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TOPOLOGICAL SENSITIVITY-BASED ANALYSIS AND1

OPTIMIZATION OF MICROSTRUCTURED INTERFACES∗2

MARIE TOUBOUL† , RÉMI CORNAGGIA ‡ , AND CÉDRIC BELLIS §3

Abstract. This paper concerns the optimization of microstructures within a surface when4
considering the propagation of scalar waves across a periodic row of inclusions embedded within a5
homogeneous matrix. The approach relies on the low-frequency homogenized model, which consists,6
in the present case, in some effective jump conditions through a discontinuity within the ambient7
medium. The topological derivatives of the effective parameters defining these jump conditions are8
computed from an asymptotic analysis. Their expressions are validated numerically and then used9
to study the sensitivity of the homogenized model to the geometry in the case of elliptic inclusions.10
Finally, a topological optimization algorithm is used to minimize a given cost functional. This relies11
on the expression of the topological derivatives to iteratively perform phases changes in the unit cell12
characterizing the material, and on FFT-accelerated solvers previously adapted to solve the band cell13
problems underlying the homogenized model. To illustrate this approach, the resulting procedure is14
applied to the design of a microstructure that minimizes transmitted fields along a given direction.15

Key words. topological optimization, asymptotic methods, periodic media, microstructured16
interfaces, effective jump conditions17

1. Introduction. The design of microstructured media allows to control wave18

propagation and may lead to exotic effects, e.g. negative refraction, subwavelength19

imaging, lensing and cloaking, to cite a few. It constitutes the paradigm of meta-20

materials, which have undergone spectacular developments since the early 2000: see21

[19] and references therein for an overview. An active direction of research concerns22

the size reduction of microstructures to design compact metamaterial devices. It is23

indeed advantageous to replace a volumic distribution by a surfacic (in 3D) or a lineic24

(in 2D) distribution of scatterers, often called metasurface [10] or meta-interface [27].25

The two-scale homogenization method is a privileged tool to derive formally an26

approximate model for wave propagation in microstructured media [12, 44]. It avoids27

having to mesh fine spatial scales and gives an analytical insight on the macroscopic28

behaviour of waves. However, the usual homogenization methods in the bulk fail29

when considering a thin row of scatterers, because of boundary effects at the tran-30

sition between the scatterers and the homogenous medium in which it is embedded.31

To recover their efficiency, these methods must then be combined with matched as-32

ymptotic expansions [29], yielding effective jump conditions on an equivalent meta-33

interface [21, 31, 20, 30, 42].34

In the context of metamaterials, the optimization of microstructures is a useful35

tool to determine designs that exhibit interesting macroscopic behaviours. To this36

purpose, different types of optimization can be considered: (i) the parametric opti-37

mization when the shapes are parameterised by a fixed number of variables (thickness,38

dimensions, etc.); (ii) the shape optimization [1] when, from an initial shape, the posi-39

tion of the boundaries of the microstructure is changed without changing its topology;40

(iii) the topological optimization [11] when the best possible geometry is sought, even41

if it means changing the topology. In this work, we are interested in topological opti-42
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‡Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond ∂’Alembert, F-75005 Paris,

France (remi.cornaggia@sorbonne-universite.fr).
§Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France (bellis@lma.cnrs-mrs.fr).

1

This manuscript is for review purposes only.

mailto:m.touboul@imperial.ac.uk
mailto:remi.cornaggia@sorbonne-universite.fr
mailto:bellis@lma.cnrs-mrs.fr


2 M. TOUBOUL, R. CORNAGGIA, AND C. BELLIS

mization which leaves more freedom compared to the first two methods. The chosen43

mathematical tool to perform this type of optimization is the topological derivative44

[7, 38] which measures the sensitivity of a cost functional to infinitesimal topological45

perturbations.46

Then, different numerical methods can be employed to update the material prop-47

erties based on the knowledge of the topological derivatives. One method used in this48

paper is the level-set method. For a two-phase material, it relies on the characteriza-49

tion of the phase distribution thanks to a level-set function which is strictly positive50

in one phase and strictly negative in the other phase. This has first been introduced51

for shape optimization and is based on the fact that the interface between phases,52

which corresponds to the zero level-set function, can evolve based on the shape deriv-53

ative of the cost functional with respect to a perturbation of this interface [2, 3]. This54

methodology has then been adapted to topological perturbation based on a projection55

algorithm [8, 9, 24, 39].56

A strategy for microstructure optimization, in line with the homogenization set-57

ting considered in this paper, is to perform the optimization from the homogenized58

model that describes the material, an issue often referred to as inverse homogenization59

[45]. It relies on the definition of a cost function, to be minimized, in terms of the60

effective coefficients that characterize the homogenized model. At low frequency, this61

method has been used in statics [9, 25, 39], in dynamics for a low constrast [3, 17],62

and a high contrast [49] of the physical properties (activating resonances of the highly63

contrasted inclusions). It has also been extended to optimize effective properties at64

high frequencies [37].65

In this framework, a topological optimization procedure is presented in [17] to66

optimize dynamical properties for antiplane shear waves based on homogenization.67

The main ingredients are the following ones:68

1. the two-scale asymptotic homogenization method is deployed,69

2. a cost functional is constructed from the homogenized model,70

3. its topological derivative is computed,71

4. the cost functional minimization is performed thanks to a level-set algorithm,72

5. the level-set is iterated by computing cell problems using FFT-accelerated73

solvers.74

Noticeably, works on the optimization in dynamics of microstructured thin layers75

are more scarce and recent: [32] for an optimization of slabs based on their far-field76

behaviour and [36] for a design of acoustic metasurfaces based on a homogenization77

model. In the present paper, we perform a sensitivity analysis and the optimization78

of an acoustic microstructured interface, based on the homogenized model of [30] and79

following the same overall approach as in [17]. The novelties compared to [36] and [17]80

are (i) the calculation of topological derivatives and their use prior to the topological81

optimization process to perform a sensitivity analysis of the effective properties and82

to determine valuable initializations from the closed-form formula provided by the83

topological derivatives for elliptical inclusions; and (ii) the use of non-conventional84

FFT-based solvers to address the specific unbounded cell problems that arise from the85

two-scale homogenization of microstructured interfaces.86

87

The paper is organized as follows: the homogenized model is recalled in Section 2,88

and an analysis of the macroscopic observables is performed, leading to the definition89

of the considered optimization problem. In Section 3, the topological derivatives of90

the effective parameters of the interface model are derived and validated numerically.91

Then, in Section 4, based on the analytical information provided by these derivatives,92
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a topological sensitivity-based analysis is performed for microstructures made of el-93

liptic inclusions, and “asymptotically optimal” ellipses are determined for the chosen94

cost functional. Then a topological optimization scheme, which relies on the topo-95

logical derivatives to update the material distribution at each iteration, is presented96

in Section 5. We finally summarize the results and discuss possible perspectives in97

Section 6.98

2. Microstructured interfaces, effective model and optimization prob-99

lem.100

2.1. Setting and homogenization. Let us consider the propagation of waves101

in two dimensions across a periodic row of inclusions ∪iΩi embedded within a homo-102

geneous matrix Ωm. The thickness and the period of the row are denoted by e and h,103

respectively, and we assume that e = O(h). The time and the spatial coordinates are104

denoted by t and X = (X1, X2), respectively, with X2 being the direction of period-105

icity of the inclusions as shown in Figure 1. Anti-plane elastic waves are considered,106

and both media are assumed to be isotropic and homogeneous. The microstructured107

medium is therefore characterized by two constitutive parameters, the mass density108

ρh and the shear modulus µh, that are piecewise constant:109

(2.1) (ρh, µh)(X) =

{
(ρm, µm) in the matrix,

(ρi, µi) in the inclusions,
110

and the time-domain governing equation for the out-of-plane component Uh of the111

material displacement reads:112

(2.2) ρh(X)
∂2Uh
∂t2

(X, t) = ∇ ·
(
µh(X)∇Uh(X, t)

)
+ρmδ(X −XS)g(t),113

where g is a source term located at a point XS in the matrix. Introducing the scalar114

velocity field Vh = ∂Uh/∂t and the stress vector Σh= µh∇Uh gathering the two shear115

components of the stress tensor, this system can be rewritten as a first-order system116

in time:117

(2.3)


∂Σh

∂t
(X, t) = µh(X)∇Vh(X, t),

ρh(X)
∂Vh
∂t

(X, t) = ∇ ·Σh(X, t)+ρmδ(X −XS)g(t),

118

with Vh and Σh · n being continuous at each matrix/inclusion interface ∂Ωi, given119

that n is the inward unit normal on each ∂Ωi.120

121

In the following time-domain simulations, we will only consider excitations by a122

source point in a medium initially at rest, ie Vh(X, t = 0) = 0 and Σh(X, t = 0) = 0.123

This choice removes the need for studying the small-scale interactions between the124

initial fields and the microstructure.125

Remark 2.1. The system (2.3) is also relevant to model other physical phenomena,126

such as acoustic waves for which the fields Σh, Vh, ρh and 1/µh would stand instead127

for the in-plane particle velocity, acoustic pressure, compressibility and mass density,128

respectively.129

The assumptions of the homogenization process and the results obtained in [30]130

are now briefly reminded.131
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Fig. 1: Homogenization process for a single periodic array of inclusions. (top) Origi-
nal configuration with a thin microstructured layer, (bottom) Homogenized interface
model.

