon field theory (RFT). RFT is a (2 + 1) dimensional field theory: the energy variable is 1-J where J is the complex angular momentum in the t-channel which is conjugate to the rapidity, the momentum is Pr, the transverse momentum carried by the pomeron, which is conjugate to the impact parameter b.

The case of interest is when % = 1, that is when infrared renormalization problems occur in RFT. In such a case, analogies with the physics of critical phenomena [START_REF] Savit | X th Moriond proceedings[END_REF] may say something about the behaviour of hadronic amplitudes at asymptotic energies.

When the underlying field theory is a (p3 theory, it turns out that the RFT is also a (p3 theory, with a pure imaginary coupling constant.

In the dual pomeron calculus, with QCD as the underlying theory, we expect the RFT to be more complicated than a q03 theory. Because of dual topological properties of the bare pomeron in DTU we expect the corresponding RFT to be rather a dual field theory, very likely a closed string theory [START_REF] Virasoro | [END_REF]. What are the infrared properties of such a theory at (2+ 1) dimensions? This is an open question.

iii) From the s-channel point of view, the basic reasoning of reggeon calculus goes as follows. Because of Pr limitation, it takes a long time to exchange a pomeron. So, in order to have non vanishing contributions of multi-pomeron exchanges, the incoming hadrons must have a structure of partons, able to interact at the same time, through pomeron exchanges. This instantaneous structure of incoming hadrons is described by means of another basic tool of reggeon calculus, the reggeon vertex which is In the case of dual pomeron calculus, the reggeon vertices, reflecting the properties of QCD at short distances, can be approached in terms of perturbative QCD.

As we are going to show it explicitely, this property is the key of the theoretical explanation of the similarities observed between final state distributions in soft and hard processes.

Topological Characterization of Q CD Jets

Equation (18) shows how QCD allows to resum the topological expansion in hard processes. It turns out that there is, in reggeon calculus, a rearrangement of the expansion, which is physically meaningful. Indeed, it can be shown [12], that there are no interference between multi-hadron configurations corresponding to different numbers of cut pomerons or handles. As shown in Fig. 4, cutting a handle lead to a configuration in which is produced a s-channel cylinder, i.e. gluon jets, according to the characterization of gluons depicted in Sect. II. Now, the absence of interferences between configurations with different numbers of cut pomerons, allows to define, by summing over all non cut handles (handle renormalization), cross sections to produce QCD parton jets. It is appealing to identify these jet cross-sections with those which are computable, in hard processes, from perturbative QCD, /t la Sterman Weinberg [24]. See Fig. 5. Note that the s-channel cylinder in Fig. 4 contains both even and odd charge configuration. The mechanism with two hard gluons (C--+1) is the only one represented in Fig. 4.

It is interesting to interpret the calorimetric criteria of the Sterman Weinberg method in the hadron basis. Since one has to sum over all non cut handles, the particles of the final state can reinteract through multi-pomeron exchanges (as shown in the simplified notation) and thus acquire a large PT with respect to the jet axis. This is the reason why one must define jets inside cones instead of cylinders [24].

The Renormalized DTU Parton Model

We come back now to the discussion of soft processes and derive a quantitative model, based on DTU and QCD, for inclusive cross sections involving configurations with a fixed number of cut pomerons.

i) Quark Fragmentation. The simplest such configuration involves the minimum number of cut pomerons, that is one. At the zero handle approximation, one gets this configuration in process II2, the non diffractive production of two planar sheets of hadrons.

In E3b] a quark fragmentation model for the inclusive cross section in this configuration has been derived, with no free parameter from the h=0 approximation and shown to give excellent agreement with data at moderate energy (/]lab < 70 GeV). In this model the normalized one-particle-inclusive density in the configuration of process II z is given by the convolution of a weight describing how the momentum of the incoming hadron A is shared between its constituent quarks, that is between the two sheets of hadrons, by the corresponding quark fragmentation functions:

1 da(Aod ~H) incl. dx O' non diffractive :@A~a$~a~H~-@A~a,$~a, H (19) 
(see Fig, 5).

Energy momentum conservation is guaranteed by

1 ~J A .... ,(X) dx = 1 (20) 
o and @ A~a,(X)=l/l A~a(1 --X).

(

) 21 
The total inelastic cross-section to which is normalized the inclusive distribution is the non diffractive cross-section in order to impose one cut pomeron. The weight ~ is derived from DTU arguments 0 cdominance of pomeron residue) to be equal to

x-~"(1 -x)-~"" (22) OA~a(x) = B(1 -%, 1 -%,)
where a a and c~ a, are the intercepts of the (ag) and (a' d') trajectories.

According to our topological characterization of QCD jets, the effects of handle renormalization on (19) are just to change the fragmentation functions @a~u and @~.~ into Q2 dependent functions.

The only question which remains is to determine the value of Q2 at which one has to consider these fragmentation functions. In lepton induced processes Qa is the virtualness of the electromagnetic or weak current. According to the parton interpretation of perturbative QCD in an axial gauge Q2 is also the maximum virtualness of the partons which are involved in the process. On the other hand A is the scale of parton interactions. In a pure hadronic process the maximum virtualness of partons is s, but the scale of hadron interactions is Q~. So the hadronic Q2, or QhZ, d is given by Q2 s had __ A 2 Qo 2" [START_REF] Virasoro | [END_REF] With AN 150 MeV, Qo~-1 GeV one obtains S Q2ad~ 5~.

