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Abstract: Exact measurements of the rheological parameters of time-dependent materials are crucial to 

improve our understanding of their intimate relation to the internal bulk microstructure. Concerning solid 

polymers and the apparently simple determination of Young’s modulus in tensile tests, international 

standards rely on basic protocols that are known to lead to erroneous values. This paper describes an 

approach allowing a correct measurement of the instantaneous elastic modulus of polymers, by a tensile test. 

It is based on the use of an appropriate reduced model to describe the behavior of the material up to great 

strains, together with well-established principles of parameter estimation in engineering science. These 

principles are objective tools that are used to determine which parameters of a model can be correctly 

identified according to the informational content of a given data set. The assessment of the methodology and 

of the measurements is accomplished by comparing the results with those obtained from two other physical 

experiments, probing the material response at small temporal and length scales, namely: ultrasound 

measurements with excitation at 5MHz and modulated Nanoindentation tests over a few nanometers of 

amplitude. 

 

 

 

Keywords   inverse identification, parameter estimation, elastic modulus, tensile test, semi-crystalline 

polymer. 

 

 

mailto:stephane.andre@univ-lorraine.fr


2 

1 Introduction 

This paper originates from the observation of a significant gap between recommended practices in the field of 

rheological parameter determination, which rely on international standards, and the efforts made by the 

scientific community to improve measurements. During recent decades, the scientific field of inverse 

methods , which deals precisely with the mathematical basis of parameter estimation through models (Model-

Based Metrology, or MBM), emerged and grew intensively. MBM should nowadays be a common 

framework when considering the metrology of physical parameters through pertinent modeling of 

experiments. It is necessary for a real enhancement of the quality in measured properties of materials, which 

will in turn allow a deeper investigation of  the link that can be made with the microstructural organization of 

materials and help to further develop the models. To illustrate this point of view, an example is given in this 

paper concerning the determination of the elastic modulus of polymers using the uniaxial tensile test. With 

respect to international standards (ISO 527-1 and ASTM D 638), it depends upon the characterization of a 

linear elastic regime, i.e. proportionality between stress and strain, at very small strains (short times). 

Although this method is efficient and physically well-founded for metallic materials, it is less satisfactory for 

polymers. Indeed, these materials quickly manifest a viscoelastic regime, which takes place in the beginning 

of the tensile test, and the response does not show any obvious linear part. A mathematical inverse approach 

of parameter estimation is required that may explain why this question, also basic and apparently simple, was 

not really considered earlier in detail and was consequently not well-documented. This latter point consists of 

the use of an optimization procedure based on uniaxial tensile test data and relying upon an adapted 

rheological constitutive model. The inverse problem is merely formulated as a least square optimization 

problem. It must be verified that the assessed parameters are not correlated and that their sensitivity is high 

enough to ensure a good quality of identification.  

The aim of this paper is to present such an approach in view of the measurement of the elastic modulus of 

materials like HDPE (High Density PolyEthylene) one of the Semi-Crystalline Polymers (SCP). The paper 

starts with detailed information about the material we investigated and about the metrology we developed to 

produce curves of true strain-true stress relationships. In a second step, a rheological constitutive model is 

presented in its most reduced version. In view of a parameter estimation problem, a reduced model means a 

model that meets the identifiability criteria i.e. a good balance between the number of identifiable parameters 

and the relevance of the model to the experiments (parsimony principle). This model was shown to be able to 

describe different behavioral regimes (viscoelasticity, viscoplasticity, material hardening) with only 3 

parameters. In a third part of the manuscript, the identification procedure and the sensitivity analysis of the 

estimated parameters are described. They rely on mathematical tools that have now spread throughout the 

engineering community (see the books of Aster et al., 2013; Beck, 1977; Walter and Pronzato, 1997 to cite a 

few references), but are not so frequently used in the field of material mechanics, where models are generally 

not questioned from the angle of the identifiability or measurability of their parameters. Essential works that 

address this question are generally based on Finite Element simulations at the structure scale (Ponthot, 2006; 

Cooreman, 2007) and make the inverse methods work on various observable features that can be local such 

as strain fields, or global like force, radius geometry, total elongation etc.. At the end, the results of the 

identification will be discussed and compared to identification as measured by two other scientific 

techniques. One of these is based on ultrasonic measurements (Piché, 1984; Legros, 1999). The other is based 
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on Nanoindentation tests (Oliver, 1992; Qasmi, 2006; Le Rouzic, 2009). Both prior approaches provide direct 

measurements of the Young modulus, meaning that no inverse approach is used. 

 

2 Material and methods 

2.1 Material 

 

The material tested in this work is a “500 Natural” grade HDPE produced by Röchling Engineering 

Plastics KG. Two different products (A and B) were manufactured under the same reference at an interval of 

six years and were supplied as sheets (extrusion process). Information from the supplier indicates that the 

molecular weight and density are respectively 500,000 g/mol and 0.935 g/cm3. Differential scanning 

calorimetry gave a crystallinity index of 68 wt% for product A and 66 wt% for product B. The structural 

characteristics of this material in a non-deformed state and at room temperature were found to be a long 

period of the stack of 26.8 nm, a crystalline phase thickness of 18.5 nm and an amorphous layer thickness of 

8.2 nm (from SAXS synchrotron measurements reported in Farge, 2013). 

A particular geometry of dog-bone shaped specimens was used for the tensile tests. A narrow material 

“gauge” cube of 
36 6 6 mm   was deliberately arranged between the specimen shoulders so that necking 

was always initiated at the center of the specimen.  A-type specimens were cut from a 6 mm-thick sheet of 

polymer along the extrusion direction “
//A ” (reference samples throughout this paper) and perpendicularly to 

it “
⊥A ”. Some specimens of the 

//A  type were machine-finished symmetrically to produce 3 mm thick core 

samples referred to as “
cA ”.B samples were cut along the extrusion direction only, from a 4 mm sheet 

produced six years earlier. Even if specimens A and B are supposedly of the same chemical material they 

exhibit a slightly different mechanical behavior, leading to different values of the parameters identified by the 

model. Experiments performed on B samples at delivery and 6 years later gave exactly the same results. Thus 

ageing or the time interval between the dates of their production cannot be considered to be responsible for 

the difference between samples A and B. Instead it is more likely to be due to a different manufacturing 

process. The microstructure and mechanical behavior of a polymer are clearly dependent on the cooling 

process which rules the development of a crystalline phase and its distribution and organization in the bulk 

among the amorphous phase. This material has been studied for more than 15 years and the interested reader 

can refer to (Farge, 2013a; 2013b; Blaise, 2011; 2010) to gain insight into all its microstructural aspects that 

are not covered in the present study. 