Hypotheses of the homogenization process. Considering that the system is excited132

by an incident wave or external sources, the characteristic wavelength λ within the133

matrix is assumed to be much larger than the period h. Defining the wavenumber134

within the matrix as km = 2π/λ, we introduce the parameter135

(2.4) η = kmh136

and we assume that η � 1 for the configurations of interest.137

Throughout this article, only the non-resonant case is addressed, i.e. the physical138

parameters of the matrix and of the inclusions are supposed to be of the same order139

of magnitude. For large contrasts, e.g. for very soft but dense inclusions (µi � µm140

and ρi ∼ ρm), the resonances of these inclusions play a key role in the transmission of141

waves, and should be captured by specific homogenization methods, see e.g. [42, 48]142

and the references therein.143

These geometrical and material assumptions allow to homogenize the microstruc-144

ture in the so-called long-wavelength, non-resonant regime.145

Notations. The so-called fast scale of coordinates is y = X/h = (y1, y2)>. The146

domain Ω is the elementary cell R × [−1/2, 1/2] in y-coordinates, see Figure 2, that147

is repeated periodically in the y2 direction to obtain the full domain, and (e1, e2) is148

the canonical basis of R2. For any function f(x1), we define the jump and the mean149

value around the (centered) enlarged interface of thickness a:150

(2.5) JfKa = f(a/2)− f(−a/2) and 〈f〉a =
1

2

(
f(a/2) + f(−a/2)

)
.151
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We will also make use of the relative material constrasts τµ and τρ defined by:152

(2.6) τµ =
µi − µm

µm
and τρ =

ρi − ρm

ρm
.153

Cell problems. The homogenization process requires the computation of auxiliary154

fields Φj for j = 1, 2 which are solutions of band cell problems. The problems initially155

proposed by [30] were posed on the semi-infinite representative cell Ω. For practical156

implementation, the authors of the present paper proposed in [18] a reformulation on157

a bounded rectangular cell Ωa defined by:158

(2.7) Ωa =
[
− a

2h
;
a

2h

]
×
[
−1

2
;

1

2

]
︸ ︷︷ ︸

I

159

such that the material data set160

(2.8) m(y) := (ρ(y), µ(y))161

satisfies162

(2.9) m(y) = (ρm, µm) ∀y ∈ Ω\Ωa,163

as represented in Figure 2. The parameter a used in the choice of the representative164

cell Ωa also defines the effective interface width, see Figure 1. It should satisfy a ≥ e165

to ensure that the material variations are retrained to Ωa, and for the effective model166

presented below to satisfy some stability conditions [30].167

/

1+-

I I- +

Fig. 2: Elementary cell Ω, decomposed into the bounded cell Ωa, and half strips
Ω+
a = [ a2h ,+∞[×I+ and Ω−a =]−∞,− a

2h ]×I−, with I± =
{

(y1, y2) ∈ Ω±a , y1 = ± a
2h

}
.

Using the notation Φ = (Φ1,Φ2) for compactness, two (uncoupled) band cell168

problems are defined as:169

(2.10)


∇ · (µ(y) (∇Φ + I2)) = 0 in Ωa,

Φ is y2-periodic,

∂nΦ
(
± a

2h
, ·
)

= Λ
(
Φ
(
± a

2h
, ·
))

on I±,

170

where I2 is the second-order identity tensor, (I−, I+) are the left and right boundaries171

of Ωa (see Figure 2) and Λ is a nonlocal Dirichlet-to-Neumann (DtN) operator, see172

[26, 15, 18] and the expression recalled in Appendix A for completeness. In (2.10) and173

hereafter, the adopted convention for the gradient components is such that (∇Φ)ij =174

∂Φj/∂yi.175

These elementary solutions will serve to compute the effective parameters that176

appear in the homogenized model presented now.177
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6 M. TOUBOUL, R. CORNAGGIA, AND C. BELLIS

Homogenized model. From [30], we know that the homogenization of the problem178

(2.3) at order O(η) in such a configuration yields the following homogenized model179

for the first-order approximation (V,Σ) of (Vh,Σh):180

(2.11)

∂Σ

∂t
(X, t) = µm∇V (X, t) (|X1| ≥ a/2, X2 ∈ R),

ρm
∂V

∂t
(X, t) = ∇ ·Σ(X, t)+ρmδ(X −XS)g(t) (|X1| ≥ a/2, X2 ∈ R),

JV Ka = h

{
B
〈
∂V

∂X1

〉
a

+ B2

〈
∂V

∂X2

〉
a

}
(X2 ∈ R),

JΣ1Ka = h

{
S 〈∇ ·Σ〉 a − C1

〈
∂Σ1

∂X2

〉
a

− C
〈
∂Σ2

∂X2

〉
a

}
(X2 ∈ R),

181

featuring imperfect transmission conditions for the velocity V and normal component182

of the stress vector Σ1 = Σ ·e1. This system will be studied both in the time domain,183

where the same source point and null initial conditions than in the microstructured184

problem will be used, and in the time-harmonic regime for an established incident185

plane wave, see Section 2.2 below.186

The effective coefficients entering the transmission conditions are the parameter187

(2.12) S =
a

h
+ τρ|Ωi|188

where |Ωi| =
∫

Ωi
dy is the surface of the inclusion phase in the rescaled coordinates,189

and the four coefficients (B,B2, C1, C), with the notation of [30]. They are gathered190

in the two vector-valued parameters B = (B,B2) and C = (C1, C), and are expressed191

in terms of the elementary solution Φ to (2.10) as:192

(2.13) B(m) =
a

h
e1 +

∫
I

[
Φ
( a

2h
, y2

)
−Φ

(
− a

2h
, y2

)]
dy2,193

and:194

(2.14) C(m) =

∫
Ωa

µ(y)

µm

(
∂Φ

∂y2
(y) + e2

)
dy.195

Important properties of the coefficients (B2, C1) were also proven in [30], namely196

• B2 = −C1 in all cases,197

• B2 = C1 = 0 for the cells that are symmetric with respect to the medium198

horizontal plane y2 = 0, see Figure 2 (e.g. for circular inclusions).199

Finally, the interface energy associated with the homogenized problem (2.11) is proven200

to be positive as soon as a is greater than e [30], ensuring stability of the solution201

to (2.11). In the harmonic regime, the well-posedness of similar homogenized models202

with effective jump conditions has been tackled in [21, 22]. Instabilities in the time-203

domain for a system associated to a negative interface energy has been analysed and204

illustrated in [23].205

Hereafter, the effective parameters are collected in meff as:206

(2.15) meff := (B,B2,S, C1, C) .207

2.2. Analysis of macroscopic observables and optimization problem. In208

this section, the aim is to identify macroscopic effects specific to the microstructured209
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OPTIMIZATION OF MICROSTRUCTURED INTERFACES 7

interfaces, described by the homogenized model in the considered long-wavelength210

regime. To find an optimal design that would enhance these effects, an optimization211

problem should be established. To do so, we use some analytical macroscopic observ-212

ables of the homogenized problem, which are the scattering coefficients computed for213

incident plane waves in the time-harmonic regime, together with observations from214

time-domain simulations with point sources. The considered optimization problem is215

finally given.216

2.2.1. Scattering coefficients for time-harmonic plane waves. In this sec-217

tion, we consider an established time-harmonic regime at circular frequency ω. We218

therefore use the frequency-domain formulation of the homogenized model (2.11)219

with g = 0, which is equivalent to the model obtained by applying homogeniza-220

tion in the frequency domain, see [48]. Introducing the amplitude of the time-221

harmonic wavefield Û(X, ω) = (V̂ (X, ω), Σ̂1(X, ω), Σ̂2(X, ω))T and its decompo-222

sition Û = Û I + ÛR + ÛT into incident Û I, reflected ÛR and transmitted ÛT waves,223

we consider incident plane waves given by:224

(2.16) Û I(X, ω) =

 1/µm
− cos θI/cm
− sin θI/cm

 exp(−ikI ·X),225

with cm =
√
µm/ρm the celerity of waves in the matrix, θI the direction of propagation,226

kI = (ω/cm)(cos(θI), sin(θI)) the corresponding wavevector.227

We also look for reflected and transmitted plane waves as:228

(2.17)


ÛR(X, ω) =

 1/µm
− cos θR/cm
− sin θR/cm

 exp(−ikR ·X)R(θI, ω),

ÛT(X, ω) =

 1/µm
− cos θT/cm
− sin θT/cm

 exp(−ikT ·X) T (θI, ω).

229

Inserting the expression above in the frequency-domain jump conditions, see [47], the230

relection and transmission angles are classically found to be θR = π − θI and θT = θI231

(kR and kT are the corresponding wavevectors with same wavenumber ω/cm), and232

the expression of the reflexion and transmission coefficients R and T can be obtained233

analytically. They read respectively:234

(2.18)


R(θI, ω) =

iωL

Z + iωN − ω2M
exp

(
i
ω

cm
a cos θI

)
,

T (θI, ω) =
Z + iω G + ω2M

Z + iωN − ω2M
exp

(
i
ω

cm
a cos θI

)
,

235

with cm =
√
µm/ρm and236

(2.19)



L = h
(
B cos(θI)

2 + C sin(θI)
2 − S

)
,

Z = 2cm cos θI,

N = h
(
−C sin(θI)

2 + B cos(θI)
2 + S

)
,

M =
h2

2cm

(
B2C1 sin(θI)

2 − BC sin(θI)
2 + BS

)
cos(θI),

G = −h(−C1 + B2) cos(θI) sin(θI).

237
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One can notice a symmetry with respect to the change θI → −θI for the reflexion238

coefficient R(θI, ω) and for the modulus of the transmission coefficient |T (θI, ω)|.239

Consequently, only the argument of the transmission coefficient arg(T (θI, ω)) is not240

symmetric with respect to the normal incidence. The quantity G defined in (2.19)241

and proportional to B2 = −C1 is responsible for this asymmetry, which is therefore242

obtained for cells which are non-symmetric with respect to the horizontal plane y2 = 0.243

From this observation, we chose to focus on these non-symmetric geometries,244

to exhibit and enhance macroscopic effects that would not appear for symmetric245

configurations more studied in the literature (say, circular or rectangular inclusions246

aligned with the main axes [30]).247

Table 1: Physical parameters considered for the microstructure.

