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Image Processing and Machine Learning for
Hyperspectral Unmixing: An Overview and the

HySUPP Python Package
Behnood Rasti, Senior Member, IEEE, Alexandre Zouaoui, Student Member, IEEE, Julien Mairal, Senior

Member, IEEE and Jocelyn Chanussot, Fellow, IEEE

Abstract—Spectral pixels are often a mixture of the pure
spectra of the materials, called endmembers, due to the low
spatial resolution of hyperspectral sensors, double scattering, and
intimate mixtures of materials in the scenes. Unmixing estimates
the fractional abundances of the endmembers within the pixel.
Depending on the prior knowledge of endmembers, linear un-
mixing can be divided into three main groups: supervised, semi-
supervised, and unsupervised (blind) linear unmixing. Advances
in image processing and machine learning substantially affected
unmixing. This paper provides an overview of advanced and
conventional unmixing approaches. Additionally, we draw a crit-
ical comparison between advanced and conventional techniques
from the three categories. We compare the performance of the
unmixing techniques on three simulated and one real dataset.
The experimental results reveal the advantages of different
unmixing categories for different unmixing scenarios. Moreover,
we provide an open-source Python-based package available at
https://github.com/BehnoodRasti/HySUPP to reproduce the re-
sults.

Index Terms—Hyperspectral, unmixing, endmember extrac-
tion, abundance estimation, linear mixture, machine learning,
deep learning, optimization.

I. INTRODUCTION

SPECTRAL unmixing is a crucial processing technique in
hyperspectral remote sensing that can play a vital role

in various fields such as mineral exploration, agriculture and
crop monitoring, environmental monitoring, urban planning,
remote sensing of planetary surfaces, pollution monitoring,
medical imaging, water quality assessment, etc. The ability to
separate and identify different materials in an image is made
possible by the contiguous spectra captured by hyperspectral
sensors. Through the use of endmembers, which are the unique
spectral signatures of materials, unmixing algorithms can
decompose the mixed spectral data into its constituent parts.
However, due to low spatial resolution, multiple scattering,
and intimate mixing, the measured spectrum within a pixel
is generally a complex mixture of the pure spectra of the
constituent materials, making unmixing a challenging task.
Fig. 1 demonstrates how the reflectance of a mixed pixel
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captured by an optical hyperspectral camera is composed of
two endmembers within that pixel. In hyperspectral remote
sensing, a mixing model represents the observed spectral pixel
as a function of the endmembers and their corresponding
fractional abundances within the pixel’s area. Unmixing is
the process of estimating the fractional abundances, either by
estimating or extracting the endmembers or by relying on a
library of endmembers. It may also involve determining the
number of endmembers present. The mixing model is either
linear or nonlinear, depending on the interaction of the incident
light and the materials in the scene or sample.

In linear unmixing, the endmembers are assumed to be
linearly mixed, which is valid when each light ray interacts
with only one material before reaching the sensor, as shown in
Figure 2 (a). This assumption is common in Earth observation
applications where macroscopic problems exist. The spatial
resolution of the sensor plays a crucial role in macroscopic
scenarios, where a pixel may contain multiple materials. In
such cases, the pixel is a mixture of different materials, such
as tree and soil, as shown in Figure 2 (a).

Another assumption is bilinear mixing, which assumes
double scattering or that the light ray interacts with two
materials before reaching the sensor, as shown in Figure 2 (b).
However, in microscopic scenarios where the pure materials
are intimately mixed within a pixel, and the light undergoes
multiple scattering and reflections by several materials, the
linear approximation fails, and nonlinear models that are more
complex than bilinear should be used [1], [2].

In macroscopic scenarios, nonlinearity is also induced by
noise, atmospheric effects, temporal effects, illumination vari-
ations, and materials’ intrinsic variation, which may cause
spectral variability shown in Fig. 3 [3]. Illumination variations
are mainly due to two effects: varying terrain topography,
which affects the angles of the incident radiation, and the
occlusion of the light source by other objects (leading to
shaded areas). The intrinsic variation of spectral signatures
of the materials is mainly due to physicochemical changes.
For instance, soil’s signature might change dramatically by
variations in its composition and moisture content. Another
example is the leaf’s signature changes throughout the tempo-
ral seasons. Scale differences can cause spectral variability as
well. For instance, a tree contains leaves, branches, fruits, bark,
bark, fruits or flowers, etc., leading to the intrinsic variability
of the tree spectra at different scales. The atmospheric effect
should be corrected, and noise can be removed [4]–[6].
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Fig. 1. Comparisons of mixed and pure pixels in hyperspectral data.

The unmixing process is subjective and depends on how
the endmembers are defined. For example, when detecting
buildings, the reflectance of a brick could be considered an
endmember. However, bricks are composed of several mate-
rials, such as clay, sand, and concrete, making it challenging
to define the endmembers of interest for detecting specific
materials or ratios of different materials inside bricks.

In the former, linear unmixing may be sufficient to solve
the problem. However, for intimate mixtures and the latter,
nonlinear models must be used. For example, the Hapke
model [7], [8] suggests that mixing occurs at the albedo level
rather than the reflectance level. Therefore, more complex
nonlinear models are necessary for such cases to accurately
unmix the spectral data. It is worth mentioning that, unlike the
common assumption, the proportion of an endmember within
a pixel or in a scene is not the percentage of the endmember
material within that pixel or in that scene [1]. According
to Hapke [7], [8], the proportion of an endmember in a
linear mixture indicates the relative area of that endmember.
Therefore, reflectance is not a linear mixture of the mass
or cross-sectional area of the endmember materials. Despite
this, linear unmixing has shown significant value in remote
sensing applications in the past decades [1]. However, when
associating an unmixing problem with an application, we
should be aware of the simplifications of the model we use.

Assuming three materials in a scene correspond to three
endmembers (e1, e2, and e3), the observed data can be
projected into a 2D subspace where all the data points are
enclosed in the data simplex formed by the convex hull of
endmembers (see Fig. 11). In contrast, in a nonlinear scenario,
the simplex does not contain all the data points. This paper
mainly considers linear EO applications and macroscopic
problems and focuses on linear mixing models. However, we
briefly discuss the bilinear and nonlinear unmixing approaches.

A. Key trends in the hyperspectral unmixing realm

Hyperspectral unmixing has undergone various develop-
mental stages, as illustrated in figure 4. In its early years,
from 1992 to 2008, this research topic received minimal
attention, with an annual publication count of no more than
18. However, starting from 2009 and continuing until 2016,
there was a steady increase in interest, with the number of
publications even surpassing 200 in 2016. Since 2017, hy-
perspectral unmixing has remained a prominent and dynamic
area of research, driven by the emergence of deep learning
techniques for unmixing. In 2022, this field reached its fourth
most prolific year on record, with 164 publications.

During the period when hyperspectral unmixing gained
popularity, the primary scientific programming language of
choice was MATLAB, as depicted in figure 5. However, in
recent times, there has been a steady increase in interest
and adoption of Python, while MATLAB’s popularity has
waned. This shift can be attributed, in part, to the growing
trend of open science, where open-sourcing scientific code has
become widely embraced. Consequently, the present scenario
suggests that developing and releasing an open-source unmix-
ing package in Python is more advantageous than doing so
in MATLAB, even though it may involve the translation of
existing unmixing code from MATLAB to Python.

B. Existing Overview Publications and Unmixing Packages

An early survey on hyperspectral unmixing was given in
[9], which discusses basic geometrical and statistical methods.
In [1], linear model-based unmixing techniques were di-
vided into three categories: geometrical, statistical, and sparse
regression-based approaches. A Matlab toolbox is available
at https://openremotesensing.net/. However, the toolbox is in-
complete, and some methods, such as dependent component
analysis (DECA), are missing. In recent years, deep learning
and neural networks have become state-of-the-art for many
tasks in machine learning and image processing. Consequently,
many unmixing approaches were proposed based on shallow
and deep neural networks. A comparison of autoencoder-
based networks was drawn in [10]. The authors discussed
autoencoder-based architectures divided into five categories,
i.e., Sparse Nonnegative Autoencoders, Variational Autoen-
coders, Adversarial Autoencoders, Denoising Autoencoders,
and Convolutional Autoencoders. They further discuss the
choice of different modules, such as different activation func-
tions or loss functions, and they compared shallow networks
to deep ones. They also provide a TensorFlow-based Python
package that is available on GitHub. However, the package is
limited to blind unmixing approaches based on autoencoders.
It does not discuss or compare the supervised, semisupervised,
and more conventional blind unmixing methods.

In [11], some model-based and neural network-based un-
mixing approaches were explained but without experimental
comparisons. A list of resources for the approaches was given.

A survey on endmember variability in Spectral Mixture
Analysis (SMA) was given in [12]. In [13], an overview of
unmixing methods that address endmember variability was
given. A comprehensive overview of the unmixing methods
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(a) Linear mixture (b) Bilinear mixture (c) Intimate mixture
Fig. 2. Macroscopic versus microscopic assumption. This figure illustrates three major assumptions in hyperspectral imagery. (a) The linear assumption is
when the light interacts with the materials only once. (b) The bilinear assumption when the light interacts with a maximum of two materials (c) intimate
mixture when the light interacts with more than two materials.

Fig. 3. Noise, atmospheric effects, illumination variations (caused by terrain
topography, occlusion of the light), and intrinsic variations of materials (e.g.,
soil signature might change dramatically by variations in its composition and
moisture content) cause spectral variability.

Fig. 4. Publications over time based on IEEE Xplore keyword search tool
using “Hyperspectral Unmixing” as input.

Fig. 5. Worldwide interest in scientific programming languages over time
according to Google Trends in the “Science” category.

that address spectral variability was recently provided in [3],
and a list of Matlab codes was also given. In [14], an
overview of endmember extraction approaches was given.
Review papers on hyperspectral remote sensing data analysis
briefly discussed the unmixing methods [15], [16]. In [17], an
overview of tensor-based unmixing models was given. In [18],
a survey of nonlinear unmixing methods is given.

There are other open-source tools such
as HyperMix [19], Spectral Python (SPy)
(https://www.spectralpython.net/), Spectral Library Tool
(https://spectral-libraries.readthedocs.io/en/latest/), PySptools
(https://pypi.org/project/pysptools/), that include basic
algorithms for estimation of the number of endmembers,
endmember extraction, abundance estimation, and some
library tools, and library-based methods. Thus, there is a need
for a comprehensive package that covers the methodologies
across different unmixing categories and contains state-of-
the-art image processing and machine learning techniques.

C. Significance of Contribution
This paper aims at the followings:
• Providing researchers with a comprehensive yet techni-

cal overview of all the essential topics regarding linear
unmixing techniques.

• Categorizing the unmixing approaches considering prior
knowledge available about endmembers. Linear unmixing
can be divided into three main categories: supervised,
semi-supervised (library-based), and unsupervised (blind)
unmixing.

• Compare the unmixing methods in terms of prior knowl-
edge of the endmembers and draw conclusions that
can help researchers to select an appropriate unmixing
method to tackle real-world challenges. We compare con-
ventional and deep learning-based unmixing approaches
in those categories for three simulated and two real-
world datasets. For the simulated datasets, we consider
three scenarios: a simple, pure pixel dataset, a dataset
with spectral variations, and a challenging dataset with
no pure pixel. Such comparisons provide insight to re-
searchers into which category to use for their application.
Additionally, the comparisons reveal the drawbacks of the
categories, which motivate the developers to investigate
new ideas to address them.
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• We provide an open-source HyperSpectral Unmixing
Python Package (HySUPP). HySUPP is the first open-
source python-based hyperspectral unmixing package to
include supervised, semi-supervised, and blind unmixing
methods. The package will benefit the geoscience and
remote sensing community, including researchers, devel-
opers, lecturers, and students. The package installation
is straightforward since HySUPP relies on a few depen-
dencies. In addition, all the methods can be run using a
single command line instruction.

II. HYSUPP: HYPERSPECTRAL UNMIXING PYTHON
PACKAGE

HySUPP exhibits a list of highly desirable properties sum-
marized as follows: i) completeness, ii) reproducibility, iii)
extensibility and iv) homogeneity. It implements common
best practices and enables simple benchmarking of unmixing
techniques thanks to user-friendly command line instructions.

A. Features

a) Completeness: As a practitioner, the ability to explore
and experiment with different unmixing techniques is crucial
since no single approach can consistently outperform others in
all unmixing scenarios. Thus, ensuring the completeness of our
toolbox becomes essential. Our toolbox is designed to cover
all three types of unmixing - supervised, semi-supervised, and
unsupervised - while striving to be as representative as possible
of the various unmixing approaches, although aiming for
exhaustive inclusion would be impractical. Currently, HySUPP
provides access to a diverse set of 20 different unmixing
methods, including 6 supervised, 6 semi-supervised, and 8
unsupervised techniques.

b) Reproducibility: Ensuring experimental reproducibil-
ity is crucial when exploring various unmixing techniques, as it
guarantees the robustness of the conclusions drawn by users.
In line with this principle, our toolbox offers the ability to
seed experiments, facilitating reproducibility through repeat-
able noise generation. Additionally, HySUPP automatically
saves estimates outputs, providing users with a convenient way
to review and compare results, thus enhancing the reliability
of their research findings.

c) Extensibility: HySUPP’s architecture is designed to
support the effortless integration of new methods, providing a
platform for future advancements in hyperspectral unmixing.
Leveraging configuration files, we empower researchers to
conduct experiments with ease and flexibility, enabling them
to effortlessly incorporate their own models into the toolbox.

d) Homogeneity: The uniformity of HySUPP’s codebase
ensures consistency across different components, enhancing
its overall usability and reliability. More specifically, we use
common methods for models and common attributes for
datasets.

e) Best practices: We offer a straightforward yet potent
method to monitor the objective function of each approach
using Python’s tqdm library. Furthermore, our pipeline in-
corporates precise endmember auto-alignment through the
utilization of the munkres algorithm, provided ground truth

abundance maps are accessible. This enhancement ensures
the accurate computation of unmixing performance. By es-
tablishing these best practices, we streamline the implemen-
tation process and foster a collaborative environment where
researchers can easily build upon existing work and share their
contributions effectively.

f) Benchmarking: Owing to its rich set of features,
HySUPP enables users to easily benchmark all implemented
methods on their dataset of choice. Our toolbox currently
provides 3 synthetic datasets corresponding to different un-
mixing scenarios. Moreover, we incorporate 4 distinct metrics
to thoroughly evaluate unmixing accuracy across methods.
Finally, leveraging mlxp [20] results query tool, we empower
users to analyze and visualize their results in an appealing and
informative manner.

