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TOPOLOGICAL SENSITIVITY-BASED ANALYSIS
AND OPTIMIZATION OF MICROSTRUCTURED INTERFACES\ast 

MARIE TOUBOUL\dagger , R\'EMI CORNAGGIA\ddagger , AND C\'EDRIC BELLIS\S 

Abstract. This paper concerns the optimization of microstructures within a surface when
considering the propagation of scalar waves across a periodic row of inclusions embedded within a
homogeneous matrix. The approach relies on the low-frequency homogenized model, which consists,
in the present case, of some effective jump conditions through a discontinuity within the ambient
medium. The topological derivatives of the effective parameters defining these jump conditions are
computed from an asymptotic analysis. Their expressions are validated numerically and then used
to study the sensitivity of the homogenized model to the geometry in the case of elliptic inclusions.
Finally, a topological optimization algorithm is used to minimize a given cost functional. This relies
on the expression of the topological derivatives to iteratively perform phase changes in the unit cell
characterizing the material, and on FFT-accelerated solvers previously adapted to solve the band cell
problems underlying the homogenized model. To illustrate this approach, the resulting procedure is
applied to the design of a microstructure that minimizes transmitted fields along a given direction.
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interfaces, effective jump conditions
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1. Introduction. The design of microstructured media allows one to control
wave propagation and may lead to exotic effects, e.g., negative refraction, subwave-
length imaging, lensing, and cloaking, to cite a few. It constitutes the paradigm of
metamaterials, which have undergone spectacular developments since the early 2000s;
see [19] and references therein for an overview. An active direction of research con-
cerns the size reduction of microstructures to design compact metamaterial devices.
It is indeed advantageous to replace a volumic distribution by a surfacic (in three
dimensions) or a lineic (in two dimensions) distribution of scatterers, often called
metasurface [10] or metainterface [27].

The two-scale homogenization method is a privileged tool to derive formally an
approximate model for wave propagation in microstructured media [12, 44]. It avoids
having to mesh fine spatial scales and gives an analytical insight on the macroscopic
behavior of waves. However, the usual homogenization methods in the bulk fail when
considering a thin row of scatterers, because of boundary effects at the transition
between the scatterers and the homogeneous medium in which it is embedded. To
recover their efficiency, these methods must then be combined with matched asymp-
totic expansions [29], yielding effective jump conditions on an equivalent metainterface
[21, 31, 20, 30, 42].
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 837

In the context of metamaterials, the optimization of microstructures is a useful
tool to determine designs that exhibit interesting macroscopic behaviors. To this
purpose, different types of optimization can be considered: (i) the parametric opti-
mization when the shapes are parameterized by a fixed number of variables (thickness,
dimensions, etc.); (ii) the shape optimization [1] when, from an initial shape, the posi-
tion of the boundaries of the microstructure is changed without changing its topology;
(iii) the topological optimization [11] when the best possible geometry is sought, even
if it means changing the topology. In this work, we are interested in topological opti-
mization, which leaves more freedom compared to the first two methods. The chosen
mathematical tool to perform this type of optimization is the topological derivative
[7, 38], which measures the sensitivity of a cost functional to infinitesimal topological
perturbations.

Then, different numerical methods can be employed to update the material prop-
erties based on the knowledge of the topological derivatives. One method used in this
paper is the level-set method. For a two-phase material, it relies on the characteriza-
tion of the phase distribution thanks to a level-set function which is strictly positive
in one phase and strictly negative in the other phase. This was first introduced for
shape optimization and is based on the fact that the interface between phases, which
corresponds to the zero level-set function, can evolve based on the shape derivative
of the cost functional with respect to a perturbation of this interface [2, 3]. This
methodology was then adapted to topological perturbations based on a projection
algorithm [8, 9, 24, 39].

A strategy for microstructure optimization, in line with the homogenization set-
ting considered in this paper, is to perform the optimization from the homogenized
model that describes the material, an issue often referred to as inverse homogenization
[45]. It relies on the definition of a cost function, to be minimized, in terms of the
effective coefficients that characterize the homogenized model. At low frequency, this
method has been used in statics [9, 25, 39] and in dynamics for a low contrast [3, 17]
and a high contrast [49] of the physical properties (activating resonances of the highly
contrasted inclusions). It has also been extended to optimize effective properties at
high frequencies [37].

In this framework, a topological optimization procedure is presented in [17] to
optimize dynamical properties for antiplane shear waves based on homogenization.
The main ingredients are the following ones:

1. the two-scale asymptotic homogenization method is deployed,
2. a cost functional is constructed from the homogenized model,
3. its topological derivative is computed,
4. the cost functional minimization is performed thanks to a level-set algorithm,
5. the level-set is iterated by computing cell problems using FFT-accelerated

solvers.
Noticeably, works on the optimization in dynamics of microstructured thin layers

are more scarce and recent: [32] for an optimization of slabs based on their far-field
behavior and [36] for a design of acoustic metasurfaces based on a homogenization
model. In the present paper, we perform a sensitivity analysis and the optimization
of an acoustic microstructured interface, based on the homogenized model of [30] and
following the same overall approach as in [17]. The novelties compared to [36] and [17]
are (i) the calculation of topological derivatives and their use prior to the topological
optimization process to perform a sensitivity analysis of the effective properties and
to determine valuable initializations from the closed-form formula provided by the
topological derivatives for elliptical inclusions, and (ii) the use of nonconventional
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838 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

FFT-based solvers to address the specific unbounded cell problems that arise from the
two-scale homogenization of microstructured interfaces.

The paper is organized as follows. The homogenized model is recalled in section 2,
and an analysis of the macroscopic observables is performed, leading to the definition
of the considered optimization problem. In section 3, the topological derivatives of
the effective parameters of the interface model are derived and validated numerically.
Then, in section 4, based on the analytical information provided by these derivatives, a
topological sensitivity-based analysis is performed for microstructures made of elliptic
inclusions, and ``asymptotically optimal"" ellipses are determined for the chosen cost
functional. Then a topological optimization scheme, which relies on the topological
derivatives to update the material distribution at each iteration, is presented in sec-
tion 5. We finally summarize the results and discuss possible perspectives in section 6.

2. Microstructured interfaces, effective model, and optimization
problem.

2.1. Setting and homogenization. Let us consider the propagation of waves
in two dimensions across a periodic row of inclusions \cup i\Omega i embedded within a homo-
geneous matrix \Omega m. The thickness and the period of the row are denoted by e and h,
respectively, and we assume that e= \scrO (h). The time and the spatial coordinates are
denoted by t and \bfitX = (X1,X2), respectively, with X2 being the direction of period-
icity of the inclusions as shown in Figure 1. Antiplane elastic waves are considered,
and both media are assumed to be isotropic and homogeneous. The microstructured
medium is therefore characterized by two constitutive parameters, the mass density
\rho h and the shear modulus \mu h, that are piecewise constant,

(\rho h, \mu h)(\bfitX ) =

\Biggl\{ 
(\rho m, \mu m) in the matrix,

(\rho i, \mu i) in the inclusions,
(2.1)

�
e

h

�

⌦m

⌦m

a

E↵ective
jump

conditions

Homogenization

⌦m (⇢m, µm)

⌦m (⇢m, µm)

⌦i (⇢i, µ i)

X1

X1

X2

X2

n

Fig. 1. Homogenization process for a single periodic array of inclusions. Top: Original config-
uration with a thin microstructured layer. Bottom: Homogenized interface model.
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 839

and the time-domain governing equation for the out-of-plane component Uh of the
material displacement reads

\rho h(\bfitX )
\partial 2Uh

\partial t2
(\bfitX , t) =\bfnabla \cdot 

\bigl( 
\mu h(\bfitX )\bfnabla Uh(\bfitX , t)

\bigr) 
+\rho m\delta (\bfitX  - \bfitX S)g(t),(2.2)

where g is a source term located at a point \bfitX S in the matrix. Introducing the scalar
velocity field Vh = \partial Uh/\partial t and the stress vector \Sigma h= \mu h\bfnabla Uh gathering the two shear
components of the stress tensor, this system can be rewritten as a first-order system
in time: \left\{     

\partial \Sigma h

\partial t
(\bfitX , t) = \mu h(\bfitX )\bfnabla Vh(\bfitX , t),

\rho h(\bfitX )
\partial Vh

\partial t
(\bfitX , t) =\bfnabla \cdot \Sigma h(\bfitX , t)+\rho m\delta (\bfitX  - \bfitX S)g(t),

(2.3)

with Vh and \Sigma h \cdot \bfitn being continuous at each matrix/inclusion interface \partial \Omega i, given
that \bfitn is the inward unit normal on each \partial \Omega i.

In the following time-domain simulations, we will only consider excitations by a
source point in a medium initially at rest, i.e., Vh(\bfitX , t= 0) = 0 and \Sigma h(\bfitX , t= 0) = 0.
This choice removes the need for studying the small-scale interactions between the
initial fields and the microstructure.

Remark 2.1. The system (2.3) is also relevant to model other physical phenomena,
such as acoustic waves for which the fields \Sigma h, Vh, \rho h, and 1/\mu h would stand instead
for the in-plane particle velocity, acoustic pressure, compressibility, and mass density,
respectively.

The assumptions of the homogenization process and the results obtained in [30]
are now briefly recalled.

Hypotheses of the homogenization process. Considering that the system is excited
by an incident wave or external sources, the characteristic wavelength \lambda within the
matrix is assumed to be much larger than the period h. Defining the wavenumber
within the matrix as km = 2\pi /\lambda , we introduce the parameter

\eta = kmh(2.4)

and we assume that \eta \ll 1 for the configurations of interest.
Throughout this article, only the nonresonant case is addressed, i.e., the physical

parameters of the matrix and of the inclusions are supposed to be of the same order
of magnitude. For large contrasts, e.g., for very soft but dense inclusions (\mu i \ll \mu m

and \rho i \sim \rho m), the resonances of these inclusions play a key role in the transmission of
waves and should be captured by specific homogenization methods; see, e.g., [42, 48]
and the references therein.

These geometrical and material assumptions allow us to homogenize the micro-
structure in the so-called long-wavelength, nonresonant regime.

Notation. The so-called fast scale of coordinates is \bfity = \bfitX /h = (y1, y2)
\top . The

domain \Omega is the elementary cell \BbbR \times [ - 1/2,1/2] in \bfity -coordinates (see Figure 2) that
is repeated periodically in the y2 direction to obtain the full domain, and (\bfite 1,\bfite 2) is
the canonical basis of \BbbR 2. For any function f(x1), we define the jump and the mean
value around the (centered) enlarged interface of thickness a:

[[f ]]a = f(a/2) - f( - a/2) and \langle f\rangle a =
1

2

\bigl( 
f(a/2) + f( - a/2)

\bigr) 
.(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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840 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

/

1+-

I I- +

Fig. 2. Elementary cell \Omega , decomposed into the bounded cell \Omega a, and half strips \Omega +
a =

[ a
2h

,+\infty [\times I+ and \Omega  - 
a =] - \infty , - a

2h
]\times I - , with I\pm = \{ (y1, y2)\in \Omega \pm 

a , y1 =\pm a
2h

\} .

We will also make use of the relative material contrasts \tau \mu and \tau \rho defined by

\tau \mu =
\mu i  - \mu m

\mu m
and \tau \rho =

\rho i  - \rho m
\rho m

.(2.6)

Cell problems. The homogenization process requires the computation of auxiliary
fields \Phi j for j = 1,2 which are solutions of band cell problems. The problems initially
proposed by [30] were posed on the semi-infinite representative cell \Omega . For practical
implementation, the authors of the present paper proposed in [18] a reformulation on
a bounded rectangular cell \Omega a defined by

\Omega a =
\Bigl[ 
 - a

2h
;
a

2h

\Bigr] 
\times 
\biggl[ 
 - 1

2
;
1

2

\biggr] 
\underbrace{}  \underbrace{}  

I

(2.7)

such that the material data set

\bfitm (\bfity ) := (\rho (\bfity ), \mu (\bfity ))(2.8)

satisfies

\bfitm (\bfity ) = (\rho m, \mu m) \forall \bfity \in \Omega \setminus \Omega a,(2.9)

as represented in Figure 2. The parameter a used in the choice of the representative
cell \Omega a also defines the effective interface width; see Figure 1. It should satisfy a\geq e
to ensure that the material variations are restrained to \Omega a and for the effective model
presented below to satisfy some stability conditions [30].