µi ρi µm ρm

78 GPa 7800 kg ·m−3 12 GPa 2500 kg ·m−3

2.2.2. Observations from time-domain simulations. To investigate these248

configurations, one considers a microstructure typical of steel in concrete, for which249

the physical parameters are given by Table 1. The periodicity length is h = 1m and the250

examples of two geometries for the inclusion Ωi are investigated: one ellipse of semi-251

axes lengths (0.15, 0.5) tilted of −π/4 and one rectangle of sizes (1.25, 0.08) tilted of252

−π/4. The effective parameters associated to these two configurations are computed253

and time-domain simulations are performed in the associated effective media in a254

rectangular domain X ∈ [−70; 35]× [−132; 132].255

In this part, the considered excitation is no no longer an incident plane wave but256

a source point δ(X−XS)g(t), with g(t) a sufficiently regular, wide-band signal. Here257

we choose g defined as:258

(2.20) g(t) =

 A

4∑
m=1

αm sin(βm ωc t) if 0 < t <
1

fc
,

0 otherwise,

259

where βm = 2m−1 and the coefficients αm being α1 = 1, α2 = −21/32, α3 = 63/768,260

α4 = −1/512. It entails that g ∈ C6([0,+∞[) and g(t) is a wide-band signal with a261

central frequency fc = ωc/2π. The source is located at XS = (−35, 0), with X1 = 0262

being the center of the enlarged effective interface. The central frequency is fc = 50 Hz263

which corresponds to a small parameter η = 0.14 for which a good agreement between264

the homogenized model and the microstructured configuration has been observed.265

The time-domain simulations are performed thanks to Finite Differences and to the266

Explicit Simplified Interface Method [28] to handle the effective enlarged interface.267

268

To highlight the interface contribution, we define and compute the incident fields269

U I as the fields which would propagate in the matrix only (without interface) for this270

excitation, and introduce the scattered fields Usc = (Vsc, (Σsc)1, (Σsc)2)T = U − U I,271

which are computed from time t = 0 until tf = 86.7 ms. From these data, one can272

compute the local cumulative energy defined as:273

(2.21) E(X) =
1

2

∫ tf

0

(
1

µm
Σsc(X, t)2 + ρmVsc(X, t)2

)
dt.274
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Fig. 3: Cumulative energy in polar coordinates (first row) where the position of the
minimal value for a given r is denoted by the red crosses, and study of sign(arg(T ))
(second row, yellow and black for positive and negative signs, respectively), com-
puted with the effective model corresponding to elliptic (left) and rectangular (right)
inclusions.

This quantity is evaluated on the right of the interface for both microstructures in275

Figures 3a and 3b as a function of the polar coordinates (r, θ) centered at XS, with276

r ∈ [40; 60]. For each value of r, we observe that the energy E is minimal for a given277

angle θmin, denoted by red crosses. Moreover, one can notice that this value θmin seems278

to be independant of r. Furthermore, the sign of arg(T ) is plotted in Figures 3c and279

3d (black and yellow maps where yellow and black stand for positive and negative sign,280

respectively) for the same two microstructures directly using the analytical formula281

(2.19), as a function of θI and ω. It is then observed that this critical value measured282

on time-domain simulations (denoted by the blue cross) seems to coincide with the283

value of θI for which arg(T ) changes sign at low frequency.284

These observations suggest a link between the two characterizations of microstruc-285

tured interfaces presented above, namely (i) the effective scattering coefficients com-286

puted from the homogenized model and (ii) the angle θmin of minimal scattered energy,287

measured numerically for a circular incident wave. Considering that minimizing the288

energy emitted by a known source, in a chosen direction θmin, is a problem of interest289
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for e.g. directive sound attenuation, we therefore aim at designing microstructures290

associated with a vanishing arg(T (θI, ω)) for θI = θmin and low frequencies.291

2.2.3. Optimization problem. To exhibit an analytical link between the crit-292

ical value θmin at low frequency and the homogenized coefficients meff , one considers293

a first-order approximation for the transmission coefficient T . In this low-frequency294

limit, we consider a fixed geometry and therefore a fixed value of h, while ω, and con-295

sequently η, tends to 0. Upon introducing Ḡ = G /h, M̄ = 2cmM /h2 and N̄ = N /h296

in (2.18) and (2.19), this leads to:297

(2.22)

T (θI, ω) =
Z + iηcmḠ + η2 cm

2 M̄

Z + iηcmN̄ − η2 cm
2 M̄

exp
(

iη
a

h
cos(θI)

)
=

1 + iη Ḡ
2cos(θI)

+O(η2)

1 + iη N̄
2cos(θI)

+O(η2)
(1 + iη

a

h
cos(θI) +O(η2))

= 1 + iη

(
Ḡ − N̄

2 cos(θI)
+
a

h
cos(θI)

)
+O(η2).

298

This can be summarized as299

(2.23) T (θI, ω) = 1 + iη T1(meff , θI) +O(η2)300

with T1(meff , θI) given by301

(2.24)

T1(meff , θI) = −B2 sin(θI) +
C sin(θI)

2 − B cos(θI)
2 − S

2 cos(θI)
+
a

h
cos(θI)

= −B2 sin(θI) +
C? sin(θI)

2 − B? cos(θI)
2 − S?

2 cos θI
,

302

where303

(2.25) B? = B − a/h, C? = C − a/h, and S? = S − a/h = τρ|Ωi|.304

The second expression in (2.24), using the coefficients in (2.25), shows that T1 does305

not depend on the choice of the interface thickness a and will be used in Section 4 to306

slightly simplify the computations.307

With the approximation (2.23), it is clear that, at low frequency, arg(T ) changes308

signs when T1(meff , θI) changes signs. This is confirmed in Figures 3c and 3d where309

the angle for which T1 changes signs is denoted by a pink cross and is observed to be310

very close to both the critical angle observed in numerical simulations and the angle311

for which the exact value of arg(T ) changes signs at low frequency.312

Cancelling the function T1 then seems to be a good way to reach the aforemen-313

tioned effect. Moreover, we will aim at simultaneously maximizing the derivative314

amplitude |∂θT1| with:315

(2.26) ∂θT1 =
∂T1

∂θI
316

to (i) avoid close-to-zero local minima of |T1| without sign change and (ii) “push” the317

ensuing optimization process towards “stiff” sign changes. For a given critical angle318

θmin, these two objectives will be adressed in two ways:319
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1. In Section 4, asymptotic closed-form formula of T1 and ∂θT1 obtained for small320

elliptic inclusions will be used to obtain “asympotically optimal” ellipses.321

2. In Section 5, a topological optimization algorithm will be proposed to find an322

optimal material distribution mopt in the bounded cell Ωa that satisfies the323

following optimization problem:324

(2.27)

Find arg min
m
J̃main(m)

with J̃main(m) = Jmain(meff) =

( T1(meff , θmin)

∂θT1(meff , θmin)

)2

.
325

In particular, ellipses obtained in the previous step will be used as initiali-326

sations. Additional terms will be added to the functional Jmain in (2.27) in327

order to reach a given surface ratio between the materials, or to have a suffi-328

cient smoothness of the final configuration. The resulting total cost functional329

J will be introduced in Section 5.330

In both cases, we will rely on the computation of the topological derivatives of the331

effective coefficients performed in Section 3 below.332

Remark 2.2. Although the focus is on controlling transmitted energy and on the333

related functional (2.27) in this paper, the topological derivatives calculated in Section334

3, and the optimization methods described in Section 5 could be used for any other335

objective.336

3. Topological derivatives of the effective parameters. In this section,337

one aims at describing the sensitivity of the effective parameters to periodic topo-338

logical changes of the microstructure, i.e. geometric perturbations of the represen-339

tative cell Ωa. A perturbation is defined as a small inhomogeneity Pz,ε = z + εP340

of size ε, normalized shape P and physical parameters (µ + ∆µ, ρ + ∆ρ) intro-341

duced at a point z ∈ Ωa. The material perturbation is ∆m = (∆ρ,∆µ) with342

∆µ > −miny∈Ωa µ(y) and ∆ρ > −miny∈Ωa ρ(y) to satisfy the physical positivity343

constraints. The resulting perturbed cell, denoted by Ωaz,ε and represented in Figure344

4, features the physical parameters345

(3.1) mz,ε := (µz,ε, ρz,ε) = (µ+ ∆µχPz,ε
, ρ+ ∆ρχPz,ε

),346

with χPz,ε the characteristic function of the perturbation domain Pz,ε.347

Remark 3.1. The definition of ∆m may depend on the choice of z if the unper-348

turbed cell is heterogeneous. However, we disregard the case where the perturbation349

is located at an interface between two different materials. Consequently, we will350

drop any dependence of ∆m on the space coordinate in the notations, since they351

do not change the integrals computed hereafter. Moreover, the computation of the352

topological derivatives are performed for an arbitrary material perturbation ∆m, as353

represented in Figure 4. However, in numerical examples we will only consider phase354

conversion.355

Let f be a function of the material properties. In this two-dimensional context,356

the so-called topological derivative of the function f , denoted by Df , is defined thanks357

to the following 2D asymptotic expansion:358

(3.2) fz,ε := f(mz,ε) =
ε→0

f(m) + ε2Df(m, z,P,∆m) + o(ε2).359
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x

/

1 z

Pz,
z,

Fig. 4: Cell Ωaz,ε perturbed by the introduction of the inhomogeneity Pz,ε.