B. Example

The following command line instruction provides an ex-
ample on how to run a semi-supervised unmixing technique,
SUnCNN [21], on the DC1 dataset using an optional custom
value for the signal-to-noise ratio (SNR):
$ python unmixing.py mode=semi data=DC1

model=SUnCNN noise.SNR=30
Table I lists unmixing methods included in HySUPP with

their corresponding dependencies. We highlighted our main
contributions and the link to the original implementations.

III. LINEAR UNMIXING

For frequent Earth observation, hyperspectral sensors are
installed on satellites. The light passes through the atmosphere
before reaching the target and then passes through the at-
mosphere to reach the sensor. The atmosphere absorbs and
scatters light, and therefore, atmospheric corrections should be
applied in addition to converting radiance to reflectance. Ar-
guably, atmospheric corrections are unnecessary for airborne,
drone-borne, and close-range imaging.

Fig. 6 (a) simplifies the concept of sensing using a satellite
hyperspectral sensor. As can be seen, the sensor captures a
pixel that contains three materials, i.e., Water, Tree, and Soil.
At the sensor, irradiance is corrected to the reflectance in
Fig. 6 (b). Note that this reflectance is between zero and
one. Fig. 6 (c) shows the concept of linear unmixing, which
demonstrates that the measured pixel contains 20% water
(blue endmember), 50% soil (yellow endmember), and 30%
tree (green endmember). Arguably, these portions cannot be
negative, known as abundance nonnegativity constraint (ANC),
and the summation of those portions is 100%, known as
abundance sum to one constraint (ASC). Additionally, the
endmembers are reflectance and cannot be negative (indeed,
the endmembers have to be bounded between 0 and 1), which
led to the endmember nonnegativity constraint. Here, we
discuss two widely used linear mixing models, i.e., the low-
rank linear mixing model (so-called LMM) and the sparse
and redundant linear model. The former was mainly used
for supervised and blind unmixing and the latter for sparse
unmixing. Some other linear models have been used in the
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TABLE I
THE LIST OF UNMIXING METHODS INCLUDED IN HYSUPP WITH THEIR CORRESPONDING DEPENDENCIES. WE HIGHLIGHTED OUR MAIN

CONTRIBUTIONS AND THE LINK TO THE ORIGINAL IMPLEMENTATIONS.

Method Original implementation Python Dependencies GPU Contributions

FCLSU [22] pysptools ✓ numpy, cvxopt Refactor into a SupervisedUnmixingModel sub-class
SiVM [23] github ✓ numpy Refactor into a BaseExtractor sub-class
SISAL [24] github ✓ numpy Refactor into a BaseExtractor sub-class
UnDIP [25] github ✓ torch ✓ Refactor separate scripts into a single model
VCA [26] github ✓ numpy Replace scipy dependency by numpy. Add random seed

CLSUnSAL [27] github ✓ numpy Implementation based on SUnSAL
MUA SLIC [28] github ✓ numpy, skimage MATLAB code translation using skimage’s SLIC

S2WSU [29] github ✓ numpy, scipy MATLAB code translation
SUnAA [30] github ✓ numpy, spams Refactor to match SemiUnmixingModel sub-class

SUnCNN [21] github ✓ torch ✓ Refactor separate scripts into a single model
SUnSAL [31] github ✓ numpy Refactor into SemiUnmixingModel sub-class

ADMMNet [32] - ✓ torch ✓ Implemented from scratch
BayesianSMA [33] webpage matlab.engine numpy Python wrapper around existing MATLAB code

CNNAEU [34] github ✓ torch ✓ Convert existing keras implementation into torch
EDAA [35] github ✓ torch ✓ Refactor to match BlindUnmixingModel sub-class

MiSiCNet [36] github ✓ torch ✓ Refactor separate scripts into a single model
MSNet [37] github ✓ torch ✓ Refactor to match BlindUnmixingModel sub-class

NMFQMV [38] github matlab.engine numpy Python wrapper around existing MATLAB code
PGMSU [39] github ✓ torch ✓ Refactor to match BlindUnmixingModel sub-class

Fig. 6. Schematic of sensing and linear unmixing. (a) Sensing a mixed pixel (b) Reflectance of the mixed pixel and (c) Schematic of the linear unmixing.

literature, which will be discussed throughout the paper. We
also discuss the components of a basic neural network model.

Unmixing techniques can be categorized into three main
groups considering the prior knowledge of endmembers. Su-
pervised and unsupervised (blind) unmixing use the same low-
rank mixing model, while semisupervised unmixing uses the
sparse and redundant linear model. The endmember library
is overcomplete; consequently, the abundances are desired
to be sparse. Blind unmixing estimates both endmembers
and abundances simultaneously. Fig. 7 graphically compares
those three groups. It is worth mentioning that unsupervised
(blind) unmixing can be applied to at sensor irradiance,
however, the data cannot be interpreted and the endmembers
extracted/estimated cannot be associated with the correspond-
ing materials. One can apply supervised unmixing to irradiance
if the pure pixels are also irradiance. Semisupervised unmixing
cannot be applied to sensor radiance since they rely on a
spectral library.

A. Low-rank Linear Mixture Model

Every p-dimensional pixel y (i.e., the sensor has p bands)
captured by a hyperspectral sensor can be represented as a
linear combination of the endmembers within the pixel. Let us
assume that matrix E ∈ Rp×r contains r endmembers within
the pixel. Then, y ∈ Rp is represented as

y = Ea+ n, s.t.

r∑
i=1

ai = 1, ai ≥ 0, i = 1, 2, .., r, (1)

where n denotes the p-dimensional random vector denoting
the additive random Gaussian noise. Using matrix notations,
we can represent all the pixels Y as

Y = EA+N, s.t. A ≥ 0,1T
r A = 1T

n , (2)

where Y∈ Rp×n is the observed HSI, with n pixels and
p bands, N ∈ Rp×n is noise, and A ∈ Rr×n contain the r
endmembers and their fractional abundances, respectively. 1n

indicates an n-component column vector of ones. Model 2 is
known as the linear mixture model (LMM).

https://pysptools.sourceforge.io/_modules/pysptools/abundance_maps/amaps.html#FCLS
https://github.com/BehnoodRasti/MiSiCNet/blob/main/UtilityMine.py
https://github.com/etienne-monier/lib-unmixing
https://github.com/BehnoodRasti/UnDIP
https://github.com/Laadr/VCA
https://github.com/etienne-monier/lib-unmixing
https://github.com/ricardoborsoi/MUA_SparseUnmixing
https://github.com/ricardoborsoi/MUA_SparseUnmixing
https://github.com/inria-thoth/SUnAA
https://github.com/BehnoodRasti/SUnCNN
https://github.com/etienne-monier/lib-unmixing
https://ndobigeon.github.io/applications/app_hyper_SMA.html
https://github.com/burknipalsson/hu_autoencoders
https://github.com/inria-thoth/EDAA
https://github.com/BehnoodRasti/MiSiCNet
https://github.com/yuyang95/JAG-MSNet
https://github.com/LinaZhuang/NMF-QMV_demo
https://github.com/shuaikaishi/PGMSU
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Fig. 7. Graphical representation of different types of linear unmixing. Supervised and blind unmixing use the same low-rank mixing model, while sparse
unmixing uses the sparse and redundant linear model. Blind unmixing estimates both endmembers and abundances simultaneously.

B. Low-rank LMM and Simplex Volume

Suppose that the endmembers are affinely independent i.e.,
e2 − e1, ..., er − e1 are linearly independent, then

S ≜ {Ea ∈ Rp|
r∑

i=1

ai = 1, ai ≥ 0, i = 1, 2, .., r} (3)

is (r − 1)-Simplex. Indeed, this is the convex hull of the
vertices, i.e., ei’s assuming no noise. Therefore, if we ignore
the noise, any point of the dataset belongs to S (see Fig. 11
(a)). We should note that columns of A belong to (r − 1)-
probability simplex

∆r ≜ {a ∈ Rr|
r∑

i=1

ai = 1, ai ≥ 0, i = 1, 2, .., r}. (4)

Therefore, ai ∈ ∆r means ASC and ANC. Indeed, the vertices
of ∆r are r unit vectors in Rr. Hereafter, we refer to (3) as
data simplex and to (4) as abundance simplex. It is worth
mentioning that, unlike data simplex, the abundance simplex
is also valid for nonlinear models.

Let us assume Sr is an r-simplex in Rr i.e., ei ∈ Rr for
i = 0, 1, 2, .., r. Then the volume of this simplex is given by

V ol(Sr) =
1

r!
|det[e1−e0, ..., er−e0]| =

1

r!
|det

[
1 ... 1

e0 ... er

]
|,

(5)
where det is the determinant of a matrix. In the linear mixture
model (LMM), we have an (r − 1)-Simplex in Rr (after the
projection into an r dimensional subspace, see IV-A) i.e., ei ∈
Rr for i = 1, 2, .., r (Er ∈ Rr×r). The volume of an (r− 1)-
simplex is zero in Rr. Therefore, the extended simplex, which
contains the origin (i.e., E0 = [0,E]), can be used to calculate
the volume. Hence,

V ol(E0) =
1

r!
|det[e1, ..., er]| =

1

r!
|det(E)|. (6)

Alternatively, the data points can be shifted to the origin,
and the volume of the (r − 1)-simplex can be computed in
Rr−1 given by

V ol(Er) =
1

(r − 1)!
|det[e2 − e1, ..., er − e1]| =

1

(r − 1)!
|det

[
1 ... 1

e1 ... er

]
|. (7)

It is worth mentioning that the projection into a subspace
(IV-A) is necessary to form a squared matrix and calculate
the determinant.

C. Sparse and Redundant Linear Mixture Model
The observed spectra can be represented using a sparse and

redundant linear mixture model given by

Y = DX+N,

s.t. X ≥ 0,1T
mX = 1T

n , (8)

where D ∈ Rp×m (p ≪ m) denotes the spectral library
containing m endmembers and X ∈ Rm×n is the unknown
fractional abundances to estimate. Note that D is an over-
complete dictionary and therefore, should be a well-designed
dictionary. A well-designed dictionary contains endmembers
of the materials in the scene and can sparsify the redundant
X. Hence, a spectral library can be pruned based on the
spectral angles of the spectra (i.e., spectra with small degree
differences will be removed). However, this comes with a risk
of losing material endmembers if they are scaled versions
of each other. In the case of a well-designed dictionary, the
pixels are a mixture of a few atoms of the dictionary, and
therefore X is a sparse matrix. Note that we get a zero row
if an endmember material does not exist in the observed
spectra. The rest of the rows will contain zeros since the
abundances are often sparse. This model is often used in sparse
unmixing. The fractional abundances X are estimated using
sparsity-enforcing penalties/constraints in a sparse regression
formulation.
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D. Shallow/Deep Neural Network Model

Shallow or deep neural networks can be used for supervised,
semi-supervised, or blind unmixing. The network is often
based on autoencoder-based architecture, as shown in Fig. 8.
The encoder E , which could be deep or shallow, encodes the
spectral pixels into the abundances given by

a = E (y), (9)

and the decoder D reconstruct the pixel given by

ŷ = D(a). (10)

In every layer, an activation function is used to apply non-
linearity. The most common choices are Rectified Linear
Unit ReLU (ReLU(x) = max(0, x)) and Leaky ReLU
(LReLU(x) = max(ax, x), where a is very small, and a
common choice is a = 0.1). Batch normalization (BN) is
commonly used in each layer to speed up the learning process.
The BN function is given by

BN(x) = α2
x− µ√
σ2 + ϵ

+ α1, (11)

where α2 and α1 are learnable parameters, µ and σ are the
mean and standard deviation of the batch, and ϵ is a minimal
value.

A linear layer can be used for the decoder to reconstruct
the pixel. The decoder weights are the endmembers fixed for
supervised unmixing and can be learned through the learning
process in the case of unsupervised (blind) unmixing. ASC
and ANC can be realized differently; Applying nonnegative
activation functions such as ReLU and normalization for ASC
given by [10]

a =
a∑r

i=1 ai
, (12)

alternatively, one can use

a =
|a|∑r

i=1 |ai|
, (13)

A common way is to use a softmax function

softmax(a) =
ea∑r

i=1 e
ai
. (14)

The scaled version of the softmax can be used as
softmax(γai) where γ > 1 is constant. ASC and ANC can
also be implemented by adding a penalty term to the loss
function. However, it degrades the stability of the training
process and decreases the convergence time, and therefore, it
is not recommended [10]. We should note that those functions
are realized as the last hidden layer of the decoder. The
loss function is often chosen as a reconstruction term plus
a regularization term given by

Lreg(y, ŷ) = L(y, ŷ) + λJ(a,Ŵen,Ŵde), (15)

where L is often selected as a reconstruction term such as ℓ2
norm (or MSE)

Lℓ2(y, ŷ) = ||y − ŷ||22, (16)

or

LSAD(y, ŷ) = arccos
yT ŷ

||y||2||ŷ||2
, (17)

or

LSID(y, ŷ) =

p∑
i=1

pilog(
pi
qi
) +

p∑
i=1

qilog(
qi
pi
), (18)

where
pi =

yi∑p
i=1 yi

, qi =
ŷi∑p
i=1 ŷi

, (19)

or a combination of them. The regularizer J can be a com-
bination of several functions, such as a Frobenius norm on
Wen with a sparsity norm such as ℓ1 norm on a, and a
Frobenius norm or a geometrical (MV induced) norm on Wde.
Note that SAD is scale-invariant and, therefore, can capture
the spectral variability of the pixel. This is a big advantage
for real-world datasets. On the other hand, utilizing SAD
for datasets containing materials having scaled endmembers
is not recommended since the network cannot be trained to
distinguish those materials. Assuming a single-layer encoder-
decoder, the abundances are given by

a = softmax(BN(RelU(Weny + b))), (20)

where b denotes the biases of the layer. The reconstructed
pixel is given by

ŷ = Wdea. (21)

Fig. 8. A basic encoder-decode architecture used for unmixing. The (shallow
or deep) encoder encodes the pixels to abundance. ASC and ANC can be
enforced on the bottleneck. The shallow decoder reconstructs the pixels, and
the decoder’s weights are the endmembers.