The various types of specimen ( //A , ⊥A , cA , B ) for the same material will be very useful in view of 

the discussion about the results obtained through tensile tests and the validation of the methodology we used. 
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2.2 Video-controlled tensile tests and experimental tensile curves 

All mechanical tests were performed on a servo-hydraulic MTS 810 load frame with a Flextest SE 

electronic controller. A video-extensometer (VidéoTraction®, G’sell et al., 2002) gives access to the real-

time measurement of local true strain in the central part of the specimen (Fig. 1). Seven dot markers were 

printed on the front face of the sample prior to deformation. The markers are black, nearly round and have a 

diameter of about 0.4 mm. A CCD camera mounted on a telescopic drive records images during the test and 

follows the elementary frame during deformation. Local transversal and longitudinal deformations are 

measured at the barycenter of two neighboring dots, according to Hencky’s definition of the true strain:  

( )
( )

ln
0

l t
t

l


 
=  

 

 (1) 

Longitudinal strains are interpolated through Lagrangian polynomials to obtain exactly the longitudinal 

strain value 11  in the section where the transversal strains are measured (averaged FCG line in Fig.1a). An 

important feature of the system is that this latter measurement is used in real-time to control the machine's 

servo-valve through a feedback loop. Any desired input path for the true longitudinal strain 11 can be 

imposed on the gauge volume. A standard deviation of nearly 
410−

 is commonly achieved for the noise that 

corrupts this strain signal (it increases logically as the marker deformation proceeds). VidéoTraction 

measurements were assessed with a 3D-DIC system (ARAMIS 3D Digital Image Stereo-Correlation from 

GOM Instruments), relying on the correlation of successive images because of a black and white pattern 

sprayed on the reverse-side of the specimen (Fig. 1b). For example, the longitudinal strain as measured by 

VidéoTraction has been proved to remain within an error of less than 4%, which accounts for the 2D plane 

measurement bias, since 3D-DIC takes into account the out-of plane displacement when necking occurs.  

In addition to the longitudinal strain, the applied force F is measured directly by a 5 kN load cell. These 

two measurements enable the axial true stress – true strain behavior of the material to be obtained. True stress 

takes into account the reduction of the cross-sectional area ( ) 0S t S  undergone by the sample while it is 

stretched according to: 

( ) ( ), exp11 22 33 22 33

0

F F

S S
    = = − −  (2) 
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(a) 

 

(b) 

Figure 1: a) Principle of the true strain measurements as put into action in the VidéoTraction system. b) 

Pictures of the specimen in non-deformed (left) and highly-deformed (right) states. 

 

Because the measurements of the transversal strains 
22  and/or 

33  are not very reliable with this system, 

or in the case where measurement of the transversal strain is simply not available, a constant volume strain 

hypothesis can be used. This hypothesis is nearly met for our HDPE samples, as proved with 3D-DIC 

measurements of the strain field on both lateral sides of a specimen. Fig. 2 shows that even if the transverse 

strain measurements exhibit some lack of reproducibility and precision, especially at high strains, the curves 

are nearly linear with approximately a -0.5 slope. Hence, we will consider the case where the Poisson 

coefficient  is set to 0.5. 

This criterion is summarized as follows: 

* * .22 33 11 11 0 5     = = − = −  (3) 

A star superscript denotes the calculated transversal strain obtained under a constant volume strain 

assumption. This leads to a null volume strain: 

* *v 11 22 33 0   = + + =  (4) 

and to a true stress calculated with: 

( ) ( )* exp * * exp11 22 33 11

0 0

F F

S S
   = − − =  (5) 

where the observed *
11

  is obtained directly from the measurements of F and 11 . In Fig. 2 the curves 

obtained for *
11

  are plotted for three repeated experiments and the curves obtained for 11  (equation 2), 

where the stress is calculated using the measurement of 22  and the transversal isotropy assumption 

22 33 =  ,  are shown. The limits of this assumption were clearly established in a recent paper (Farge et al., 

1

23
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2013). For the three distinct experiments shown here, it is clear that the ( )11 11   curves present some 

discrepancies due to uncertainties in the transversal strain measurements, whereas the *
11

( )   curves are 

superimposed. As both options introduce some bias, we chose to work with *
11

( )   which ensures a high 

reproducibility of experiments. In the approach developed in section 4 of this paper, the analysis of post-

identification residuals allows the extent of the overall metrological bias to be quantified.  

Fig. 3 represents true stress * - true strain 11 curves for five different strain rates 11  (covering a 3 

decades range). Because only the longitudinal behavior in direction 1 is under investigation, subscript (11) 

will be omitted from now on in the notations of  ,   or other mechanical variables. 

 

Figure 2: True stress  or *  (left axis - the latter in solid black) and transversal true strain 22  (right 

axis), plotted versus longitudinal true strain 11  for 3 repeated experiments –  

Specimen //A  at . 1

11 0 005 s −= . 
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Figure 3: True stress *  versus true strain 11 curves for different strain rates (Specimen //A ). 

 

According to information that is well-known for SCP’s, a plot is shown in Fig. 4 of the true stress as a 

function of the variable strain HT defined as:  

exp( ) exp( )2 1

HT 2    −= − = − −  (6) 

 

with exp( ) 0l l = = , the extension ratio. 

This “Gaussian” strain variable arises naturally from microscopic modeling of the entropic elasticity of a 

molecular network (Treloar, 1975; Haward, 1993). It favors the observation of the mechanical regime at high 

strains which in SCP’s generally appear to follow an almost linear relation  

hard

HTG  =  (7) 

 

where G  stands for the rubbery (or hardening or hyper-elastic) modulus (in MPa) and the superscript hard is 

for the hardening stress, or stress at high strains. As can be seen in Fig. 4, this is so for our HDPE material. 
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Figure 4: True stress *  versus strain variable HT  (specimen //A  - Different strain rates). 

 

Various domains can be clearly identified on the true stress * - true strain curves of HDPE (Fig. 3). 

At very low strains, the mechanical behavior is viscoelastic, i.e. there is no existence of a pure elastic regime. 

The yield point identifies the initiation of a necking phenomenon (Fig. 1b), which takes place for a strain 

range of 0 05 ε 0 1yield. .  , depending on the applied strain rate. At this point, the force reaches a 

maximum in agreement with the first Considere condition (Hiss et al., 1999). After the yield point, the 

mechanical response reveals the presence of a pseudo-plateau corresponding to polymer softening followed 

by a plastic or flow regime. The point where the strain hardening coefficient is greater than 1 (Gaucher-Miri, 

1996) occurs at a value of about 1.2. This corresponds more or less to the second Considere condition 

(Haward, 2007) and marks the onset of hardening. This strain level corresponds to the propagation of necking 

over the whole specimen. The hardening stage initiates in the viscoplastic flow regime and is followed in this 

study up to strains of about .1 9  . More details on the kinematic behavior of HDPE necking and its 

underlying microstructural aspects are discussed in Ye (Ye et al., 2015) and will not be considered in this 

study which is methodologically oriented. 