It describes the influence on the function f of a perturbation located at z, of shape P360

and material perturbation ∆m. Therefore, the more negative Df(m, z,P,∆m) is,361

the more efficient such a perturbation at point z would be to decrease f .362

In this section, the topological derivatives of the effective parameters collected in363

(2.15) are computed. First, one looks for an expansion of the solution Φz,ε to the cell364

problem (2.10) in the perturbed cell Ωaε in Section 3.1. This allows the computation365

of the topological sensitivities of the five effective parameters in Section 3.2.366

3.1. Approximation of the perturbed cell problem solution. To compute367

the topological derivatives of the homogenized coefficients, we must characterize the368

asymptotic behavior of the cell function Φ in (2.10) when the topological perturbation369

(3.1) is introduced. To this end, we first reformulate the cell problem (2.10) into an370

integral equation, more suitable for the asymptotic analysis. This analysis is then371

pursued formally, i.e. rigorous remainder estimates are not provided. However, such372

estimates are given by [14, Proposition 5], and we expect similar arguments to hold373

given the similarity between the present cell problem and the one addressed in [14].374

Weak forms of the unperturbed and perturbed cell problems. The first step is to375

write the weak form of the cell problem. To do so, we consider a function v ∈ H1
per =376 {

u ∈ H1(Ωa;R), u y2-periodic
}

. The first equation of (2.10) is then multiplied by377

v and integrated by parts in Ωa. Using the periodic condition and the boundary378

condition in (2.10), one obtains after a division by µm:379

(3.3) Aµ(Φ, v) = −Fµ(v) + J(v) ∀v ∈ H1
per380

where one has introduced the following functionals for u = (u1, u2) ∈ H1
per × H1

per381

and v ∈ H1
per:382

(3.4)



Aµ(u, v) =

∫
Ωa

µ(y)

µm
∇u(y)> ·∇v(y)dy + L−(u, v) + L+(u, v),

Fµ(v) =

∫
Ωa

µ(y)

µm
∇v(y)dy,

J(v) =

∫
I

[
v
( a

2h
, y2

)
− v

(
− a

2h
, y2

)]
e1dy2,

383

with384

(3.5) L±(u, v) = −
∫
I

Λ
[
u
(
± a

2h
, ·
)]

(y2) v
(
± a

2h
, y2

)
dy2.385
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The vector-valued weak-formulation (3.3), involving a scalar-valued test function,386

reflects the two uncoupled problems satisfied by the components (Φ1,Φ2).387

Similarly, the perturbed field Φz,ε satisfies for all v ∈ H1(Ωa;R), v y2-periodic:388

(3.6) Aµz,ε(Φz,ε, v) = −Fµ(v)− δFz,ε(v) + J(v),389

with390

(3.7) δFz,ε(v) =
∆µ

µm

∫
Pz,ε

∇v(y)dy.391

Integral equation. To obtain the integral equation satisfied by Φz,ε, one then392

introduces the Green’s function G(·,x) associated with a point source at x ∈ Ωa, i.e.393

the solution of394

(3.8)


−∇y ·

(
µ(y)

µm
∇yG(y,x)

)
= δ(y − x) ∀y ∈ Ωa,

G(·,x) y2-periodic,

− n ·∇yG(y,x)

∣∣∣∣
y1=± a

2h

= Λ [G(y,x)]

∣∣∣∣
y1=± a

2h

∀y ∈ I±.

395

It can be decomposed as396

(3.9) G(y,x) = G∞

(
y − x;

µ(x)

µm

)
+Gc(y,x), with G∞(r;µ?) = − ln(‖r‖)

2πµ?
,397

where G∞ is the full-space Green’s function solution of the 2D Poisson equation398

that shares the same singularity as G, and Gc is the complementary part to the399

Green’s function solution accounting for the heterogeneity of the cell and the boundary400

conditions. Details about these functions are given in Appendix B.401

For any sufficiently smooth function w, one gets from (3.8) the integral represen-402

tation for all x ∈ Ωa:403

(3.10) w(x) = Aµ(w, G(·,x))404

with Aµ defined in (3.4).405

Coming back to the perturbed problem, one introduces the surface integral oper-406

ator N z,ε :407

(3.11) N z,εf(x) =
∆µ

µm

∫
Pz,ε

∇f(y)> ·∇yG(y,x)dy.408

The choice of piecewise-regular material properties µ ensures the regularity of Φ409

away from inner interfaces, which in turn allows us to use w = Φ in the integral410

representation (3.10). We can, in addition, set v = G(·,x) in the weak form (3.6)411

(the resulting integral being defined although G(·,x) does not belong to H1(Ωa,R)).412

Together with the definition (3.4) of Aµ one obtains:413

(3.12)
Aµ(Φz,ε, G(·,x)) + N z,εΦz,ε(x) = −Fµ(G(·,x))− δFz,ε(G(·,x)) + J(G(·,x))

= Aµ(Φ, G(·,x))− δFz,ε(G(·,x)),
414
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where in the last line we used v = G(·,x) in (3.3). Finally, one considers w = Φz,ε415

and w = Φ in (3.10). Together with (3.12) this leads to the integral equation satisfied416

by the perturbed field Φz,ε:417

(3.13) (I + N z,ε)(Φz,ε)(x) = Φ(x)− δFz,ε(G(·,x)),418

where the integral operator N z,ε and right-hand side term δFz,ε(G(·,x)) are both419

supported by the perturbation domain Pz,ε.420

Asymptotic analysis. Aiming at reformulating the equation (3.13) onto the ref-421

erence shape P, let us introduce the scaled coordinates x = z + εx̄ and assume the422

following expansion, based on previous work [14], for all x ∈ Pz,ε:423

(3.14) Φz,ε(x) = Φ(z) + εΦ1(x̄) + o(ε).424

One also writes the following Taylor expansion for the cell function425

(3.15) Φ(x) = Φ(z) + εx̄ ·∇Φ(z) + o(ε).426

Inserting (3.14) and (3.15) in (3.13) and keeping only the leading and first-order terms427

yield:428

(3.16) (I + N z,ε)

(
εΦ1

( · − z
ε

))
(x) = εx̄ ·∇Φ(z)− δFz,ε(G(·,x)),429

since N z,εΦ(z) = 0. As developed in Appendix B, ∇G∞ is homogeneous of degree−1430

(see (B.1)) and ∇Gc(·,x) is regular in the neighborhood of z (see (B.5)). The function431

G in (3.8) then satisfies:432

(3.17) ∇yG(y,x) = ε−1∇G∞

(
ȳ − x̄;

µ(z)

µm

)
+ o(ε−1).433

Inserting the above expansion in (3.16), performing a change of variables to rewrite434

the integral on P and identifying the leading-order (O(ε)) contributions then leads to435

the scaled integral equation:436

(3.18) (I + M)(Φ̃1)(x̄) = x̄ · (∇Φ(z) + I),437

with Φ̃1(x̄) = Φ1(x̄) + x̄ and M defined by438

(3.19) Mf(x̄) =
∆µ

µm

∫
P
∇f(ȳ)> ·∇G∞

(
ȳ − x̄;

µ(z)

µm

)
dȳ.439

Consequently, introducing R, the vector solution of the equation:440

(3.20) (I + M)R(x̄) = x̄441

i.e. the solution to a free-space transmission problem associated with a perturbation442

(P,∆µ), with an homogeneous background of modulus µ(z), then Φ̃1 is given by:443

(3.21) Φ̃1(x̄) = R(x̄) · (∇Φ(z) + I).444

Finally, one inserts this in (3.14) to get the first-order expansion:445

(3.22) Φz,ε(x) = Φ(z) + ε (R(x̄) · (∇Φ(z) + I)− x̄) + o(ε).446
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3.2. Calculation of the topological derivatives. The results of this section447

are summarized in the following proposition:448

Proposition 3.2. The topological derivatives of the effective coefficients S,B,C,449

for a material perturbation (∆µ,∆ρ) supported by the domain Pz,ε = z + εP, are450

given by :451

DS(m, z,P,∆m) =
∆ρ

ρm
|P|,(3.23)452

DB(m, z,P,∆m) = −(∇Φ1(z) + e1) ·A(P, µ(z),∆µ) · (∇Φ(z) + I),(3.24)453

DC(m, z,P,∆m) = (∇Φ2(z) + e2) ·A(P, µ(z),∆µ) · (∇Φ(z) + I),(3.25)454455

where the so-called polarization tensorA is defined from the solutionR of the problem456

(3.20) as457

(3.26) A(P, µ(z),∆µ) =
∆µ

µm

∫
P
∇ȳR(ȳ)dȳ.458

Remark 3.3. The polarization tensor A has been used in previous studies [16, 4,459

14] where it is sometimes derived using layer potentials rather than volume (surface in460

2D) integral operators (resulting in possibly different prefactors). It is also related to461

the concentration (or localization) tensor A =
∫
P∇ȳR(ȳ)dȳ much used in microme-462

chanics [40]. It is symmetric and is known analytically for a variety of inclusion shapes463

P, see [40]. In particular, for an elliptic perturbation of semiaxes lengths (1,γ) along464

directions (a1,a2), it is given by:465

466

(3.27) A(P, µ(z),∆µ) = πγ(γ + 1)
∆µ

µm

(
a1 ⊗ a1

1 + γ + γ ∆µ
µ(z)

+
a2 ⊗ a2

1 + γ + ∆µ
µ(z)

)
.467

Remark 3.4. The topological derivative of a functional f most often involves a468

direct field (here x+ Φ) and an adjoint field depending on f , see e.g. [7, 38]. In the469

present case, the adjoint fields corresponding to coefficients B and C would be found470

to be −(x1 + Φ1) and x2 + Φ2, respectively, as seen in the formula of Proposition 3.2,471

established in a more direct way below.472

The steps of the proof of Proposition 3.2 are now given.473

3.2.1. Computation of DS. We first notice that, owing to the definition of S474

in (2.12), one has475

(3.28) S(m) =

∫
Ωa

ρ(y)