Using the notation \Phi = (\Phi 1,\Phi 2) for compactness, two (uncoupled) band cell
problems are defined as\left\{       

\bfnabla \cdot (\mu (\bfity ) (\bfnabla \Phi + \bfitI 2)) = 0 in \Omega a,

\Phi is y2-periodic,

\partial n\Phi 
\Bigl( 
\pm a

2h
, \cdot 
\Bigr) 
=\Lambda 

\Bigl( 
\Phi 
\Bigl( 
\pm a

2h
, \cdot 
\Bigr) \Bigr) 

on I\pm ,

(2.10)

where \bfitI 2 is the second-order identity tensor, (I - , I+) are the left and right boundaries
of \Omega a (see Figure 2), and \Lambda is a nonlocal Dirichlet-to-Neumann (DtN) operator;
see [26, 15, 18] and the expression recalled in Appendix A for completeness. In
(2.10) and hereafter, the adopted convention for the gradient components is such that
(\bfnabla \Phi )ij = \partial \Phi j/\partial yi.

These elementary solutions will serve to compute the effective parameters that
appear in the homogenized model presented now.
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 841

Homogenized model. From [30], we know that the homogenization of the problem
(2.3) at order \scrO (\eta ) in such a configuration yields the following homogenized model
for the first-order approximation (V,\Sigma ) of (Vh,\Sigma h):

\left\{                       

\partial \Sigma 

\partial t
(\bfitX , t) = \mu m\bfnabla V (\bfitX , t) (| X1| \geq a/2, X2 \in \BbbR ),

\rho m
\partial V

\partial t
(\bfitX , t) =\bfnabla \cdot \Sigma (\bfitX , t)+\rho m\delta (\bfitX  - \bfitX S)g(t) (| X1| \geq a/2, X2 \in \BbbR ),

[[V ]]a = h

\biggl\{ 
\scrB 
\biggl\langle 

\partial V

\partial X1

\biggr\rangle 
a

+\scrB 2

\biggl\langle 
\partial V

\partial X2

\biggr\rangle 
a

\biggr\} 
(X2 \in \BbbR ),

[[\Sigma 1]]a = h

\biggl\{ 
\scrS \langle \bfnabla \cdot \Sigma \rangle a  - \scrC 1

\biggl\langle 
\partial \Sigma 1

\partial X2

\biggr\rangle 
a

 - \scrC 
\biggl\langle 
\partial \Sigma 2

\partial X2

\biggr\rangle 
a

\biggr\} 
(X2 \in \BbbR ),

(2.11)

featuring imperfect transmission conditions for the velocity V and normal component
of the stress vector \Sigma 1 =\Sigma \cdot \bfite 1. This system will be studied both in the time domain,
where the same source point and null initial conditions as in the microstructured prob-
lem will be used, and in the frequency domain for an established harmonic incident
plane wave; see section 2.2 below.

The effective coefficients entering the transmission conditions are the parameter

\scrS =
a

h
+ \tau \rho | \Omega i| ,(2.12)

where | \Omega i| =
\int 
\Omega \mathrm{i}

d\bfity is the surface of the inclusion phase in the rescaled coordinates,
and the four coefficients (\scrB ,\scrB 2,\scrC 1,\scrC ), with the notation of [30]. They are gathered
in the two vector-valued parameters \bfscrB = (\scrB ,\scrB 2) and \bfscrC = (\scrC 1,\scrC ) and are expressed in
terms of the elementary solution \Phi to (2.10) as

\bfscrB (\bfitm ) =
a

h
\bfite 1 +

\int 
I

\Bigl[ 
\Phi 
\Bigl( a

2h
, y2

\Bigr) 
 - \Phi 

\Bigl( 
 - a

2h
, y2

\Bigr) \Bigr] 
dy2(2.13)

and

\bfscrC (\bfitm ) =

\int 
\Omega a

\mu (\bfity )

\mu m

\biggl( 
\partial \Phi 

\partial y2
(\bfity ) + \bfite 2

\biggr) 
d\bfity .(2.14)

Important properties of the coefficients (\scrB 2,\scrC 1) were also proven in [30], namely
\bullet \scrB 2 = - \scrC 1 in all cases,
\bullet \scrB 2 = \scrC 1 = 0 for the cells that are symmetric with respect to the medium

horizontal plane y2 = 0; see Figure 2 (e.g., for circular inclusions).
Finally, the interface energy associated with the homogenized problem (2.11) is proven
to be positive as soon as a is greater than e [30], ensuring stability of the solution
to (2.11). In the harmonic regime, the well-posedness of similar homogenized models
with effective jump conditions has been tackled in [21, 22]. Instabilities in the time-
domain for a system associated to a negative interface energy were analyzed and
illustrated in [23].

Hereafter, the effective parameters are collected in \bfitm eff as

\bfitm eff := (\scrB ,\scrB 2,\scrS ,\scrC 1,\scrC ) .(2.15)

2.2. Analysis of macroscopic observables and optimization problem. In
this section, the aim is to identify macroscopic effects specific to the microstructured

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

6/
24

 to
 1

34
.1

57
.6

9.
64

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



842 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

interfaces, described by the homogenized model in the considered long-wavelength
regime. To find an optimal design that would enhance these effects, an optimization
problem should be established. To do so, we use some analytical macroscopic observ-
ables of the homogenized problem, which are the scattering coefficients computed for
incident plane waves in the time-harmonic regime, together with observations from
time-domain simulations with point sources. The considered optimization problem is
finally given.

2.2.1. Scattering coefficients for time-harmonic plane waves. In this sec-
tion, we consider an established time-harmonic regime at circular frequency \omega . We
therefore use the frequency-domain formulation of the homogenized model (2.11) with
g = 0, which is equivalent to the model obtained by applying homogenization in the
frequency domain; see [48]. Introducing the amplitude of the time-harmonic wavefield
\^\bfscrU (\bfitX , \omega ) = ( \^V (\bfitX , \omega ), \^\Sigma 1(\bfitX , \omega ), \^\Sigma 2(\bfitX , \omega ))T and its decomposition \^\bfscrU = \^\bfscrU I+ \^\bfscrU R+ \^\bfscrU T

into incident \^\bfscrU I, reflected \^\bfscrU R, and transmitted \^\bfscrU T waves, we consider incident plane
waves given by

\^\bfscrU I(\bfitX , \omega ) =

\left(  1/\mu m

 - cos\theta I/cm
 - sin\theta I/cm

\right)  exp( - i\bfitk I \cdot \bfitX )(2.16)

with cm =
\sqrt{} 
\mu m/\rho m the celerity of waves in the matrix, \theta I the direction of propagation,

and \bfitk I = (\omega /cm)(cos(\theta I), sin(\theta I)) the corresponding wavevector.
We also look for reflected and transmitted plane waves as\left\{               

\^\bfscrU R(\bfitX , \omega ) =

\left(  1/\mu m

 - cos\theta R/cm
 - sin\theta R/cm

\right)  exp( - i\bfitk R \cdot \bfitX )\scrR (\theta I, \omega ),

\^\bfscrU T(\bfitX , \omega ) =

\left(  1/\mu m

 - cos\theta T/cm
 - sin\theta T/cm

\right)  exp( - i\bfitk T \cdot \bfitX )\scrT (\theta I, \omega ).

(2.17)

Inserting the expression above in the frequency-domain jump conditions (see [47]),
the reflection and transmission angles are classically found to be \theta R = \pi  - \theta I and
\theta T = \theta I (\bfitk R and \bfitk T are the corresponding wavevectors with the same wavenumber
\omega /cm), and the expression of the reflection and transmission coefficients \scrR and \scrT can
be obtained analytically. They read, respectively,\left\{       

\scrR (\theta I, \omega ) =
i\omega L

Z + i\omega N  - \omega 2M
exp

\biggl( 
i
\omega 

cm
a cos\theta I

\biggr) 
,

\scrT (\theta I, \omega ) =
Z + i\omega G + \omega 2M

Z + i\omega N  - \omega 2M
exp

\biggl( 
i
\omega 

cm
a cos\theta I

\biggr) 
,

(2.18)

with cm =
\sqrt{} 
\mu m/\rho m and\left\{                   

L = h
\bigl( 
\scrB cos(\theta I)

2 + \scrC sin(\theta I)2  - \scrS 
\bigr) 
,

Z = 2cm cos\theta I,

N = h
\bigl( 
 - \scrC sin(\theta I)2 +\scrB cos(\theta I)

2 + \scrS 
\bigr) 
,

M =
h2

2cm

\bigl( 
\scrB 2\scrC 1 sin(\theta I)2  - \scrB \scrC sin(\theta I)2 +\scrB \scrS 

\bigr) 
cos(\theta I),

G = - h( - \scrC 1 +\scrB 2) cos(\theta I) sin(\theta I).

(2.19)
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 843

One can notice a symmetry with respect to the change \theta I \rightarrow  - \theta I for the reflec-
tion coefficient \scrR (\theta I, \omega ) and for the modulus of the transmission coefficient | \scrT (\theta I, \omega )| .
Consequently, only the argument of the transmission coefficient arg(\scrT (\theta I, \omega )) is not
symmetric with respect to the normal incidence. The quantity G defined in (2.19)
and proportional to \scrB 2 =  - \scrC 1 is responsible for this asymmetry, which is therefore
obtained for cells that are nonsymmetric with respect to the horizontal plane y2 = 0.

From this observation, we chose to focus on these nonsymmetric geometries, to
exhibit and enhance macroscopic effects that would not appear for symmetric config-
urations more studied in the literature (say, circular or rectangular inclusions aligned
with the main axes [30]).

2.2.2. Observations from time-domain simulations. To investigate these
configurations, one considers a microstructure typical of steel in concrete, for which
the physical parameters are given by Table 1. The periodicity length is h = 1m and
the examples of two geometries for the inclusion \Omega i are investigated: one ellipse of
semiaxes lengths (0.15, 0.5) tilted of  - \pi /4 and one rectangle of sizes (1.25, 0.08) tilted
of - \pi /4. The effective parameters associated to these two configurations are computed
and time-domain simulations are performed in the associated effective media in a
rectangular domain \bfitX \in [ - 70; 35]\times [ - 132; 132].

In this part, the considered excitation is no longer an incident plane wave but a
source point \delta (\bfitX  - \bfitX S)g(t), with g(t) a sufficiently regular, wide-band signal. Here
we choose g defined as

g(t) =

\left\{     A

4\sum 
m=1

\alpha m sin(\beta m \omega c t) if 0< t<
1

fc
,

0 otherwise,

(2.20)

where \beta m = 2m - 1 and the coefficients \alpha m being \alpha 1 = 1, \alpha 2 =  - 21/32, \alpha 3 = 63/768,
\alpha 4 =  - 1/512. It entails that g \in C6([0,+\infty [) and g(t) is a wide-band signal with a
central frequency fc = \omega c/2\pi . The source is located at \bfitX S = ( - 35,0), with X1 = 0
being the center of the enlarged effective interface. The central frequency is fc = 50 Hz,
which corresponds to a small parameter \eta = 0.14 for which a good agreement between
the homogenized model and the microstructured configuration has been observed.
The time-domain simulations are performed thanks to finite differences and to the
explicit simplified interface method [28] to handle the effective enlarged interface.

To highlight the interface contribution, we define and compute the incident fields
\bfscrU I as the fields which would propagate in the matrix only (without interface) for this
excitation, and introduce the scattered fields \bfscrU sc = (Vsc, (\Sigma sc)1, (\Sigma sc)2)

T = \bfscrU  - \bfscrU I,
which are computed from time t = 0 until tf = 86.7 ms. From these data, one can
compute the local cumulative energy defined as

\scrE (\bfitX ) =
1

2

\int t\mathrm{f}

0

\biggl( 
1

\mu m
\Sigma sc(\bfitX , t)2 + \rho mVsc(\bfitX , t)2

\biggr) 
dt.(2.21)

This quantity is evaluated on the right of the interface for both microstructures in
Figures 3(a) and 3(b) as a function of the polar coordinates (r, \theta ) centered at \bfitX S,

Table 1
Physical parameters considered for the microstructure.

