Defect-induced weak collective pinning in superconducting YB 6 crystals - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physics: Materials Année : 2023

Defect-induced weak collective pinning in superconducting YB 6 crystals

Résumé

Abstract In a previous study (Phys. Rev. B 96 (2017) 144501), a strong variation in the superconducting transition temperature T c of YB 6 differing by a factor of two has been explained by a change in the density of yttrium and boron vacancies tuning the electron-phonon interaction. Here, by using an array of miniature Hall probes, we address the penetration of the magnetic field, pinning, and critical current density on a series of YB 6 single crystals with T c variation between 4.25 and 7.35 K. The analysis of the superconducting and normal-state specific heat characteristics allowed us to determine T c and the stoichiometry of our samples. We observed almost no pinning in the most stoichiometric YB 6 crystal with the lowest T c . Upon increasing the number of vacancies weak pinning appears, and the critical current density is enhanced following the increased transition temperature in a linear variation. We argue that such an increase is, within weak collective pinning theory, consistent with the increasing number of vacancies that serve as pinning centers.

Dates et versions

hal-04180461 , version 1 (12-08-2023)

Identifiants

Citer

Zuzana Pribulová, Miroslav Marcin, Jozef Kacmarcik, Slavomir Gabáni, Karol Flachbart, et al.. Defect-induced weak collective pinning in superconducting YB 6 crystals. Journal of Physics: Materials, 2023, 6 (4), pp.045002. ⟨10.1088/2515-7639/aceeb7⟩. ⟨hal-04180461⟩
30 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More