E. The Effect of Noise in Unmixing

Hyperspectral data are usually downgraded by different
sources, including atmospheric effects, imaging artifacts, and
instrumental noise. These sources can further affect hyper-
spectral analysis, including unmixing [5]. Unmixing is an
inverse problem that could be very sensitive to noise, mainly
when endmembers are highly correlated. Therefore, unmixing
techniques may fail due to noise. In [1], so-called signal-to-
noise-ratio spectral distribution (SNR-SD) was suggested to
determine if the unmixing inverse problem gives acceptable
results. However, the hyperspectral denoising field has con-
siderably evolved during the past decade [4], [5], [40] and
noise reduction as a preprocessing step could improve the
unmixing performance [41]. We should note that unmixing
techniques usually consider Gaussian noise and even can
perform as a denoiser but are not as efficient as denoising
techniques [41]. Additionally, other types of noise, such as
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Fig. 9. Taxonomy of the linear unmixing methods described in this paper. The top categorization is based on the prior knowledge of endmembers.

strip and sparse, can be removed by applying denoising before
unmixing [40]. Alternatively, some methods were proposed for
performing denoising and unmixing in a unified framework
for boosting the performance of each other [42], [43]. As a
result, we suggest applying a well-established noise reduction
technique before estimating the abundance or characterizing
the unmixing inverse problem using SNR-SD.

F. Unmixing Approaches w.r.t. Prior Knowledge of Endmem-
bers

Unmixing techniques can be categorized in terms of prior
knowledge of the endmembers. Depending on the prior knowl-
edge available about endmembers, the unmixing problem can
be divided into three main categories: (1) supervised unmixing,
(2) unsupervised (blind) unmixing, and (3) Semi-supervised
unmixing. In supervised unmixing, abundances are estimated
by relying on known endmembers, whereas blind unmixing
estimates both the endmembers and the abundances simulta-
neously. Semi-supervised unmixing relies on a library of end-
members that ideally contains the endmembers in the scene.
We discuss each category separately. Fig. 7 demonstrates the
graphical abstracts of these three linear unmixing categories.
The taxonomy of the linear unmixing methods discussed in
this paper is given in Fig. 9.

IV. SUPERVISED UNMIXING

In supervised unmixing, we assume that endmembers are
known, and the abundance matrix needs to be estimated. In
practice, the endmember can be measured in the field or lab-
oratory. One can select them from a spectral library, however,
due to the variations in the imaging setup, such a selection will
not lead to a desirable abundance estimation. Alternatively,

they can be extracted/estimated from data points. Geometrical
approaches are often used at this step. Endmember extraction
is not often easy since the captured data might not contain
pure pixels to represent all the endmembers in the scene. Most
endmember extraction methods rely on pure pixels or some
pixels on the facet of the simplex. Geometrical approaches
are less effective in no pure pixel scenarios. The processing
chain of supervised unmixing is shown in Fig. 10. Note that we
classify methods based on such sequential process (as opposed
to simultaneous estimation of endmembers and abundances) as
supervised unmixing since in the step of abundance estimation
the endmembers are assumed to be known. The processing
chain often includes three main steps; 1) Subspace projec-
tion: the data is projected into a subspace, 2) endmember
extraction/estimation: Often a geometrical approach is used
to extract the endmembers, and 3) Abundance estimation:
abundances can be estimated using a least square (LS) or a
neural network (NN) -based approach.

A. Subspace Projection and Estimation of number of End-
members

Hyperspectral data often live in subspace having dimension
much lower than the dimension of spectral bands defined
by the sensor. Assuming r endmembers in the scene, the
intrinsic/subspace dimension is r− 1, i.e., the data points can
be represented by r− 1 linearly independent vectors or bases
(in the case of orthogonal projections). Therefore, identifying
such a subspace and projecting the data into that reduces the
computational cost, memory consumption, and removes the
noise and outliers.

The subspace projection is given by

Y = VTF+N, (22)
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Fig. 10. The processing chain of supervised unmixing. First, the data is projected into a subspace. Then, endmembers are extracted using a geometrical
approach. If the endmembers are available, then the endmember extraction can be skipped. In the final step, abundances can be estimated using an ML/DL-
based approach.

where columns V ∈ Rp×r spans the subspace and columns
of F are the projected spectral pixels. When V is semi
orthogonal, i.e., VTV = Ir, the project is orthogonal which
is a common choice in HS subspace projection. In (22), both
V and F should be estimated [44], [45]. Alternately, we can
assume [1]

Yr = VTEA+VTN, (23)

where Yr = VTY. Reduction methods such as minimum
noise fraction (MNF), principal component analysis (PCA),
and noise adjusted principal component (NAPC) estimate V
[46]. Not that Y is usually not a square matrix; hence, singular
value decomposition (SVD) can be used to estimate V [47],
[48]. Please see [16], [46] for more details on hyperspectral
feature reduction.

Estimating the number of endmembers is not a trivial task.
Unmixing approaches are vulnerable to this parameter and
under or overestimating r may considerably affect the error
of the models. We should note that sparse regression-based
methods which do not use endmember bundles do not rely
on the estimation of r. In the literature, this problem was ad-
dressed with alternative names such as hyperspectral subspace
identification, intrinsic order selection, virtual dimension, and
estimation of the number of spectrally distinct signal sources
[47]–[49]. This problem can be addressed using eigenvalue-
based detection techniques [49]–[51] or estimating the mean
square errors [47], [48]. Geometrical-based approaches were
also proposed for endmember estimation [52]–[54].

B. Endmember Extraction for Linear Unmixing

As can be seen in Fig. 11 (a), the endmembers are the ver-
tices of the simplex enclosing the data points. Therefore, the
geometrical concept inspires the mainstream of endmember
extraction techniques. Geometrical approaches can be divided
into two main groups; pure pixel-based approaches and ap-
proaches without pure pixel assumption. Fig. 11 compares the
pure pixel with no pure pixel assumption. In Fig. 11 (b), the red
circles demonstrate the positions of the missing pure pixels. In
this case, the endmembers cannot be extracted and they should
be estimated. This is feasible using geometrical approaches if
enough pixels are located on the facets of the simplex. This
becomes much more challenging for higher dimensional cases
when noise and other nonlinearities are involved. Alternatively,
a group of endmembers (endmember bundle) can be extracted
based on the assumption of endmember variability caused by
spectral variability as shown in Fig. 11 (c). Fig. 11 (d) shows

the highly mixed scenario that geometrical approaches cannot
cope with.

(a) (b)

(c) (d)
Fig. 11. Pure pixel versus no pure pixel assumption. (a) Pure pixels scenario
(b) No pure pixels scenario with enough pixels on the facets of the simplex
(c) endmember bundle, and (d) No pure pixels scenario without pixels on the
facets of the simplex (highly mixed scenario).

1) Pure Pixel Assumption: Many techniques consider pure
pixel assumption for simplicity, while in real applications, pure
pixels of some endmembers are often missing. The methods
that rely on pure pixels for endmember extraction can be
divided into three main groups: projections and extremes,
simplex fitting methods, and multiple endmember extraction
methods (endmember bundles).

• Projections and Extremes: This group often searches for
extremes by iteratively projecting data points. The ver-
tices can be selected as the extreme points after iteratively
projecting the data in a particular direction. For instance,
Pixel Purity Index (PPI) [55] scores the spectral vectors
by projecting them onto a large set of random vectors
(called skewers) and counting the number of times that
each vector is an extreme point. Orthogonal subspace
projection (OSP) [56] and Vertex Component Analysis
(VCA) [26] selects endmembers iteratively by projecting
the data into an orthogonal direction to the subspace
spanned by the already selected endmember.

• Simplex Fitting: The endmembers are assumed to be
located at the vertices of the simplex enclosing the data
points. Therefore, they can be extracted by maximizing
the data simplex. N-FINDR [57] searches for pure pixels
that form the largest simplex by gradually inflating a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 10

simplex inside the data. Simplex volume maximization
(SiVM) [23] extracts the endmembers by iteratively max-
imizing the simplex volume using

argmax
Er

V (Er) = argmax
Er

√
(−1)r · cmd (Er)

2r−1(r− 1)!
,

(24)
where cmd is the Cayley–Menger determinant:

cmd (Er) = det


0 1 1 1 . . . 1

1 0 d21,2 d21,3 . . . d21,r

1 d22,1 0 d22,3 . . . d22,r

1 d23,1 d23,2 0 . . . d23,r

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 d2r,1 d2r,2 d2r,3 . . . 0

,

and di,j is the Euclidean distance between endmembers
ei and ej .

• Multiple Pure Pixels and Endmember Bundles: The mul-
tiple endmembers were also referred to as the endmember
bundles. The endmember bundle and bundle unmixing
were proposed in [58]–[60]. PCA was used to identify
the (projected) endmembers using the extremes. More
than one extreme was selected for materials. The bun-
dle unmixing was formed using linear programming to
determine the minimum, average, and maximum of the
fractional abundances induced by endmember variability.
In [61], endmember bundles were extracted from the
observed data. Endmember variability is modeled using
the endmember bundle, which will be discussed in more
detail in semisupervised unmixing.
Some techniques incorporate spatial information for ex-
tracting the endmembers [62]–[65]. These methods often
utilize information from neighboring pixels in the end-
member extraction. For instance, in [66], the similarity
of the pixel and its neighbors was used to weigh the
pixel and consequently adjust the simplex so that its
vertices better represent the homogeneous regions in
natural images. The primary assumption of these methods
is that the neighboring pixels of pure pixels are also pure
or have some purity level that can boost the endmember
extraction.

2) No Pure Pixel Assumption: If there are no pure pixels,
virtual endmembers can be successfully located at the vertices
if enough data points are available on the facets of the data
simplex. Here, the main idea is to minimize the simplex
volume subject to a convex combination of the endmembers
containing the data points. For instance, the minimum volume
enclosing simplex (MVES) [67], [68] seeks the minimum
simplex, which encloses the data points. Maximum Volume
Inscribed Ellipsoid (MVIE) [69] seeks the maximum volume
ellipsoid contained within the convex hull of the data points.
This volume is maximal when touching the facets of the
data simplex. The contact points aid in estimating the virtual
endmembers.

Alternatively, the minimum volume simplex analysis
(MVSA) [70] and the simplex identification via variable
splitting and augmented Lagrangian (SISAL) [24], [70] form
a non-convex minimization (or a non-concave maximization)

problem which estimates endmembers by minimizing volume
data simplex, subject to the ASC and ANC [24], [70]. Assum-
ing Q = E−1

r , SISAL solves

Q̂ = argmin
Q

−log|det(Q)|+ λ1T
r hinge(QYr)1n

s.t. 1T
r Q = 1T

nY
−1
r . (25)

where the hinge function (hinge(x) = max{−x, 0}) is the
regularization allowing violations to the non-negativity con-
straint and makes SISAL robust to noise. SISAL and MVSA
solve the same problem however, SISAL is more efficient since
it uses an alternating direction method of multipliers (ADMM)
[71].

C. Abundance Estimation

1) Least Squares-based Approaches: In supervised unmix-
ing, when the endmember E are known, the abundances should
be estimated. This step is also known as inversion, referring
to the inverse problem of estimating abundances when the
endmembers are known. The presence of noise, inevitable
errors in endmember estimation/extraction, and the physical
constraints make such an inverse problem very challenging.

Unconstrained least squares unmixing (UCLSU) via the
orthogonal subspace projection was proposed for abundance
estimation [72]. Non-negative constrained least squares un-
mixing (NCLSU) [73], [74] was proposed to estimate the
abundances subjected to ANC. A weighted least square is
suggested in [75] for estimating the abundances of multispec-
tral remotely sensed data. There are several attempts to solve
the least squares problem subjected to both ANC and ASC
[75], [76]. In [75], quadratic programming was suggested for
the constrained least squares. The first efficient algorithm was
proposed in [22] and called fully constrained least squares
unmixing (FCLSU). Later, fully constrained least squares
unmixing by simplex projection was proposed [77] to derive
a more efficient algorithm. A recursive algorithm minimizes
the least square by performing orthogonal projections while
holding the ASC and ANC. However, we should note that with
the advances in graphical processing units (GPU), FCLSU can
be efficiently solved using convex optimization techniques.
Therefore, FCLSU is the most widely used method for abun-
dance estimation given by:

Â = argmin
A

1

2
||Y −EA||2F

s.t.A ≥ 0,1T
r A = 1T

n . (26)

where the ||.||F denotes the Frobenius norm. Problem (26)
is convex and can be solved using any convex optimization
solver. To promote spatial regularization, one can solve a
penalized least square for abundance estimation given by

Â = argmin
A

1

2
||Y −EA||2F + λϕ(A)

s.t.A ≥ 0,1T
r A = 1T

n , (27)

where the first term is the fidelity term. The penalty term is
defined based on function ϕ applied to the unknown abun-
dances. ϕ can be a total variation or sparsity-based function
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that usually incorporates spatial information. λ controls the
trade-off between the fidelity and penalty terms. Problem (27)
is convex (E is known) as long as the penalty term is convex
and, therefore, it can be solved using any convex optimization,
least squares, or quadratic programming solver. Problem (27)
will lead to better estimation in terms of RMSE compared to
(26) for some values of λ. However, the selection of optimum
λ is not trivial.

