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Abstract. The Weyl pseudo-metric is a shift-invariant pseudo-metric over the set

of infinite sequences, that enjoys interesting properties and is suitable for study-

ing the dynamics of cellular automata. It corresponds to the asymptotic behavior

of the Hamming distance on longer and longer subwords. In this paper we char-

acterize well-defined dill maps (which are a generalization of cellular automata

and substitutions) in the Weyl space and the sliding Feldman-Katok space where

the Hamming distance appearing in the Weyl pseudo-metrics is replaced by the

Levenshtein distance.

Keywords: The Weyl pseudo-metric · Feldman-Katok pseudo-metric · Cellular

automata · Dill maps · Substitutions · Edit distances · Levenshtein distance · Sym-

bolic dynamical systems · non-compact dynamical systemms.

1 Basic definitions and notations

Word combinatorics. We fix once and for all an alphabet A of finitely many letters.

A finite word over A is a finite sequence of letters in A; it is convenient to write a

word as u = uJ0,|u|J to express u as the concatenation of the letters u0,u1, . . . ,u|u|−1,

with |u| representing the length of u, i.e., the number of letters appearing in u, and

J0, |u|J = {0, ..., |u| − 1}. The unique word of length 0 is the empty word denoted by

λ . A configuration x = x0x1x2 . . . over A is the concatenation of infinitely many letters

from A. The set of all finite (resp. infinite) words over A is denoted by A∗ (resp. AN),

An is the set of words of length n ∈N and A+ = A∗ \ {λ}.

Topologies over AN. Most classically, the set AN is endowed with the product topology

of the discrete topology on each copy of A. The topology defined on AN is metrizable,

corresponding to the Cantor distance denoted by dC and defined as follows:

dC(x,y) = 2−min{ n∈N|xn 6=yn},∀x 6= y ∈ AN, and dC(x,x) = 0,∀x ∈ AN.

Topological dynamical systems were studied using other topologies on the set of

infinite words, such as the Besicovitch and Weyl spaces [BFK97] and the Feldman-

Katok space [RG22]. The Weyl space and a similar space that are defined using pseudo-

metrics depend on the two following distances are of interest to us in this paper.



Definition 1. 1. The Hamming distance denoted by dH and defined over finite words

of the same length u,v by: dH(u,v) = |{ i ∈ J0, |u|J |ui 6= vi}|.
2. The Levenshtein distance dL is defined over u,v ∈ A∗ as follows:

dL(u,v)=
1

2
min

{

m+m′
∣

∣

∣
∃ j1 < · · ·< jm, j′1 < · · ·< j′m′ ,D j1 ◦ . . .◦D jm(u) = D j′1

◦ . . .◦D j′
m′
(v)

}

,

where D j is deletion operation at position j ∈ J0, |u|J is defined over word u ∈ A∗

as follows: D j(u) = u0u1 . . .u j−1u j+1 . . .u|u|−1.

Definition 2. 1. The Weyl pseudo-metric, denoted by d̂H , is defined as follows:

d̂H(x,y) = limsup
ℓ→∞

max
k∈N

dH(xJk,k+ℓJ,yJk,k+ℓJ)

ℓ
,∀x,y ∈ AN,

2. The sliding pseudo-metric associated to the Levenshtein distance, denoted by d̂L, is

defined as follows:

d̂L(x,y) = limsup
ℓ→∞

max
k∈N

dL(xJk,k+ℓJ,yJk,k+ℓJ)

ℓ
,∀x,y ∈ AN.

It is easy to verify that these are pseudo-metrics i.e., symmetric, zero over diagonal

pairs, and satisfies the triangular inequality. On the other hand, these are not distances

since we can find two different configurations between which the pseudometric is worth

zero (for example, we can take two configurations with finitely many of differences).

Hence, it is relevant to quotient the space of configurations by the equivalence of zero

distance, in order to get a separated topological space:

Definition 3. The relation x ∼
d̂∗

y ⇐⇒ d̂∗(x,y) = 0, is an equivalence relation. The

quotient space AN/ ∼
d̂∗

called the Weyl space for d̂∗ = d̂H and the sliding Feldman-

Katok space when d̂∗ = d̂L, denoted X
d̂∗

, where d̂∗ represent previous pseudo-metrics.