ρm
dy.476

Consequently, one gets477

(3.29) Sz,ε = S(m) +

∫
Pz,ε

∆ρ

ρm
dy = S(m) + ε2 ∆ρ

ρm
|P|478

which yields by identification with (3.2) the following result479

(3.30) DS(m, z,P,∆m) =
∆ρ

ρm
|P|.480
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3.2.2. Computation of DB. From the expression (2.13), the effective parame-481

ter Bz,ε associated with the perturbed cell reads482

(3.31) Bz,ε = B(m) +

∫
I

[
δΦz,ε

( a
2h
, y2

)
− δΦz,ε

(
− a

2h
, y2

)]
dy2,483

with the pertubation for the solution of the cell problem δΦz,ε defined by484

(3.32) δΦz,ε = Φz,ε −Φ.485

The left-hand side of (3.6) reads486

(3.33) Aµz,ε(Φz,ε, v) = Aµ(Φ, v)+Aµ(δΦz,ε, v)+
∆µ

µm

∫
Pz,ε

∇Φz,ε(y)> ·∇v(y)dy.487

Inserting this equation in (3.6) and using (3.3), one gets for all v ∈ H1
per:488

(3.34) Aµ(δΦz,ε, v) +
∆µ

µm

∫
Pz,ε

∇Φz,ε(y)> ·∇v(y)dy = −δFz,ε(v).489

Furthermore, β = Φ1 + y1 satisfies for all w ∈ H1(Ωa;R2), w y2-periodic490

(3.35) Aµ(w, β) =

∫
I

[
w
( a

2h
, y2

)
−w

(
− a

2h
, y2

)]
dy2.491

Taking v = β in (3.34) and w = δΦz,ε in (3.35), the expansion (3.31) reads492

(3.36) Bz,ε = B(m)− ∆µ

µm

∫
Pz,ε

∇β(y) · (∇Φz,ε(y) + I)dy.493

Consequently, one looks for an asymptotic expansion for ∇Φz,ε. For this purpose, one494

uses the final expansion (3.22) of the previous section. One also writes the expansion495

∇β(y) = ∇β(z) + o(1) for all y ∈ Pz,ε and expresses the integral in the scaled496

coordinates as497

(3.37) Bz,ε = B(m)− ∆µ

µm

∫
P
∇β(z) ·

(
1

ε
∇Φz,ε(ȳ) + I

)
ε2dȳ + o(ε2).498

Inserting the expansion (3.22) in the above equation yields499

(3.38) Bz,ε = B(m)− ε2 ∆µ

µm
∇β(z) ·

∫
P
∇R(ȳ)dȳ · (∇Φ(z) + I) + o(ε2).500

Using the definition the definition β = Φ1 + y1 and the polarization tensor A501

defined by (3.26), the topological derivative of B reads502

(3.39) DB(m, z,P,∆m) = −(∇Φ1(z) + e1) ·A(P, µ(z),∆µ) · (∇Φ(z) + I).503

3.2.3. Computation of DC. From the expression (2.14), the effective parame-504

ter Cz,ε associated with the perturbed cell reads505

(3.40)

Cz,ε = C(m) +

∫
Ωa

µ(y)

µm

∂δΦz,ε

∂y2
(y)dy +

∆µ

µm

∫
Pz,ε

(
∂Φz,ε

∂y2
(y) + e2

)
dy + o(ε2).506
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We know that Φ2 satisfies for all w ∈ H1
per507

(3.41) Aµ(w,Φ2) = −
∫

Ωa

µ(y)

µm

∂w

∂y2
(y)dy.508

One takes v = Φ2 in (3.34) and w = δΦz,ε in (3.41) and gets509

(3.42)

∫
Ωa

µ(y)

µm

∂δΦz,ε

∂y2
(y)dy =

∆µ

µm

∫
Pz,ε

∇Φ2(y) · (∇Φz,ε(y) + I)dy,510

which yields511

(3.43) Cz,ε = C(m) +
∆µ

µm

∫
Pz,ε

(∇Φ2(y) + e2) · (∇Φz,ε(y) + I)dy + o(ε2).512

Once again, we use the Taylor expansion ∇Φ2(y) = ∇Φ2(z) + o(1) for all y in Pz,ε,513

the expression of the integral in the scaled coordinates and the expansion (3.22) to514

get the final expression for the topological derivative515

(3.44) DC(m, z,P,∆m) = (∇Φ2(z) + e2) ·A(P, µ(z),∆µ) · (∇Φ(z) + I).516

3.3. Numerical validation. To validate numerically the found expressions of517

the topological derivatives, we can compute the error made by the approximation of518

Bz,ε and Cz,ε by B + ε2DB and C + ε2DC, respectively. Indeed, due to (3.38) and519

(3.43), this error should be of order ε3 at least.520

One starts with an initial reference configuration (ε = 0), computes numerically521

the solutions of the cell problems (2.10) (their computation will be briefly described522

in Section 5.1.1), and thus the values of B and C from (2.13) and (2.14). The initial523

configuration is chosen to be heterogenous in order to avoid simplifications than can524

occur with a homogeneous medium as reference. More precisely, we choose a homoge-525

nous medium containing an elliptic inclusion of center (0, 0) and semiaxes lengths526

(0.32 m, 0.1 m), tilted of 45◦. The physical parameters are again given in Table 1.527

Then one inserts a perturbation in the background matrix at z = (−0.26 m, 0.24 m).

(a) Reference Ωa

-0.5 0 0.5

-0.5

0

0.5

(b) Perturbed cell Ωa
z,ε

0.15 0.2 0.25
10-6

10-4

10-2

(c)

Fig. 5: Test case for an elliptic perturbation: (a) Reference configuration (b) Per-
turbed configuration for ε = 0.1. (c) Relative error between the exact and approxi-
mated effective parameters as a function of ε in a log-log scale.

528
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Its physical parameters are the ones of the elliptic inclusion (ρi, µi). Its shape is an529

ellipse of semiaxes lengths (ε, 0.6 ε) and tilted of 45◦. For ε = 0.1, the configuration is530

plotted in Figure 5b. For a given value of ε, one computes the perturbed cell solutions531

and thus the exact effective parameters Bz,ε and Cz,ε from (2.13) and (2.14). Their532

first-order approximations B + ε2DB and C + ε2DC are computed from (3.24) and533

(3.25) using (3.27).534

The relative errors between the exact and approximated values, for instance535

|(B1)z,ε − B1 − ε2DB1|/|(B1)z,ε|, are plotted as functions of the perturbation size536

ε in log-log scale in Figure 5c. Since B2 = C1, only one of the corresponding misfits537

is represented. The dashed line stands for an error of O(ε4). It seems that this is538

the actual order of approximation of the effective parameters, the small variations539

for low values of ε being probably due to numerical errors in the computation of the540

coefficients. This underlines the fact that the leading order term and consequently541

the topological derivatives are well accounted for and that the terms of order ε3 in the542

expansions (3.38) and (3.43) are probably equal to zero for this type of perturbations543

with a central symmetry. This was already observed for volume microstructures in544

[13, 14], with the intuition that it occurs for perturbations with a central symmetry.545

This remains however to be proved. In the case where there is not any central sym-546

metry, we therefore expect an error of order O(ε3).547

548

4. Approximate parametric optimization in the case of elliptic inclu-549

sions. In this section, the topological derivatives are used as tools to analyse the case550

of cells made of a unique elliptic inclusion Ωi in a homogenous material. First, the551

quality of the approximation of the effective parameters in this case is investigated.552

Then, we show that “asymptotically optimal” ellipses can be determined with respect553

to the optimization problem presented in Section 2.2.554

4.1. Approximation of the effective parameters. Consider a unique inclu-555

sion in an otherwise homogeneous cell, a configuration which can be seen as a single556

perturbation in a homogeneous reference cell. In this case, the effective coefficient557

S? = S − a/h in (2.25) is given by the exact expression:558

(4.1) S? = ε2|P|τρ,559

while the topological derivatives formula provide the following approximations:560

(4.2) B? = −ε2A11 + o(ε2), B2 = −ε2A12 + o(ε2), C? = ε2A22 + o(ε2),561

where S?, B? and C? are defined in (2.25).562

Computing these approximations only requires the knowledge of the polarization563

tensor (3.27) for the perturbation shape P, and the scaling of the result by ε2. This564

is much less costly than computing numerically the cell solutions and the associated565

effective parameters for each choice of inclusion, especially for elliptic inclusions for566

which the polarization tensor is known analytically.567

As an example of the quality of these approximations, we consider an ellipse,568

located at z = (0, 0), of tilted angle ϕ =40◦, and semiaxes lengths (ε, 0.2 ε). In569

Figure 6b, the relative errors between the numerically computed value of the effective570

parameters through (2.13-2.14) and their approximations given above are represented571

for an increasing value of ε. In this case, the reference values themselves decay in572

O(ε2) as the single inclusion in the cell vanishes. The relative error (e.g. |(B?)z,ε +573

ε2A11|/|(B?)z,ε|), i.e. the ratio between the residual (supposedly in O(ε4) for ellipses)574
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and this reference value is therefore expected to be in O(ε2), which is observed on the575

figure. We also observe that a good agreement is obtained even for high values of ε576

(i.e. even outside the asymptotic regime). Indeed, for ε = 0.5 (illustrated in Figure577

6a) the major axis length is equal to the size of the unit cell and the relative errors578

remain below 15%.

-0.5 0 0.5
-0.5

0

0.5

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10-6

10-4

10-2

(b)

Fig. 6: Test case for an elliptic inclusion: (a) Configuration for ε = 0.5. (b) Rela-
tive errors between the exact and approximated effective parameters as functions of
inclusion size ε in a log-log scale.