2) Shallow/Deep Neural Networks: In supervised unmixing
networks, the endmembers or the decoder weights are fixed.
Therefore, a regularized loss function can be given by

Lreg(y, ŷ) = L(y, ŷ) + λJ(a,Wen). (28)

The regularizer J can be a combination of a Frobenius norm
on Wen with sparsity norms such as ℓ1 norm on a. Autoen-
coders only utilize spectral information. Therefore, convolu-
tional autoencoders were suggested for spectral unmixing to
use both spatial and spectral information. Deep convolutional
autoencoders were used for supervised hyperspectral unmixing
in [78], exploiting 3D convolutional filters.

In [25], unmixing using deep image prior was proposed
(UnDIP). Selection of the prior ϕ can be data dependent.
Inspired by deep image prior [79], [80], UnDIP shows that
the selection of the image prior ϕ in the minimization problem
(27) can be shifted into optimizing a deep network’s parame-
ters. Then we have,

θ̂ = argmin
θ

1

2
||Y −Efθ(Z)||2F s.t. Â = fθ̂(Z). (29)

Z is the network input fixed throughout the learning. fθ is a
deep network with parameters θ representing the weights and
biases. UnDIP uses SiVM to extract E. Therefore, it is suit-
able for pure pixel-based scenarios. UnDIP uses an encoder-
decoder network for fθ and (29) as the loss function and a
softmax layer to enforce ASC and ANC. In [81], a two-stream
network was proposed. The network contains an encoder
in parallel with an autoencoder. First, bundle endmembers
were extracted using VCA, and the corresponding abundances
were estimated using the linear mixing model. Then, the
encoder was trained based on the bundle endmembers and the
abundances. The encoder shares the weights with the encoder
of the autoencoder, whose decoder is nonlinear. A similar idea
was also used in [82].

V. UNSUPERVISED (BLIND) UNMIXING

In supervised unmixing, the processing chain is sequential.
Usually, the estimation of abundance does not affect the
estimation of endmembers due to the order in the process-
ing chain. In unsupervised unmixing, we assume that both
endmember and abundances are unknown and blind unmixing
endmember and abundances are estimated simultaneously.
We consider three major paradigms; 1) Least Squares-based
Approaches 2) Shallow/Deep learning-based Approaches, and
3) Statistical-Based Approaches. Due to the inherent noncon-
vexity of blind unmixing methods, they are often vulnerable
to initialization, and therefore they are always initialized using
a geometrical endmember extraction approach.

A. Least Squares-based Approaches

Least squares-based approaches usually solve a minimiza-
tion problem with respect to both E and A in the form of

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + λϕ(A) + βψ(E)

s.t.A ≥ 0,1T
r A = 1T

n , 0 ≤ E ≤ 1 (30)

The main difference between the unmixing approaches in this
group is the selection of the penalty functions ϕ and ψ. ϕ is
often selected for incorporating spatial information and cap-
turing the spatial correlation. The common choices for ϕ are
TV and sparsity-promoting norms. ψ is usually a geometrical
regularizer for incorporating geometrical information.

1) Selection of a Regularizer: The common choices for ψ
are simplex volume terms and norms with simplex volume
flavor, such as TV [83]. Total variation penalty enforces the
data simplex to have minimum volume [83]

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + βTVe(E)

s.t.A ≥ 0,1T
r A = 1T

n (31)

where TVe(E) is a TV function given by

TVe(E) =

r∑
i,j=1

||ei − ej ||22 = ||E(Ir −
1

r
1r1

T
r )||2F . (32)

See Appendix A for more details. We should mention that the
method proposed in [83] solves the problem after subspace
projection using MNF.

Minimum volume-constrained nonnegative matrix factoriza-
tion (MVC-NMF) was proposed in [84]. MVC-NMF suggests
a minimum volume penalty for the constraint nonnegative least
squares given by

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + βV ol2(Er)

s.t.A ≥ 0,1T
r A = 1T

n ,E ≥ 0. (33)

Collaborative nonnegative matrix factorization (CoMNF)
[85] suggests a sparsity-promoting term on abundances and
MV on the simplex given by

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + β

∥∥E−m1T
r

∥∥2
F

+ λ

r∑
i=1

∥∥a(i)∥∥q2 s.t. A ≥ 0,1T
r A = 1T

n , (34)

where, 0 ≤ q ≤ 1, m contains the mean values of the
spectral pixels, i.e., m = 1

nY1n, and aT(i) is the ith row of the
matrix A. This term pulls the endmembers toward the center
of mass. CoNMF uses both spatial and MV (geometrical)
regularizers and solves the problem by projecting the data
into a subspace. In [86], Robust CoMNF (RCoNMF) was
proposed, which utilizes a geometrical penalty that minimizes
the distances between the endmembers to be estimated and
the boundary pixels (P ∈ Rp×r). The main assumption is that
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the endmembers are close to the extremes of the data simplex
(so-called boundary pixels). Hence, RCoNMF solves

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + β ∥E−P∥2F

+ λ

r∑
i=1

∥∥a(i)∥∥2 s.t. A ≥ 0,1T
r A = 1T

n , (35)

where the boundary pixels, P, can be obtained using pure
pixel-based endmember extraction. In [86], VCA was used to
estimate P. In [87], ℓ0.5-NMF was proposed which enforces
ℓq =

∑r
i=1

∑n
j=1 |aij |0.5 sparsity penalty (q = 1/2) on

the abundances. A multiplicative update rule [88], [89] was
proposed to solve the ℓ0.5-NMF problem.

In such minimization problems, selecting the regula-
tion parameters is not trivial. In [38], Nonnegative Matrix
Factorization-Quadratic Minimum Volume (NMF-QMV) was
proposed. NMF-QMV unifies the three geometrical regulariz-
ers mentioned above (i.e., TV, center, and boundary) in a single
framework. NMF-QMV proposes the unified cost function
using the MV-regularizers given by

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + β ∥EG−O∥2F

s.t. A ≥ 0,1T
r A = 1T

n , (36)

where the selection of G and O are given in Table II. We
emphasize that those terms do not compute the volume of
a simplex. They are convex penalties with volume flavor. A
parameter selection technique was proposed in 36 by searching
for an optimum β in a large interval. β optimum is when
the estimated endmember simplex boundary is close to the
data points boundary. Note that the spatial regularizer was
ignored in (36), simplifying the selection technique. We

TABLE II
SELECTION OF G AND O FOR THE UNIFIED GEOMETRICAL REGULARIZER.

TV Center Boundry

G Ir − 1
r 1r1

T
r Ir Ir

O 0 m1r Extracted Extremes

(a) (b) (c)
Fig. 12. The intuition of how the three geometrical regularizers enforce the
endmembers using (a) TV, (b) center, and (c) boundary terms to change an
initial simplex (blue) towards the endmember simplex (red). The black arrows
show the direction of the force.

should note that some blind unmixing techniques [38], [83],
[85], [86], solve the problems in a subspace. This has two main
advantages: 1) reducing the computations, and 2) reducing
noise and removing outliers. Hence, the endmembers are
assumed to belong to an r − 1 dimensional affine set, which
best represents the data using an orthogonal projection. Note

that the abundances do not change and can be estimated in
a subspace. However, in real-world scenarios, the estimated
endmembers in a subspace after reprojection into the original
space may have negative values due to noise and nonlinearity
since they cannot be bounded between zero and one in a
subspace.

In [90], the spectral roughness penalty was proposed for
imposing the smoothness to the endmembers, and the ℓq norm
was applied to the abundances to enforce sparsity on the
abundances. The proposed cost function is given by

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F +

β

2
∥RE∥2F + λ

n∑
i=1

∥ai∥q

+
α

2

∥∥1T
r A− 1T

n

∥∥2
2

s.t. A ≥ 0, (37)

where 0 ≤ q ≤ 1 and R ∈ R(p−1)×p is the first-order
difference matrix given by

R =


−1 1 0 . . . 0 0

0 −1 1 0 · · · 0

...
...

. . . . . .
...

...
0 0 0 . . . −1 1

 . (38)

We should note that the roughness penalty does not in-
corporate geometrical information, and ASC constraint was
relaxed and added to the cost function as a penalty. This
makes the algorithm robust to the noise however, it adds
one extra regularization parameter, α, which together with β
and λ become very challenging to select, particularly in real-
world applications. In [91], the (2 dimensional) isotropic total
variation was applied to abundances to promote piece-wise
smoothness spatially. The cost function is given by

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + λ1

r∑
i=1

TVi(a(i))+

λ2

r∑
i=1

∥∥a(i)∥∥q s.t. A ≥ 0,E ≥ 0,
∥∥e(i)∥∥22 = 1, i = 1, 2, ..., r,

(39)

where 0 ≤ q ≤ 1 and TVi is the nonisotropic TV function
given by

TVi(x) =
∥∥∥√(Hh(x))2 + (Hv(x))2

∥∥∥
1
. (40)

Hv = I ⊗ R and Hh = R ⊗ I are the matrix operators
to calculate the first order vertical and horizontal differences,
respectively, for the vectorized image x. We should note
that ASC was ignored in (39), and the endmember norm
constraint (ENC) was applied to enforce a unit norm on
the endmembers. ENC captures the spectral variability but
has a big disadvantage, which does not let the algorithm
distinguish the materials with similar endmembers with some
scaling factors, such as tree and grass. In [92], NMF subject to
ASC was suggested using a reweighted ℓ1 norm and the total
variation penalty applied to the abundances. Many NMF-based
blind unmixing approaches were proposed using the form of
minimization (30) [93]–[96].
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A plug-and-play (PnP) priors framework was proposed in
[97] for blind unmixing. Problem (30), omitting the penalty
and constraint on E, was solved using an ADMM. The
penalized least squares step in the ADMM can be solved using
a denoiser. Several denoisers, including a deep network, were
suggested to solve that step. Additionally, the penalty term
was considered not only applied to the abundances but also to
the reconstructed data, i.e., ϕ(EA).

2) Archetypal Analysis Models: Several archetypal analysis
(AA)-based [98] algorithms were proposed for blind unmixing.
Let’s assume that the endmembers are convex combinations of
the spectral pixels, then using AA we have

(Â, B̂) = argmin
A,B

1

2
||Y −YBA||2F

s.t. B ≥ 0,1T
nB = 1T

r ,A ≥ 0,1T
r A = 1T

n , (41)

where B ∈ Rn×r and the columns of B belong to the simplex
∆n. In [35], Entropic Descent Archetypal Analysis (EDAA)
was proposed. EDAA uses an entropic descent algorithm to
solve the AA problem (41). A model selection technique
suggested where the coherence µ = maxi ̸=j e

T
i ej and ℓ1

residual ||Y− ÊÂ||1 are minimized. This makes the solution
robust to the initialization of B. The convex combination
constraint on the endmembers is very strict. Therefore, in [99],
a variation of AA suggested which uses a relaxation factor δ
and an r dimensional scaling vector s ∈ Rr

(Â, B̂, Ŝ) = arg min
A,B,S

1

2
||Y −YB(S⊙ I)A||2F s.t.

B ≥ 0,1T
nB = 1T

r ,A ≥ 0,1T
r A = 1T

n , 1− δ ≤ s ≤ 1 + δ
(42)

where S = s1T and ⊙ denotes the Hadamard product.
Additionally, Kernel AA (KAA) was suggested to take into
account the endmember variability by multiple endmember
extraction. The proposed KAA was computationally expen-
sive, and therefore, in [100], the Nyström method is used to
construct a low-rank approximation of the high-dimensional
kernel matrix using K-means.

An ℓ1 penalized variation of AA was proposed in [101]
given by

(Â, B̂, Ŝ) = arg min
A,B,S

1

2
||Y −PB(S⊙ I)A||2F + ||A||1 s.t.

B ≥ 0,1T
nB = 1T

r ,A ≥ 0,1T
r A = 1T

n , 1− δ ≤ s ≤ 1 + δ
(43)

where the sparsity was enforced on the abundance and P ∈
Rn×c, c >> r contains boundary pixels extracted by using
PPI to cope with the endmember variability.

3) Tensor Models: Tensor decomposition (TD) was also
suggested for blind unmixing motivated by the tensor structure
of hyperspectral data, which can be represented as a three-
dimensional array (tensor) with dimensions corresponding to
spatial coordinates (row and columns) and spectral bands
(channels) [102]. Hyperspectral data are often decomposed
into nonnegative tensors. The interpretation of endmembers
and abundances in a tensor decomposition makes the unmixing
modeling challenging. The canonical polyadic decomposition
(CPD) [102] and Tucker decomposition (or higher order SVD)

Fig. 13. The rank-(Li, Li, 1) decomposition which is widely used for blind
linear unmixing.