 

3 Behavioral model for HDPE (an SCP) 

 

3.1 General Formulation 
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 To characterize accurately and correctly the HDPE mechanical behavior, a necessary condition is to 

develop a general constitutive model that can capture the physics involved. The model used in this study 

relies on Thermodynamics of Irreversible Processes (TIP.) (Callen, 1985; Kuiken, 1994). In irreversible 

thermodynamics, State laws are classically decomposed into an instantaneous, or unrelaxed, component and a 

delayed one. In the following considerations, superscripts u  and d  refer respectively to the unrelaxed and 

delayed components. This decomposition is classical in other thermodynamic approaches that make use of 

internal variables (e.g. Maugin and Muschik, 1994). In a tensile test where the strain is imposed, its dual 

thermodynamic variable is the stress, and this corresponds to the system response. The delayed response  d  

is described using a modal approach ( j  subscripts in the equations will denote the j th mode). Meixner 

(1949) proved the existence of a modal basis to describe dissipative mechanisms in thermodynamics. In 

short, this means that the matrix that would represent the effect of a relaxation kernel in a viscoelastic 

integral formulation in algebraic form can always be diagonalized in an appropriate basis. As a result, any 

vector representing variables that govern internal processes can be transformed into vector modes. This 

classical way of thinking in mechanics leads to a simple description of relaxation through a first order kinetic 

model. In this model, the stress ‘fluctuation’ or difference between the modal true stress j and the modal 

relaxed stress 
r

j  regresses according to the modal time j  , which represents the relaxation time governing 

the kinetics of each dissipation mode j . The overall true stress   is the sum of all the modal components, 

j . All this information is summarized in the following rate-type constitutive equation, which is given for a 

single component of the stress-strain tensor in its principal framework (Cunat, 1991; 2001a; André et al., 

2012): 

  rN N
j j u  d  u

j j

j 1 j 1 j

 E  
= =

  −
 =  + =  =  − 

  
   (8) 

 

 
u

jE  corresponds to the modal unrelaxed modulus. 
u

jE  and 
r

j  can be defined by: 
u

j

u

j EpE  0=  

and 
r

j

r

j p   0=  where 
0

jp  is a coefficient that weights the modal component j  with respect to the 

overall quantity. 
r   refers to the stress in the relaxed state. This latter corresponds to the steady-state 

regime of internal mechanisms, where the non-equilibrium forces do not evolve with time. This 

thermodynamic state is strictly defined by 0=A  and is named the "iso-affin" state according to the 

recommendation of Prigogine (1946). A  is the affinity state variable introduced by De Donder (1936) to 

take into account chemical reactions. It is used by mechanical or material scientists in solid rheology to 

describe internal reorganizations that take place in matter under deformation processes (Nowick and Berry, 

1972; Kuiken, 1994; Gutman, 1998). 
uE  stands for the common elastic (Young’s) modulus and hence the 

modal weights must fulfill the normalized condition: 
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N
0

j

j 1

p 1
=

=  (9) 

From equation 8, we can infer that for a tensile test at a very low strain rate or when all relaxation times 

are depleted i.e. viscoelastic effects are finished and the material enters the hardening regime, the true stress 

is expected to behave as does the relaxed one (the non-equilibrium forces are constant). According to this, the 

relaxed state can be seen as a pseudo-equilibrium that is still dynamic. It must not be mistaken for the 

equilibrium state, which is  rigorously defined in TIP by a state of zero affinity A 0=  obtained when all 

external forces are stopped. As an example, this distinction is clearly made in a same type of modeling using 

the viscoplasticity theory based on overstress (VBO) approach of  Krempl, 2001, although the same stress 

notation ( g ) and name ("equilibrium") are used for both. g  can be considered as the equilibrium stress 

"when all time rates are zero" and must be equal to 0 in the absence of applied stress.  At the same time the 

equilibrium stress has to evolve under the application of an external force. It is then said to correspond to the 

stress "that must be overcome to generate inelastic deformation" and corresponds to the variable 
r   in the 

present model. 

The constitutive equation (8) is generally referred to as the DNLR approach (Distribution of Non-Linear 

Relaxations) and has been used in the past to reproduce different experiments (various polymers and loading 

conditions, Rahouadj et al., 2003; Mrabet et al., 2005). It was recently applied to analyze thermomechanical 

experiments with strain and infrared imaging (André et al., 2012). It offers two entry points for modeling: the 

spectrum of relaxation times and the relaxed state.  

 

3.2 Spectrum of relaxation times 

 The full linear spectrum of relaxation times is defined by the following equation  

 

which requires three values to be assigned to parameters: max , ,τ d N . In practice and inherent to the modal 

thermodynamic approach one has to consider vanishingly small relaxation times. As equation 10 distributes 

relaxation times along a logarithmic scale (
d

max min10 =  ) in the interval [ min , max ], the number of 

decades d  has to be as high as possible. In practice, it is set to the minimum value that preserves the solution 

from being dependent on, or sensitive to, larger values of this parameter. In other words, the solutions of the 

Estimation Problem will not depend on its value once it is set to a maximum value. A number d 6=  decades 

is generally required. This is so for the second (hyper)parameter of the model N  , the number of dissipative 

modes or the number of Ordinary Differential Equations (ODE’s) considered in the system of equation (8). 

This behaves for example like the number of nodes of a finite element calculation, the solution should not 

depend on its value. 50=N  dissipative modes for example, build a quasi-continuous spectrum of 

relaxation times. 

N j
 d

N 1

j max  10

− 
− 

−  =   (10) 
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As a result, only one parameter is needed to describe this spectrum in linear viscoelasticity, the longest 

relaxation time max  . This has the advantage of being closer to the physical perception of an experimenter. 

It is named 
T

max where the “T” superscript denotes the Tensile phase of the test. In the case where a non-

linear spectrum is needed, a multiplying (shift-)factor ( ( , ,...)a T t ) is classically used to drive the max  

value (Facio-Toussaint et al., 2001; Mrabet et al., 2005). 

 Following the postulate of an equipartition of the entropy created that accompanies regression of the 

fluctuation around an equilibrium state, a 'universal' spectrum can be defined that links each dissipative 

modal weight 
0

jp  to its corresponding relaxation time j  (Cunat, 1991; 2001a; 2001b): 

j0

j N

j

j 1

p

=


=


 

(11) 

 

3.3 Relaxed state model adopted for HDPE under tensile tests 

 The second entry point for modeling lies in the model used for the relaxed stress 
r  , supposed to 

describe the plastic-hardening phase. The most basic form assumes the linear form    rr E= , but this can 

only produce linear hardening in a plastic regime. As elaborated in section 2, a constitutive law for HDPE 

must comply with a more complex continuous modeling, from the viscoplastic to hardening behaviors. 

Hence, different modeling must be considered for the relaxed state. A SCP in a highly deformed state is 

generally considered as a rubber-type tridimensional network with entanglements. A model for elastomer- 

hardening first considered by Wang and Guth (1952) and modified by Arruda and Boyce (1993) put forward 

cells with eight sub-chains per node which is close to a random distribution of the chains in a real material 

and does not favor any spatial direction. Starting from the works of Haward & Thackray (Haward, 1993) and 

Treolar (1975), Arruda and Boyce (1993) showed that during hardening, the “back stress”, which is 

understood as the stress necessary to overcome the anisotropic resistance to chain alignment, can be 

described by the following formula: 

with ( )c exp(2 ) 2exp( ) / 3 =  +   and where 0N  stands for the density of chains per unit volume, 

n  is the number of segments per chain, which controls the behavior at large strains until the maximum 

extensibility of the network is reached, Bk  is the Boltzmann constant and T  the temperature. 
1−L  represents 

the inverse Langevin function.  