579

Remark 4.1. The approximation (4.2), using only the polarization tensor com-580

puted from the free-space transmission problem (3.20), is well-known in the domain581

of micromechanics as the “dilute” or “Eshelby” approximation (see for instance [40]582

and the numerous references therein). It does not account for interactions between583

inclusions, and is therefore supposedly restricted to very low concentrations of inclu-584

sions, but provides surprisingly accurate results in the present context.585

Consequently, we propose to use the expressions (4.2) to obtain “optimal” ellipses586

that solve the optimization problem presented in Section 2.2.587

4.2. Normal incidence: explicit formula and analysis. When the case588

of interest is normal incidence of waves, i.e. when θI = 0, closed-form results are589

available, that are used in this section as a first example. Indeed, the expression590

(2.23) of the function of interest T1 is considerably simplified, as591

(4.3) T1(θI = 0) = −1

2
(B? + S?) = −ε

2

2
(−A11 + πγτρ) + o(ε2).592

Then, couples of tilted angle and aspect ratio (ϕ, γ) for which T1 = o(ε2) can be found593

analytically for given material contrasts (τρ, τµ). Indeed, canceling the leading-order594

term above and introducing the expression (3.27) of the polarization tensor gives:595

(4.4) πγτρ = A11 ⇔ τρ = (1 + γ)τµ
(

cos2(ϕ)

1 + γ + γτµ
+

sin2(ϕ)

1 + γ + τµ

)
596

which leads to597

(4.5) τρ(1+γ+γτµ)(1+γ+τµ)−τµ(1+γ)2− (τµ)2(1+γ)(γ+(1−γ) cos2(ϕ)) = 0.598
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Therefore, we eventually get599

(4.6){
ϕ = arccos

√
β if β ≥ 0

no solution if β < 0
, with β =

[τρ(1 + γ + τµ)− τµ(1 + γ)] (1 + γ + γτµ)

(τµ)2(1− γ2)
.600

This particular solution can be used to check the numerical implementation of T1.601

As discussed in Section 2.2.3, to find an optimal couple (ϕopt, γopt) we also aim at602

maximizing the absolute value of the derivative, |∂θT1(θI = 0)| along the curve defined603

by the function (4.6) above. To do so, we rely again on the simplified expression of604

the function ∂θT1 for normal incidence (θI = 0) and on the approximations (4.2) of605

the effective coefficients, and use the approximation:606

(4.7)

∂θT1(θI = 0) = −B2 = ε2A12 + o(ε2)

=
ε2 sin(2ϕ)

2

πγ(1− γ2)(τµ)2

[1 + γ(1 + τµ)][1 + γ + τµ]
+ o(ε2).

607

Then plugging the expression (4.6) of ϕ, one obtains an expression for the leading-608

order contribution of ∂θT1 as a function of γ only, whose maximum is easily found609

numerically, as represented in Figure 7.610
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Fig. 7: Left: Curve ϕ(γ) corresponding to T1(θI = 0) = o(ε2). Right: coefficient
A12, i.e. leading-order contribution of ∂θT1(θI = 0), along this curve. Positions of the
optimal parameters (ϕopt, γopt) are given in dashed lines.

Finally, we compute the numerical “true” values of the functions T1 and ∂θT1,611

and the cost functional Jmain defined by (2.27), used here as a quality indicator612

of a given geometry. For non-vanishing inclusions, of increasing finite size ε, these613

quantities are plotted in Figure 8. As expected, the value of T1 and therefore the cost614

functional Jmain diverge from their asymptotic values as ε increases. Nevertheless,615

as summarized in Table 2, the ellipse parametrized by (ϕopt, γopt) gives significantly616

better results (lower values of T1 and Jmain) than a disk or an arbitrarily chosen ellipse617

with equal surface ratio, also represented in Figure 8.618

This asymptotic analysis therefore provides a good initial guess that can be used619

for topological optimization procedures as seen in the next section.620

4.3. Arbitrary incidence: numerical optimum. For an arbitrary incidence621

angle θI, closed-form expressions for an optimal couple such as (4.6) and (4.7) would be622
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Fig. 8: Left: Investigated ellipses. Test cases with surface |Ωi| = 0.25 and “optimal”
ellipses for normal incidence θI = 0 with increasing surfaces |Ωi| ∈ {0.05, 0.25}. Right:
Values of T1, ∂θT1 and Jmain, computed numerically for these “optimal” ellipses.

Ellipse T1 ∂θT1 Jmain = (T1/∂θT1)2

(ϕ, γ) = (0◦, 1) (disk) −0.11 0 ∅
(ϕ, γ) = (45◦, 0.5) −0.10 8.6× 10−2 1.4
(ϕopt, γopt) ≈ (36◦, 0.23) −0.06 0.16 0.14

Table 2: Case θI = 0 (normal incidence). Values of functions T1, ∂θT1 and Jmain for
several ellipses with the same surface |Ωi| = 0.25, see Figure 8. For the disk, one has
B2 = 0 and therefore ∂θT1 = 0, so that Jmain is not defined.

too tedious to obtain. However, the asymptotic approximation of T1(θI) as a function623

of (ϕ, γ) can easily be computed numerically.624

As illustrated in Figures 9 and 10 for θI = 30◦ and θI = 45◦, respectively, the625

curves (ϕ, γ) that achieve T1 = o(ε2) are numerically extracted, the leading-order ap-626

proximation of ∂θT1(θI) is computed along them, and an optimal couple is determined,627

similarly to the case θI = 0.628

For an ellipse with these characteristics and surface |Ωi| = 0.25, the values of629

T1, ∂θT1 and Jmain are then computed by numerically solving the cell problems,630

and compared with the two other ellipses represented in Figure 8. Tables 3 and 4631

summarize the results. In these two cases, the “asymptotically optimal” ellipse gives632

much better results than the two other test-cases.633

Ellipse T1 ∂θT1 Jmain = (T1/∂θT1)2

(ϕ, γ) = (0◦, 1) (disk) −0.11 0.05 4.8
(ϕ, γ) = (45◦, 0.5) −0.055 0.11 0.26
(ϕopt, γopt) ≈ (52◦, 0.34) −0.019 0.17 0.012

Table 3: Case θI = 30◦. Values of functions T1, ∂θT1 and Jmain for several ellipses
with the same surface |Ωi| = 0.25.
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Fig. 9: Case θI = 30◦. Couples (ϕ, γ) that achieve T1 = o(ε2) (left), corresponding
leading-order approximation of ∂θT1 (right), and numerical extraction of the optimal
parameters (ϕopt, γopt) ≈ (53◦, 0.34) (dashed lines).
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Fig. 10: Case θI = 45◦. Couples (ϕ, γ) that achieve T1 = o(ε2) (left), corresponding
leading-order approximation of ∂θT1 (right), and numerical extraction of the optimal
parameters (ϕopt, γopt) ≈ (55◦, 0.40) (dashed lines).

Ellipse T1 ∂θT1 Jmain = (T1/∂θT1)2

(ϕ, γ) = (0◦, 1) (disk) −0.11 0.078 1.8
(ϕ, γ) = (45◦, 0.5) −0.022 0.14 0.025
(ϕopt, γopt) ≈ (55◦, 0.4) −0.013 0.16 0.0065

Table 4: Case θI = 45◦. Values of functions T1, ∂θT1 and Jmain for several ellipses
with the same surface |Ωi| = 0.25.

5. Topological optimization of microstructured interfaces. While in the634

previous section, we used the analytical information given by the topological deriva-635

tive to analyse the case of a unique elliptic inclusion, the aim in this section is to use636

the topological derivative in an optimization algorithm to minimize a functional with637

no a priori on the geometry of the inclusion. The efficiency of both methodologies638

will be investigated through numerical examples in Section 5.3.639
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One aims at generating a microstructure minimizing an objective cost functional640

J (meff) composed of both a main function, for example (2.27), and some geometrical641

constraints. An optimal microstructrure is defined by the phase distribution mopt642

in the bounded cell Ωa. The cost functional depends on the macroscopic behaviour643

which is described by the effective parameters meff (2.15) that themselves depend on644

m based on the homogenized model. We therefore consider the following optimization645

problem:646

(5.1) Find mopt = arg min
m
J̃ (m) with J̃ (m) = J (meff).647

In this context, and given the optimization problem (5.1), one looks for the topological648

derivative DJ̃ . If J is differentiable with respect to the effective parameters, DJ̃ is649

computed thanks to the chain rule:650

(5.2) DJ̃ =
∂J
∂B DB +

∂J
∂B2
DB2 +

∂J
∂S DS +

∂J
∂C1
DC1 +

∂J
∂C DC.651

The final objective is to have at hand a minimization algorithm in order to compute652

one optimized material distribution in the sense of (5.1).653

5.1. Optimization scheme.654

5.1.1. FFT-based computation of the cell problems. In order to perform655

topological optimization, multiple computations of the problem (2.10) are required.656

Accurately solving this problem with numerical efficiency is therefore crucial. This657

problem has been tackled in [18] by (i) reformulating the original problem (A.1)658

derived in [30] and posed in an infinite “strip” into the problem (2.10) posed in a659

bounded cell (as recalled in Appendix A), and then (ii) decomposing the solution of660

this equivalent bounded problem as follows:661

(5.3) Φ = Φper + Φbound.662

The two terms of this decomposition are663

• The bi-periodic function Φper that satisfies:664

(5.4) ∇ · (µ(y) (I2 + ∇Φbound + ∇Φper)) = 0 in Ωa,665

together with
∫

Ωa Φbound = 1 for uniqueness. This is a usual cell problem,666

which appears in homogenization of bi-periodic media, with a source term667

that is given by I2 + ∇Φbound.668

• The boundary corrector Φbound that is y2-periodic and ensures that the669

boundary conditions associated to the DtN conditions in (2.10) are satisfied670

by imposing:671

(5.5) (∂n −Λ) Φbound

(
± a

2h
, ·
)

= − (∂n −Λ) Φper

(
± a

2h
, ·
)
.672

The problem is then solved using a fixed-point algorithm specified in [18, Section673