[103] have been proposed for unmixing. However, they lack
such an interpretation. Among tensor decompositions, matrix-
vector third-order tensor decomposition (also known as rank-
(Li, Li, 1) block-term decomposition) is the most popular
model for unmixing due to the interpretation of endmembers
and abundances in the decomposition. It is a specific case of
block term decompositions (BTDs) [104] which is generally
defined as a sum of r rank-(Li, Mi, Ni) terms (i = 1, 2,
..., r). BTD can be assumed as a generalization of CPD and
Tucker decomposition where it decomposes a tensor into a sum
of component tensors (same as CPD), while each component
tensor is factorized using a Tucker decomposition. Considering
the hyperspectral data as a 3rd-order tensor Y ∈ Rn1×n2×p

(where n1×n2 = n), rank-(Li, Li, 1) decomposition is written
as

Y =

r∑
i=1

Ai⊙ei =

r∑
i=1

KiB
T
i ⊙ei+N ,Ki ≥ 0,Bi ≥ 0, ei ≥ 0

(44)
where Ai denotes ith n1 × n2 abundance (i.e., vec−1(ai)) of
rank Li. Therefore, Ai can be written as a matrix product
Ai = KiB

T
i where Ki ∈ Rn1×Li and Bi ∈ Rn2×Li

are full column rank matrices of rank Li. The rank-(Li,
Li, 1) decomposition shown in Fig 13 is unique and a
sufficient uniqueness condition is that the partitioned matrices
K = [K1,K2, ...,Kr] and B = [B1,B2, ...,Br] are full
column rank and E does not have any collinear columns
[104]. It was shown that full column rank of A and B
can be met if min(n1, n2) =

∑r
i=1 Li. Those conditions

may be met in unmixing applications however they are not
ensured. We should note that the abovementioned uniqueness
conditions were discussed for BTD without nonnegativity
constraints. Nevertheless, the final solution always depends on
the initialization due to the nonconvexity in blind unmixing.
Matrix-Vector Nonnegative Tensor Factorization (MVNTF)
was proposed in [105] which solves

(K̂, B̂, Ê) = arg min
K,B,E

1

2
∥Y −

r∑
i=1

KiB
T
i ⊙ ei∥2F+

λ

2
∥

r∑
i=1

KiB
T
i − 1n1

1T
n2
∥2F s.t. K ≥ 0,B ≥ 0,E ≥ 0

(45)

where the Frobenius norm for a third-order tensor is given by
X =

√∑
i

∑
j

∑
k x

2
ijk and the second term ensures the ASC.

Several variations of (45) were proposed in the literature. In
[106], sparse and low-rank NTF was proposed which enforces
both ℓ1 sparsity and nuclear norm on abundances. This method
was further improved in [107] by exploiting weighted norms
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for the abundances. In [108], the TV regularized MVNTF was
proposed which utilizes the TV regularization on abundances
to promote piecewise smoothness on the abundances and to
capture spatial information. Tensor decomposition was also
proposed for multi-feature hyperspectral unmixing to incor-
porate spatial features extracted by mathematical morphology
[109].

4) Extended Linear Mixing Models and Spectral variability:
An Extended Linear Mixing Model (ELMM) was proposed in
[110] to address the endmember variability given by

Y = ESA+N,A ≥ 0,S ≥ 0,E ≥ 0 (46)

where S = s1T and s contains the scaling factor of the
endmembers. Nonnegative constraint least square (NCLS) was
used to estimate the scaled abundances. Assuming the scaling
factor is the same for all the endmembers and knowing that
sum of the abundances is the scaling factor, therefore, the
scaling factor was removed from abundances with a final
normalization step. ELMM considers the spectral variation
caused by illumination and topography. We should note that
ELMM only considers uniform variations. In [111], a pixel-
dependent ELMM was given by

yi = Eiai + ni,A ≥ 0,Ei = E⊙ ci1
T ,ai ≥ 0,1T

r ai = 1,
(47)

where C ∈ Rr×n contains the scaling factors in its column.
A minimization problem was proposed as

(Â, Ê , Ĉ) = arg min
A,E,C

1

2

n∑
i=1

||yi −Eiai||22+

λ1

n∑
i=1

||Ei −E⊙ ci1
T||2F + λ2ψ(C) + λ3ϕ(A) (48)

s.t. A ≥ 0,1T
r A = 1T

n

where E ∈ Rp×r×n is a p× r × n tensor with Ei located in
band i and

ψ(C) =
1

2
(||RC||2F + ||CRT||2F) (49)

ϕ(A) =

r∑
j=1

||Hh(a(j))||2 + ||Hv(a(j))||2. (50)

Generalized LMM (GLMM) was proposed in [112] to address
the nonuniform variation. GLMM is given by

yi = Eiai+ni, s.t. Ei = E⊙Ci,ai ≥ 0,1T
r ai = 1, (51)

where Ci ∈ Rp×r, i = 1, ..., n are scaling matrices dedicated
to every pixel. The proposed minimization is given by

(Â, Ê , Ĉ) = arg min
A,E,C

1

2

n∑
i=1

||yi −Eiai||22+

λ1

n∑
i=1

||Ei −E⊙Ci||2F + λ2

n∑
i=1

ψ(Ci) + λ3ϕ(A) (52)

s.t. A ≥ 0,1T
r A = 1T

n ,

where C ∈ Rp×r×n is p× r × n tensor with Ci located in
band i. In [113], a framework was suggested to estimate the
scaling matrices Ci using pure pixel endmember extraction

techniques. A perturbed linear mixing model (PLMM) was
proposed in [114]. This simplifies the problem, however, the
algorithm considerably relies on the presence of pure pixels
and the extraction technique. The proposed model is given by

yi = Eiai+ni, s.t.Ei = E+Ci ≥ 0,E ≥ 0,ai ≥ 0,1T
r ai = 1,

(53)
where Ci additive perturbation to model the spectral variabil-
ity for every pixel. The proposed minimization is given by

(Â, Ê , Ĉ) = arg min
A,E,C

1

2

n∑
i=1

||yi −Eiai||22 +
λ1
2
||AHd||2F

+ λ2ψ(E) + λ3

n∑
i=1

||Ci||2F

s.t. A ≥ 0,1T
r A = 1T

n ,E ≥ 0,Ei ≥ 0, i = 1, ..., n (54)

where ψ can be V ol2, TVe, or the Euclidean distance between
E and some reference spectral signatures and Hd is a matrix
to calculate the deference of an abundance pixel with 4 nearest
neighboring pixels (see [114] for more details). PLMM was
used in [115], and GLMM was used in [116] for multitemporal
unmixing. There exist other approaches that tackle spectral
variability such as Sparsity-Enhanced Convolutional Decom-
position (SeCoDe) [117] (a tensor-based model), Augmented
Linear Mixing Models (ALMM) [118], and Subspace Unmix-
ing with Low-Rank Attribute Embedding (SULoRA) [119].

B. Shallow/Deep Neural Networks

Shallow or deep neural networks can be used for blind
unmixing, as shown in Fig. 8. The decoder is often shallow,
and a linear layer is often used for linear unmixing. In blind
unmixing networks, the decoder weights are the network’s
parameters representing the endmembers to be learned. There-
fore, the regularized loss function is given by

Lreg(y, ŷ) = L(y, ŷ) + λJ(a,Wen,Wde) (55)

where J can be a combination of several functions, such
as a Frobenius norm on Wen with a sparsity norm such
as ℓ1 norm on a, and a Frobenius norm or a geometrical
(MV induced) norm on Wde. The loss function L might
also be selected as a combination of several functions. For
instance, EndNet [120] proposes a loss function with several
terms, including a Kullback-Leibler divergence term, a SAD
similarity, and a sparsity term, making the parameter selection
very challenging.

The blind unmixing networks can be divided into two
main groups: 1) autoencoder-based networks and 2) algorithm
unrolling-based networks.

1) Autoencoder-based networks: The majority of the blind
unmixing networks are variations of autoencoder-based net-
works. The main components of such networks were explained
in Section III-D. However, the encoder can be much deeper
and more complicated. Five main types of AEs were consid-
ered for blind unmixing [10]; 1) Sparse Nonnegative Autoen-
coders (SNAEs): SNAEs enforce sparsity on the bottleneck
layer often via a regularization term in the loss, 2) Variational
Autoencoders (VAEs): For VAEs, the decoder samples from a
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probability distribution model from the data and the encoded
(hidden) features. The loss function uses a reconstructed loss
plus a (KL-divergence) regularization term, ensuring that the
encoded data stay close to a particular distribution (often a unit
normal distribution), 3) Adversarial Autoencoders (AAEs):
AAEs are based on generative adversarial networks (GANs).
The network also uses a discriminator, and the AE’s decoder
often acts as a generator for the adversarial network. AAEs
use a reconstructed plus an adversarial loss. 4) Denoising
Autoencoders (DAEs): DAEs are trained based on partially
corrupted input while minimizing the loss between the re-
constructed and original (uncorrupted) inputs. Therefore, the
network learns to remove the noise. 5) Convolutional Au-
toencoders (CAEs): CAEs use convolutional layers instead
of fully connected layers. The weights are the convolutional
filters that be learned throughout the training process. The
convolutional filters capture the spatial correlation, which ben-
efits the unmixing process. A comparative study was provided
on the performance of AEs for hyperspectral unmixing in
[10]. The probabilistic generative model for spectral unmixing
(PGMSU) was proposed in [39]. The network uses a VAE to
generate the endmembers and a parallel encoder to generate
the abundances.

SNSA [121] utilizes a stack of nonnegative sparse autoen-
coders. The last one performs the task of unmixing, and the
others are exploited to improve the robustness concerning the
outliers. Deep AutoEncoder Network (DAEN) [122] exploits
a stacked autoencoder to initialize a variational autoencoder
which performs the unmixing task. An untied Denoising
Autoencoder with Sparsity (uDAS) [123] exploits an addi-
tional denoising constraint on the decoder and a ℓ2,1 sparsity
promoting constraint on the decoder. Note that the autoencoder
receives a spectral pixel at a time for training the network.
Training a network based on a single spectrum at a time
ignores the spatial information. The advantage of incorporating
spatial information for spectral unmixing has been confirmed
in the literature. Therefore, patch-wise or cube-wise CNN
was proposed to utilize the spatial information. In [124],
an unmixing technique based on an autoencoder network
is proposed that incorporates the spatial correlation between
pixels by utilizing an adaptive abundance smoothing method.
In [125], patch-wise or cube-wise convolutional autoencoders
were proposed to incorporate the spatial information. In [126],
parallel autoencoders were applied to spectral patches to
exploit the spatial information. A CAE was proposed in [127].
The proposed network uses two convolutional layers as the
decoder and a convolutional layer with linear activation as the
decoder. ASC and ANC were enforced using a softmax, and
SAD was used as the loss function. The cycle-consistency un-
mixing network [128] utilizes two convolutional autoencoders,
which are cascaded and performed cyclically. The proposed
loss function contains two terms for spectral reconstruction
and one for abundance reconstruction to incorporate high-
level semantic information. In [129], a combination of a CAE
and a transformer was proposed for unmixing. The attention
module of the transformer captures the nonlocal contextual
feature dependencies between the image patches. In [130],
VCA and FCLSU were first used to drive prior abundances

from superpixels. Then, the adversarial training guides the
encoder of an AAE to transfer the spatial information into
the network by matching the abundances. A VAE was used in
[131] to address the spectral variability. First, a deep generative
endmember model was learned using the pure pixel extracted
from the data. Then, an optimization was suggested and solved
using the endmember model as a prior. A deep generative
model was proposed in [132], which uses three types of
encoders, i.e., CNN, convolutional graph networks, and self-
attention-based networks. A discriminator was used to enforce
the generated endmembers to have a distribution similar to the
endmember models either extracted from the data or selected
from a library.

In AEs, a deeper encoder does not necessarily improve
the performance of AE-based unmixing, however, it helps to
enlarge the receptive field [10]. Therefore, in [37], a Multi-
Stage CAE Network (MSNet) was suggested, which uses a
multi-stage framework. Every stage uses a shallow encoder-
decoder architecture. The input data are spatially downsampled
at every stage. The features at the next stage were concatenated
with the previous stage’s input to preserve the abundance
consistency of different stages.

A drawback of the many DL-based approaches is the
absence of geometrical information. Most of them rely on
SAD and/or MSE for training. As we already discussed and it
has been proven [133], geometrical information could be very
beneficial without pure pixels. To incorporate geometrical and
spatial information, in [36], a minimum simplex convolutional
network (MiSiCNet) was proposed. In [36], it was shown that
the minimization problem

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + β

∥∥E−m1T
r

∥∥2
F

+ λϕ(A) s.t. A ≥ 0,1T
r A = 1T

n , 0 ≤ E ≤ 1
(56)

can be turned into

(θ̂1, θ̂2) = arg min
θ1,θ2

1

2
||Y − θ2fθ1(Z)||2F + λ

∥∥θ2 −m1T
r

∥∥2
F

s.t. ÊÂ = θ̂2fθ̂1(Z) (57)

where Ŷ = ÊÂ, θ1 and θ2 are the parameters of the encoder
and the decoder of the network, respectively. Therefore, the
minimization problem (56) can be shifted to the minimization
of the parameters of a deep network f with a loss function
given by:

L(Y, Ŷ, Ê,m) =
1

2
||Y − Ŷ||2F + λ

∥∥∥Ê−m1T
r

∥∥∥2
F
, (58)

where f is an encoder-decoder network and Ê is the weight
of the decoder. MiSiCNet uses a softmax layer to enforce both
the ASC and the ANC.

2) Algorithm Unrolling-based Networks: The main idea
behind algorithm unrolling-based networks is to incorporate
model-based with learning-based methods. In this group, an
iterative algorithm (such as ADMM) is considered to solve
a mixture model. Then, the iterations of the algorithm will
be unrolled and implemented using neural networks. The
updating equations will be substituted using NNs. Sequential
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repetitions of such networks will be trained using a loss
function such as MSE. An advantage of such networks is
that the tuning parameters can be trainable. SUnSAL with
ADMM implementation was unrolled in [134] with an extra
linear layer augmented to the network to implement blind
unmixing (ADMMNet). The sequential networks in [134]
were tested with and without parameter sharing. In [135], ℓ1-
NMF was considered for blind unmixing. The iterative soft-
thresholding algorithm [136], was unrolled to estimate the
abundances. An extra linear layer was used for the endmember
estimation and added to the sequential networks. The scenarios
of the networks with and without sharing parameters were also
considered in [135]. A solution to the ℓp-NMF was unrolled
for blind unmixing in [137]. Instead of using a linear layer, the
endmember estimation step was also unrolled. Therefore, the
sequential network was constructed of endmember networks
followed by abundance networks. For the abundance and
endmember networks, the generalized shrinkage thresholding
solution given in [138] and the projected gradient descent were
unrolled, respectively.

Finally, we should note that often blind NN-based unmixing
can be turned into supervised unmixing by fixing the weights
of the decoders using extracted endmembers.