\mu \mathrm{i} \rho \mathrm{i} \mu \mathrm{m} \rho \mathrm{m}

78 GPa 7800 kg \cdot m - 3 12 GPa 2500 kg \cdot m - 3
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844 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

40 45 50 55 60
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6

(a) E(r, θ) for elliptic inclusions

40 45 50 55 60

- /4

- /8

0

/8

/4

0.5

1

1.5

2

2.5

(b) E(r, θ) for rectangular inclusions

(c) sign(arg(T )) for elliptic inclusions (d) sign(arg(T )) for rectangular inclusions

Fig. 3. Cumulative energy in polar coordinates (first row) where the position of the minimal
value for a given r is denoted by the red crosses, and study of sign(arg(\scrT )) (second row, yellow and
black for positive and negative signs, respectively), computed with the effective model corresponding
to elliptic (left) and rectangular (right) inclusions. (Color online.)

with r \in [40; 60]. For each value of r, we observe that the energy \scrE is minimal
for a given angle \theta min, denoted by red crosses. Moreover, one can notice that this
value \theta min seems to be independant of r. Furthermore, the sign of arg(\scrT ) is plotted
in Figures 3(c) and 3(d) (black and yellow maps where yellow and black stand for
positive and negative signs, respectively) for the same two microstructures directly
using the analytical formula (2.19), as a function of \theta I and \omega . It is then observed that
this critical value measured on time-domain simulations (denoted by the blue cross)
seems to coincide with the value of \theta I for which arg(\scrT ) changes sign at low frequency.

These observations suggest a link between the two characterizations of microstruc-
tured interfaces presented above, namely (i) the effective scattering coefficients com-
puted from the homogenized model and (ii) the angle \theta min of minimal scattered energy,
measured numerically for a circular incident wave. Considering that minimizing the
energy emitted by a known source, in a chosen direction \theta min, is a problem of interest
for, e.g., directive sound attenuation, we therefore aim at designing microstructures
associated with a vanishing arg(\scrT (\theta I, \omega )) for \theta I = \theta min and low frequencies.

2.2.3. Optimization problem. To exhibit an analytical link between the crit-
ical value \theta min at low frequency and the homogenized coefficients \bfitm eff , one considers
a first-order approximation for the transmission coefficient \scrT . In this low-frequency
limit, we consider a fixed geometry and therefore a fixed value of h, while \omega , and
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 845

consequently \eta , tends to 0. Upon introducing \=G = G /h, \=M = 2cmM /h2, and
\=N =N /h in (2.18) and (2.19), this leads to

\scrT (\theta I, \omega ) =
Z + i\eta cm \=G + \eta 2 c\mathrm{m}

2
\=M

Z + i\eta cm \=N  - \eta 2 c\mathrm{m}
2

\=M
exp

\Bigl( 
i\eta 
a

h
cos(\theta I)

\Bigr) 
=

1+ i\eta 
\=G

2cos(\theta \mathrm{I})
+\scrO (\eta 2)

1 + i\eta 
\=N

2cos(\theta \mathrm{I})
+\scrO (\eta 2)

\Bigl( 
1 + i\eta 

a

h
cos(\theta I) +\scrO (\eta 2)

\Bigr) 
= 1+ i\eta 

\biggl( \=G  - \=N

2cos(\theta I)
+

a

h
cos(\theta I)

\biggr) 
+\scrO (\eta 2).

(2.22)

This can be summarized as

\scrT (\theta I, \omega ) = 1+ i\eta \scrT 1(\bfitm eff , \theta I) +\scrO (\eta 2)(2.23)

with \scrT 1(\bfitm eff , \theta I) given by

\scrT 1(\bfitm eff , \theta I) = - \scrB 2 sin(\theta I) +
\scrC sin(\theta I)2  - \scrB cos(\theta I)

2  - \scrS 
2cos(\theta I)

+
a

h
cos(\theta I)

= - \scrB 2 sin(\theta I) +
\scrC  \star sin(\theta I)

2  - \scrB  \star cos(\theta I)
2  - \scrS  \star 

2cos\theta I
,

(2.24)

where

\scrB  \star =\scrB  - a/h, \scrC  \star = \scrC  - a/h, and \scrS  \star = \scrS  - a/h= \tau \rho | \Omega i| .(2.25)

The second expression in (2.24), using the coefficients in (2.25), shows that \scrT 1 does
not depend on the choice of the interface thickness a and will be used in section 4 to
slightly simplify the computations.

With the approximation (2.23), it is clear that, at low frequency, arg(\scrT ) changes
sign when \scrT 1(\bfitm eff , \theta I) changes sign. This is confirmed in Figures 3(c) and 3(d), where
the angle for which \scrT 1 changes signs is denoted by a pink cross and is observed to be
very close to both the critical angle observed in numerical simulations and the angle
for which the exact value of arg(\scrT ) changes signs at low frequency.

Canceling the function \scrT 1 then seems to be a good way to reach the aforemen-
tioned effect. Moreover, we will aim at simultaneously maximizing the derivative
amplitude | \partial \theta \scrT 1| with

\partial \theta \scrT 1 =
\partial \scrT 1
\partial \theta I

(2.26)

to (i) avoid close-to-zero local minima of | \scrT 1| without sign change and (ii) ``push"" the
ensuing optimization process toward ``stiff"" sign changes. For a given critical angle
\theta min, these two objectives will be addressed in two ways:

1. In section 4, asymptotic closed-form formulas of \scrT 1 and \partial \theta \scrT 1 obtained for
small elliptic inclusions will be used to obtain ``asymptotically optimal"" el-
lipses.

2. In section 5, a topological optimization algorithm will be proposed to find an
optimal material distribution \bfitm opt in the bounded cell \Omega a that satisfies the
following optimization problem:

Find argmin
\bfitm 

\~\scrJ main(\bfitm )

with \~\scrJ main(\bfitm ) =\scrJ main(\bfitm eff) =

\biggl( 
\scrT 1(\bfitm eff , \theta min)

\partial \theta \scrT 1(\bfitm eff , \theta min)

\biggr) 2

.
(2.27)
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846 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

In particular, ellipses obtained in the previous step will be used as initial-
izations. Additional terms will be added to the functional \scrJ main in (2.27) in
order to reach a given surface ratio between the materials, or to have a suffi-
cient smoothness of the final configuration. The resulting total cost functional
\scrJ will be introduced in section 5.

In both cases, we will rely on the computation of the topological derivatives of the
effective coefficients performed in section 3 below.

Remark 2.2. Although the focus is on controlling transmitted energy and on
the related functional (2.27) in this paper, the topological derivatives calculated in
section 3 and the optimization methods described in section 5 could be used for any
other objective.

3. Topological derivatives of the effective parameters. In this section, one
aims at describing the sensitivity of the effective parameters to periodic topological
changes of the microstructure, i.e., geometric perturbations of the representative cell
\Omega a. A perturbation is defined as a small inhomogeneity \scrP \bfitz ,\varepsilon = \bfitz + \varepsilon \scrP of size \varepsilon ,
normalized shape \scrP , and physical parameters (\mu +\Delta \mu ,\rho +\Delta \rho ) introduced at a point
\bfitz \in \Omega a. The material perturbation is \Delta \bfitm = (\Delta \rho ,\Delta \mu ) with \Delta \mu >  - min\bfity \in \Omega a \mu (\bfity )
and \Delta \rho > - min\bfity \in \Omega a \rho (\bfity ) to satisfy the physical positivity constraints. The resulting
perturbed cell, denoted by \Omega a

\bfitz ,\varepsilon and represented in Figure 4, features the physical
parameters

\bfitm \bfitz ,\varepsilon := (\mu \bfitz ,\varepsilon , \rho \bfitz ,\varepsilon ) = (\mu +\Delta \mu \chi \scrP \bfitz ,\varepsilon 
, \rho +\Delta \rho \chi \scrP \bfitz ,\varepsilon 

)(3.1)

with \chi \scrP \bfitz ,\varepsilon the characteristic function of the perturbation domain \scrP \bfitz ,\varepsilon .

Remark 3.1. The definition of \Delta \bfitm may depend on the choice of \bfitz if the unper-
turbed cell is heterogeneous. However, we disregard the case where the perturbation
is located at an interface between two different materials. Consequently, we will drop
any dependence of \Delta \bfitm on the space coordinate in the notation, since they do not
change the integrals computed hereafter. Moreover, the computation of the topologi-
cal derivatives is performed for an arbitrary material perturbation \Delta \bfitm , as represented
in Figure 4. However, in numerical examples we will only consider phase swapping.

Let f be a function of the material properties. In this two-dimensional context,
the so-called topological derivative of the function f , denoted by \scrD f , is defined thanks
to the following two-dimensional asymptotic expansion:

x

/

1 z

Pz,
z,

Fig. 4. Cell \Omega a
\bfitz ,\varepsilon perturbed by the introduction of the inhomogeneity \scrP \bfitz ,\varepsilon .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

6/
24

 to
 1

34
.1

57
.6

9.
64

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



OPTIMIZATION OF MICROSTRUCTURED INTERFACES 847

f\bfitz ,\varepsilon := f(\bfitm \bfitz ,\varepsilon ) =
\varepsilon \rightarrow 0

f(\bfitm ) + \varepsilon 2\scrD f(\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) + o(\varepsilon 2).(3.2)

It describes the influence on the function f of a perturbation located at \bfitz , of shape
\scrP and material perturbation \Delta \bfitm . Therefore, the more negative \scrD f(\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) is,
the more efficient such a perturbation at point \bfitz would be to decrease f .

In this section, the topological derivatives of the effective parameters collected in
(2.15) are computed. First, one looks for an expansion of the solution \Phi \bfitz ,\varepsilon to the cell
problem (2.10) in the perturbed cell \Omega a

\varepsilon in section 3.1. This allows the computation
of the topological sensitivities of the five effective parameters in section 3.2.

3.1. Approximation of the perturbed cell problem solution. To compute
the topological derivatives of the homogenized coefficients, we must characterize the
asymptotic behavior of the cell function \Phi in (2.10) when the topological perturbation
(3.1) is introduced. To this end, we first reformulate the cell problem (2.10) into an
integral equation, more suitable for the asymptotic analysis. This analysis is then
pursued formally, i.e., rigorous remainder estimates are not provided. However, such
estimates are given by [14, Proposition 5], and we expect similar arguments to hold
given the similarity between the present cell problem and the one addressed in [14].

Weak forms of the unperturbed and perturbed cell problems. The first step is to
write the weak form of the cell problem. To do so, we consider a function v \in H1

per =\bigl\{ 
u\in H1(\Omega a;\BbbR ), u y2-periodic

\bigr\} 
. The first equation of (2.10) is then multiplied by v

and integrated by parts in \Omega a. Using the periodicity condition and the boundary
conditions in (2.10), one obtains after a division by \mu m

\bfscrA \mu (\Phi , v) = - \bfitF \mu (v) + \bfitJ (v) \forall v \in H1
per,(3.3)

where one has introduced the following functionals for \bfitu = (u1, u2)\in H1
per\times H1

per and
v \in H1

per: \left\{               

\bfscrA \mu (\bfitu , v) =

\int 
\Omega a

\mu (\bfity )

\mu m
\bfnabla \bfitu (\bfity )\top \cdot \bfnabla v(\bfity )d\bfity +\scrL  - (\bfitu , v) +\scrL +(\bfitu , v),

\bfitF \mu (v) =

\int 
\Omega a

\mu (\bfity )

\mu m
\bfnabla v(\bfity )d\bfity ,

\bfitJ (v) =

\int 
I

\Bigl[ 
v
\Bigl( a

2h
, y2

\Bigr) 
 - v

\Bigl( 
 - a

2h
, y2

\Bigr) \Bigr] 
\bfite 1dy2

(3.4)

with

\scrL \pm (\bfitu , v) = - 
\int 
I

\Lambda 
\Bigl[ 
\bfitu 
\Bigl( 
\pm a

2h
, \cdot 
\Bigr) \Bigr] 

(y2)v
\Bigl( 
\pm a

2h
, y2

\Bigr) 
dy2.(3.5)

The vector-valued weak formulation (3.3), involving a scalar-valued test function,
reflects the two uncoupled problems satisfied by the components (\Phi 1,\Phi 2).