According to Krempl (2001), the term “back stress” is often used in the literature but does not express 

clearly the subtle differences that exist between an equilibrium stress and overstress, called a relaxed state in 

our approach, already discussed in the "General Formulation" section (chapter 3.1). Furthermore, Negahban 

 backstress 10 B c
HT

c

N k T
n  L  

3 n

−  
 =  

  
 (12) 



12 

(2006) considers that the “back stress” concept is responsible for the delayed, or inelastic, response. In the 

framework of Irreversible Thermodynamics based on the concept of Affinity, the distinction between true, 

relaxed, and equilibrium states is self-contained.  

Returning  to the experimental results presented above (Fig. 4), it is clear that the true stress plotted as 

function of the Haward-Thackray strain variable HT  exhibits an almost linear relation, irrespective of the 

strain rate. This fact has already been highlighted in other works (Van Melick et al., 2003). In our paper and 

in view of proposing the most reduced model possible in terms of the number of parameters, the relaxed state 

of our model will be considered to follow the simplified version of equation 12 given below: 

r

HTG  =   (13) 

Only the single parameter G  (called the hardening modulus) is expected to be correctly measured from 

this relaxed state description. 

Finally, the reduced model that will be considered in this study contains only three parameters: uE , G  

and 
T

max  and is now fully described by equation 14:  

0N N
j j HT0 u

j j

j 1 j 1 j

p G  
p E  

= =

  − 
 =  =  − 

  
   (14) 

This constitutive relationship corresponds to a set of very simple ODE’s that can be solved analytically, 

either directly or using the Laplace transformation. The analytical solution for a tensile test at a constant 

strain rate ( ( ) 0t t = ) is: 

( ) ( )
( ) ( )
( )( )

j 0 0

j

t t 2 t0 0 0

j 0 j 0 j j j 0t0 u

j 0 j j

j 0 j 0 0 j

3p e p 2 1 e p 1 e
t p E 1 e G

1 2 1

/

/

−  − 

− 
   −  +  +  − 
   =   − +

     −   + 
  

 

for each modal "branch" 

( ) ( )
N

j

j 1

t t
=

 =   for the overall response 

(15) 

 

The mathematical structure of this model (equation 14) rigorously corresponds to the Biot model for 

viscoelasticity (Biot, 1958) or to a generalized Zener model (Tschoegl, 1989), except that a recursive-type 

relation links both the relaxation times and weights (equations 10, 11; André et al., 2003). In the case where 

the relaxed stress is modeled through a linear relationship    rr E= , this model has an exact equivalent 

analogic representation in terms of springs and dashpots, which is given in Fig. 5. The following 

correspondence between the springs and dashpot constants  and the parameters of the model is required: 



13 

u 0 u

j j 1E p E E= =                 
r 0 r 1 2
j j

1 2

E E
E p E

E E
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+
                  ( )j j 1 2E E =  +  

 

 

 

Figure 5: Approximate analogical representation of the model described by equations 14-15.  

In the case where the relaxed stress is modeled through the more complicated relation of equation 13, this 

schema no longer holds (there is no analogical schema available for the Kelvin unit) but the mathematical 

structure of equation 14 remains identical. 

The relevance of this 3-parameter model will now be proven through the sensitivity analysis and 

parameter identification procedures.  
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4. Identification Procedure 

All fundamental mathematical concepts of the Parameter Estimation Theory and major definitions have 

been summarized briefly in the Appendix to recreate a sequential presentation of the results. Nevertheless, 

they are also at the heart of the rational study presented below. 

4.1 Adjustment Results 

The model described above was applied to experimental data )(*   to identify the following 

parameter vector: ]G ,[ max

TuE  = . We made computations with Matlab Software and used the 

Levenberg-Marquardt algorithm to minimize the least square criterion (equation A-2). Once the convergence 

was reached and the parameters determined, we could calculate the sensitivity coefficients at this point of the 

parameter space (equations A-4a, A-4b) along with the resulting optimal confidence bounds (equation A-15). 

We roughly determined the initial 
init  values used as starting approximations to calculate the parameter 

vector, according to various strategies. We derived an initial instantaneous modulus from the approximate 

slope at the origin of the stress-strain curve. An initial value for the maximum relaxation time can be derived 

by assuming a pure exponential-type behavior of the rising part of the curve as a result of a step input. For the 

experiment performed at a strain rate of 
3 15 10 s− −  for example (Fig. 6), a characteristic strain of the order 

of 0.04 can be deduced from the rule of tangents, or logarithmic plots, and this leads to a typical time of 

about 8 seconds. Finally, a "visual" linear regression applied to the experimental data of Fig. 4 gives a first 

rough estimate of the order of magnitude of 110 50 2.2G MPa= = . We intentionally performed the 

identification of the 3 parameters for each experiment carried out at each strain rate. That is to say, there is no 

parameter in the model that accounts for a strain rate dependency. This latter may be analyzed from the 

results brought about by the identification for the two parameters that can physically carry this dependency, 

namely G  and 
T

max . 

Two different identification intervals can be considered. In cases where small strain levels are examined (

.yield 0 13   – Interval I), the way the relaxed state is modeled has no influence on the solution. Only 

uE  and 
T

max  parameters can be identified. The modeling cannot be sensitive to the hardening phase since 

the polymer is still in the viscoelastic regime. Identifications performed on either  or *  lead to the same 

results. In Fig. 6, both the experimental data and the model for the optimal identified values (reported in the 

insert in the figure) are plotted. Setting aside the initial points of the curve, which are highly dependent on the 

feedback-loop control efficiency, the identification residuals lie in the [-1, 1] MPa range, which represents a 

maximal discrepancy of 3% with respect to the yield stress value (of the order of 33 MPa). If the 

identification interval covers a high range of strains ( 20   - Interval II), then the complete model can be 

used to account for the hardening.  
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Figure 6: Experimental data, fitted curve (equation 15) and residuals obtained when identifying parameters 

uE  and 
T

max  on interval I (Specimen //A  - Strain rate of 
3 15 10 s− − ). 