It is interesting to note that one would have obtained approximately the same value in terms of available rapidity in the central region. In the popular parton interpretations of pure hadronic reactions, the partons with a rapidity between Ymax and Ymax-A (with A of order of 2) do not cascade.

So cascading occurs only in the central region defined by lY .... I<Ymax-A, which leads to Q2 ~ sexp(-2A).

had

The effect of handle renormalization on the quark fragmentation model of [-4] is simply to replace the involved fragmentation function by the function evaluated at Q~ad (see Fig. 6). Unfortunately scaling violation effects are known to be small at present energies for the fragmentation functions except in the very small x region, a region which is excluded from the fragmentation region.

The only observable which is sensitive to the precise value of Q2~a the value of Q2 at which one has to compare pure hadronic processes and lepton induced processes is the average of p2, the variation of which is proportional to QZad up to logarithmic factors. It is interesting to note that all existing experimental comparisons suggest that Q2~d is much s smaller than one [15]. However preliminary data at the pp collider at 540GeV in the center of mass provide evidence for an increase of (P~) [START_REF] Alpg~rd | UA5 collaboration): First results on complete events from pp collision at C.M. energy of 540GeV[END_REF].

ii) Gluon production and large mass diffractive dissociation. If one wants to observe gluon jets in soft hadronic processes, one has to look for other configurations of cut pomerons. One could think of the configuration in which one cuts two pomerons. One can select such a configuration by demanding a mul-,,tiill ...... tiplicity density which, in a given interval of rapidity, is twice the density in the rest of the rapidity phase space: This configuration is called by the authors of [12] a "mesa". See Fig. 7.

In [12] it is shown that the cross section to produce a mesa in the rapidity interval t/is twice the cross-section for producing a gap in the same interval. This relation is a consequence of cutting rules: both configurations correspond to different cuttings of a pomeron loop, leading to contributions which differ by combinatorial coefficients.

We concentrate on configurations with a gap because they can be easily specified experimentally. Let hadron A be a meson for simplicity. Let W 2 be the squared invariant mass of the hadronic system produced in the fragmentation hemisphere of particle A, beyond the gap. (See Fig. 8).

From Fig. 9 it is clear that the hadronic system produced beyond the gap is a large mass (if W A is large) diffractive excitation of particle A, which we call {A*}. According to [START_REF] Hassouni | XIV lh Moriond Proceedings[END_REF] {A*} can be interpreted in terms of the hadronization of a three jet system: a, a' and one gluon.

Another diffractive process which leads, according to our scheme, to the production of gluon jets, is the so called pomeron-pomeron collision [START_REF] Hassouni | XIV lh Moriond Proceedings[END_REF]. (See Fig. 9). In the pf collider experiment the available energy will be large enough to allow the observation of "high energy pomeron-pomeron collisions", leading to well separated gluon jets.

V. Summary and Outlook

To summarize, we can say that the correspondence between QCD and DTU leads to a consistent theoretical explanation of the observed similarities between final state distributions in hard and soft processes.

In the present paper we have extended the DTU parton model to include also gluons. Primordial gluons are characterized by a few higher topologies. Cascading of hard gluons is identified with the corrections of all higher topologies [START_REF]Berkeley[END_REF].

From these identifications we have obtained the following results: i) A complete description of hard processes in the hadron basis, ii) A QCD approach to Feynman scaling violations by defining Q2 in pure hadronic processes.

iii) An interpretation of large mass diffractive excitations in terms of gluon production.

It is important to examine the assumptions and conjectures on which the scheme is based. Although, to our knowledge, it has never been formulated exactly in the same way as we do, our definition of confinement seems difficult to object: confinement means that partons created in a hard or a soft process, have to completely reconvert into hadrons, with a probability equal to one; this is nothing but the equivalence of the parton and hadron bases to account for unitarity.

Indeed our scheme is based on the conjecture that the S matrix in the hadron basis can be completely described by means of DTU. This conjecture has a strong support from the successes of DTU in the description of soft exclusive processes.

The assumption which can appear as the most questionable is the interpretation of the lowest topologies in DTU as the primordial parton model. However we think that the phenomenological and theoretical consistency arguments which we have presented provide a cumulative evidence in favor of this identification.
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 3 Fig. 3. One pomeron loop correction to the pomeron propagator, which, at very high energy, destroys the convergence of the topological expansion

  Fig.4a-d. Cutting of a handle. The symbol ~ in a and b means that one sums over all non cut handles. In the simplified (particle) notation in e all non-cut pomerons are implicitly included and moreover summation over all possible twists is understood. In the parton interpretation of d no dot is put on the parton propagators (in contrast with the h = 0 case) because of handle renormalization
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 6 Fig. 6. The quark fragmentation model from the DTU parton model (h = 0) to the renormalized DTU parton model (sum over all non cut handles)
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 789 Fig. 8. Large mass diffractive dissociation of particle A, and a configuration with a gap in the rapidity distribution
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Table 4 .
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 7 Same notations as in Table5
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