Similarly, the perturbed field \Phi \bfitz ,\varepsilon satisfies for all v \in H1(\Omega a;\BbbR ), v y2-periodic

\bfscrA \mu \bfitz ,\varepsilon (\Phi \bfitz ,\varepsilon , v) = - \bfitF \mu (v) - \bfitdelta \bfitF \bfitz ,\varepsilon (v) + \bfitJ (v)(3.6)

with

\bfitdelta \bfitF \bfitz ,\varepsilon (v) =
\Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

\bfnabla v(\bfity )d\bfity .(3.7)
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848 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

Integral equation. To obtain the integral equation satisfied by \Phi \bfitz ,\varepsilon , one then
introduces the Green's function G(\cdot ,\bfitx ) associated with a point source at \bfitx \in \Omega a, i.e.,
the solution of\left\{             

 - \bfnabla \bfity \cdot 
\biggl( 
\mu (\bfity )

\mu m
\bfnabla \bfity G(\bfity ,\bfitx )

\biggr) 
= \delta (\bfity  - \bfitx ) \forall \bfity \in \Omega a,

G(\cdot ,\bfitx ) y2-periodic,

 - \bfitn \cdot \bfnabla \bfity G(\bfity ,\bfitx )

\bigm| \bigm| \bigm| \bigm| 
y1=\pm a

2h

=\Lambda [G(\bfity ,\bfitx )]

\bigm| \bigm| \bigm| \bigm| 
y1=\pm a

2h

\forall \bfity \in I\pm .

(3.8)

It can be decomposed as

G(\bfity ,\bfitx ) =G\infty 

\biggl( 
\bfity  - \bfitx ;

\mu (\bfitx )

\mu m

\biggr) 
+Gc(\bfity ,\bfitx ), with G\infty (\bfitr ;\mu  \star ) = - ln(\| \bfitr \| )

2\pi \mu  \star 
,(3.9)

where G\infty is the full-space Green's function solution of the two-dimensional Poisson
equation that shares the same singularity as G, and Gc is the complementary part
to the Green's function solution accounting for the heterogeneity of the cell and the
boundary conditions. Details about these functions are given in Appendix B.

For any sufficiently smooth function \bfitw , one gets from (3.8) the integral represen-
tation for all \bfitx \in \Omega a:

\bfitw (\bfitx ) =\bfscrA \mu (\bfitw ,G(\cdot ,\bfitx ))(3.10)

with \bfscrA \mu defined in (3.4).
Coming back to the perturbed problem, one introduces the surface integral oper-

ator \bfscrN \bfitz ,\varepsilon :

\bfscrN \bfitz ,\varepsilon \bfitf (\bfitx ) =
\Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

\bfnabla \bfitf (\bfity )\top \cdot \bfnabla \bfity G(\bfity ,\bfitx )d\bfity .(3.11)

The choice of piecewise-regular material properties \mu ensures the regularity of
\Phi away from inner interfaces, which in turn allows us to use \bfitw = \Phi in the integral
representation (3.10). We can, in addition, set v = G(\cdot ,\bfitx ) in the weak form (3.6)
(the resulting integral being defined although G(\cdot ,\bfitx ) does not belong to H1(\Omega a,\BbbR )).
Together with the definition (3.4) of \bfscrA \mu one obtains

\bfscrA \mu (\Phi \bfitz ,\varepsilon ,G(\cdot ,\bfitx )) +\bfscrN \bfitz ,\varepsilon \Phi \bfitz ,\varepsilon (\bfitx ) = - \bfitF \mu (G(\cdot ,\bfitx )) - \bfitdelta \bfitF \bfitz ,\varepsilon (G(\cdot ,\bfitx )) + \bfitJ (G(\cdot ,\bfitx ))
=\bfscrA \mu (\Phi ,G(\cdot ,\bfitx )) - \bfitdelta \bfitF \bfitz ,\varepsilon (G(\cdot ,\bfitx )),

(3.12)

where in the last line we used v = G(\cdot ,\bfitx ) in (3.3). Finally, one considers \bfitw = \Phi \bfitz ,\varepsilon 

and \bfitw =\Phi in (3.10). Together with (3.12) this leads to the integral equation satisfied
by the perturbed field \Phi \bfitz ,\varepsilon :

(\bfitI +\bfscrN \bfitz ,\varepsilon )(\Phi \bfitz ,\varepsilon )(\bfitx ) =\Phi (\bfitx ) - \bfitdelta \bfitF \bfitz ,\varepsilon (G(\cdot ,\bfitx )),(3.13)

where the integral operator \bfscrN \bfitz ,\varepsilon and right-hand-side term \bfitdelta \bfitF \bfitz ,\varepsilon (G(\cdot ,\bfitx )) are both
supported by the perturbation domain \scrP \bfitz ,\varepsilon .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

6/
24

 to
 1

34
.1

57
.6

9.
64

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



OPTIMIZATION OF MICROSTRUCTURED INTERFACES 849

Asymptotic analysis. Aiming at reformulating (3.13) onto the reference shape \scrP ,
let us introduce the scaled coordinates \bfitx = \bfitz +\varepsilon \=\bfitx and assume the following expansion,
based on previous work [14], for all \bfitx \in \scrP \bfitz ,\varepsilon :

\Phi \bfitz ,\varepsilon (\bfitx ) =\Phi (\bfitz ) + \varepsilon \Phi 1(\=\bfitx ) + o(\varepsilon ).(3.14)

One also writes the following Taylor expansion for the cell function:

\Phi (\bfitx ) =\Phi (\bfitz ) + \varepsilon \=\bfitx \cdot \bfnabla \Phi (\bfitz ) + o(\varepsilon ).(3.15)

Inserting (3.14) and (3.15) in (3.13) and keeping only the leading and first-order terms
yield

(\bfitI +\bfscrN \bfitz ,\varepsilon )

\biggl( 
\varepsilon \Phi 1

\biggl( 
\cdot  - \bfitz 

\varepsilon 

\biggr) \biggr) 
(\bfitx ) = \varepsilon \=\bfitx \cdot \bfnabla \Phi (\bfitz ) - \bfitdelta \bfitF \bfitz ,\varepsilon (G(\cdot ,\bfitx )),(3.16)

since \bfscrN \bfitz ,\varepsilon \Phi (\bfitz ) = 0. As developed in Appendix B, \bfnabla G\infty is homogeneous of degree
 - 1 (see (B.1)) and \bfnabla Gc(\cdot ,\bfitx ) is regular in the neighborhood of \bfitz (see (B.5)). The
function G in (3.8) then satisfies

\bfnabla \bfity G(\bfity ,\bfitx ) = \varepsilon  - 1\bfnabla G\infty 

\biggl( 
\=\bfity  - \=\bfitx ;

\mu (\bfitz )

\mu m

\biggr) 
+ o(\varepsilon  - 1).(3.17)

Inserting the above expansion in (3.16), performing a change of variables to rewrite
the integral on \scrP , and identifying the leading-order (O(\varepsilon )) contributions then leads
to the scaled integral equation:

(\bfitI +\bfscrM )(\widetilde \Phi 1)(\=\bfitx ) = \=\bfitx \cdot (\bfnabla \Phi (\bfitz ) + \bfitI )(3.18)

with \widetilde \Phi 1(\=\bfitx ) =\Phi 1(\=\bfitx ) + \=\bfitx and \bfscrM defined by

\bfscrM \bfitf (\=\bfitx ) =
\Delta \mu 

\mu m

\int 
\scrP 
\bfnabla \bfitf (\=\bfity )\top \cdot \bfnabla G\infty 

\biggl( 
\=\bfity  - \=\bfitx ;

\mu (\bfitz )

\mu m

\biggr) 
d\=\bfity .(3.19)

Consequently, introducing \bfitR , the vector solution of the equation

(\bfitI +\bfscrM )\bfitR (\=\bfitx ) = \=\bfitx ,(3.20)

i.e., the solution to a free-space transmission problem associated with a perturbation
(\scrP ,\Delta \mu ), with a homogeneous background of modulus \mu (\bfitz ), then \widetilde \Phi 1 is given by

\widetilde \Phi 1(\=\bfitx ) =\bfitR (\=\bfitx ) \cdot (\bfnabla \Phi (\bfitz ) + \bfitI ).(3.21)

Finally, one inserts this in (3.14) to get the first-order expansion:

\Phi \bfitz ,\varepsilon (\bfitx ) =\Phi (\bfitz ) + \varepsilon (\bfitR (\=\bfitx ) \cdot (\bfnabla \Phi (\bfitz ) + \bfitI ) - \=\bfitx ) + o(\varepsilon ).(3.22)

3.2. Calculation of the topological derivatives. The results of this section
are summarized in the following proposition.
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850 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

Proposition 3.2. The topological derivatives of the effective coefficients \scrS ,\bfscrB ,\bfscrC ,
for a material perturbation (\Delta \mu ,\Delta \rho ) supported by the domain \scrP \bfitz ,\varepsilon = \bfitz +\varepsilon \scrP , are given
by

\scrD \scrS (\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) =
\Delta \rho 

\rho m
| \scrP | ,(3.23)

\bfscrD \bfscrB (\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) = - (\bfnabla \Phi 1(\bfitz ) + \bfite 1) \cdot \bfitA (\scrP , \mu (\bfitz ),\Delta \mu ) \cdot (\bfnabla \Phi (\bfitz ) + \bfitI ),(3.24)

\bfscrD \bfscrC (\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) = (\bfnabla \Phi 2(\bfitz ) + \bfite 2) \cdot \bfitA (\scrP , \mu (\bfitz ),\Delta \mu ) \cdot (\bfnabla \Phi (\bfitz ) + \bfitI ),(3.25)

where the so-called polarization tensor \bfitA is defined from the solution \bfitR of the problem
(3.20) as

\bfitA (\scrP , \mu (\bfitz ),\Delta \mu ) =
\Delta \mu 

\mu m

\int 
\scrP 
\bfnabla \=\bfity \bfitR (\=\bfity )d\=\bfity .(3.26)

Remark 3.3. The polarization tensor\bfitA has been used in previous studies [16, 4, 14],
where it is sometimes derived using layer potentials rather than volume (surface in
two dimensions) integral operators (resulting in possibly different prefactors). It is
also related to the concentration (or localization) tensor \BbbA =

\int 
\scrP \bfnabla \=\bfity \bfitR (\=\bfity )d\=\bfity much

used in micromechanics [40]. It is symmetric and is known analytically for a variety
of inclusion shapes \scrP ; see [40]. In particular, for an elliptic perturbation of semiaxes
lengths (1,\gamma ) along directions (\bfita 1,\bfita 2), it is given by

\bfitA (\scrP , \mu (\bfitz ),\Delta \mu ) = \pi \gamma (\gamma + 1)
\Delta \mu 

\mu m

\Biggl( 
\bfita 1 \otimes \bfita 1

1 + \gamma + \gamma \Delta \mu 
\mu (\bfitz )

+
\bfita 2 \otimes \bfita 2

1 + \gamma + \Delta \mu 
\mu (\bfitz )

\Biggr) 
.(3.27)

Remark 3.4. The topological derivative of a functional f most often involves a
direct field (here \bfitx +\Phi ) and an adjoint field depending on f ; see, e.g., [7, 38]. In the
present case, the adjoint fields corresponding to coefficients \bfscrB and \bfscrC would be found
to be  - (x1+\Phi 1) and x2+\Phi 2, respectively, as seen in the formula of Proposition 3.2,
established in a more direct way below.

The steps of the proof of Proposition 3.2 are now given.

3.2.1. Computation of \bfscrD \bfscrS . We first notice that, owing to the definition of \scrS 
in (2.12), one has

\scrS (\bfitm ) =

\int 
\Omega a

\rho (\bfity )

\rho m
d\bfity .(3.28)

Consequently, one gets

\scrS \bfitz ,\varepsilon = \scrS (\bfitm ) +

\int 
\scrP \bfitz ,\varepsilon 

\Delta \rho 

\rho m
d\bfity = \scrS (\bfitm ) + \varepsilon 2

\Delta \rho 

\rho m
| \scrP | ,(3.29)

which yields by identification with (3.2) the following result:

\scrD \scrS (\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) =
\Delta \rho 

\rho m
| \scrP | .(3.30)

3.2.2. Computation of \bfscrD \bfscrB . From the expression (2.13), the effective param-
eter \bfscrB \bfitz ,\varepsilon associated with the perturbed cell reads

\bfscrB \bfitz ,\varepsilon =\bfscrB (\bfitm ) +

\int 
I

\Bigl[ 
\bfitdelta \Phi \bfitz ,\varepsilon 

\Bigl( a

2h
, y2

\Bigr) 
 - \bfitdelta \Phi \bfitz ,\varepsilon 

\Bigl( 
 - a

2h
, y2

\Bigr) \Bigr] 
dy2,(3.31)
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 851

with the pertubation for the solution of the cell problem \bfitdelta \Phi \bfitz ,\varepsilon defined by

\bfitdelta \Phi \bfitz ,\varepsilon =\Phi \bfitz ,\varepsilon  - \Phi .(3.32)

The left-hand side of (3.6) reads

\bfscrA \mu \bfitz ,\varepsilon 
(\Phi \bfitz ,\varepsilon , v) =\bfscrA \mu (\Phi , v) +\bfscrA \mu (\bfitdelta \Phi \bfitz ,\varepsilon , v) +

\Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

\bfnabla \Phi \bfitz ,\bfitvarepsilon (\bfity )
\top \cdot \bfnabla v(\bfity )d\bfity .