We denote by x
d̂∗

the equivalence class of x ∈ AN in the quotient space. Any map F of

AN to itself such that d̂∗(x,y) = 0 =⇒ d̂∗(F(x),F(y)) = 0 for all x,y ∈ AN, induces

a well-defined map F
d̂∗

: X
d̂∗

→ X
d̂∗

over the quotient space. A map F : AN 7→ AN is

d̂∗-constant if for all x,y ∈ AN, d̂∗(F(x),F(y)) = 0.

Dill maps. Dill maps were defined in [ST15, Definition 2], and generelize both substi-

tutions [FBF+02] and cellular automata [BR10]. Here we give an equivalent definition.

Definition 4.

1. A map F : AN 7→ AN is a dill map if there exist a diameter θ ∈ N\ {0} and a local

rule f : Aθ →A+ such that for all x,y∈AN: F(x)= f (xJ0,θJ) f (xJ1,θ+1J) f (xJ2,θ+2J) · · · .
2. The lower norm | f | and the upper norm ‖ f‖ of a dill map F with diameter θ and lo-

cal rule f are defined by: | f |=min
{

| f (u)|
∣

∣u ∈ Aθ
}

and ‖ f‖=max
{

| f (u)|
∣

∣u ∈ Aθ
}

.
3. We extend the local rule into a self-map f ∗ : A∗→A∗ by: f ∗(u)= f (uJ0,θJ) f (uJ1,1+θJ) . . . f (uJ|u|−θ ,|u|J),

for u such that |u| ≥ θ and f ∗(u) = λ if |u| < θ .

4. If ‖ f‖ = | f |, then we say that F is uniform.
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When it is clear from the context, we may identify a dill map with its local rule.

Remark 5.

1. Uniform dill maps with | f |= ‖ f‖ = 1 are called cellular automata.

2. The local rule of a dill maps with diameter θ = 1 is called substitution. In this case,

we denote τ for the local rule and τ̄ for the dill map.

3. The composition of a substitution τ and a cellular automaton local rule f with

diameter θ is a dill map local rule τ ◦ f with diameter θ .

Example 6. 1. The shift is the CA with diameter θ = 2 and local rule f defined by

f (u0u1) = u1 for all u0,u1 ∈ A.

2. Let A = {a,b}. The Xor is the CA with diameter θ = 2 and local rule f defined by:

f (aa) = f (bb) = a and f (ab) = f (ba) = b.

3. The Fibonacci substitution defined over A by: τ(a) = ab and τ(b) = a.
4. Let f be the local rule of the Xor CA and τ be the Fibonacci substitution. Then τ ◦ f

is a local rule of a dill map with diameter 2 and defined as follows:

τ ◦ f (aa) = τ ◦ f (bb) = ab and τ ◦ f (ba) = τ ◦ f (ab) = a.

In the Cantor space, an elegant characterization of cellular automata was given by

Curtis, Hedlund and Lyndon in [Hed69] as follows: A function F : AN →AN is a cellular

automaton if and only if it is continuous with respect to the Cantor metric and shift-

equivariant (i.e., F(σ(x)) = σ(F(x)), for all x ∈ AN). Similarly to the case of cellular

automata, we gave a characterization of dill maps à la Hedlund. Recall that N can be

naturally endowed with the discrete topology.

Theorem 7 ([RG22, Theorem 11]). A function F : AN → AN is a dill map if and only

if it is continuous over the Cantor space and there exists a continuous map s : AN → N

such that for all x ∈ AN: F(σ(x)) = σ s(x)(F(x)).

Before proving our main results, let us mention that this paper is a continuation of

our previous work [RG22], and we suggest that the reader check it out.

2 Lipschitz property of dill maps with respect to d̂H

It is known since [BFK97] that every cellular automaton induces a (well-defined) Lip-

schitz function over the Weyl space. Some dill maps, on the contrary, are not well-

defined.

Example 8. The Fibonacci substitution is not well-defined over the Weyl space X
d̂H

.

For example, d̂H(a
∞,ba∞) = 0 but d̂H(τ(a

∞),τ(ba∞)) = d̂H((ab)∞,(ba)∞) = 1.