3.1] and summarized here for completeness.674

1. Fix Φ
(0)
bound = 0.675

2. Step n→ n+ 1: given Φ
(n)
bound,676

(a) Compute Φ
(n+1)
per by solving the problem (5.4), with the source term677

given by Φ
(n)
bound678
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(b) Choose a corrector Φ
(n+1)
bound that satisfies (5.5) (an example of choice is679

given in [18, Section 3.2])680

(c) Compute Φ(n+1) = Φ
(n+1)
per + Φ

(n+1)
bound681

3. End when682

(5.6)
||Φ(n+1) −Φ(n)||L2(Ωa)

||Φ(n)||L2(Ωa)

< δFP683

with δFP a user-chosen tolerance.684

In practice, the fields are discretized on a regular N1 × N2 pixel grid mapping685

the inner cell Ωa, and a Fourier-based solver is used for step 2(a), that ensures the686

periodicity requirements on the fields and relies on Fast Fourier Transforms (FFT)687

for efficiency, following [33]. This algorithm has not been investigated theoretically688

but has been observed to converge in practice.689

5.1.2. Material updating. In the configuration mentioned in Introduction,690

there are only two phases: Ωm which is the homogeneous matrix outside the mi-691

crostructured array, and Ωi ⊂ Ωa which is the inclusion phase. Consequently the only692

material modification allowed in the optimization process is a phase conversion from693

(ρi, µi) to (ρm, µm) or conversely. Accordingly, the material perturbation ∆m in the694

topological derivatives of Proposition 3.23 is chosen as:695

(5.7) ∆m = (ρi − ρm, µi − µm) in Ωm and ∆m = (ρm − ρi, µm − µi) in Ωi.696

Moreover, the shape of the perturbation P is a disk so that the expression of the
polarization tensor is given by (3.27) with γ = 1. The use of the boundary corrector
approach described above requires that the phase at the boundaries y1 = ± a

2h is Ωm.
Consequently, one defines an optimization domain

Ωdesign = [−b; b]× [−1/2; 1/2] with b <
a

2h

in which material updates are allowed. Since the material is made of two phases, a697

common way to characterize it is to use a level-set function Ψ that satisfies:698

(5.8)

{
Ψ(z) > 0 in Ωdesign ∩ Ωm

Ψ(z) < 0 in Ωdesign ∩ Ωi

and ||Ψ||L2(Ωdesign) = 1.699

A projection algorithm introduced in [8] for topological optimization can then be used700

[5, 9, 39, 24]. The main steps are recalled in this subsection.701

First, one defines a signed normalized topological derivative DJ (n)
at iteration n as:702

(5.9) DJ (n)
(z) =

{
DJ (n)(z)/||DJ (n)||L2(Ωdesign) in Ωdesign ∩ Ωm

−DJ (n)(z)/||DJ (n)||L2(Ωdesign) in Ωdesign ∩ Ωi.
703

When DJ (n)
satisfies the sign condition (5.8), then DJ (n)(z) > 0 is satisfied in704

the whole optimization domain Ωdesign. Consequently, in this case, the leading-order705

approximation of the cost functional J cannot be decreased anymore by a phase706

change in Ωdesign. Therefore, DJ (n)
satisfying (5.8), is a sufficient optimal condition707

that ensures that the material configuration corresponds to a local minimum of J .708
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The iterative updating strategy of [8] for Ψ aims at fulfilling this condition. At each709

iteration, the new level-set function Ψ(n+1) is computed as:710

(5.10)

Ψ(n+1)(z) =
1

sin(Θ(n))

[
sin((1− κ(n))Θ(n))Ψ(n)(z) + sin(κ(n)Θ(n))DJ (n)

(z)
]
,711

with the angle Θ(n) being defined by the projection712

(5.11) Θ(n) = arccos
(
DJ (n)

,Ψ(n)
)
L2(Ωdesign)

.713

The parameter κ(n) in (5.10) is chosen so that the cost functional decreases at each714

iteration. In practice, it is initialized to κ(0) = 1 and then at each iteration it is715

determined down to a minimal value κmin within an inner optimization loop that716

reads as:717

1. Initialization to κ(n) = min(2, κ(n−1)).718

2. Compute Ψ(n+1)(z) using (5.10).719

3. Compute the associated cost functional J (n+1) (by solving the cell problem720

and computing relevant effective quantities) and:721

• if J (n+1) < J (n), end step n.722

• if J (n+1) > J (n) and κ(n) > κmin, set κ(n) = κ(n)/2 and go back to723

step 2.724

• if J (n+1) > J (n) and κ(n) < κmin, the whole level-set algorithm is725

stopped: the cost functional cannot be decreased by the level-set pro-726

jection.727

The stopping criterion of the level-set method associated with the updating (5.10)728

is set as:729

(5.12) |Θ(n)| < δΘ730

with δΘ a user-chosen tolerance parameter.731

Remark 5.1. Different initializations are possible for the level-set function Ψ(0).732

Here we chose to compute it as f/||f ||L2(Ωdesign) with f being defined by:733

(5.13) f(z) =

{
µ̄− µ(z) if µm < µi,

µ(z)− µ̄ if µm > µi,
734

where µ̄ = (µm + µi)/2.735

5.2. Perimeter and surface constraints. One may want to reach a given736

phase ratio in the microstructure. Consequently, we denote by A the target surface737

of phase Ωi in the unit cell, and we now consider the following cost functional:738

(5.14) Jmain + λ

( |Ωi|
A − 1

)2

739

where we added a penalization term to tend to satisfy the surface condition. The740

parameter λ is a user-chosen parameter which is chosen so that the final configuration741

is made of a surface satisfying |Ωi| ∈ [A − Aerr;A + Aerr] with Aerr also chosen by742

the user. An augmented Lagrangian strategy [34] could be carried out rather than743

this quadratic term with a user-controlled parameter λ, but this is beyond the scope744

of this paper.745
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Furthermore, for manufacturing purposes, one aims at getting smooth final config-746

urations that would not be necessary obtained if we only minimize the cost functional747

(5.14). Consequently one wants to minimize the following cost functional748

(5.15) J (meff) = Jmain + λ

( |Ωi|
A − 1

)2

+ αperPer(Ωi)749

with Per(Ωi) =
∫
∂Ωi

dσ the perimeter of the inclusions phase in a unit cell and αper750

a user-chosen parameter. In [6], a regularized perimeter functional Perε has been in-751

troduced to take into account perimeter minimization in topology optimization. This752

functional has been proved to converge to the exact perimeter as the regularization753

parameter ε tends to 0. In practice, the main idea is to solve sequentially the following754

approximate problems for n = 1, ... , Nper:755

(5.16) minJεn := Jmain + λ

( |Ωi|
A − 1

)2

+ αperPerεn(Ωi)756

with εn+1 = εn/2, while ε0 and Nper are user-chosen parameters. In numerical exam-757

ples, both λ and αper are user-chosen parameters we can play with in order to find758

a balance between decreasing Jmain, satisfying the volume constraint, and getting759

smooth final configurations (see [46] for comparisons of final configurations with and760

without perimeter penalization).761

5.3. Numerical examples. In this section, the desired macroscopic effect is762

to minimize the fields along a given direction θmin with (r, θ) the polar coordinates763

centered at XS = (−35, 0), where the source (2.20) is located. It can been visualized764

as minimizing the cumulative energy (2.21) along a given direction θmin. Following the765

discussion of Section 2.2.2, we then want to have a change of sign for T1 at θmin. We766

consequently minimize the regularized cost functional (5.16). The physical parameters767

are still the ones typical of steel in concrete given by Table 1, while the numerical768

parameters are given in Table 5.

Table 5: Numerical parameters.

κmin δΘ N1 N2 δFP ε0 Nper

10−3 10−1 101 101 10−3 1 10

769

In a first example, we chose θI = 0 with a surface A = 0.2. In the cost functional770

(5.16) the coefficients for the surface penalization λ and the perimeter penalization771

αper are chosen so that Aerr = 0.06. Their values for each test case is given in Table 6.772

Four different initializations are chosen: an ellipse of semi-axes lengths (0.15, 0.3) and773

tilted of −π/4, the same ellipse but tilted of π/4, a random initialization with the774

same ratio of both materials, and the “asymptotically optimal ellipse” computed775

in Section 4. The initial configurations, the final configurations obtained after the776

optimization process, and the maps of the cumulative energy (2.21) associated with the777

effective final configurations are plotted for these four cases in Figure 11. The initial778

and final values of the cost functional are also given in Tables 6 and 7, respectively. We779

recover the symmetry of the configuration between the first two cases. We observe780

that the cost functional is well decreased in every example, so we reach a better781

configuration by topological optimization than with the optimal ellipse. In addition,782
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it seems that the number of iterations and the value of the cost functional are smaller783

when we initialize by this asymptotically optimal ellipse, so this can be considered as784

a valuable initialization to improve the results of the topological optimization process.785

A second example, for θI = π/4, A = 0.3 and Aerr = 0.06 is described by Table 8,786

Table 9 and Figure 12. It confirms that the topological optimization algorithm de-787

creases the cost functional. However, for the first two initializations the target angle788

of π/4 does not seem to be reached so accurately, as it can be noticed in Figures 12c789

and 12f. In this case, initializing by the optimal ellipse seems even more relevant790

since the result obtained in Figure 12i is more satisfying, with a cost functional and a791

number of iterations which are lower than for the other initializations. In both exam-792

ples, although the values of Jmain in the end are significantly lower than the starting793

ones, the values achieved starting from different initializations are also considerably794

different. This is due to the presence of multiple local minima and has already been795

observed for the volume case [17]. This therefore underlines the importance of a good796

initialization, as the one provided by the optimal ellipse.797

Finally, for a better visualization of the optimal periodic microstructures obtained798

by repeating the unit cells, four of them are displayed in Figure 13.799

Table 6: Initial values for the different configurations with objective θI = 0 presented
in Figure 11: surface and perimeter parameters, and values of functionals before
optimization.