(3.33)

Inserting this equation in (3.6) and using (3.3), one gets for all v \in H1
per

\bfscrA \mu (\bfitdelta \Phi \bfitz ,\varepsilon , v) +
\Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

\bfnabla \Phi \bfitz ,\bfitvarepsilon (\bfity )
\top \cdot \bfnabla v(\bfity )d\bfity = - \bfitdelta \bfitF \bfitz ,\varepsilon (v).(3.34)

Furthermore, \beta =\Phi 1 + y1 satisfies for all \bfitw \in H1(\Omega a;\BbbR 2), \bfitw y2-periodic

\bfscrA \mu (\bfitw , \beta ) =

\int 
I

\Bigl[ 
\bfitw 
\Bigl( a

2h
, y2

\Bigr) 
 - \bfitw 

\Bigl( 
 - a

2h
, y2

\Bigr) \Bigr] 
dy2.(3.35)

Taking v= \beta in (3.34) and \bfitw = \bfitdelta \Phi \bfitz ,\varepsilon in (3.35), the expansion (3.31) reads

\bfscrB \bfitz ,\varepsilon =\bfscrB (\bfitm ) - \Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

\bfnabla \beta (\bfity ) \cdot (\bfnabla \Phi \bfitz ,\varepsilon (\bfity ) + \bfitI )d\bfity .(3.36)

Consequently, one looks for an asymptotic expansion for\bfnabla \Phi \bfitz ,\varepsilon . For this purpose, one
uses the final expansion (3.22) of the previous section. One also writes the expansion
\bfnabla \beta (\bfity ) = \bfnabla \beta (\bfitz ) + o(1) for all \bfity \in \scrP \bfitz ,\varepsilon and expresses the integral in the scaled
coordinates as

\bfscrB \bfitz ,\varepsilon =\bfscrB (\bfitm ) - \Delta \mu 

\mu m

\int 
\scrP 
\bfnabla \beta (\bfitz ) \cdot 

\biggl( 
1

\varepsilon 
\bfnabla \Phi \bfitz ,\varepsilon (\=\bfity ) + \bfitI 

\biggr) 
\varepsilon 2d\=\bfity + o(\varepsilon 2).(3.37)

Inserting the expansion (3.22) in the above equation yields

\bfscrB \bfitz ,\varepsilon =\bfscrB (\bfitm ) - \varepsilon 2
\Delta \mu 

\mu m
\bfnabla \beta (\bfitz ) \cdot 

\int 
\scrP 
\bfnabla \bfitR (\=\bfity )d\=\bfity \cdot (\bfnabla \Phi (\bfitz ) + \bfitI ) + o(\varepsilon 2).(3.38)

Using the definition \beta =\Phi 1 + y1 and the polarization tensor \bfitA defined by (3.26),
the topological derivative of \bfscrB reads

\bfscrD \bfscrB (\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) = - (\bfnabla \Phi 1(\bfitz ) + \bfite 1) \cdot \bfitA (\scrP , \mu (\bfitz ),\Delta \mu ) \cdot (\bfnabla \Phi (\bfitz ) + \bfitI ).(3.39)

3.2.3. Computation of \bfscrD \bfscrC . From the expression (2.14), the effective param-
eter \bfscrC \bfitz ,\varepsilon associated with the perturbed cell reads

\bfscrC \bfitz ,\varepsilon = \bfscrC (\bfitm ) +

\int 
\Omega a

\mu (\bfity )

\mu m

\partial \bfitdelta \Phi \bfitz ,\varepsilon 

\partial y2
(\bfity )d\bfity +

\Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

\biggl( 
\partial \Phi \bfitz ,\varepsilon 

\partial y2
(\bfity ) + \bfite 2

\biggr) 
d\bfity + o(\varepsilon 2).

(3.40)

We know that \Phi 2 satisfies for all \bfitw \in H1
per

\bfscrA \mu (\bfitw ,\Phi 2) = - 
\int 
\Omega a

\mu (\bfity )

\mu m

\partial \bfitw 

\partial y2
(\bfity )d\bfity .(3.41)
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852 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

One takes v=\Phi 2 in (3.34) and \bfitw = \bfitdelta \Phi \bfitz ,\varepsilon in (3.41) and gets\int 
\Omega a

\mu (\bfity )

\mu m

\partial \bfitdelta \Phi \bfitz ,\varepsilon 

\partial y2
(\bfity )d\bfity =

\Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

\bfnabla \Phi 2(\bfity ) \cdot (\bfnabla \Phi \bfitz ,\varepsilon (\bfity ) + \bfitI )d\bfity ,(3.42)

which yields

\bfscrC \bfitz ,\varepsilon = \bfscrC (\bfitm ) +
\Delta \mu 

\mu m

\int 
\scrP \bfitz ,\varepsilon 

(\bfnabla \Phi 2(\bfity ) + \bfite 2) \cdot (\bfnabla \Phi \bfitz ,\varepsilon (\bfity ) + \bfitI )d\bfity + o(\varepsilon 2).(3.43)

Once again, we use the Taylor expansion \bfnabla \Phi 2(\bfity ) =\bfnabla \Phi 2(\bfitz ) + o(1) for all \bfity in \scrP \bfitz ,\varepsilon ,
the expression of the integral in the scaled coordinates, and the expansion (3.22) to
get the final expression for the topological derivative,

\bfscrD \bfscrC (\bfitm ,\bfitz ,\scrP ,\Delta \bfitm ) = (\bfnabla \Phi 2(\bfitz ) + \bfite 2) \cdot \bfitA (\scrP , \mu (\bfitz ),\Delta \mu ) \cdot (\bfnabla \Phi (\bfitz ) + \bfitI ).(3.44)

3.3. Numerical validation. To validate numerically the found expressions of
the topological derivatives, we can compute the errors made by the approximation of
\bfscrB \bfitz ,\varepsilon and \bfscrC \bfitz ,\varepsilon by \bfscrB + \varepsilon 2\bfscrD \bfscrB and \bfscrC + \varepsilon 2\bfscrD \bfscrC , respectively. Indeed, due to (3.38) and
(3.43), these errors should be of order \varepsilon 3 at least.

One starts with an initial reference configuration (\varepsilon = 0), then computes nu-
merically the solutions of the cell problems (2.10) (their computation will be briefly
described in section 5.1.1), and thus the values of \bfscrB and \bfscrC from (2.13) and (2.14).
The initial configuration is chosen to be heterogeneous in order to avoid simplifica-
tions than can occur with a homogeneous medium as reference. More precisely, we
choose a homogeneous medium containing an elliptic inclusion of center (0,0) and
semiaxes lengths (0.32m, 0.1m), tilted of 45\circ . The physical parameters are again
given in Table 1. Then one inserts a perturbation in the background matrix at
\bfitz = ( - 0.26 m,0.24 m). Its physical parameters are the ones of the elliptic inclu-
sion (\rho i, \mu i). Its shape is an ellipse of semiaxes lengths (\varepsilon , 0.6\varepsilon ) and tilted of 45\circ .
For \varepsilon = 0.1, the configuration is plotted in Figure 5(b). For a given value of \varepsilon , one
computes the perturbed cell solutions and thus the exact effective parameters \bfscrB \bfitz ,\varepsilon 

and \bfscrC \bfitz ,\varepsilon from (2.13) and (2.14). Their first-order approximations \bfscrB + \varepsilon 2\bfscrD \bfscrB and
\bfscrC + \varepsilon 2\bfscrD \bfscrC are computed from (3.24) and (3.25) using (3.27).

The relative errors between the exact and approximated values, for instance,
| (\scrB 1)\bfitz ,\varepsilon  - \scrB 1  - \varepsilon 2\scrD \scrB 1| /| (\scrB 1)\bfitz ,\varepsilon | , are plotted as functions of the perturbation size \varepsilon 

(a) Reference Ωa

-0.5 0 0.5

-0.5

0

0.5

(b) Perturbed cell Ωa
z,ε

0.15 0.2 0.25
10-6

10-4

10-2

(c)

Fig. 5. Test case for an elliptic perturbation. (a) Reference configuration. (b) Perturbed con-
figuration for \varepsilon = 0.1. (c) Relative errors between the exact and approximated effective parameters
as functions of \varepsilon in a log-log scale.
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 853

in log-log scale in Figure 5(c). Since \scrB 2 = \scrC 1, only one of the corresponding misfits
is represented. The dashed line stands for an error of \scrO (\varepsilon 4). It seems that this is
the actual order of approximation of the effective parameters, the small variations
for low values of \varepsilon being probably due to numerical errors in the computation of the
coefficients. This underlines the fact that the leading-order terms and consequently
the topological derivatives are well accounted for and that the terms of order \varepsilon 3 in the
expansions (3.38) and (3.43) are probably equal to zero for this type of perturbation
with a central symmetry. This was already observed for volume microstructures in
[13, 14], with the intuition that it occurs for perturbations with a central symmetry.
This remains, however, to be proved. In the case where there is not any central
symmetry, we therefore expect an error of order \scrO (\varepsilon 3).

4. Approximate parametric optimization in the case of elliptic inclu-
sions. In this section, the topological derivatives are used as tools to analyze the case
of cells made of a unique elliptic inclusion \Omega i in a homogeneous material. First, the
quality of the approximation of the effective parameters in this case is investigated.
Then, we show that ``asymptotically optimal"" ellipses can be determined with respect
to the optimization problem presented in section 2.2.

4.1. Approximation of the effective parameters. Consider a unique inclu-
sion in an otherwise homogeneous cell, a configuration which can be seen as a single
perturbation in a homogeneous reference cell. In this case, the effective coefficient
\scrS  \star = \scrS  - a/h in (2.25) is given by the exact expression,

\scrS  \star = \varepsilon 2| \scrP | \tau \rho ,(4.1)

while the topological derivatives formula provides the following approximations:

\scrB  \star = - \varepsilon 2A11 + o(\varepsilon 2), \scrB 2 = - \varepsilon 2A12 + o(\varepsilon 2), \scrC  \star = \varepsilon 2A22 + o(\varepsilon 2),(4.2)

where \scrS  \star , \scrB  \star , and \scrC  \star are defined in (2.25).
Computing these approximations only requires the knowledge of the polarization

tensor (3.27) for the perturbation shape \scrP , and the scaling of the result by \varepsilon 2. This
is much less costly than computing numerically the cell solutions and the associated
effective parameters for each choice of inclusion, especially for elliptic inclusions for
which the polarization tensor is known analytically.

As an example of the quality of these approximations, we consider an ellipse,
located at \bfitz = (0, 0), of tilted angle \varphi =40\circ , and semiaxes lengths (\varepsilon , 0.2\varepsilon ). In
Figure 6(b), the relative errors between the numerically computed value of the ef-
fective parameters through (2.13)--(2.14) and their approximations given above are
represented for an increasing value of \varepsilon . In this case, the reference values themselves
decay in \scrO (\varepsilon 2) as the single inclusion in the cell vanishes. The relative error (e.g.,
| (\scrB  \star )\bfitz ,\varepsilon + \varepsilon 2A11| /| (\scrB  \star )\bfitz ,\varepsilon | ), i.e., the ratio between the residual (supposedly in \scrO (\varepsilon 4)
for ellipses) and this reference value, is therefore expected to be in \scrO (\varepsilon 2), which is
observed in the figure. We also observe that a good agreement is obtained even for
high values of \varepsilon (i.e., even outside the asymptotic regime). Indeed, for \varepsilon = 0.5 (illus-
trated in Figure 6(a)) the major axis length is equal to the size of the unit cell and
the relative errors remain below 15\%.