 

Figs. 7 and 8 show the experimental and fitted curves obtained for specimen //A  for two different strain 

rates. Good agreement between the model and the experimental tensile curves was obtained. The residuals, 

that is the difference between the modeled data for the optimally identified parameters and the experimental 

data, are also plotted in the same figures (right axis MPa scale). In the ideal case, the model would perfectly 

represent the true behavior of the material and the experimental set-up would be in total agreement with the 

assumptions of the model (e.g., perfect ramp excitation, exact sensors etc.). Then these residuals would be 

unsigned and distributed around the zero-value. They should in fact represent the only measurement noise 

carried by signals *  and 11 . If and only if the identifiability of the parameters of this model is proved, 

null residuals mean that the parameters are perfectly identified. The confidence interval is then mainly due to 

the contribution of the noise (equations A-15 or A-17). In the two experiments reported in Figs. 7 and 8, the 

residuals show a signed ("non-ideal") character, which means that some bias exists (incompatibility between 

model and data). This bias means an additional error in the estimated parameters (biased estimations). If the 

bias remains limited (of the order of the noise level as is the case in Figs. 7 and 8) then the parameters can 

still be considered to be well-identified. In the present case and according to the sensitivity analysis tools 

presented in the Appendix, this means that the estimation process produces the unique optimal set of 

parameters that minimizes the residuals in the least-square sense. Assuming no bias in either the data or the 

model but the same amount of noise, the variances on the unbiased parameter estimates can be shown to be 

lower-bounded by those calculated using equation A-15. The existence of a bias generally helps the 

experimentalist to improve the model-experiment couplet. For example in this metrological application, a 

possible origin of the bias may be the non-ideal input command. In our case, the input ramp ( ) tt   =  is 
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very good due to the special care taken in the selection of the PID settings used by the control feed-back 

loop. The bias here could be due to the choice of working with the isochoric assumption to produce our 

observable stresses and strains (equations 3 to 5), which is the price to pay to avoid using (bad) transversal 

strain measurements to calculate the cross-section variations of the specimen with respect to time. This bias 

can also be due to the approximation used in the relaxed state modeling (equation 14) as evidenced by the 

curves shown in Fig. 4 since the linear behavior is not perfect. If this bias is too great, trying to reduce it by 

tracking defects with respect to the idealized experimental conditions is the first thing to do. A refinement of 

the model can be a legitimate second step. Otherwise, a refinement of the model stimulated by biased data 

can be dramatic in view of the Parameter Estimation Problem (PEP). For example, trying to use here the 

Arruda & Boyce model of equation 13 will introduce additional unnecessary parameters ( 0
N  and n  in 

isothermal conditions) which will distort the PEP and introduce poor identifiability conditions. In so far as 

the residuals remain small enough with respect to the signal to noise ratio, which is the case here, the model 

is judged efficient in terms of adjustment ability and one now has to investigate it in terms of identifiability 

of its parameters, especially the instantaneous Young modulus. 

 

 

Figure 7: Experimental data, fitted curve (Eq. 15) and residuals obtained when identifying parameters 
uE , 

G  and 
T

max  on interval II (Specimen //A  - Strain rate of . 3 12 5 10 s− − ). 
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Figure 8: Experimental data, fitted curve (Eq. 15) and residuals obtained when identifying parameters 
uE , 

G  and 
T

max  on interval II (Specimen //A  - Strain rate of 
3 15 10 s− − ). 

 

It is also interesting to show the results of the identification procedure when the tensile test is followed by 

a relaxation (initiated around a strain of 1.9). The reduced model can still be used but with two variations. 

When relaxation starts, the material is highly deformed. This new excitation applies to a material which is 

totally different and implies a change in the modeling associated with the relaxed state and the time spectrum. 

For the relaxed state a simple constant stress value noted =  r 
 ,"equilibrium" state at rest, is assumed 

to be reached at long times. The spectrum conserves its properties of linearity, number of decades d  and 

number of modes N , but is simply shifted according to a new maximum relaxation time noted 
R

max  that 

is a new property of the material in a complete fibrillary state for such a high deformation. Note that in view 

of our constitutive model, the instantaneous, or unrelaxed, modulus has not to be considered different. For a 

whole tensile-relaxation test, the parameter vector is now ],,G ,[ maxmax

RTuE  = . The results of 

the identification are shown in Fig. 9 for specimen B. The agreement is very good, both in the tensile and 

relaxation stages with the same 
uE  value. Physically, this means that the SCP elastic, or instantaneous, 

properties are the same in the initial bi-phasic microstructure and in the fibrillary state, when unloading is 

triggered.  

For both tensile and tensile-relaxation tests the fit is good, although a simple linear viscoelastic approach 

is considered for the model; the spectrum of relaxation times is fixed once with a single parameter and it does 

not change during the test. 



18 

 

Figure 9: Tensile test followed by a relaxation for specimen B. Experimental data, fitted curve (Eq. 15) and 

residuals plotted as a function of time. Identified parameters are   ,G , max

TuE  and 
R

max -  

- Strain rate of 
3 15 10 s− −  (400 s correspond to a true strain of 2). 

 

 

4.2 Sensitivity Analysis 

Fig. 10 plots the normalized sensitivity coefficients (equation A-4b) of the model parameters and Table 1 

presents the results of the stochastic analysis (Matrix   of equation A-17).  

 

Interval I Eu τmax
T 

Eu 2.15 % -0.9667 

τmax
T -0.9667 3.61 % 

 

a) b) 

Interval II Eu G τmax
T 

Eu 1.37 % -0.18 -0.9988 

G -0.18 0.06 % 0.147 

τmax
T -0.9988 0.147 1.38 % 

Table 1. Variance-correlation matrix   of parameters 
uE  and 

T

max  on interval I (a) and 
uE , G , 

T

max

on interval II (b). 

 

Parameters 
uE  and 

T

max  apparently seem to be strongly correlated over a large part of the curve 

(between 1.0  and 8.0 ). If the identification was only carried out on the 'plateau', it would be 
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impossible to gain simultaneous information about 
uE  and 

T

max . Indeed, the correlation coefficient 

between 
uE  and 

T

max  has a value very close to 1 (Tables 1a and 1b). Therefore further investigation is 

required. Figure 11 plots the sensitivity of the elastic modulus 
uE  versus that of the relaxation time 

T

max . 

One can see that at small strain values ( 13.0 ), the sensitivities of 
uE  and 

T

max  show a nearly linear 

behavior with a zero intercept, which explains in part the high degree of correlation found. Nevertheless, 

there is sufficient divergence in their behavior to have good identification conditions. Indeed, the singular 

point around .11 0 13 =  that marks the transition between the different regimes can be seen in the insert of 

figure 11. Furthermore, the relative errors calculated for both 
uE  and 

T

max  parameters are of the order of a 

few percent. The parameter G  can be estimated with a very low confidence bound (error of 0.06 %) as a 

consequence of its very weak or inexistent correlation with the other parameters ( 18.012 −=  and 

14.023 = ). The robustness of the identification has been checked by changing the initial values of the 

optimization algorithm. If two parameters were correlated, then the estimated values would have changed for 

each different run. Converging towards a single identified parameter vector, whatever its initialization, is a 

good verification that the PEP is well-conditioned.  

Concerning the use of interval I to perform the identification of parameters 
uE  and 

T

max only, the 

sensitivity analysis helps in their definition. For strain values below 0.13, the sensitivity to G  is only 5% of 

the maximum sensitivities of 
uE and 

T

max  and therefore this parameter can be omitted. When Tables 1a 

and 1b are compared, it can be seen that the variances of parameters 
uE and 

T

max  are lowered by a factor 

of 2 when considering interval II instead of interval I. Therefore using the whole curve is recommended. 

Additionally, the sensitivities of both 
uE and 

T

max  remain at their maximum value after the yield. This is 

physically sound as they actually determine the value of the yield stress plateau. 
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Figure 10: Normalized sensitivities to 
uE , G  and 

T

max  parameters on interval II. 