C. Statistical-based Approaches

Most recent advanced techniques developed for blind un-
mixing fall into the first two categories. There are, however,
other statistical-based approaches that cannot be reformulated
as the constraint penalized least squares. The Bayesian ap-
proach is widely used for blind unmixing. The maximum a
posteriori (MAP) estimator and the minimum mean squared
error (MMSE) estimator were used in [139] and [140], respec-
tively. The Bayesian approaches using the MAP estimator can
be reformulated as the penalized least square in the form of
(30) when the random noise is assumed to be Gaussian and
uncorrelated, i.e., the noise covariance matrix is diagonal [1],
[141]. This assumption simplifies the inverse problem and its
solution. Independent Component Analysis (ICA) [142], as a
solution to blind source separation, was proposed for blind
unmixing [143], [144]. The abundances are dependent (ASC),
therefore, ICA is not a suitable solution to blind unmixing
[145]. Dependent component analysis (DECA) was proposed
for blind unmixing of highly mixed datasets [146], [147].
DECA assumes a mixture of Dirichlet densities as the prior
for abundances. Dirichlet density satisfies ANC and ASC.
The Bayesian estimation problems are often hard to solve,
and the estimation of unknown parameters is computationally
expensive. In [148], a Gibbs sampling strategy was proposed to
decrease the complexity of the proposed hierarchical Bayesian
model. A similar Bayesian approach was proposed in [33]
for spectral mixture analysis (BayesianSMA) from Raman
spectroscopy.

VI. SEMISUPERVISED (LIBRARY-BASED) UNMIXING

When neither the pure pixels nor the sufficient spectra on
the facets of the data simplex are available, the endmembers
can not be successfully extracted/estimated, which results in

poor abundance estimations. Alternatively, blind unmixing
techniques can be used. However, blind unmixing is a non-
convex problem; therefore, a good initialization of endmem-
bers using endmember extraction techniques will often benefit
in finding a better solution. Additionally, in highly mixed
scenarios, blind unmixing methods often fail due to the large
sets of solutions that fit the data. Fig. 11 (d) demonstrates
that in highly mixed scenarios, finding the real simplex is not
trivial. Therefore, semi-supervised unmixing was suggested,
relying on an endmember library. Here, we should note that
we categorize all techniques that entirely or partially rely on
a spectral library as semi-supervised unmixing techniques.
Therefore, before discussing the semisupervised techniques,
we discuss the library selection and construction.

Library selection or construction is a crucial step to the
success of a semisupervised unmixing method. Blind selection
of a library without extra attention and some processing
steps will lead to poor results for semisupervised unmixing.
There are two major paradigms in semisupervised unmixing
i) Multiple Endmember Spectral and Mixture Analysis and
ii) Sparse unmixing. The former was designed to address the
spectral variability using the endmember variability. Therefore,
the spectral library is designed to represent the variability of
the endmembers. The latter seeks a sparse solution relying on
the library, and therefore, the high correlation of the library
endmembers avoids the sparse solution. In both paradigms,
the library must well represent the materials in a sense, i.e.,
it must contain all the endmembers of the materials in the
scene. Generally, a library can be obtained using either of the
following ways [3], [149].

1) In situ field or/and laboratory measurements: endmem-
ber libraries can be built using field or/and laboratory
measurements [150]. Creating such libraries has several
major drawbacks. It is hard, time-consuming, expensive,
and might be sensor-dependent. Due to the different
measuring conditions, systems, or instruments, there are
often mismatches and scaling discrepancies between the
endmembers from the library and the observed data
[151], [152]. A list of available spectral libraries was
given on https://specchio.ch/.

2) Construction using observed data: Extracting multiple
pure pixels from the observed datasets representing
every material in the observed dataset. These spectra
can be further clustered to represent the endmember
bundles. These libraries are data-dependent and often
fail in highly mixed scenarios since there are not enough
pure pixels in the dataset [61], [153], [154].

3) Construction using physical models: Radiative transfer
models can be used to generate endmember libraries
[155]. A radiative transfer model is defined as a func-
tion of physicochemical parameters. Therefore, different
instances of endmembers can be obtained by varying
physicochemical parameters. For instance, PROSPECT
model [156] for vegetation and Hapke model [8] for
reflectance modeling of intimate mixtures and densely
packed grains or particles can be used. These libraries
are sensor- and data-independent. However, they depend
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on the availability and accuracy of a model for the target
materials. Additionally, selecting representative samples
from such complex models is a big challenge.

A combination of the libraries mentioned above also may be
used. Alternatively, generative machine learning models can be
used to augment a library. In [157], a variational autoencoder
was used for library augmentation.

A. Multiple Endmember Spectral and Mixture Analysis

As we discussed, endmember variability is a challenge
in hyperspectral unmixing. A solution is to use a library
containing endmembers’ variations for materials. Then, the
unmixing problem can be formulated as a semisupervised
problem relying on such a dictionary. The pioneer method
was proposed in [150] called multiple endmember spectral and
mixture analysis (MESMA). MESMA was proposed to address
the endmember variability. Assuming a structured library,
D = [D1,D2, ...,Dr] contains the endmember bundles, Di’s,
for all the materials, MESMA allows different and scaled
endmembers for every pixel solving the problem

âi, Êi = arg min
ai,Ei

1

2
||yi −Eiai||22 s.t.

Ei ∈ D,ai ≥ 0,1T
r ai = 1. (59)

This is a combinatorial problem, and MESMA searches for
all combinations of endmembers (from every endmember
bundle) and selects the one with the lowest reconstruction
error. Endmember candidates are sometimes called models.
This is solved for all the pixels. MESMA is a highly compu-
tationally demanding algorithm without any stopping criteria
Πimi (mi’s are dimensions of endmember bundles) times
FCLSU must be computed for every pixel. However, this can
be performed in parallel for all the pixels, it is computationally
costly, and therefore, several algorithms have been proposed
to reduce the computational burden. As a result, instead of
FCLSU, the sum to one constrained least square unmixing
(SCLSU) was used with a threshold for the error (RE). Note
that ignoring the nonnegativity constraint leads to SCLSU,
which has a closed-form solution and can be implemented
efficiently. Then, solutions that are positive and less than one
were selected [150], [158]. Additionally, the number of itera-
tions and the threshold value can be changed to decrease the
computations, but it can highly affect the performance [159].
In [160], Unconstrained Least Squares (UCLS) were used to
speed up the search for the solutions to the combinatorial
problem.

Alternatively, the size of the library can be decreased [161]–
[163]. In [164], the angle between a pixel and the projections
into hyperplanes of the fixed point (selected endmembers)
and the endmember candidates were used to find the optimal
endmember. The minimum angle is equivalent to the minimum
error, and therefore, the SCLSU problem (note that projection
into an affine set or a hyperplane only satisfies ASC) was
shifted to more efficient angle computations. FCLSU was used
to estimate the abundances using the selected endmembers (the
optimal model), and the result with minimum reconstruction
error was selected. On the other hand, in [157], a deep

generative model using variational autoencoders was suggested
for augmenting the library endmembers to address the library
mismatch. First, VAE was used to augment the library, and
then MESMA was used for unmixing. However, this makes
the algorithm computationally very expensive. A similar but
more efficient approach was proposed in [165], which only
uses one unmixing step.

B. Sparse Unmixing

The first efficient idea was based on sparse and redundant
modeling [31] and sparse regression, and therefore, it is
often referred to as sparse unmixing. We should note that
semisupervised unmixing refers to all the unmixing methods
relying on a library and is not limited to sparse unmixing
methods.

In sparse unmixing, the fractional abundances are estimated
using sparse regression techniques. These methods describe
each spectrum as a sparse linear combination of the elements
of a rich library of pure spectra.

The main idea of sparse unmixing was first suggested in
[31]. If a well-designed dictionary is available, the sparse
regression can be used to estimate the abundances given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ||X||1

s.t. X ≥ 0,1T
mX = 1T

n . (60)

An ADMM-based algorithm was proposed to solve the prob-
lem (60), and therefore it was called sparse unmixing by
variable splitting and augmented Lagrangian (SUnSAL). In
[31], also the constraint SUnSAL (CSUnSAL) proposed given
by

X̂ = argmin
X

||X||1 s.t. ||Y −DX||F < δ,

X ≥ 0,1T
mX = 1T

n , (61)

and was solved using an ADMM-based algorithm. However, it
is suggested to use SUnSAL without ASC due to the conflict
with ℓ1 [90]. Additionally, ASC was found to be a rigorous
constraint that often does not occur in the real world due
to noise and signature variability [152]. Therefore, SUnSAL
often refers to the problem (60) without ASC, and problem
(60) refers to FCLS version of SUnSAL which can be seen in
the arXiv version of SUnSAL [166]. In [167], problem (60)
is suggested for implementation on a GPU when λ = 0. In
[152], the nonconvex ℓ0 sparse regression

X̂ = argmin
X

||X||0 s.t. ||Y −DX||F < δ,

X ≥ 0, (62)

were compared with SUnSAL and CSUnSAL. The nonneg-
ative ℓ0 sparse regression problem (62) was solved using a
greedy algorithm called orthogonal matching pursuit [168]. It
was shown that SUnSAL outperforms the other two sparse
regressions. Additionally, the experiments in [152] confirmed
the advantage of ANC.

The success of sparse unmixing depends on the following
assumptions; i) the library must well represent the materials in
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a sense, i.e., it must contain all the endmembers of the mate-
rials in the scene; ii) sparse solutions of the underdetermined
linear systems exist. The latter depends on the sparseness
degree of the observed spectra over the library (i.e., the number
of library members representing the spectral pixels) and the
coherence of library members. The coherence of a library
can be measured using mutual coherence [169] (or restricted
isometric constants (RICs) [170]). A higher mutual coherence
requires a lower sparseness degree to achieve a sparse solution.
In sparse unmixing, the mutual coherence of the spectral
library is very high [152], which is the main drawback,
however, the sparseness degree is low (i.e., pixels are mixtures
of a few pure spectra). To decrease the mutual coherence, the
library must be pruned before applying the sparse regression or
throughout the estimation process. Alternatively, the sparsity-
inducing prior can be better defined by incorporating spatial
information and/or applying segmentation, localization, and
group sparsity, which will be discussed in detail in this section.

1) Selection of a Regularizer: In sparse unmixing, many
attempts have been made to improve the sparse representation
of the abundances over a spectral library by selecting different
regularizers. In [171], SunSAL was improved by incorporating
spatial information and applying a TV penalty on abundances
(SUnSAL-TV) given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ1||X||1+

λ2TVni(X) s.t. X ≥ 0. (63)

where TVni(X) is a nonisotropic TV function given by

TVni(X) = ||XHT
h ||1 + ||XHT

v ||1 (64)

One of the main challenges of sparse regression is the high
mutual coherence of the spectral library, which might lead to
poor abundance estimation [152]. Therefore, in [172], group
SUNSAL (GSUNSAL) was suggested by dividing the library
into L groups (structured dictionary) and adding a group
LASSO (Least Absolute Shrinkage and Selection Operator)
[173]

X̂ = argmin
X

1

2
||Y −DX||2F+

n∑
i=1

L∑
g=1

λg1||x
g
i ||2 + λ2||X||1 s.t. X ≥ 0. (65)

where xg is the gth subvector of abundances. As we men-
tioned, ℓ1 norm conflicts with ASC and therefore ℓq norm
also investigated for sparse unmixing [174]

X̂ = argmin
X

1

2
||Y −DX||2F + λ

n∑
i=1

||xi||qq

s.t. X ≥ 0,1T
mX = 1T

n , 0 < q < 1 (66)

where

||x||qq ≜
m∑
i=1

|xi|q, (67)

Collaborative sparse unmixing [27] applies ℓ2,1 (i.e., the sum
of ℓ2 on the abundances) to promote the sparsity on the
abundances.

X̂ = argmin
X

1

2
||Y −DX||2F + λ

m∑
i=1

||x(i)||2

s.t. X ≥ 0. (68)

Collaborative sparse unmixing using ℓ0 norm was proposed in
[175] given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ||X||2,0

s.t. X ≥ 0. (69)

where ||X||2,0 =
∑m

i=1 Id(||x(i)||2 > 0) and Id is the
Heaviside step indicator function, i.e., it is one when the
argument is positive. In [154], the endmember variability
was considered using a dictionary of endmember bundles
generated from the data. Unlike the methods mentioned above,
in [154], the dictionary is extracted from data points. In [154],
a framework of sparse regression was proposed given by

X̂ = argmin
X

1

2
||Y −DX||2F+

λ||X||g,q,d s.t. X ≥ 0,1T
mX = 1T

n , (70)

where the grouped sparse norm is defined as

||X||g,q,d ≜
n∑

i=1

(

L∑
g=1

||xg
i ||

d
q)

1
d . (71)

Three cases are compared, i.e., {q = 1, d = 2}, {q = 1, 0 <
d < 1}, and {q = 2, d = 1}. We should note that ASC
was used in the endmember bundles method [154], unlike the
structured dictionary methods [27], [172].

In [176], a spatial-spectral weighted ℓ1 norm used for (63)
given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ1||W ⊙ SX||1+

λ2TVni(X) s.t. X ≥ 0. (72)

where S = s1T, si = (||x(i)||1+ϵ)−1, and W = (X+ϵ)−1 are
the weight matrices updated in every iterations. The weights
further promote the sparsity on X.

Local collaborative sparse unmixing (LCSU) [177] and
a spectral-spatial weighted sparse unmixing (S2WSU) [29]
further incorporate spatial information by adapting the collab-
orative sparse unmixing and the reweighted ℓ1 norm locally to
neighboring pixels, respectively. Indeed, S2WSU uses problem
(72) locally and when λ2 = 0.