Let us denote, for a uniform dill map F with local rule f and diameter θ :

d+
f = max

{

dH( f (u), f (v))
∣

∣

∣
u,v ∈ Aθ

}

and d−
f = min

{

dH( f (u), f (v))
∣

∣

∣
u 6= v ∈ Aθ

}

.
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Lemma 9. Let F be a uniform dill map with diameter θ and local rule f . Then for all

ℓ,k ∈N, for m =
⌈

k
| f |

⌉

, and for p =
⌊

ℓ+k
| f |

⌋

− (m+ 1):

dH(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ)≤ dH(xJm,m+p+θJ,yJm,m+p+θJ)θd+
f + 2 | f | ,∀x,y ∈ AN.

Proof. Let x,y ∈ AN and ℓ,k ∈N. Since F is uniform, we can write:

F(x)Jk,k+ℓJ = v f ∗(xJm,m+p+θJ)w, and F(y)Jk,k+ℓJ = v′ f ∗(yJm,m+p+θJ)w
′,

where |v|= |v′| ≤ | f | and |w|= |w′| ≤ | f |. By additivity, we can write then:

dH(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ)− 2 | f | ≤
p

∑
i=0

dH( f (xJm+i,m+i+θJ), f (yJm+i,m+i+θJ))

≤
p

∑
i=0

xJm+i,m+i+θJ 6=yJm+i,m+i+θJ

dH( f (xJm+i,m+i+θJ), f (yJm+i,m+i+θJ))

≤
p

∑
i=0

∃ j∈Jm+i,m+i+θJ,x j 6=y j

d+
f ≤ ∑

j∈Jm,m+p+θJ
x j 6=y j

∑
i∈K j−m−θ , j−mK

d+
f

≤ ∑
j∈Jm,m+p+θJ

x j 6=y j

θd+
f = dH(xJm,m+p+θJ,yJm,m+p+θJ)θd+

f .

Proposition 10. Let F be a uniform dill map with diameter θ and local rule f . Then:

d̂H(F(x),F(y))≤
θd+

f

| f |
· d̂H(x,y),∀x,y ∈ AN.

Proof. Let us prove that F is
θd+f
| f | -Lipschitz with respect to d̂H . According to Lemma

9, for large enough ℓ, for k ∈ N, m =
⌈

k
| f |

⌉

and p =
⌊

ℓ+k
| f |

⌋

− (m+ 1) we obtain:

dH(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ)≤ dH(xJm,m+pJ,yJm,m+pJ)θd+
f +θ 2d+

f + | f | .

Hence:

dH(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ)

ℓ
≤

maxh∈N dH(xJh,h+pJ,yJh,h+pJ)θd+
f +θ 2d+

f + 2 | f |

ℓ

≤
θd+

f

| f |
·

maxh∈N dH(xJh,h+pJ,yJh,h+pJ)

p
+

θ 2d+
f + 2 | f |

ℓ
.

Since this was true for every k and since p → ∞ when ℓ→ ∞, we obtain:

d̂H(F(x),F(y))≤
θd+

f

| f |
d̂H(x,y).
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Proposition 11. Let F be a dill map with diameter θ ∈N\{0} and local rule f . If F
d̂H

is well-defined, then F is either constant or uniform.

Proof. Assume that F is non-uniform, i.e., there are two words u and v of equal length

such that | f ∗(u)| 6= | f ∗(v)|. One can assume that their longest common suffix has length

θ − 1. Indeed, otherwise let a ∈ A, u′ = uJ|u|−θ+1,|u|Jaθ−1 and v′ = vJ|u|−θ+1,|v|Jaθ−1;

one can note that f ∗(uaθ−1) = f ∗(u) f ∗(u′) and f ∗(vaθ−1) = f ∗(v) f ∗(v′), so that ei-

ther
∣

∣ f ∗(uaθ−1)
∣

∣ 6=
∣

∣ f ∗(vaθ−1)
∣

∣, or | f ∗(u′)| =
∣

∣ f ∗(uaθ−1)
∣

∣−| f ∗(u)| 6=
∣

∣ f ∗(vaθ−1)
∣

∣−
| f ∗(v)| = | f ∗(v′)| . Note that both of these pairs of words share a common suffix of

length at least θ −1. Assume also without loss of generality that k = | f ∗(u)|−| f ∗(v)|>
0.