Remark 4.1. The approximation (4.2), using only the polarization tensor com-
puted from the free-space transmission problem (3.20), is well-known in the domain
of micromechanics as the ``dilute"" or ``Eshelby"" approximation (see, for instance, [40]
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-0.5 0 0.5
-0.5

0

0.5

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10-6

10-4

10-2

(b)

Fig. 6. Test case for an elliptic inclusion. (a) Configuration for \varepsilon = 0.5. (b) Relative errors
between the exact and approximated effective parameters as functions of inclusion size \varepsilon in a log-log
scale.

and the numerous references therein). It does not account for interactions between
inclusions, and is therefore supposedly restricted to very low concentrations of inclu-
sions, but provides surprisingly accurate results in the present context.

Consequently, we propose to use the expressions (4.2) to obtain ``optimal"" ellipses
that solve the optimization problem presented in section 2.2.

4.2. Normal incidence: Explicit formula and analysis. When the case
of interest is normal incidence of waves, i.e., when \theta I = 0, closed-form results are
available, that are used in this section as a first example. Indeed, the expression
(2.23) of the function of interest \scrT 1 is considerably simplified, as

\scrT 1(\theta I = 0) = - 1

2
(\scrB  \star + \scrS  \star ) = - \varepsilon 2

2
( - A11 + \pi \gamma \tau \rho ) + o(\varepsilon 2).(4.3)

Then, pairs of tilted angle and aspect ratio (\varphi ,\gamma ) for which \scrT 1 = o(\varepsilon 2) can be found
analytically for given material contrasts (\tau \rho , \tau \mu ). Indeed, canceling the leading-order
term above and introducing the expression (3.27) of the polarization tensor gives

\pi \gamma \tau \rho =A11 \leftrightarrow \tau \rho = (1+ \gamma )\tau \mu 
\biggl( 

cos2(\varphi )

1 + \gamma + \gamma \tau \mu 
+

sin2(\varphi )

1 + \gamma + \tau \mu 

\biggr) 
,(4.4)

which leads to

\tau \rho (1 + \gamma + \gamma \tau \mu )(1 + \gamma + \tau \mu ) - \tau \mu (1 + \gamma )2  - (\tau \mu )2(1 + \gamma )(\gamma + (1 - \gamma ) cos2(\varphi )) = 0.

(4.5)

Therefore, we eventually get

\Biggl\{ 
\varphi = arccos

\sqrt{} 
\beta if \beta \geq 0,

no solution if \beta < 0,
with \beta =

[\tau \rho (1 + \gamma + \tau \mu ) - \tau \mu (1 + \gamma )] (1 + \gamma + \gamma \tau \mu )

(\tau \mu )2(1 - \gamma 2)
.

(4.6)

This particular solution can be used to check the numerical implementation of \scrT 1.
As discussed in section 2.2.3, to find an optimal pair (\varphi opt, \gamma opt), we also aim at

maximizing the absolute value of the derivative, | \partial \theta \scrT 1(\theta I = 0)| along the curve defined
by the function (4.6) above. To do so, we rely again on the simplified expression of
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 855

the function \partial \theta \scrT 1 for normal incidence (\theta I = 0) and on the approximations (4.2) of
the effective coefficients, and use the approximation

\partial \theta \scrT 1(\theta I = 0) = - \scrB 2 = \varepsilon 2A12 + o(\varepsilon 2)

=
\varepsilon 2 sin(2\varphi )

2

\pi \gamma (1 - \gamma 2)(\tau \mu )2

[1 + \gamma (1 + \tau \mu )][1 + \gamma + \tau \mu ]
+ o(\varepsilon 2).

(4.7)

Then plugging the expression (4.6) of \varphi , one obtains an expression for the leading-
order contribution of \partial \theta \scrT 1 as a function of \gamma only, whose maximum is easily found
numerically, as represented in Figure 7.

Finally, we compute the numerical ``true"" values of the functions \scrT 1 and \partial \theta \scrT 1
and the cost functional \scrJ main defined by (2.27), used here as a quality indicator
of a given geometry. For nonvanishing inclusions, of increasing finite size \varepsilon , these
quantities are plotted in Figure 8. As expected, the value of \scrT 1 and therefore the cost
functional \scrJ main diverge from their asymptotic values as \varepsilon increases. Nevertheless,
as summarized in Table 2, the ellipse parametrized by (\varphi opt, \gamma opt) gives significantly
better results (lower values of \scrT 1 and \scrJ main) than a disk or an arbitrarily chosen ellipse
with equal surface ratio, also represented in Figure 8.
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Fig. 7. Left: Curve \varphi (\gamma ) corresponding to \scrT 1(\theta \mathrm{I} = 0) = o(\varepsilon 2). Right: Coefficient A12, i.e.,
leading-order contribution of \partial \theta \scrT 1(\theta \mathrm{I} = 0), along this curve. Positions of the optimal parameters
(\varphi \mathrm{o}\mathrm{p}\mathrm{t}, \gamma \mathrm{o}\mathrm{p}\mathrm{t}) are given in dashed lines.
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Fig. 8. Left: Investigated ellipses. Test cases with surface | \Omega i| = 0.25 and ``optimal"" ellipses
for normal incidence \theta \mathrm{I} = 0 with increasing surfaces | \Omega i| \in \{ 0.05,0.25\} . Right: Values of \scrT 1, \partial \theta \scrT 1,
and \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}, computed numerically for these ``optimal"" ellipses.
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856 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

Table 2
Case \theta \mathrm{I} = 0 (normal incidence). Values of functions \scrT 1, \partial \theta \scrT 1, and \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} for several ellipses

with the same surface | \Omega i| = 0.25; see Figure 8. For the disk, one has \scrB 2 = 0 and therefore \partial \theta \scrT 1 = 0,
so that \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} is not defined.

Ellipse \scrT 1 \partial \theta \scrT 1 \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} = (\scrT 1/\partial \theta \scrT 1)2

(\varphi ,\gamma ) = (0\circ ,1) (disk)  - 0.11 0 \emptyset 
(\varphi ,\gamma ) = (45\circ ,0.5)  - 0.10 8.6\times 10 - 2 1.4

(\varphi \mathrm{o}\mathrm{p}\mathrm{t}, \gamma \mathrm{o}\mathrm{p}\mathrm{t})\approx (36\circ ,0.23)  - 0.06 0.16 0.14
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Fig. 9. Case \theta \mathrm{I} = 30\circ . Pairs (\varphi ,\gamma ) that achieve \scrT 1 = o(\varepsilon 2) (left), corresponding leading-order
approximation of \partial \theta \scrT 1 (right), and numerical extraction of the optimal parameters (\varphi \mathrm{o}\mathrm{p}\mathrm{t}, \gamma \mathrm{o}\mathrm{p}\mathrm{t}) \approx 
(53\circ ,0.34) (dashed lines).
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Fig. 10. Case \theta \mathrm{I} = 45\circ . Pairs (\varphi ,\gamma ) that achieve \scrT 1 = o(\varepsilon 2) (left), corresponding leading-order
approximation of \partial \theta \scrT 1 (right), and numerical extraction of the optimal parameters (\varphi \mathrm{o}\mathrm{p}\mathrm{t}, \gamma \mathrm{o}\mathrm{p}\mathrm{t}) \approx 
(55\circ ,0.40) (dashed lines).

This asymptotic analysis therefore provides a good initial guess that can be used
for topological optimization procedures, as seen in the next section.

4.3. Arbitrary incidence: Numerical optimum. For an arbitrary incidence
angle \theta I, closed-form expressions for an optimal pair such as (4.6) and (4.7) would be
too tedious to obtain. However, the asymptotic approximation of \scrT 1(\theta I) as a function
of (\varphi ,\gamma ) can easily be computed numerically.

As illustrated in Figures 9 and 10 for \theta I = 30\circ and \theta I = 45\circ , respectively, the
curves (\varphi ,\gamma ) that achieve \scrT 1 = o(\varepsilon 2) are numerically extracted, the leading-order
approximation of \partial \theta \scrT 1(\theta I) is computed along them, and an optimal pair is determined,
similarly to the case \theta I = 0.
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 857

Table 3
Case \theta \mathrm{I} = 30\circ . Values of functions \scrT 1, \partial \theta \scrT 1, and \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} for several ellipses with the same

surface | \Omega i| = 0.25.

Ellipse \scrT 1 \partial \theta \scrT 1 \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} = (\scrT 1/\partial \theta \scrT 1)2

(\varphi ,\gamma ) = (0\circ ,1) (disk)  - 0.11 0.05 4.8

(\varphi ,\gamma ) = (45\circ ,0.5)  - 0.055 0.11 0.26
(\varphi \mathrm{o}\mathrm{p}\mathrm{t}, \gamma \mathrm{o}\mathrm{p}\mathrm{t})\approx (52\circ ,0.34)  - 0.019 0.17 0.012

Table 4
Case \theta \mathrm{I} = 45\circ . Values of functions \scrT 1, \partial \theta \scrT 1, and \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} for several ellipses with the same

surface | \Omega i| = 0.25.

Ellipse \scrT 1 \partial \theta \scrT 1 \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} = (\scrT 1/\partial \theta \scrT 1)2

(\varphi ,\gamma ) = (0\circ ,1) (disk)  - 0.11 0.078 1.8

(\varphi ,\gamma ) = (45\circ ,0.5)  - 0.022 0.14 0.025

(\varphi \mathrm{o}\mathrm{p}\mathrm{t}, \gamma \mathrm{o}\mathrm{p}\mathrm{t})\approx (55\circ ,0.4)  - 0.013 0.16 0.0065

For an ellipse with these characteristics and surface | \Omega i| = 0.25, the values of
\scrT 1, \partial \theta \scrT 1, and \scrJ main are then computed by numerically solving the cell problems and
are compared with the two other ellipses represented in Figure 8. Tables 3 and 4
summarize the results. In these two cases, the ``asymptotically optimal"" ellipse gives
much better results than the two other test cases.

5. Topological optimization of microstructured interfaces. While in the
previous section we used the analytical information given by the topological derivative
to analyze the case of a unique elliptic inclusion, the aim in this section is to use the
topological derivative in an optimization algorithm to minimize a functional with no
a priori on the geometry of the inclusion. The efficiency of both methodologies will
be investigated through numerical examples in section 5.3.

One aims at generating a microstructure minimizing an objective cost functional
\scrJ (\bfitm eff) composed of both a main function, for example, (2.27), and some geometrical
constraints. An optimal microstructrure is defined by the phase distribution \bfitm opt in
the bounded cell \Omega a. The cost functional depends on the macroscopic behavior which
is described by the effective parameters \bfitm eff (2.15) that themselves depend on \bfitm 
based on the homogenized model. We therefore consider the following optimization
problem:

Find \bfitm opt = argmin
\bfitm 

\~\scrJ (\bfitm ) with \~\scrJ (\bfitm ) =\scrJ (\bfitm eff).(5.1)

In this context, and given the optimization problem (5.1), one looks for the topologi-
cal derivative \scrD \~\scrJ . If \scrJ is differentiable with respect to the effective parameters, \scrD \~\scrJ 
is computed thanks to the chain rule:

\scrD \~\scrJ =
\partial \scrJ 
\partial \scrB 

\scrD \scrB +
\partial \scrJ 
\partial \scrB 2

\scrD \scrB 2 +
\partial \scrJ 
\partial \scrS 

\scrD \scrS +
\partial \scrJ 
\partial \scrC 1

\scrD \scrC 1 +
\partial \scrJ 
\partial \scrC 

\scrD \scrC .(5.2)

The final objective is to have at hand a minimization algorithm in order to compute
one optimized material distribution in the sense of (5.1).

5.1. Optimization scheme.

5.1.1. FFT-based computation of the cell problems. In order to perform
topological optimization, multiple computations of the problem (2.10) are required.
Accurately solving this problem with numerical efficiency is therefore crucial. This
problem has been tackled in [18] by (i) reformulating the original problem (A.1)
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858 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

derived in [30] and posed in an infinite ``strip"" into the problem (2.10) posed in a
bounded cell (as recalled in Appendix A), and then (ii) decomposing the solution of
this equivalent bounded problem as follows:

\Phi =\Phi per +\Phi bound.(5.3)

The two terms of this decomposition are as follows:
\bullet The biperiodic function \Phi per that satisfies

\bfnabla \cdot (\mu (\bfity ) (\bfitI 2 +\bfnabla \Phi bound +\bfnabla \Phi per)) = 0 in \Omega a,(5.4)

together with
\int 
\Omega a \Phi per = 0 for uniqueness. This is a usual cell problem, which

appears in homogenization of biperiodic media, with a source term that is
given by \bfitI 2 +\bfnabla \Phi bound.