In [178], the weighted nuclear norm was added to the
weighted ℓ1 norm to utilize the low-rankness of the abun-
dances. The proposed sparse regression is given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ1||W ⊙X||1+

λ2||X||t,∗ s.t. X ≥ 0. (73)

where the weighted nuclear norm is given by

||X||t,∗ =

r∑
i=1

tiσi(X), (74)
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and σi(X) are the singular values of X and the weights are
given by ti = (σi(X) + ϵ)−1. In [179], the spatial-spectral
weighted ℓ1 was used with the weighted nuclear norm. In
[180], the weighted Schatten p-norm [181] and a collaborative
norm was suggested to induce the low rankness and the
sparsity, respectively, given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ1

m∑
i=1

||x(i)||q2,q+

λ2||X||qt,Sp s.t. X ≥ 0, 0 < q ≤ 1. (75)

where

||x(i)||q2,q ≜
m∑
i=1

||x(i)||q2, (76)

||X||qt,Sp ≜
r∑

i=1

tiσ
d
i (X). (77)

Tensor decomposition can be also used for sparse unmixing
formulation using the mode-n tensor multiplication [182],
[183].

2) Segmentation/Super-pixel and Spectral Variability:
Some methods apply segmentation prior to sparse unmixing
for grouping. In this way, they remove spectral variation
and capture spatial information. A fast Multiscale Sparse
Unmixing Algorithm (MUA) was proposed in [28]. MUA first
applies segmentation techniques such as a binary partition tree
(BPT), simple linear iterative clustering (SLIC), or K-means
to group pixels. Then SUnSAL was utilized for unmixing
the average pixels of every segment. The coarse fractional
abundance matrix estimated using SUNSAL (Xseg.) is used
as a prior for the final sparse regression given by

X̂ = argmin
X

1

2
||Y −DX||2F + λ1||X||1 + λ2||X−Xseg.||22

s.t. X ≥ 0. (78)

This idea is also called ”super-pixel” in the literature, and
numerous methods have been proposed using this terminology.
In [184], SLIC was utilized for the pixel grouping and pixel-
based sparse unmixing was performed using superpixel-based
graph Laplacian regularization. In [185], the spectral variabil-
ity was considered using a spectral variability dictionary. The
dictionary was obtained by applying PCA on an endmember
library extracted from the dataset using a pure pixel-based
endmember extraction [186]. The PCs with high variance were
used to create the spectral variability library.

3) Library pruning: Library pruning is a necessary pre-
processing step in sparse unmixing to reduce the mutual
coherence of the spectral library. The pruning step consid-
erably improves the computational time. However, it risks
losing endmembers that are scaled versions of each other.
Nevertheless, in real-world applications, the library pruning
must be done cautiously, particularly when the SNR is low, and
the number of endmembers is high [187]. A simple pruning
often used before applying sparse unmixing is to compute
SAD. Then, spectra with small angles are removed from the
library to reduce the mutual coherence. A pruning strategy
was proposed in [188]. The library was projected into the

data subspace, and spectra with high projection errors (the
normalized Euclidean distance) were removed from the library.
Arguably, data-dependent library pruning is more suitable for
sparse unmixing. In [189], a library pruning-based sparse
unmixing called multiple signal classification collaborative
sparse unmixing (MUSIC-CSR) was proposed. The library
was pruned (before applying the collaborative sparse unmix-
ing) using an orthogonal projection (P⊥ = I −VVT ) [190]
where V is the bases of the Y’s subspace obtained by HySime
[47] to reduce the noise effect. The normalized projection error
of each library endmember ||P⊥di||2/||di||2 was sorted by
increasing order. Hence, the first r defines the reduced library.
A similar idea was used in [191], which formulates the library
reduction into a multiobjective optimization w.r.t. a binary
vector representing the support of the abundances matrix.

4) Library Mismatch: As mentioned, the endmember li-
brary is fixed in the problems and methods discussed, and
the ultimate goal is abundance estimation. However, even
a pruned and well-selected spectral library cannot represent
all the endmembers of materials in a real-world dataset.
There are several factors, such as noise, atmospheric effects,
illumination variations, and the intrinsic variation of materials,
which may change the endmembers and induce scaling factors
into the endmembers in the scene compared to the ones from
the library [152], [192] known as library mismatches. This
problem was partially addressed in [152]. A bandwise scaling
SY was suggested to apply to the dataset where the diagonal
matrix S was obtained by solving

(X̂, Ŝ) = argmin
X,S

||SY −DX||F

s.t. X ≥ 0,1T
mX = 1T

n , (79)

A cyclic descent solution was suggested with the initialization
of S = I turning the problem into iterative problems of least
squares (w.r.t. S) and constrained least squares (w.r.t. X). The
nonsparse fractional abundances of X and the corresponding
spectral vectors of Y were removed after the first iteration to
speed up the algorithm. Problem (79) is noncovex, therefore,
the solution will be suboptimal. Additionally, the bandwise
scaling S was estimated for a suboptimal sparse X.

In [193], the library mismatch was incorporated into the
sparse unmixing problem given by

(X̂, D̂′) = argmin
X

1

2
||Y −D′X||2F + λ

m∑
i=1

||x(i)||q2,q,

s.t. X ≥ 0, ||di − d′i||2 < δ, i = 1, 2, ...,m. (80)

We should note that a surrogate function was suggested to
be minimized instead of (80) to reduce the complexity of
the algorithm (see [193]). Additionally, the MUSIC pruning
method was adapted (so-called robust MUSIC) to consider
the mismatches given by

argmin
z

(di − z)TP⊥(di − z)

||di − z||22
s.t. ||z||2 < δ. (81)

Recently, sparse unmixing using archetypal analysis (SUnAA)
was proposed in [30], which addresses the spectral library
mismatch from a different viewpoint. Instead of scaling data,
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SUnAA assumes that endmembers can be a convex combi-
nation of the library endmembers. Therefore, an extra matrix
defines the contributions of the endmember from the library.
The proposed linear model in [30] utilizes the advantages
of the low-rank model and the sparse and redundant model
defined as

Y = DBA+N, s.t. B ≥ 0,1T
mB = 1T

r ,

and A ≥ 0,1T
r A = 1T

n , (82)

where B ∈ Rm×r determines the contributions of the end-
members from the the library D and A ∈ Rr×n is the (low-
rank) abundance matrix. To simultaneously estimate B and A
SUnAA solves a minimization problem given by

(B̂, Â) = argmin
B,A

1

2
||Y −DBA||2F

s.t.B ≥ 0,1T
mB = 1T

r , andA ≥ 0,1T
r A = 1T

n , (83)

SUnAA assumes that the unknown endmembers are a convex
combination of the library’s endmembers which leads to en-
forcing non-negativity and sum to one constraint on B. Unlike
conventional sparse unmixing, the problem (83) is nonconvex.
A cyclic descent algorithm based on an active set method [194]
was proposed to solve (83), iteratively. We should note that
SUnAA is a parameter-free technique.

Numerous techniques were tailored utilizing a combination
of the aforementioned ideas, i.e., spatial regularization (TV),
spatial/spectral weighted norm, collaborative norm, low-rank
inducing, superpixel (segmentation), structured library/ group
norm, and localization, library pruning [195]–[202]. Here, we
have drawn the main ideas behind the majority of sparse
techniques.

5) Shallow/Deep Neural Networks: There are a few NN-
based sparse unmixing approaches proposed in the literature.
The pioneer method is called sparse unmixing using an
unsupervised convolutional neural network (SUnCNN) [21].
As mentioned, the ℓ1 penalties cannot be applied to the
abundance while holding the ASC. This was addressed in [21]
by implicitly applying an image prior and holding the ASC
and ANC. It was shown that the problem of selecting a suitable
prior for a sparse regression given by

X̂ =argmin
X

1

2
||Y −DX||2F + λϕ(X)

s.t.X ≥ 0,1T
mX = 1T

n , (84)

could be moved to optimizing the parameters of a deep
network (fθ) given by

θ̂ = argmin
θ

1

2
||Y −Dfθ(Z)||2F s.t. X̂ = fθ̂(Z), (85)

where fθ is the deep CNN with parameters θ. and ANC and
ASC can be enforced using a softmax layer. In [203], an
asymmetric encoder-decoder architecture is used for sparse
unmixing. Instead of softmax, a sparse variation of softmax
is used to avoid the full support of softmax while enforcing
ASC.

Spectral Variability Augmented Two-Stream Network
(SVANT) was proposed in [204]. SVATN uses the convolu-
tional encoder-decoder used in SUnCNN for both streams. The

first stream uses a spectral library to estimate the abundances,
and the second stream uses a spectral variability library
to estimate spectral variation. A correlation-based variability
extraction method was proposed to create a spectral variability
library. A spectral–spatial feature learning encoder-decoder
network was proposed in [205]. The encoder utilizes two
branches with spatial and spectral filters to extract the spatial
and spatial features, respectively. The concatenated features
go through three spectral–spatial residual blocks, which utilize
MLP for spectral attention. On the other hand, the decoder is
shallow and uses the endmember library to reconstruct data.

Algorithm unrolling-based approaches were also proposed
for sparse unmixing. An unrolling-based shallow network was
recently proposed for sparse unmixing in [206], [207]. An
ADMM-based solution to the nonnegative ℓ1 sparse regression
problem (so-called SUnSAL), i.e., problem (60), was unrolled.
An intermediate convolution was applied to the abundance to
incorporate spatial information. A combination of SAD, MSE,
and SID was used as the loss function to train the shallow
network. In [135], the iterative soft-thresholding algorithm
(ISTA) [136] was unrolled to solve the nonnegative ℓ1 sparse
regression problem. SUnSAL was also unrolled in [134] for
sparse unmixing.

VII. NONLINEAR UNMIXING APPROACHES

The linear mixture model is a simplified model and often
fails in the case of intimate mixtures or/and when the light
undergoes multiple reflections before reaching the sensor [15].
Alternatively, nonlinear models are used [1], [2].

Bilinear approaches are often used for double scattering.
They assume that the received light at the sensor interacts
with two materials. This is modeled using an extra mixing
term by the Hadamard product between the endmembers
of the materials. The Fan model [208], [18] is a variation
of this model. One disadvantage of the Fan model is the
generalization; therefore, it performs poorly for linearly mixed
datasets. Polynomial post nonlinear mixing model (PPNM)
[209], generalized bilinear model (GBM) [210], and linear-
quadratic model (LQM) [18] were proposed to generalize
the Fan model for the linear mixtures. However, they con-
tain hyperparameters to describe the trade-off between the
linear and nonlinear terms. In [211], a nonlinear low-rank
tensor unmixing algorithm was proposed to solve the GBM.
Bilinear models have physical interpretation in some specific
applications, such as canopy scenarios; however, they have
several disadvantages. They have many parameters, and the
estimated abundances are hard to interpret. Additionally, they
often do not include self-interactions or consider the reflections
from objects outside the instance field of view [18]. Moreover,
they are limited to secondary interactions. Therefore, several
nonlinear mixing models have been developed, such as the
multilinear mixing model (MLM) [212] and the p-linear (p
> 2) mixture model (pLMM) [213]–[215] were proposed for
multiple interactions of the incident light.

Kernel methods have also been employed for nonlinear
unmixing [18]. They represent data in a higher dimensional
space to linearize the problem. Hence, linear models become
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effective in high-dimensional space. In [216], a kernel nonneg-
ative matrix factorization (kernel-NMF) was proposed in [217]
for nonlinear unmixing. The FCLSU problem can be solved
using support vector machines (SVMs). Pure pixels in data are
the common support vectors that span the data simplex and
allow the estimation of the abundances of all pixels enclosed
within the simplex. Hence, Kernel SVMs were proposed for
nonlinear spectral unmixing in [218].

Radiative transfer models are mathematical physic-based
mixing models that can be used to reconstruct intimately
mixed materials’ reflectance spectrum [18]. The inverse prob-
lems based on such models are very hard to solve. The Hapke
model estimates the areal fractions of the materials within the
mixture by transforming the reflectance spectra to their single-
scattering albedos (SSA) and applying linear unmixing. The
simplified version of the Hapke model was used for predicting
intimate mixtures’ composition [8], [219]. The proposed non-
linear unmixing methods based on Radiative transfer models
often assume that spectral reflectance of the pure materials is
available for estimating fractional abundances.

Deep networks were also proposed for nonlinear unmixing.
Deep AE-based architectures have been broadly used for linear
unmixing. In [220], an AE network was proposed where
the encoder utilizes an extra nonlinear layer to capture the
nonlinearity of the data. A deep AE with multitask learning
was suggested in [221]. A long short-term memory-based
autoencoder was proposed for PPNM in [222]. The proposed
method in [223] exploits a 3-D CAE-based network for PPNM.
A supervised AE was used in [224] for Fan, bilinear, and
PPNM. The Radial basis function (RBF) kernels and K-means
clustering were used to estimate the number of endmembers
and the endmember spectra, respectively. DL-based nonlin-
ear unmixing techniques are often AE-based networks using
PPNM, and as we discussed, they may have disadvantages of
the bilinear models mentioned above [225]–[227]. GAN archi-
tectures were also explored for nonlinear unmixing. In [228],
a cycle-consistent loss was used to ensure the reconstruction
in addition to two GAN losses. A CNN was designed based on
Hapke model (HapkeCNN) in [229] to incorporate the physical
model in the learning process.

VIII. EXPERIMENTAL RESULTS

We use three simulated and one real datasets. The simulated
datasets were designed according to different mixing scenarios
briefly explained in Table III. We avoid using the widely
used benchmark datasets such as Samson and Jasper since
their abundances are generated synthetically. For real-world
experiments, we use the Cuprite dataset, a well-studied site
with geological reference maps. The simulated experiments
were carried out for 30 dB SNR. The tuning parameters
were fine-tuned for the methods up to some levels. We
should note that some methods have several parameters to be
tuned; therefore, searching for the optimum is cumbersome.
All the results are averaged over 10 experiments, and the
standard deviations are shown by error bars. In experiments,
we compare 20 unmixing methods from different categories
as follows. For supervised methods, we used three endmember

extraction/estimation techniques, i.e., VCA, SiVM, and SISAL
with FCLSU and UnDIP. All six combinations of them were
considered. For blind unmixing, we use PGMSU, MSNET,
CNNAEU, ADMMNet, BayesianSMA, NMFQMV, MiSiC-
Net, and EDAA. For sparse unmixing, we used SUnSAL,
CLSUnSAL, MUA SLIC, S2WSU, SUnCNN, and SUnAA.
The codes for all those methods were provided in HySUPP
for reproducibility.