 

 

Figure 11:  Normalized Sensitivities ( )
uX E  as a function of max( )TX  . 
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5. Identification results and validation of the approach 

The MBM approach can be validated by analyzing the results obtained for tensile tests performed at 

different strain rates. Table 2 gives the values estimated for specimen A on both interval I (
uE ,

T

max ) and 

interval II (
uE ,

T

max , G ). 

 

Strain rate 5.10-5 s-1 4.10-4 s-1 2,5.10-3 s-1 5.10-3 s-1 10-2 s-1 

Eu (MPa) 

Interval I 

2777 2783 2787 2828 2846 

Eu (MPa) 

Interval II 

2811 2809 2940 2812 2772 

τmax
T  (s) 

Interval I 

433.64 64.17 11.40 6.01 3.17 

τmax
T  (s) 

Interval II 

419.72 63.23 11.02 6.01 3.21 

G (MPa) 
1.53 1.85 2.31 2.31 2.46 

Table 2. Identified values of parameters 
uE ,

T

max  (Identification interval I) and 
uE ,

T

max ,G 

(Identification interval II) for Specimen //A  at different strain rates 

 

Firstly, we compared the measurements obtained for the elastic modulus to those given by two other physical 

techniques and for the two specimens, A and B. Secondly, we analyzed the consistency of the values 

obtained for the 3 parameters of this rheological model. 

Elastic moduli measurements - Comparison with other techniques.  

As can be seen from Table 2, the elastic moduli identified for sample A, specimen //A , lie in the range 

from 2720 to 2950 MPa for all experiments including the results obtained from both identification intervals 

and more than 3 experiments were reproduced at each different strain rate. This represents a variation of 

%4  around the central value, which corresponds to the order of magnitude of the estimated variances 

yielded by the stochastic analysis (Table 1b). The uncertainty of these measurements has been calculated by 

changing the value of the identified 
uE  within a 

uE   interval so that the direct model produces 

theoretical curves that flank the experimental ones. This allows the bias effects evidenced earlier by the 

residual plotting to be taken into account. For specimen //A , at a strain rate of 
3 15 10 s− − , this uncertainty 
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is 180MPa   that corresponds to a variation of 
6,5%

 around the nominal value. The results for all 

specimens tested are: 
1802830 MPa

, 
2002940 MPa

, 
2602400 MPa

, and 
1502270 MPa

 for 

specimens //A , cA , ⊥A  and B, respectively.  

To check the validity of the results obtained by this MBM approach, two independent direct 

measurements of the elastic modulus of the material were carried out. One relies upon the Pulse-Echo 

technique, which is based on ultrasound measurements (Optel OPBOX system). Direct measurements of the 

velocity of a sonic wave at 5MHz were made in the longitudinal and transversal directions of the sample 

which allowed an elastic modulus to be calculated. The other measurement depends upon the 

Nanoindentation Continuous Stiffness Method. Indentation tests were performed with Nanoindenter IIS at the 

L.M.A Femto-ST laboratory (France). Harmonic excitations of the pyramidal Berkovich probe tip at 45 Hz 

allowed the measurement of a complex modulus (and hardness) of the material with good precision (Olivier 

et al., 1992; Le Rouzic et al., 2009). 

Table 3 gathers together the values of the elastic modulus obtained for all 500 Natural HDPE A ( //A ,

⊥A and cA ) and B specimens by the three metrological techniques (MBM, PE and Nano subscripts, are 

for respectively the Model Based Metrology applied to tensile curves, Pulse-Echo and Nanonindentation 

techniques).  

Table 3. Comparison between elastic modulus values given by standards applied to tensile curves, the present 

model-based parameter estimation, the Pulse-Echo technique and the Nanoindentation technique, for all A (

//A , ⊥A , cA ) and B samples (in MPa). Discrepancy percentages in brackets were calculated with 

reference to 
u

MBME . 

Specimen 

M
an

u
fa

ct
u

re
r 

 

ISO 527-1 

N 5 =

mm/min 

(values for 

ASTMD638) 

ISO 527-1 

N 6 =

mm/min_ 

(values for 

ASTMD638) 

Present Model-

Based parameter 

estimation 

u

MBME  

Ultrasonic 

technique 

 

u

PEE  

Nanoindentation 

 

u

NanoE   

A 

//A  

1200 

1138 

(1141) 

1475 

(1479) 

2830 278040 

(-2%) 

238040 

(-16%) 

cA  
- - 

2940 2800230 

(-5%) 

273060 

(-8%) 

⊥A  
- - 

2400 
278040 

(= 
//

u

AE ) 

232040 

(-3%) 

B 
772 

(763) 
- 

2270 

2220230 

(-2%) 

2180110 

(-5%) 
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The data obtained by applying standards on tensile curves are also given. These last values show that 

standards are far from producing (i) reliable data and (ii) physically founded estimations. The discrepancy 

between standards and experimental techniques can be as high as 300% and the values obtained depend on 

the applied displacement rate. Nevertheless, using tensile curves to precisely identify the elastic modulus of 

polymers is possible if a correct MBM is used. This can be asserted from the comparison made in Table 3 

where the values yielded by the two other physical techniques have all the corresponding uncertainty 

intervals. 

For all specimens, the three techniques gave very similar results. The agreement was very good between 

MBM and PE values, but local differences from the Nanoindentation test occurred. These differences must 

be analyzed carefully. For specimen //A , the value given by the “Nano” technique is 16% lower than by the 

MBM and PE techniques. This can be explained since this former technique probes a small volume just 

behind the surface. The value identified is then sensitive to a skin effect which is generally observed on thick 

extruded samples (such as for the 6mm //A specimen). In contrast, both the MBM and PE methods probe 

the entire volume. As specimen B was manufactured directly with a 4 mm thickness, this effect is not visible 

within the confidence intervals of the three measurements. Looking at specimen cA , this effect should 

disappear. Higher values of
u

NanoE  are indeed obtained and the three techniques give more convergent results. 

This proves that (i) from a physical point of view core samples are slightly more rigid than full samples, with 

less differences in microstructure and (ii) from a metrological point of view, the MBM technique is sensitive 

to such small variations.  

Examining the incidence of these results on the material property, it is clear that even though this 

commercial HDPE is produced under the same reference for specimens A and B, it can exhibit major changes 

in its elastic behaviour (around 600 MPa ). The increase in elasticity of //A , cA samples compared to 

sample B indicates an oriented texture due to the extrusion process. The presence of such anisotropy is 

confirmed by a positive anisotropy index measured for the nondeformed HDPE //A  specimens, thanks to 

X-ray microtomography (Blaise et al., 2010). This result conforms to those reported by Legros et al. (1999), 

where un-oriented and oriented HDPE are investigated by the Pulse-Echo technique. Oriented HDPE 

produces a higher longitudinal and shear wave signal and hence a higher elastic modulus than does un-

oriented HDPE. 

Lastly, as expected from an instantaneous modulus, the identified values can be considered as 

independent from each other. 

 

Analysis of the results for the other parameters 

The results were next analyzed with respect to viscosity, hyper-elasticity (or hardening) and time-

dependency. Table 4 brings together the estimated maximal relaxation times max

T , for specimens //A  and B 
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for different strain rates. The corresponding Weissenberg number (similar to the Deborah number) is also 

shown, as is the identified hardening modulus G. 