– First assume that there exist w ∈ A∗ and i ∈ N such that f ∗(w)i 6= f ∗(w)i+k. By

our previous assumption, we know that for z = w∞ and w′ = uJ|u|−θ ,|u|JzJ0,θJ =

vJ|v|−θ ,|v|JzJ0,θJ we have: F(uz) = f ∗(u) f ∗(w′)F(z). According to the proof of

[RG22, Theorem 20], we obtain: d̂H(F(uz),F(vz))≥ dH(F(uz),F(vz))≥ 1
| f ∗(zJ0,|w|+θJ)|

.

Since |u| = |v|, d̂H(uz,vz) = 0, so that F is not well-defined with respect to d̂L.

– Otherwise, for all w∈A∗, i∈ J0, | f ∗(w)| − kJ, we have f ∗(w)i = f ∗(w)i+k . Then for

every x ∈ AN, F(x) is k-periodic and thus F(x) = ( f ∗(xJ0,k+θJ)J0,kJ)
∞. Assuming

that F is well-defined, we get dH(F(x),F(0k+θ xJk+θ ,∞J)) = 0. According to Propo-

sition [CFMM97, Proposition 3], we can deduce that F(x) = F(0k+θ xJk+θ ,∞J).

Then, for every x ∈ AN, F(x) = ( f ∗(0k+θ )J0,kJ)
∞. Hence, F is constant.

We now reach necessary and sufficient conditions for dill maps to induce well-

defined maps over this space.

Theorem 12. Let F be a dill map with diameter θ and local rule f . Then the following

statements are equivalent:

1. F
d̂H

is well-defined.

2. F is
θd+f
| f | -Lipschitz with respect to d̂H .

3. F is either constant or uniform.

Proof. 2 =⇒ 1 is clear from the definition of Lipschitz maps. Implication 3 =⇒ 2

follows from Proposition 10. Implication 1 =⇒ 3 follows from Proposition 11.

3 Lipschitz property of dill maps with respect to d̂L

In [RG22], we proved that all dill maps are well-defined in the Feldman-Katok space.

However, by changing the Feldman-Katok pseudo-metric for d̂L, one can find that not

all dill maps are well-defined. See for instance the following example:

Example 13. Let τ be a substitution defined over A = {0,1}N by τ(0) = 0 and τ(1) =

11. Let x = (0,1)(n,n)n∈N\{0} and y = (0,1)(n+1,n−1)n∈N\{0}. Note that for all j ∈ N, since
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s j := j( j + 1) = ∑
j
i=1 2i, we obtain: dH(xJs j ,s j+1J,yJs j ,s j+1J) = 1. Let ℓ ∈ N \ {0} and

k ∈N. For p=min
{

j ∈ N
∣

∣s j ≥ k
}

, m=max
{

j ∈N
∣

∣s j ≤ k+ ℓ
}

and by subadditivity:

dH(xJk,k+ℓJ,yJk,k+ℓJ) = dH(xJk,spJ,yJk,spJ)+ dH(xJsp,smJ,yJsp,smJ)+ dH(xJsm,k+ℓJ,yJsm,k+ℓJ)

≤ 1+ dH(xJsp,smJ,yJsp,smJ)+ 1 ≤ (m− p)+ 2.

Moreover, since ℓ+ k ≥ m2 +m and k ≤ p2 + p, we obtain
m−p
ℓ ≤ 1

m+p+1
, and thus:

dH(xJk,k+ℓJ,yJk,k+ℓJ)

ℓ
≤

m− p+ 2

ℓ
≤

2

m+ p+ 1
+

2

ℓ
.

Since m tends to ∞ when ℓ tends to ∞: limℓ→∞

dH(xJk,k+ℓJ,yJk,k+ℓJ)

ℓ
= 0,∀k ∈N.

Thus d̂L(x,y) = d̂H(x,y) = 0. On the other hand, it is clear that:

τ(x) = (0,1)(n,2n)n∈N\{0} and τ(y) = (0,1)(n+1,2(n−1))n∈N\{0}.

For ℓ∈N\{0} and k =∑
ℓ
i=1(i+1)+∑

ℓ
i=1 2(i−1), hence: τ(y)Jk,k+ℓJ = 0ℓ. In contrast,

since
(

∑
ℓ
i=1 i+∑

ℓ
i=1 2i

)

− ℓ= k, we obtain τ(x)Jk,k+ℓJ = 1ℓ. Thus:

dL(τ(x)Jk,k+ℓJ,τ(y)Jk,k+ℓJ) = dL(0
ℓ,1ℓ) = ℓ.