λ αper J init. Jmain init.
ellipse (0.15, 0.3,−π/4) 0.5 0.2 1.21 9.72 · 10−1

ellipse (0.15, 0.3, π/4) 0.5 0.2 1.21 9.72 · 10−1

random 0.5 0.2 5.23 · 103 5.23 · 103

optimal ellipse 0.15 5 · 10−2 1.02 · 10−1 3.61 · 10−1

Table 7: Final values for the different configurations with objective θI = 0 pre-
sented in Figure 11: number of iterations, final surface, and values of functionals after
optimization.

Niter |Ωi| end J end Jmain end
ellipse (0.15, 0.3,−π/4) 103 0.15 2.24 · 10−1 1.4 · 10−2

ellipse (0.15, 0.3, π/4) 103 0.15 2.24 · 10−1 1.4 · 10−2

random 82 0.16 1.93 · 10−1 7.2 · 10−3

optimal ellipse 60 0.14 6.76 · 10−2 2.1 · 10−3

6. Conclusion. In this work, formulas are derived for the sensitivities of the800

homogenized model that describes the propagation of low-frequency scalar waves801

through a row of inclusions embedded in a homogeneous matrix. To do so, we con-802

sider asymptotic expansions for a unit cell where a perturbation is introduced. The803

expression of the sought topological derivatives of the effective parameters involve the804

solution of band cell problems in an unperturbed unit cell, and the usual polarization805

tensor. The numerical computation of these band cell problems had been tackled806

in a previous work, while the polarization tensor is known analytically for elliptic807
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Fig. 11: Test cases for θI = 0 and A = 0.2. From left to right columns: initial
configuration, final configuration, and local cumulative energy (2.21) in the effective
medium associated to the final configuration where the position of the minimal value
for a given r is denoted by the red crosses.

perturbations, for example. The expression of the topological derivatives are vali-808

dated numerically, and used to perform an analytical analysis of the sensitivity of the809

model when considering elliptic inclusions. Then a topological optimization process810

is developed to minimize a proposed cost functional, whose objective is to minimize811
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Fig. 12: Test cases for θI = π/4 and A = 0.3. From left to right columns: initial
configuration, final configuration, and local cumulative energy (2.21) in the effective
medium associated to the final configuration where the position of the minimal value
for a given r is denoted by the red crosses.

the transmitted fields along a given direction. The material distribution is updated812

at each iteration thanks to a level-set method and using the topological derivatives813

obtained in the first part. Surface and perimeter constraints are also added to the814

cost functional in order to reach local minima that are smoother and avoid trivial815

solutions.816

This study sets a framework for the optimization of microstructured interfaces817

based on their homogenized properties. This work could be extended to other config-818

urations, for instance:819

• resonant interfaces, obtained e.g. for highly contrasted inclusions [48, 47].820

In this case, frequency-dependent coefficients have been derived, and while821

homogenization-based optimization procedures exist for fully periodic reso-822

nant media e.g. [49], they are quite scarce for such interfaces, to the best of823

our knowledge.824
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Table 8: Initial values for the different configurations with objective θI = π/4 pre-
sented in Figure 12: surface and perimeter parameters, and values of functionals
before optimization.

λ αper J init. Jmain init.
ellipse (0.15, 0.3, π/4) 0.3 7 · 10−2 1.51 1.40

random 1 1 · 10−1 2.03 · 10−1 2.11 · 10−4

optimal ellipse 0.3 7 · 10−2 6.27 · 10−2 3.30 · 10−3

Table 9: Final values for the different configurations with objective θI = π/4 pre-
sented in Figure 12: number of iterations, final surface, and values of functionals after
optimization.

Niter |Ωi| end J end Jmain end
ellipse (0.15, 0.3, π/4) 49 0.30 2.84 · 10−2 9.72 · 10−5

random 52 0.24 1.35 · 10−1 7.99 · 10−4

optimal ellipse 28 0.28 2.96 · 10−2 8.76 · 10−5

(a) (b) (c) (d)

Fig. 13: Final microstructures corresponding to the optimal cells displayed in Figures
(a) 11h, (b) 12b, (c) 12e and (d) 12h.

• high-frequency behavior. Again, the specific homogenization procedure for825

higher frequencies or shorter wavelengths is well-known for fully periodic826

media, and has been used for optimization [37], but could be extended to827

interfaces.828

• graded metasurfaces. By relaxing the periodicity assumption and allowing829

for slow variations of the periodicity cell size along the interface, one may830

obtain graded interfaces (sometimes called quasi-periodic [41]) able to pro-831

duce stronger macroscopic effects than their strictly periodic counterparts.832

Optimization procedures also exist for such configurations [35].833

• other physical contexts. The scalar wave equation adressed in this study834

is quite general already and may model acoustics, anti-plane shear elastic835

waves or transversely polarized electromagnetic waves. Extensions to (vector-836

valued) Maxwell or elasticity equations are however possible within the same837
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matched asymtotics framework, see [43] for a related study, and would open838

the way of optimization procedures for macroscopic effects typical of vector-839

valued wave problems such as mode conversion at the interface (e.g. P-waves840

to S-waves for isotropic elasticity).841

Appendix A. Dirichlet-to-Neumann operator.842

In this section, the steps used in [18] to obtain the cell problem (2.10) with DtN843

boundary conditions are briefly recalled. The problem initially derived in [30], posed844

in the infinite strip Ω, reads :845

(A.1)


∇ · (µ(y) (∇yΦ(y) + I2)) = 0 in Ω,

µ(y)[∇yΦ(y) + I2] · n and Φ are continuous on ∂Ωi,

Φ is y2-periodic,

lim
y1→±∞

∇yΦ(y1, y2) = 0.

846

The variations of the physical parameters are restricted to Ωa due to its definition847

in (2.7). Introducing the half-strips Ω+
a = [ a2h ,+∞[×I and Ω−a = ]−∞,− a

2h ]× I,848

see Figure 2, the restrictions Φ± := Φ|Ω±
a

satisfy ∆Φ± = 0 in Ω±a , along with849

the periodicity and decaying conditions. The modal decomposition of these fields,850

classically found in the literature on waveguides [26, 15] and also used in [30] to find851

approximate solutions, then reads:852

(A.2) Φ±(y1, y2) =
∑
n∈Z

Φ±n e∓|ξn|(y1∓
a
2h )Ψn(y2), with Ψn(y2) = eiξny2 , ξn = 2nπ.853

The modes {Ψn} are orthonormal for the L2 scalar product (·, ·)I on any vertical854

section I, i.e. they satisfy:855

(A.3) (Ψp,Ψq)I = δpq, with (f, g)I :=

∫
I

f(y2)g(y2)dy2.856

Consequently, choosing the particular section I+ =
{

(y1, y2) ∈ Ω+
a , y1 = a

2h

}
, see857

Figure 2, yields the expression of the modal coefficients in the right half-strip:858

(A.4) Φ+
n =

(
Φ+

( a
2h
, ·
)
,Ψn

)
I

=

∫
I

Φ+
( a

2h
, y2

)
Ψn(y2)dy2.859

One differentiates the decomposition (A.2) with respect to y1 and uses the expression860

of the coefficients (A.4) to get the following Dirichlet-to-Neumann (DtN) operator861

linking the traces of Φ and of its normal derivative on the section I+ where Φ = Φ+:862

(A.5) ∂y1Φ
( a

2h
, ·
)

= Λ
[
Φ
( a

2h
, ·
)]
, with Λ[f ](y2) = −

∑
n∈Z

(f ,Ψn)I |ξn|Ψn(y2).863

Similarly, focusing on the particular section I− =
{

(y1, y2) ∈ Ω−a , y1 = − a
2h

}
, see864

Figure 2, provides the expression of the “left” modal coefficients of Φ−. The DtN865

relation is finally found to be the same for both interfaces I±, up to the direction of866

the outer normal derivative:867

(A.6) ∂nΦ
(
± a

2h
, ·
)

= Λ
[
Φ
(
± a

2h
, ·
)]
, where ∂n = ±∂y1.868
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The problem posed in the infinite band (A.1) can thus be rewritten as the problem869

(2.10) with DtN boundary conditions on the bounded cell (2.7).870

Appendix B. Properties of Green’s functions. The definition of the full-871

space fundamental solution G∞ in (3.9) implies:872

(B.1) − µ?∆rG∞(r;µ?) = δ(r) and ∇rG∞(r;µ?) = − r

2πµ?‖r‖2
.873

From the problem (3.8), the decomposition of the fundamental solution G given in874

(3.9) and the equalities above, then the complementary part Gc is defined as the875

solution of the PDE:876

(B.2)

−∇y ·
(
µ(y)

µm
∇yGc(y,x)

)
= ∇y ·

(
µ(y)− µ(x)

µm
∇yG∞

(
y − x;

µ(x)

µm

))
= −∇y ·

(
[µ(y)− µ(x)] (y − x)

2πµ(x)‖y − x‖2
)877

along with the boundary conditions:878

(B.3) Gc(·,x) +G∞

(
· − x;

µ(x)

µm

)
is y2-periodic,879

and880

(B.4)

− (∂n + Λ) [Gc(y,x)]

∣∣∣∣
y1=± a

2h

= (∂n + Λ)

[
G∞

(
y − x;

µ(x)

µm

)] ∣∣∣∣
y1=± a

2h

∀y ∈ I±.881

The right-hand side of the PDE (B.2) is seen to be regular as y → x as soon as882

the material coefficient µ is C1 in a neighborhood of x. Therefore, Gc(·,x) and its883

gradient are ensured to be regular functions when x is itself in the neighborhood of884

the perturbation point z, which is not located on a material interface. Using the885

rescaled coordinates (y,x) = (z + εȳ, z + εx̄), one obtains the asymptotic behavior:886

(B.5) ∇yGc(y,x) = ∇yGc(z, z) + o(1) = O(1) as ε→ 0.887
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