 

Specimen 
Strain rate 

(s-1) max

T  (s) maxWe  G (MPa) 

//A  

5.10-5 419.72 
0.0209 

1.53 

4.10-4 63.23 0.0252 1.85 

2,5.10-3  11.02 0.0276 2.31 

5.10-3 6.01 0.0301 2.31 

10-2 3.21 0.0321 2.46 

B 

5.10-3 7.16 0.0358 2.30 

10-2 3.79 0.0379 2.39 

 

Table 4. Average estimated maximal relaxation time 
T

max , corresponding Weissenberg number maxWe  and 

hardening modulus G  for specimens //A  and B at different strain rates. 

 

The Weissenberg number corresponds to the ratio between the time constant matt characterizing the 

intrinsic ‘fluidity’ of the material and the time scale of the experiment or of the observer expt . The fluidity of 

the material is inversely proportional to the Weissenberg number. In the present case, its maximal value can 

be calculated by the following formula: 

 

max max
mat

exp

t
We  

t
 = =  

(16) 

 

where τmax, the maximum relaxation time of the spectrum, is used for the material characteristic time and 1   

for the experimental characteristic excitation time. 

The Weissenberg number varies logarithmically from 0.02 to 0.032 (+50%) over nearly 3 decades of 

strain rates. A regression gives max 0.005 log( )We   . The increase in the Weissenberg number agrees 
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well with the observation that plasticity of the material is enhanced when strain rates are diminished. The low 

values of maxWe  also indicate that the time response of the material always remains two logs below the time 

scale imposed by the experiment. This argues in favor of a similar scenario for the succession of internal 

mechanisms taking place at the microstructure levels. Finally, it has been shown by André et al., (2012) that a 

characteristic time of the order of 1s can be derived from energetic measurement for a strain rate of 

2 110 s− − = , which validates the order of magnitude found here for 
max

T . Additionally, a good agreement 

of the values found for 
uE  and 

max

T  with respect to the strain rate dependency of the yield stress and the 

identification intervals was found. Re-examining Table 2 shows two things: 

- When identified values of 
uE  increase slightly between the two identification intervals I and II, then 

the corresponding max

T  value decreases, and the contrary is true. 

- The 
max

u TE   product increases with strain rate. 

Both effects can be explained as follows. At short times, the model (Eq. 15) acts like 

( ) ( )/ jt0 u

0 j j

j

t p E 1 e


  
−

= − . The behavior of the material is roughly considered to be described by a 

simple exponential relation like ( ) ( )/t

yieldt 1 e


 
−

= − . As a result the pre-factors can be compared 

through 
max

u

0 yieldk E    (k is a constant which weights max  to have a barycentric relaxation time 

corresponding to  ) . The yield stress increases with strain rate in the experimental curves and for a given 

strain rate a constant yield  imposes that 
uE  varies inversely proportionally to max . 

Concerning the value of the hardening modulus G  that describes the behavior of HDPE at a high strain, 

the identified values for all strain rates are also in a logarithmic dependency with respect to the strain rates. 

The values identified for G  are close to those found in the experimental results of uniaxial tensile tests 

reported by Haward for HDPE (Haward, 1993; Haward, 2007) and the value found by Bartczak and 

Kozanecki (2005) for linear polyethylene in plane-strain compression. The estimated hardening modulus 

appears to be the same for both specimens A and B, which is in line with the idea that the microstructure 

transformation in uniaxial drawing is highlyreproducible for a given polymer even if the initial state may be 

different. 

Considering the consistency of all estimated parameters, one can remember that the sensitivity analysis 

showed that the identification of parameters 
uE ,

T

max and G  of the reduced model (Eq. 15) was possible 

with good variances (confidence bounds) and that the order of magnitude was confirmed by the uncertainties 

obtained from the residuals analysis. For each strain rate tested, the same value was identified for the elastic 

modulus, as expected from the instantaneous character of this physical parameter. Young's modulus results 

obtained with the MBM approach have been corroborated by two other independent and direct physical 

measurements that probe the material at high frequencies (MHz) or at small spatial scales (nm-µm). This is 

clear evidence of the consistency of the approach with the underlying physics, because this agreement is the 
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corollary of an identified maximum relaxation time of the order of a few seconds. As a spectrum of 6 decades 

is considered in the model to arrive at convergence of estimates, this means that relaxation times as small as 1 

µs are necessary to allow for a good description of the data and a determination of the ‘truly’ instantaneous 

modulus. The pulse-echo technique relies on excitation at 5 MHz, which means that the time scale required 

by the model is in perfect agreement with this technique, and supports the identification of an 

“instantaneous” modulus. For the Nanoindentation technique, the spatial size of the representative elementary 

volume is less than a micrometer, which means that small time scale events are also probed.  

 

6. Conclusion 

In the light of the characterization of SCP trough tensile tests, both ideas of using an appropriate reduced 

metrological model in the relationship of sensitivity analysis principles have been shown to be key concepts 

for a correct estimation of the parameters of the model through optimization procedures. The 3 parameter 

rheological model we have developed is sufficient to apprehend correctly the physics of the tensile behavior 

and to give reliable estimates of the parameters. Based on such measurements, much precise information can 

be gained concerning the behavior of the polymer. An illustration has been given of the apparently simple 

problem of measuring an instantaneous Young modulus, where contemporary recommended standards lead 

to measurements twice as low as the experimental values. If good confidence bounds are obtained for the 

estimated parameters, associated phenomena like strain rate effects in our case, can be more securely 

quantified. Additionally, any deviation in the residuals can be considered to result from a bias (in the model 

or in the experimental conditions) which in all cases, give the modeler-experimentalist new trails to improve 

the model and experimental conditions. 

Like various other works in different fields of physics, we hope that the research described here 

demonstrates that major improvements can be expected if simple identifiability principles are used more 

frequently in material science studies.  
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Appendix: Sensitivity Analysis Fundamentals 

 

Let ( )measy t  be the measured stress output of a system (our material specimen), and ( )y ,tβ  the 

theoretical stress output of the behavioral model with a parameter vector β  of dimension n  , representing in 

our case the n  constitutive material parameters. The output error ( )te  or the residuals can be defined as:  

( )mease( t ) y ( t ) y ,t= − β  (A-1) 

 

The role of an estimator is to minimize this output error. A least square criterion can be used classically 

and is written as follows: 

( ) ( )( )
m

2
meas

LS i i

i 1

E y t y ,t
=

= − β  (A-2) 

where the sum is made over the successive acquisition times it , up to a total number of measurement data 

points m . 