\bullet The boundary corrector \Phi bound that is y2-periodic and ensures that the
boundary conditions associated to the DtN conditions in (2.10) are satisfied
by imposing

(\partial \bfitn  - \Lambda )\Phi bound

\Bigl( 
\pm a

2h
, \cdot 
\Bigr) 
= - (\partial \bfitn  - \Lambda )\Phi per

\Bigl( 
\pm a

2h
, \cdot 
\Bigr) 
.(5.5)

The problem is then solved using a fixed-point algorithm specified in [18, sec-
tion 3.1] and summarized here for completeness.

1. Fix \Phi 
(0)
bound = 0.

2. Step n\rightarrow n+ 1: given \Phi 
(n)
bound,

(a) Compute\Phi (n+1)
per by solving the problem (5.4), with the source term given

by \Phi 
(n)
bound

(b) Choose a corrector \Phi 
(n+1)
bound that satisfies (5.5) (an example of choice is

given in [18, section 3.2])

(c) Compute \Phi (n+1) =\Phi (n+1)
per +\Phi 

(n+1)
bound

3. End when

| | \Phi (n+1)  - \Phi (n)| | L2(\Omega a)

| | \Phi (n)| | L2(\Omega a)

< \delta FP(5.6)

with \delta FP a user-chosen tolerance.
In practice, the fields are discretized on a regular N1\times N2 pixel grid mapping the

inner cell \Omega a, and a Fourier-based solver is used for step 2(a), that ensures the peri-
odicity requirements on the fields and relies on FFT for efficiency, following [33]. This
algorithm has not been investigated theoretically but has been observed to converge
in practice.

5.1.2. Material updating. In the configuration mentioned in the introduc-
tion, there are only two phases: \Omega m, which is the homogeneous matrix outside the
microstructured array, and \Omega i \subset \Omega a, which is the inclusion phase. Consequently the
only material modification allowed in the optimization process is a phase swapping
from (\rho i, \mu i) to (\rho m, \mu m) or conversely. Accordingly, the material perturbation \Delta \bfitm 
in the topological derivatives of Proposition 3.23 is chosen as

\Delta \bfitm = (\rho i  - \rho m, \mu i  - \mu m) in \Omega m and \Delta \bfitm = (\rho m  - \rho i, \mu m  - \mu i) in \Omega i.(5.7)

Moreover, the shape of the perturbation \scrP is a disk so that the expression of the
polarization tensor is given by (3.27) with \gamma = 1. The use of the boundary corrector
approach described above requires that the phase at the boundaries y1 =\pm a

2h is \Omega m.
Consequently, one defines an optimization domain
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 859

\Omega design = [ - b; b]\times [ - 1/2; 1/2] with b <
a

2h

in which material updates are allowed. Since the material is made of two phases, a
common way to characterize it is to use a level-set function \Psi that satisfies\Biggl\{ 

\Psi (\bfitz )> 0 in \Omega design \cap \Omega m

\Psi (\bfitz )< 0 in \Omega design \cap \Omega i

and | | \Psi | | L2(\Omega \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}) = 1.(5.8)

A projection algorithm introduced in [8] for topological optimization can then be used
[5, 9, 39, 24]. The main steps are recalled in this subsection.

First, one defines a signed normalized topological derivative \scrD \scrJ (n)
at iteration

n as

\scrD \scrJ (n)
(\bfitz ) =

\Biggl\{ 
\scrD \scrJ (n)(\bfitz )/| | \scrD \scrJ (n)| | L2(\Omega \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}) in \Omega design \cap \Omega m

 - \scrD \scrJ (n)(\bfitz )/| | \scrD \scrJ (n)| | L2(\Omega \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}) in \Omega design \cap \Omega i.
(5.9)

When \scrD \scrJ (n)
satisfies the sign condition (5.8), then \scrD \scrJ (n)(\bfitz ) > 0 is satisfied in the

whole optimization domain \Omega design. Consequently, in this case, the leading-order
approximation of the cost functional \scrJ cannot be decreased anymore by a phase

change in \Omega design. Therefore, \scrD \scrJ (n)
satisfying (5.8) is a sufficient optimal condition

that ensures that the material configuration corresponds to a local minimum of \scrJ .
The iterative updating strategy of [8] for \Psi aims at fulfilling this condition. At each
iteration, the new level-set function \Psi (n+1) is computed as

\Psi (n+1)(\bfitz ) =
1

sin(\Theta (n))

\Bigl[ 
sin((1 - \kappa (n))\Theta (n))\Psi (n)(\bfitz ) + sin(\kappa (n)\Theta (n))\scrD \scrJ (n)

(\bfitz )
\Bigr] 

(5.10)

with the angle \Theta (n) being defined by the projection

\Theta (n) = arccos
\Bigl( 
\scrD \scrJ (n)

,\Psi (n)
\Bigr) 
L2(\Omega \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n})

.(5.11)

The parameter \kappa (n) in (5.10) is chosen so that the cost functional decreases at each
iteration. In practice, it is initialized to \kappa (0) = 1 and then at each iteration it is
determined down to a minimal value \kappa min within an inner optimization loop that
reads as follows:

1. Initialization to \kappa (n) =min(2, \kappa (n - 1)).
2. Compute \Psi (n+1)(\bfitz ) using (5.10).
3. Compute the associated cost functional \scrJ (n+1) (by solving the cell problem

and computing relevant effective quantities) and
\bullet if \scrJ (n+1) <\scrJ (n), end step n,
\bullet if \scrJ (n+1) > \scrJ (n) and \kappa (n) > \kappa min, set \kappa (n) = \kappa (n)/2 and go back to

step 2,
\bullet if \scrJ (n+1) > \scrJ (n) and \kappa (n) < \kappa min, the whole level-set algorithm is

stopped: the cost functional cannot be decreased by the level-set pro-
jection.

The stopping criterion of the level-set method associated with the updating step (5.10)
is set as

| \Theta (n)| < \delta \Theta (5.12)

with \delta \Theta a user-chosen tolerance parameter.
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860 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

Remark 5.1. Different initializations are possible for the level-set function \Psi (0).
Here we chose to compute it as f/| | f | | L2(\Omega \mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}) with f being defined by

f(\bfitz ) =

\Biggl\{ 
\=\mu  - \mu (\bfitz ) if \mu m <\mu i,

\mu (\bfitz ) - \=\mu if \mu m >\mu i,
(5.13)

where \=\mu = (\mu m + \mu i)/2.

5.2. Perimeter and surface constraints. One may want to reach a given
phase ratio in the microstructure. Consequently, we denote by \scrA the target surface
of phase \Omega i in the unit cell, and we now consider the following cost functional:

\scrJ main + \lambda 

\biggl( 
| \Omega i| 
\scrA 

 - 1

\biggr) 2

,(5.14)

where we added a penalization term to tend to satisfy the surface condition. The
parameter \lambda is a user-chosen parameter which is set so that the final configuration
is made of an inclusion surface satisfying | \Omega i| \in [\scrA  - \scrA err;\scrA + \scrA err] with \scrA err also
chosen by the user. An augmented Lagrangian strategy [34] could be carried out but
this is beyond the scope of this paper.

Furthermore, for manufacturing purposes, one aims at getting smooth final config-
urations that would not be necessary obtained if we only minimize the cost functional
(5.14). Consequently one wants to minimize the cost functional

\scrJ (\bfitm eff) =\scrJ main + \lambda 

\biggl( 
| \Omega i| 
\scrA 

 - 1

\biggr) 2

+ \alpha perPer(\Omega i)(5.15)

with Per(\Omega i) =
\int 
\partial \Omega \mathrm{i}

d\sigma the perimeter of the inclusions phase in a unit cell and \alpha per

a user-chosen parameter. In [6], a regularized perimeter functional Per\epsilon has been in-
troduced to take into account perimeter minimization in topology optimization. This
functional has been proved to converge to the exact perimeter as the regularization
parameter \epsilon tends to 0. In practice, the main idea is to solve sequentially the following
approximate problems for n= 1, . . . ,Nper:

min\scrJ \epsilon n :=\scrJ main + \lambda 

\biggl( 
| \Omega i| 
\scrA 

 - 1

\biggr) 2

+ \alpha perPer\epsilon n(\Omega i)(5.16)

with \epsilon n+1 = \epsilon n/2, while \epsilon 0 and Nper are user-chosen parameters. In numerical exam-
ples, both \lambda and \alpha per are user-chosen parameters we can play with in order to find
a balance between decreasing \scrJ main, satisfying the volume constraint, and getting
smooth final configurations (see [46] for comparisons of final configurations with and
without perimeter penalization).

5.3. Numerical examples. In this section, the desired macroscopic effect is
to minimize the fields along a given direction \theta min with (r, \theta ) the polar coordinates
centered at \bfitX \bfitS = ( - 35, 0), where the source (2.20) is located. It can been visualized
as minimizing the cumulative energy (2.21) along a given direction \theta min. Following the
discussion of section 2.2.2, we then want to have a change of sign for \scrT 1 at \theta min. We
consequently minimize the regularized cost functional (5.16). The physical parameters
are still the ones typical of steel in concrete given by Table 1, while the numerical
parameters are given in Table 5.
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 861

Table 5
Numerical parameters.

\kappa \mathrm{m}\mathrm{i}\mathrm{n} \delta \Theta N1 N2 \delta \mathrm{F}\mathrm{P} \epsilon 0 N\mathrm{p}\mathrm{e}\mathrm{r}

10 - 3 10 - 1 101 101 10 - 3 1 10

In a first example, we chose \theta I = 0 with a surface \scrA = 0.2. In the cost functional
(5.16) the coefficients for the surface penalization \lambda and the perimeter penalization
\alpha per are chosen so that \scrA err = 0.06. Their values for each test case are given in Table 6.
Four different initializations are chosen: an ellipse of semiaxes lengths (0.15,0.3) and
tilted of  - \pi /4, the same ellipse but tilted of \pi /4, a random initialization with the
same ratio of both materials, and the ``asymptotically optimal ellipse"" determined
in section 4. The initial configurations, the final configurations obtained after the
optimization process, and the maps of the cumulative energy (2.21) associated with
the effective final configurations are plotted for these four cases in Figure 11. The
initial and final values of the cost functional are also given in Tables 6 and 7, respec-
tively. We recover the symmetry of the configuration between the first two cases. We
observe that the cost functional is well decreased in every example, so we reach a
better configuration by topological optimization than with the optimal ellipse. In ad-
dition, it seems that the number of iterations and the value of the cost functional are
smaller when we initialize by this asymptotically optimal ellipse, so this can be consid-
ered as a valuable initialization to improve the results of the topological optimization
process.

A second example for \theta I = \pi /4, \scrA = 0.3, and \scrA err = 0.06 is described by Table 8,
Table 9, and Figure 12. It confirms that the topological optimization algorithm de-
creases the cost functional. However, for the first two initializations the target angle
of \pi /4 does not seem to be reached so accurately, as can be noticed in Figures 12(c)
and 12(f). In this case, initializing by the optimal ellipse seems even more relevant
since the result obtained in Figure 12(i) is more satisfying, with a cost functional and a
number of iterations which are lower than for the other initializations. In both exam-
ples, although the values of \scrJ main in the end are significantly lower than the starting
ones, the values achieved starting from different initializations are also considerably
different. This is due to the presence of multiple local minima and has already been
observed for the volume case [17]. This therefore underlines the importance of a good
initialization, as the one provided by the optimal ellipse.

Finally, for a better visualization of the optimal periodic microstructures obtained
by repeating the unit cells, four of them are displayed in Figure 13.