Hence, maxh∈N dL(τ(x)Jh,h+ℓJ,τ(y)Jh,h+ℓJ) = ℓ. Therefore, d̂L(τ(x),τ(y)) = 1.

In conclusion, τ is not well-defined with respect ot d̂L.

Before giving a caracterization of well-defined dill-maps with respect to d̂L, let us

recall a result from [RG22] to be used in the proof of the main result of this section.

Lemma 14 ([RG22]). Let F be a dill map with diameter θ and local rule f . Then for all

ℓ∈N and u,v ∈ Aℓ, we have: dL( f ∗(u), f ∗(v))≤ ‖ f‖(2θ −1)dL(u,v)−

∣

∣

∣
| f ∗(u)|−| f ∗(v)|

∣

∣

∣

2
.

Now let us characterize dill maps which induce a well-defined function over X
d̂L

.

Definition 15. We say that a dill map with diameter θ and local rule f is diamond-

uniform if for every ℓ and u,v ∈ Aℓ such that uJ0,θJ = vJ0,θJ and uJℓ−θ ,ℓJ = vJℓ−θ ,ℓJ, one

has | f ∗(u)| = | f ∗(v)|.

It is clear that all uniform dill maps are diamond-uniform. Here is an example of

non-uniform dill map which is diamond-uniform.

Example 16. Let F be the dill map with diameter θ = 2 and local rule f defined by:

f (aa) = ab, f (bb) = ba, f (ab) = a and f (ba) = bab.

It is clear that for any x ∈ AN, F(x) = (ab)∞ if x start by the letter a and F(x) = (ba)∞

otherwise. And thus, F is neither constant nor uniform. However, F is d̂L-constant, since

for every x,y ∈ AN, d̂L(F(x),F(y)) = 0. So, F
d̂L

is well-defined.
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Theorem 17. If F is a dill map, then F
d̂L

is well-defined if and only if F is d̂L-constant

or diamond-uniform.

In order to prove this, here is the key point about diamond-uniformity.

Lemma 18. If F is a dill map with diameter θ and local rule f , then the following

statements are equivalent:

1. F is diamond-uniform.

2. | f ∗(u)| − | f ∗(v)| is uniformly bounded, for every u,v with equal length.

Proof.

1 ⇒ 2 Let u,v have equal length. Then

| f ∗(u)| − | f ∗(v)| =
∣

∣

∣
f ∗(aθ−1uaθ−1)

∣

∣

∣
−
∣

∣

∣
f ∗(aθ−1vaθ−1)

∣

∣

∣
−
∣

∣

∣
f ∗(aθ−1uJ0,θ−1J)

∣

∣

∣
+

+
∣

∣

∣
f ∗(aθ−1vJ0,θ−1J)

∣

∣

∣
−
∣

∣

∣
f ∗(uJ|u|−θ−1,|u|Jaθ−1)

∣

∣

∣
+
∣

∣

∣
f ∗(vJ|u|−θ−1,|u|Jaθ−1)

∣

∣

∣

≤ 2(θ − 1)(d+
f − d−

f ).

2 ⇒ 1 Assume, by contrapositive, that there exist ℓ ∈ N and u,v ∈ Aℓ such that:

uJ0,θ−1J = vJ0,θ−1J,uJℓ−θ+1,ℓJ = vJℓ−θ+1,ℓJ and | f ∗(u)| − | f ∗(v)| 6= 0.

Then
∣

∣ f ∗(uk)
∣

∣ −
∣

∣ f ∗(vk)
∣

∣ = (| f ∗(u)| − | f ∗(v)|)k, thanks to the common prefixes

and suffixes. Hence | f ∗(u)|− | f ∗(v)| is not bounded (and not upper-bounded, up to

swapping u and v).

Proposition 19. Any diamond-uniform dill map F with local rule f and diameter θ is

(2θ − 1)×
‖ f‖

| f |
-Lipschitz with respect to d̂L.

Proof. Let x,y ∈ AN. For large enough ℓ and k ∈ N let us denote:

m = max
(

min
{

i ∈ N
∣

∣ | f ∗(xJ0,i+θJ)| ≥ k
}

,min
{

i ∈ N
∣

∣ | f ∗(yJ0,i+θJ)| ≥ k
})

, and

p = min
(

max
{

i ∈ N
∣

∣ | f ∗(xJ0,m+pJ)| ≤ k+ ℓ
}

,min
{

i ∈ N
∣

∣ | f ∗(yJ0,m+pJ)| ≤ k+ ℓ
})

.