The minimization of the criterion is done when its derivatives with respect to parameters j  ( ...j 1 n= ) 

are null: 

[ , ],j 1 n  LS

j

E
0




=


 →

( )
( ) ( )

m
i meas

i i

i 1 j

y ,t
y t y ,t 0

=

 
 − =    


β

β  

 → ( ) ( ) ( )( )
m

meas

j i i i

i 1

X ,t y t y ,t 0
=

 − =  β β  

(A-3) 

 

From this equation, the sensitivity coefficient vector component jX  associated to the parameter j  can 

be clearly recognized as: 

( )
( , )

, i
j i

j

y t
X t




=



β
β  

(A-4a) 

 

Normalized sensitivity coefficients: 

( , )
j j

j

y t
X 




=



β
 

(A-4b) 
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are introduced to check graphically the level of sensitivity and possible correlations between parameters: 

different intervals of the time-independent variable t  may be advantageously considered. These coefficients 

are dimensionally homogeneous to the signal itself, the stress in MPa. 

Sensitivity coefficients express how much a model reacts to some small variation of the parameters. 

Sensitivity coefficients play a fundamental role in the conditioning of the inverse parameter estimation 

process and, as a consequence, in the errors made in the estimates of confidence bounds. It is obvious that 

major sensitivities are sought for, when designing an experiment for metrological purposes. In almost all 

cases, sensitivity coefficients are non-linear functions of the parameters themselves when the model y  is a 

non-linear function of j . 

Switching to a matrix formulation and defining vectors 
meas

Y  and Y  as: 

( )

( )

( )

...

meas

1

meas

2meas

meas

m

y t

y t

y t

 
 
 

=  
 
 
  

Y   and  

( )

( )

( )

,

,

...

,

1

2

m

y t

y t

y t

 
 
 

=  
 
 
  

β

β
Y

β

 (A-5) 

makes the minimization process expressed as  

( )T meas 0=X Y - Y  (A-6) 

with X , the m n  sensitivity rectangular matrix, where m  is the number of rows (dimension of the 

experimental observation time vector t ) and n  is the number of columns (dimension of the parameter 

vector  β ): 

In the case of a linear model with respect to the parameters (linear estimation problem) for which the 

matrix of the sensitivity coefficients does not depend on the parameters, we have: 

The estimated parameter vector, denoted by β̂ , corresponds to the value reached by β  when the criterion 

is minimized. Therefore using (A-7) we can rewrite equation (A-6) as: 

( )T meas ˆ =X Y - Xβ 0  (A-8) 

The (A-8) relation can be inverted to obtain the expression of β̂  in the case of a linear estimation 

problem: 

Y = Xβ  (A-7) 

( )
1

T T measˆ   
−

=β X  X X Y  (A-9) 
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However, most parameter estimation problems are not linear and require an iterative linearizing 

procedure. This is obtained by developing the solution at rank n+1 in the neighborhood of the solution 

obtained for the prior iteration at rank n: 

( )( n 1 ) ( n ) ( n ) ( n 1 ) ( n )ˆ ˆ + += + −Y Y X β β  (A-10) 

If the relation (A-6) is written at rank n+1 for parameters estimated at rank n, we obtain: 

( )T ( n ) meas ( n 1 )+− =X Y Y 0  and when this is combined with the relation (A-10) we obtain the following 

relation of recurrence between estimated parameters at rank n+1 and rank n: 

( ) ( )
1

( n 1 ) ( n ) T ( n ) ( n ) T ( n ) meas ( n )ˆ ˆ   
−

+ = + −β β X X X Y Y  (A-11) 

which defines the iterative procedure that can be used to estimate the parameters (Gauss-Newton algorithm). 

The statistical estimator's properties depend on the noise )(t of the signal. If the theoretical model is 

assumed to be unbiased (perfect) then we have: 

( ) ( , ) ( )measY t Y t t= +β  (A-12) 

If classical statistical assumptions are made concerning the experimental noise )(t  in the measured 

stress signal (Beck et al., 1977), it is possible to obtain an approximation of the errors that can be made in the 

estimation process for the different parameters. These assumptions are: 

a. zero mean value of the signal in the absence of excitation, which corresponds to a zero expectancy for noise 

(expected value ( )E 0=ε ); 

b. constant variance or standard deviation of the noise: ( )  2

0V =ε . 

In the case of a 1st order linearized estimation, its expected value can be proved to be: 

ˆ( )E =β β  (A-13) 

This means that there is no error or bias made on the identified parameters. 

The variance-covariance matrix Δ  on the estimated parameters (generalization of the scalar-valued 

variance to a higher dimension) involves the sensitivity coefficients. It is calculated as 

( )( ) ( )( ) ( )ˆ ˆ ˆ ˆ
T 1

2 T

0E E   E  
− 

= − − =  
Δ β β β β X X  which in the expanded form gives: 
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( ) cov( , ) ... cov( , )

cov( , ) ( ) ... cov( , )

... ... ... ...

cov( , ) cov( , ) ... ( )

1 1 2 1 p

1 2 2 2 p

1 p 2 p p

V

V

V

    

    

    

 
 
 

=  
 
 
 

Δ  (A-14) 

 

A stochastic analysis can be made that consists of calculating the variance-covariance matrix through 

equation (A-14) theoretically according to a given noise and set of parameters. This symmetric square matrix 

has a dimension equal to the number of parameters. The diagonal terms correspond directly to the variance of 

each parameter )( jV  . They can be used to determine the error made for each parameter. This error can be 

expressed as a %: 

( )
( )

j

j

j

V
Err





=  (A-15) 

The off-diagonal terms can be used to calculate the correlation coefficients mn  which express the degree 

of correlation of the parameters: 

cov( , )

( ) ( )

r s
rs

r sV  V

 


 
=  (A-16) 

 

The rs  values lie between 0 and 1. In the case of a model with strongly correlated parameters, the 

correlation coefficients are close to 1, which means that two columns of the sensitivity matrix X  are nearly 

proportional to each other. The resulting confidence bounds interval for two correlated parameters are 

therefore generally very high. This means that a large number of solutions exist for these two parameters to 

allow for a good fit to the experimental curve. A deterministic algorithm like the steepest gradient technique, 

used for the minimization process,  is consequently very sensitive to the initial estimate made for the 

parameters. A strategy to produce first approximations using the physical background is highly 

recommended. But even so, the estimation problem is ill-conditioned and indicates to the experimentalist that 

the physical description involved is probably not appropriate and must be changed. 

In the following considerations, the identifiability of the model parameters will be analyzed through the 

Δ  array, which combines the variance-covariance matrix and the correlation matrix. Δ  puts the main 

diagonal of Δ  in place and the correlation coefficients on the off-diagonal terms. 

( ) ...

( ) ...

... ... ... ...

... ( )

1 12 1 p

12 2 2 p

1 p 2 p p

Err

Err

Err

  

  

  

 
 
 

=  
 
 
 

Δ  (A-17) 
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When there is no model bias, or perfect agreement between the conditions of the experiment and the 

model based on it, the relation between the estimated parameter vector for the non-linear estimation problem 

and its ‘exact’ value can be given at convergence by the following formula: 

( )
-

ˆ
1

T T
β = β + X  X  X  ε  (A-18) 

In this case, the residuals ( )te  that are the difference between the model and the data correspond exactly 

to the noise. Their standard deviation corresponds to the experimental standard deviation of the noise and the 

residuals remain unsigned with no large fluctuation around the zero level. 

The matrix Δ  is a good tool to investigate the identification conditions of a parameter estimation 

problem.  
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