6. Conclusion. In this work, formulas are derived for the sensitivities of the
homogenized model that describes the propagation of low-frequency scalar waves
through a row of inclusions embedded in a homogeneous matrix. To do so, we consider
asymptotic expansions for a unit cell where a perturbation is introduced. The ex-
pression of the sought topological derivatives of the effective parameters involves the
solution of band cell problems in an unperturbed unit cell, and the usual polarization
tensor. The numerical computation of these band cell problems had been tackled in
a previous work, while the polarization tensor is known analytically for elliptic per-
turbations, for example. The expression of the topological derivatives are validated
numerically and used to perform an analytical analysis of the sensitivity of the model
when considering elliptic inclusions. Then a topological optimization process is de-
veloped to minimize a proposed cost functional, whose objective is to minimize the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

6/
24

 to
 1

34
.1

57
.6

9.
64

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



862 MARIE TOUBOUL, R\'EMI CORNAGGIA, AND C\'EDRIC BELLIS

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(a)

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(b)

40 42 44 46 48 50 52 54 56 58 60

- /4

- /8

0

/8

/4

Minimal fields

(c)

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(d)

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(e)

40 42 44 46 48 50 52 54 56 58 60

- /4

- /8

0

/8

/4

Minimal fields

(f)

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(g)

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(h)

40 42 44 46 48 50 52 54 56 58 60

- /4

- /8

0

/8

/4

Minimal fields

(i)

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(j)

-0.5 0 0.5
-0.5

0

0.5

1

2

3

4

5

6

(k)

40 42 44 46 48 50 52 54 56 58 60

- /4

- /8

0

/8

/4

Minimal fields

(l)

Fig. 11. Test cases for \theta \mathrm{I} = 0 and \scrA = 0.2. From left to right columns: initial configuration,
final configuration, and local cumulative energy (2.21) in the effective medium associated to the final
configuration where the position of the minimal value for a given r is denoted by the red crosses.

transmitted fields along a given direction. The material distribution is updated at
each iteration thanks to a level-set method and using the topological derivatives ob-
tained in the first part. Surface and perimeter constraints are also added to the cost
functional in order to reach local minima that are smoother and avoid trivial solutions.

This study sets a framework for the optimization of microstructured interfaces
based on their homogenized properties. This work could be extended to other config-
urations, such as the following:
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Table 6
Initial values for the different configurations with objective \theta \mathrm{I} = 0 presented in Figure 11: surface

and perimeter parameters, and values of functionals before optimization.

\lambda \alpha \mathrm{p}\mathrm{e}\mathrm{r} \scrJ init. \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} init.

ellipse (0.15,0.3, - \pi /4) 0.5 0.2 1.21 9.72 \cdot 10 - 1

ellipse (0.15,0.3, \pi /4) 0.5 0.2 1.21 9.72 \cdot 10 - 1

random 0.5 0.2 5.23 \cdot 103 5.23 \cdot 103
optimal ellipse 0.15 5 \cdot 10 - 2 1.02 \cdot 10 - 1 3.61 \cdot 10 - 1

Table 7
Final values for the different configurations with objective \theta \mathrm{I} = 0 presented in Figure 11: number

of iterations, final surface, and values of functionals after optimization.

N\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} | \Omega i| end \scrJ end \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} end

ellipse (0.15,0.3, - \pi /4) 103 0.15 2.24 \cdot 10 - 1 1.4 \cdot 10 - 2

ellipse (0.15,0.3, \pi /4) 103 0.15 2.24 \cdot 10 - 1 1.4 \cdot 10 - 2

random 82 0.16 1.93 \cdot 10 - 1 7.2 \cdot 10 - 3

optimal ellipse 60 0.14 6.76 \cdot 10 - 2 2.1 \cdot 10 - 3

Table 8
Initial values for the different configurations with objective \theta \mathrm{I} = \pi /4 presented in Figure 12:

surface and perimeter parameters, and values of functionals before optimization.

\lambda \alpha \mathrm{p}\mathrm{e}\mathrm{r} \scrJ init. \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} init.

ellipse (0.15,0.3, \pi /4) 0.3 7 \cdot 10 - 2 1.51 1.40

random 1 1 \cdot 10 - 1 2.03 \cdot 10 - 1 2.11 \cdot 10 - 4

optimal ellipse 0.3 7 \cdot 10 - 2 6.27 \cdot 10 - 2 3.30 \cdot 10 - 3

Table 9
Final values for the different configurations with objective \theta \mathrm{I} = \pi /4 presented in Figure 12:

number of iterations, final surface, and values of functionals after optimization.

N\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} | \Omega i| end \scrJ end \scrJ \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} end

ellipse (0.15,0.3, \pi /4) 49 0.30 2.84 \cdot 10 - 2 9.72 \cdot 10 - 5

random 52 0.24 1.35 \cdot 10 - 1 7.99 \cdot 10 - 4

optimal ellipse 28 0.28 2.96 \cdot 10 - 2 8.76 \cdot 10 - 5

\bullet Resonant interfaces, obtained, e.g., for highly contrasted inclusions [48, 47].
In this case, frequency-dependent coefficients have been derived, and while
homogenization-based optimization procedures exist for fully periodic reso-
nant media, e.g., [49], they are quite scarce for such interfaces, to the best of
our knowledge.

\bullet High-frequency behavior. Again, the specific homogenization procedure for
higher frequencies or shorter wavelengths is well-known for fully periodic me-
dia and has been used for optimization [37], but could be extended to inter-
faces.

\bullet Graded metasurfaces. By relaxing the periodicity assumption and allowing
for slow variations of the periodicity cell size along the interface, one may
obtain graded interfaces (sometimes called quasi-periodic [41]) able to pro-
duce stronger macroscopic effects than their strictly periodic counterparts.
Optimization procedures also exist for such configurations [35].

\bullet Other physical contexts. The scalar wave equation adressed in this study
is quite general already and may model acoustics, antiplane shear elastic
waves, or transversely polarized electromagnetic waves. Extensions to (vector-
valued) Maxwell or elasticity equations are however possible within the same
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Fig. 12. Test cases for \theta \mathrm{I} = \pi /4 and \scrA = 0.3. From left to right columns: initial configuration,
final configuration, and local cumulative energy (2.21) in the effective medium associated to the final
configuration where the position of the minimal value for a given r is denoted by the red crosses.

(a) (b) (c) (d)

Fig. 13. Final microstructures corresponding to the optimal cells displayed in Figures (a) 11h,
(b) 12b, (c) 12e, and (d) 12h.
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matched asymtotics framework (see [43] for a related study) and would open
the way of optimization procedures for macroscopic effects typical of vector-
valued wave problems such as mode conversion at the interface (e.g., P-waves
to S-waves for isotropic elasticity).

Appendix A. Dirichlet-to-Neumann operator. In this section, the steps
used in [18] to obtain the cell problem (2.10) with DtN boundary conditions are
briefly recalled. The problem initially derived in [30], posed in the infinite strip \Omega ,
reads \left\{           

\bfnabla \cdot (\mu (\bfity ) (\bfnabla \bfity \Phi (\bfity ) + \bfitI 2)) = 0 in \Omega ,

\mu (\bfity )[\bfnabla \bfity \Phi (\bfity ) + \bfitI 2] \cdot \bfitn and \Phi are continuous on \partial \Omega i,

\Phi is y2-periodic,

lim
y1\rightarrow \pm \infty 

\bfnabla \bfity \Phi (y1, y2) = 0.

(A.1)

The variations of the physical parameters are restricted to \Omega a due to its definition
in (2.7). Introducing the half-strips \Omega +

a = [ a
2h ,+\infty [\times I and \Omega  - 

a = ]  - \infty , - a
2h ] \times I

(see Figure 2), the restrictions \Phi \pm := \Phi | \Omega \pm 
a

satisfy \Delta \Phi \pm = 0 in \Omega \pm 
a , along with

the periodicity and decaying conditions. The modal decomposition of these fields,
classically found in the literature on waveguides [26, 15] and also used in [30] to find
approximate solutions, then reads

\Phi \pm (y1, y2) =
\sum 
n\in \BbbZ 

\Phi \pm 
n e

\mp | \xi n| (y1\mp a
2h )\Psi n(y2) with \Psi n(y2) = ei\xi ny2 , \xi n = 2n\pi .(A.2)

The modes \{ \Psi n\} are orthonormal for the L2 scalar product (\cdot , \cdot )I on any vertical
section I, i.e., they satisfy

(\Psi p,\Psi q)I = \delta pq with (f, g)I :=

\int 
I

f(y2)g(y2)dy2.(A.3)

Consequently, choosing the particular section I+ = \{ (y1, y2) \in \Omega +
a , y1 = a

2h\} (see
Figure 2) yields the expression of the modal coefficients in the right half-strip:

\Phi +
n =

\Bigl( 
\Phi +

\Bigl( a

2h
, \cdot 
\Bigr) 
,\Psi n

\Bigr) 
I
=

\int 
I

\Phi +
\Bigl( a

2h
, y2

\Bigr) 
\Psi n(y2)dy2.(A.4)

One differentiates the decomposition (A.2) with respect to y1 and uses the expression
of the coefficients (A.4) to get the following DtN operator linking the traces of \Phi and
of its normal derivative on the section I+ where \Phi =\Phi +:

\partial y1
\Phi 
\Bigl( a

2h
, \cdot 
\Bigr) 
=\Lambda 

\Bigl[ 
\Phi 
\Bigl( a

2h
, \cdot 
\Bigr) \Bigr] 

with \Lambda [\bfitf ](y2) = - 
\sum 
n\in \BbbZ 

(\bfitf ,\Psi n)I | \xi n| \Psi n(y2).(A.5)

Similarly, focusing on the particular section I - = \{ (y1, y2) \in \Omega  - 
a , y1 =  - a

2h\} (see
Figure 2) provides the expression of the ``left"" modal coefficients of \Phi  - . The DtN
relation is finally found to be the same for both interfaces I\pm , up to the direction of
the outer normal derivative:

\partial \bfitn \Phi 
\Bigl( 
\pm a

2h
, \cdot 
\Bigr) 
=\Lambda 

\Bigl[ 
\Phi 
\Bigl( 
\pm a

2h
, \cdot 
\Bigr) \Bigr] 

, where \partial \bfitn =\pm \partial y1.(A.6)

The problem posed in the infinite band (A.1) can thus be rewritten as the problem
(2.10) with DtN boundary conditions on the bounded cell (2.7).
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Appendix B. Properties of Green's functions. The definition of the full-
space fundamental solution G\infty in (3.9) implies

 - \mu  \star \Delta \bfitr G\infty (\bfitr ;\mu  \star ) = \delta (\bfitr ) and \bfnabla \bfitr G\infty (\bfitr ;\mu  \star ) = - \bfitr 

2\pi \mu  \star \| \bfitr \| 2
.(B.1)

From the problem (3.8), the decomposition of the fundamental solution G given in
(3.9), and the equalities above, then the complementary part Gc is defined as the
solution of the PDE,

 - \bfnabla \bfity \cdot 
\biggl( 
\mu (\bfity )

\mu m
\bfnabla \bfity Gc(\bfity ,\bfitx )

\biggr) 
=\bfnabla \bfity \cdot 

\biggl( 
\mu (\bfity ) - \mu (\bfitx )

\mu m
\bfnabla \bfity G\infty 

\biggl( 
\bfity  - \bfitx ;

\mu (\bfitx )

\mu m

\biggr) \biggr) 
= - \bfnabla \bfity \cdot 

\biggl( 
[\mu (\bfity ) - \mu (\bfitx )] (\bfity  - \bfitx )

2\pi \mu (\bfitx )\| \bfity  - \bfitx \| 2

\biggr) (B.2)

along with the boundary conditions,

Gc(\cdot ,\bfitx ) +G\infty 

\biggl( 
\cdot  - \bfitx ;

\mu (\bfitx )

\mu m

\biggr) 
is y2-periodic,(B.3)

and

 - (\partial \bfitn +\Lambda ) [Gc(\bfity ,\bfitx )]

\bigm| \bigm| \bigm| \bigm| 
y1=\pm a

2h

= (\partial \bfitn +\Lambda )

\biggl[ 
G\infty 

\biggl( 
\bfity  - \bfitx ;

\mu (\bfitx )

\mu m

\biggr) \biggr] \bigm| \bigm| \bigm| \bigm| 
y1=\pm a

2h

\forall \bfity \in I\pm .

(B.4)

The right-hand side of the PDE (B.2) is seen to be regular as \bfity \rightarrow \bfitx as soon as
the material coefficient \mu is C1 in a neighborhood of \bfitx . Therefore, Gc(\cdot ,\bfitx ) and its
gradient are ensured to be regular functions when \bfitx is itself in the neighborhood of
the perturbation point \bfitz , which is not located on a material interface. Using the
rescaled coordinates (\bfity ,\bfitx ) = (\bfitz + \varepsilon \=\bfity ,\bfitz + \varepsilon \=\bfitx ), one obtains the asymptotic behavior:

\bfnabla \bfity Gc(\bfity ,\bfitx ) =\bfnabla \bfity Gc(\bfitz ,\bfitz ) + o(1) =\scrO (1) as \varepsilon \rightarrow 0.(B.5)
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