For the quantitative evaluation, we use the SRE in dB for
estimated abundances given by

SRE(X, X̂) = 20 log10
∥X∥F

∥X− X̂∥F
. (86)

and the spectral angle distance (SAD) in degrees between the
estimated and ground truth endmembers:

SAD(E, Ê) =
1

r

r∑
i=1

arccos

( 〈
e(i), ê(i)

〉∥∥e(i)∥∥2 ∥∥ê(i)∥∥2
)
180

π
, (87)

where ⟨.⟩ denotes the inner product.

A. Data Description

1) Synthetic Datasets with Spatial Structure: We simulated
three data cubes (DC1, DC2, and DC3). DC1 was simulated
using a linear mixing model with 5 endmembers selected
from the USGS library and 75×75 pixels. The abundance
maps are composed of five rows of square regions uniformly
distributed over the spatial dimension. This dataset contains
pure pixels for all endmembers. DC2 has 100×100 pixels
and was simulated using a linear mixing model with 9 end-
members. The abundance maps were sampled from a Dirichlet
distribution centered at a Gaussian random field to have piece-
wise smooth maps with steep transitions. Therefore, DC2
contains spectral variations. For DC1 and DC2, an endmember
library D ∈ R188×240, composed of 240 spectral signatures
were selected from the USGS library with a minimum pair-
spectra angle of 4.44°. DC3 was simulated with no pure
pixels, and it has two mixed pixels on the facet of the data
simplex. DC3 is composed of 105×105 pixels using the linear
combination of six endmembers. For DC3, we use a library
D ∈ R188×498 composed of 498 spectral pixels from the
USGS library. Note that we remove the water absorption and
noisy bands, and therefore, the final pixels are of dimension
p = 188.

2) Cuprite Dataset: The Cuprite dataset used in this paper
contains 250× 191 pixels. Cuprite is a well-studied mineral
site, and the dominant minerals are demonstrated using a ge-
ological ground reference therefore, the estimated abundance
maps by different techniques can be compared visually. We
use the same library as explained for DC3.

B. Experimental Results: Synthetic Datasets

Figure 14 demonstrates the unmixing results in terms of
abundance SRE in DB for different techniques applied to
DC1, DC2, and DC3. The outcomes of the results can be
summarized as follows:

• For the pure pixel scenario, supervised techniques per-
form very well (Fig. 14, DC1). Overall, they perform
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TABLE III
SPECIFICATIONS OF THE SYNTHETIC DATASETS USED IN THE EXPERIMENTS.

# endmembers (r) # atoms in D (m) # pixels (n) Main features

DC1 5 240 5625 (75 × 75) Pure pixels
DC2 9 240 10000 (100 × 100) Pure pixels, Spectral variability
DC3 6 498 11025 (105 × 105) No pure pixels, 2 points on the data simplex facets

better than the semisupervised and blind techniques.
This confirms the importance of geometrical information
for endmember extraction/ estimation techniques when
there are pure pixels in the dataset. This is further con-
firmed in blind methods where MiSiCNet and NMFQMV,
which exploit geometrical information, outperform the
other blind techniques and provide competitive results
compared to supervised ones. Sparse techniques show
moderate results except SUnAA, which outperforms all
the other techniques. The results confirm that the sparse
unmixing techniques are not suitable when there are pure
pixels for the endmembers in the dataset. We should
mention that SUnAA does not match the characteristics
of conventional sparse techniques. Even though SUnAA
relies on a library, it uses a nonconvex optimization to
estimate endmembers.

• On the other hand, for DC2, which contains spectral
variations, as can be seen from Fig. 14, sparse un-
mixing techniques outperform the supervised and blind
techniques. The results confirm that sparse unmixing
techniques are more suitable for capturing the spectral
variability. SUnAA outperforms the other technique. Note
that SUnAA is a parameter-free technique. Supervised
techniques outperform blind techniques due to the pres-
ence of pure pixels.

• In the case of no pure pixel scenario (Fig. 14, DC3),
blind unmixing techniques that exploit geometrical in-
formation outperform the other techniques. Sparse un-
mixing provides very poor results. Although SUnAA
considerably significantly outperforms the performance
of sparse unmixing techniques, it is very far from the best
performance which is obtained by MiSiCNet. Among
supervised techniques, SISAL (+ FCLSU/UnDIP) shows
competitive results because it uses geometrical informa-
tion to estimate the endmembers.

• Table IV compares the SAD values for the endmember
estimation/extraction techniques with the blind unmixing
techniques for the simulated datasets at 30dB. In the case
of pure pixel scenarios, SiVM and VCA outperform the
other techniques confirming the advantage of geometrical
approaches for endmember extraction when there are
pure pixels for all the endmembers. However, in the no-
pure pixel scenario, they cannot estimate the endmem-
bers. On the other hand, the blind unmixing methods
that incorporate geometrical information i.e., NMFQMV
and MiSiCNet outperform the other techniques. Overall,
the results reveal the advantage of the geometrical in-
formation in accurate endmember extraction/estimation.
Finally, we should mention that SAD is scale-invariant

and cannot solely be considered for the evaluation of
unmixing models.

C. Experimental Results: Real Data

We selected three methods per category to conduct
unmixing on the Cuprite dataset. Blind unmixing: MiS-
iCNet, MSNet and NMFQMV. Semi-supervised: SUnAA,
MUA SLIC, S2WSU. Supervised: UnDIP combined with
SISAL, SiVM and VCA. We describe the hyperparameters
that were fine-tuned for the following techniques. The hyper-
parameters set as default are omitted.

• MiSiCNet: λ = 100, projection=True.
• MSNet: α = 0.1, β = 0.1.
• MUA SLIC: β = 30, λ1 = 0.001, λ2 = 0.001,

slic size = 200.
• S2WSU: λ = 0.001.
• SISAL: τ = 1e-6.
Fig. 15 (b) visually compares the estimated abundances

for three dominant minerals, i.e., Chalcedony, Alunite, and
Kaolinite. The comparison with the geological reference map
Fig. 15 (a) reveals that the estimated abundances obtained
by semisupervised methods show more resemblance to the
reference map for all three minerals. SUnAA visually out-
performs the other techniques, particularly in the case of
Chalcedony. The blind unmixing methods can better estimate
Chalcedony compared to MUA SLIC and S2WSU. This could
be attributed to the mismatch of the endmember with the
library’s endmembers for this mineral. It is worth mentioning
that SUnAA does not entirely rely on the library, and it esti-
mates the endmember. Therefore, it can compensate for such
a mismatch. More importantly, SUnAA is a parameter-free
technique. We should note that selecting optimum parameters
for the unmixing techniques is not a trivial task in real-world
applications since the abundance RMSE cannot be computed.

D. Experimental Results: Processing Time

The processing time of the unmixing methods from the
HySUPP are given in Table V in seconds. The process-
ing times were obtained using a computer with an Intel(R)
Xeon(R) Silver 4110 processor (2.10 GHz), 32 cores, 64GB
of memory, and a NVIDIA GeForce RTX (2080 Ti) graphical
processing unit. In supervised unmixing, SISAL+FCLSU is
the most efficient method. In semisupervised unmixing, SUn-
SAL is the most efficient one. We should mention that the
efficiency of MUA SLIC considerably drops by increasing the
number of pixels which highly affects the segmentation used
in that method. For blind unmixing, CNNAEU and MSNet are
more efficient than the other methods.
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Fig. 14. Comparing abundance SRE (↑) in dB using different unmixing techniques applied to (from top to bottom) synthetic DC1, DC2, and DC3.
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TABLE IV
SPECTRAL ANGLE DISTANCE (SAD, IN DEGREES) RESULTS ON THE SIMULATED DATASETS.

Dataset SNR ADMMNet BayesianSMA CNNAEU EDAA MSNet MiSiCNet NMFQMV PGMSU SISAL SiVM VCA

DC1 30 0.84 ± 0.33 0.49 ± 0.02 8.12 ± 0.12 4.93 ± 1.15 1.77 ± 1.27 0.43 ± 0.01 0.99 ± 0.22 1.63 ± 0.32 1.85 ± 0.21 0.43 ± 0.02 0.45 ± 0.01
DC2 30 2.20 ± 0.13 1.65 ± 0.13 4.63 ± 0.95 0.65 ± 0.51 0.76 ± 0.03 2.98 ± 0.40 1.07 ± 0.01 1.97 ± 0.09 9.26 ± 0.80 0.45 ± 0.05 0.53 ± 0.04
DC3 30 8.07 ± 3.61 9.26 ± 2.87 9.68 ± 0.50 4.82 ± 0.04 4.30 ± 0.22 0.87 ± 0.03 0.45 ± 0.08 6.73 ± 1.08 2.32 ± 0.17 7.09 ± 0.36 4.70 ± 0.75

(a) Geological Ref. Map (b) Estimate abundances
Fig. 15. Estimate abundances obtained by applying different unmixing techniques to Cuprite compared with the geological reference map.

TABLE V
PROCESSING TIMES (IN SECONDS).

Method DC1 (30dB) DC2(30dB) DC3 (30dB) Cuprite

VCA + FCLSU 3 8 10 92
SiVM + FCLSU 3 9 10 58
SISAL + FCLSU 6 7 10 54
VCA + UnDIP 31 23 29 492
SiVM + UnDIP 31 28 30 492
SISAL + UnDIP 29 26 32 495

CLSUnSAL 12 23 56 457
MUA SLIC 12 15 36 310

S2WSU 35 60 116 767
SUnAA 80 178 146 1201

SUnCNN 75 65 97 492
SUnSAL 13 17 44 176

ADMMNet 33 57 61 969
BayesianSMA 122 367 255 3593

CNNAEU 9 22 24 20
EDAA 274 51 59 114

MiSiCNet 50 66 58 483
MSNet 20 18 25 33

NMFQMV 29 28 28 293
PGMSU 43 41 49 135

IX. CONCLUSION, DISCUSSION, SUMMARY

Assuming that we have captured a spectral dataset and now
have an unmixing problem in hand, we need to estimate the
abundances of materials. The main question is which method
to choose and which group of methods to select to tackle the
problem. Indeed, the first step is to evaluate our problem and
see if the linear mixing model or its variations are suitable
for our problem. This decision needs prior knowledge of the
physics of the problem. For instance, if you are dealing with
intimate mixtures or close-range and microscopic scenarios,

you should use nonlinear models. If you are dealing with
macroscopic Earth observation problems, then linear models or
their variations will be suitable. In some research, nonlinear
models perform better than linear ones, however, one may
pay attention to the selection of the model in a real-world
application. Usually, linear models are more general.

Here, we clarify the keys to the success of each category.
The success of supervised (or sequential) unmixing lies in
the confidence of the endmember measured, extracted, or es-
timated (pure/no pure scenario). Therefore, we should not use
the supervised method if we are not confident about the end-
members. In other words, supervised methods perhaps are the
best choice for endmembers with high confidence. When we
have prior information on the material in the scene and a well-
designed endmember library, semisupervised unmixing could
be successful. Semisupervised are also suitable to capture the
spectral variability. The success of semisupervised unmixing
lies in the quality of the endmember library. Blind unmixing
methods should be selected when there is no library, no pure
pixels in the data set (including highly mixed scenarios), or the
confidence of the measure, selected, or estimated endmembers
is low. They should be used with caution, and the estimated
endmembers should always go through physical interpretation.

Despite the considerable advances, spectral unmixing can be
considered one of the most challenging tasks in hyperspectral
analysis. Here, we describe some of the main unmixing
challenges.

• The linear models are much more general than the
nonlinear models. However, from one dataset to another
dataset, their performance may significantly decrease.

• Parameter selection considerably affects the performance
of the unmixing methods. The selection of optimum
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parameters is very challenging when it comes to real-
world datasets.

• The performance of the linear unmixing methods often
degrades by increasing the number of endmembers. The
linear unmixing may fail for a dataset with a higher
number of endmembers.

• Spectral variability is still a big challenge and may con-
siderably downgrade the performance of linear unmixing.

• One of the main challenges is the absence of a real dataset
with ground truth.

• Multitemporal and multisource spectral unmixing are also
challenging tasks.

• Considering the large volume of hyperspectral data, scal-
able unmixing is the main key for global monitoring.

Finally, we would like to further emphasize the importance of
unmixing compared to the other signal and image processing
approaches such as feature extraction/selection, clustering,
and classification. The estimated features (i.e., abundances)
in unmixing have physical meaning and can be attributed
to materials. Therefore, estimated abundance maps can be
used for quantitative analysis such as estimating vegetation
cover, mineral composition, or pollutant concentrations pro-
viding quantitative information about the spatial distribution
and relative quantities of materials present in the scene. The
extracted/estimated endmembers can be used to identify and
map different materials or surface types within the scene.
By comparing the spectral signatures of unknown pixels with
the reference endmembers, it is possible to classify and map
land cover types, vegetation species, geological formations, or
man-made structures. Temporal changes can be detected more
accurately. The estimated abundance maps provide quantitative
changes at a subpixel level. The extracted/estimated endmem-
bers can be used for the identification of material changes.
Intrinsic changes in the materials can be considered or ignored
based on the endmembers assumptions. A future point is to
investigate the performance of foundation models for spectral
unmixing.
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APPENDIX

MINIMUM VOLUME SIMPLEX USING TOTAL VARIATION

The total variation penalty enforces the data simplex to have
minimum volume by pulling the endmembers towards each

other. Assuming ē = 1
re1r we have

TV (E) =

r∑
i,j=1
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where the third term is zero. Therefore,
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