Since F is a diamond-uniform dill map and thanks to 2, there exist C > 0 such that:

∣

∣

∣

∣ f ∗(xJ0,mJ)
∣

∣−
∣

∣ f ∗(yJ0,mJ)
∣

∣

∣

∣ ≤C and
∣

∣

∣

∣ f ∗(xJ0,m+pJ)
∣

∣−
∣

∣ f ∗(yJ0,m+pJ)
∣

∣

∣

∣ ≤C.

And thus we can write,

F(x)Jk,k+ℓJ = uv f ∗(xJm,m+pJ)wz and F(y)Jk,k+ℓJ = u′v′ f ∗(yJm,m+pJ)w
′z′

where |u|, |u′|, |z|, |z′|< ‖ f‖, and |v|, |v′|, |w|, |w′|<C. Hence, by subadditivity:

dL(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ) ≤ dL(uv,u′v′)+ dL( f ∗(xJm,m+pJ), f ∗(yJm,m+pJ))+ dL(wz,w′z′)

≤ 2(‖ f‖+C)+ dL( f ∗(xJm,m+pJ), f ∗(yJm,m+pJ)).
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According to Lemma 14 we obtain:

dL(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ)≤ 2(‖ f‖+C)+ (2θ − 1)‖ f‖dL(xJm,m+pJ,yJm,m+pJ).

Since ℓ≥
∣

∣ f ∗(xJm,m+pJ)
∣

∣ ≥ (p−θ ) | f | and by subadditivity:

dL(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ)

ℓ
≤

‖ f‖(2+θ (2θ − 1))+ 2C

ℓ
+

(2θ − 1)‖ f‖dL(xJm,m+p−θJ,yJm,m+p−θJ)

| f | (p−θ )

≤
‖ f‖(2θ 2 −θ + 2)+ 2C

ℓ
+(2θ − 1)

‖ f‖

| f |
×max

h∈N

dL(xJh,h+p−θJ,yJh,h+p−θJ)

p−θ
.

Since this was true for every k ∈ N and since p → ∞ when ℓ→ ∞:

d̂L(F(x),F(y))≤ (2θ − 1)
‖ f‖

| f |
d̂L(x,y).

Proof of Theorem 17. According to Proposition 19, if F is diamond-uniform then F
d̂L

is well-defined. Suppose now that F is neither d̂L-constant nor diamond-uniform i.e.,

there exists x,y ∈ AN such that d̂L(F(x),F(y)) > 0, and there exists m ∈ N, u,v ∈ Am

such that uJ0,θ−1J = vJ0,θ−1J, uJm−θ+1,mJ = vJm−θ+1,mJ and α := | f ∗(u)| − | f ∗(v)| > 0.

Let us define the following configurations:

z := uxJ0,αJyJ0,αJuxJ0,2αJyJ0,2αJuxJ0,3αJyJ0,3αJ . . . , and

w := vxJ0,αJyJ0,αJvxJ0,2αJyJ0,2αJvxJ0,3αJyJ0,3αJ . . . .

Let (kℓ)ℓ∈N such that for all ℓ∈N: maxk∈N dL(F(x)Jk,k+ℓJ,F(y)Jk,k+ℓJ)= dL(F(x)Jkℓ,kℓ+ℓJ,F(y)Jkℓ,kℓ+ℓJ).
This pair of patterns appears in (z,w), in the zone where nα ≥ kℓ+ℓ. Hence d̂L(z,w) = 0

but d̂L(F(z),F(w))≥ d̂L(F(x),F(y))> 0.

4 Conclusion and perspectives

In this paper, we characterized well-defined dill maps over the Weyl space, indeed,

we find the same result as in the case of Besicovitch space in [RG22]. In addition,

we showed that not all dill maps are well-defined with respect to the sliding Feldman-

Katok space, in contrast the Feldman-Katok space, where all dill maps are well-defined

[RG22, Corollary 46]. Those spaces were constructed using two pseudo-metrics de-

pending on two different edit distances over finite words (the Hamming distance and

the Levenshtein distance). One natural question is which properties on distance d make

all dill maps are well-defined in the corresponding pseudo-metric space?
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