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The modified Bessel function of the second kind Kν appears in a wide variety of applied scientific fields. While its use is greatly facilitated by an implementation in most numerical libraries, overflow issues can be encountered especially for large value of ν. After giving some necessary and sufficient conditions for their occurrences, this technical note shows that they can mostly be avoided by directly computing the logarithm of Kν thanks to a simple and stable forward recursion. A statistical examples based on the Gil-Pelaez inversion formula is given to illustrate the recursive method.

Introduction

The modified Bessel function of the second kind K ν [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] appears in a large number of applied scientific fields such as in statistics [START_REF] Bhattacharya | A modified bessel function model in life testing[END_REF][START_REF] Robert | Modified Bessel functions and their applications in probability and statistics[END_REF][START_REF] Nadarajah | On the distribution of the product of correlated normal random variables[END_REF][START_REF] Gaunt | A simple proof of the characteristic function of student'stdistribution[END_REF] where it arises in mixtures of common distributions [START_REF] Bhattacharya | A modified bessel function model in life testing[END_REF]. For instance, it arises in the probability density functions of the Generalised hyperbolic distribution, of the K-distribution and of the Generalized inverse Gaussian distribution.

This function is implemented in most numerical libraries [START_REF] Virtanen | SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF][START_REF]Programming languages -C++[END_REF] following [START_REF] Amos | Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order[END_REF][START_REF] Amos | A subroutine package for Bessel functions of a complex argument and nonnegative order[END_REF][START_REF] Campbell | On temme's algorithm for the modified bessel function of the third kind[END_REF]. Its computation is based on a forward recurrence with the relation [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]:

K ν+1 (z) = K ν-1 (z) + 2 ν z K ν (z) (1) 
where the initial terms of the recurrence are computed either using power series for small values of z [START_REF] Temme | On the numerical evaluation of the modified Bessel function of the third kind[END_REF] or based on Miller's recurrence algorithm [START_REF] Olver | Error analysis of Miller's recurrence algorithm[END_REF][START_REF] Gil | Numerical Methods for Special Functions[END_REF] for larger values of z.

As stated in [START_REF] Xue | Recursive computation of logarithmic derivatives, ratios, and products of spheroidal harmonics and modified bessel functions and applications[END_REF], a direct evaluation of K ν (z) may easily cause overflow or underflow for large order |ν| and for extreme argument z. Indeed, K ν (z) has a rapid decay as |z| grows, which may cause floating point underflow [START_REF] Xue | Recursive computation of logarithmic derivatives, ratios, and products of spheroidal harmonics and modified bessel functions and applications[END_REF][START_REF] Press | NUMERICAL RECIPES The Art of Scientific Computing Third Edition[END_REF]. More specifically, for a fixed order ν, the asymptotic behavior at infinity is [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF][START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]:

K ν (z) ∼ z →∞ K 1 2 (z) = e -z π 2z , (2) 
This is the reason why, the exponentially scaled function K defined as

Kν (z) := e z K ν (z) (3) 
is often directly implemented in most numerical packages [START_REF] Amos | Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order[END_REF][START_REF] Press | NUMERICAL RECIPES The Art of Scientific Computing Third Edition[END_REF]. Numerical issues can also be encountered for small values of |z| especially for large orders ν. As a matter of fact, for fixed ν ( (ν) > 0), K ν verifies (equations 9.6.8 and 9.6.9 in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]):

K 0 (z) ∼ z→0 -log z and ∀ν > 0, K ν (z) ∼ z→0 Γ(ν) 2 2 z ν (4) 
To avoid these numerical issues, Xue and Deng [START_REF] Xue | Recursive computation of logarithmic derivatives, ratios, and products of spheroidal harmonics and modified bessel functions and applications[END_REF] proposed a direct evaluation of logarithmic derivatives, ratios and products of the modified Bessel function of the second kind. This note extends their ideas and proposes a simple direct implementation of log K ν (z) using a forward recursion.

After giving necessary and sufficient conditions to avoid overflow and underflow for K ν (z) in section 2, the direct implementation of log K ν (z) is detailed in section 3. The numerical stability of the recursion is assessed. The section further details how this limits the overflow and underflow problems. A numerical illustration is then given in section 4, where log K ν is used to compute the characteristic function of Student's t-distribution.

Overflow and underflow of K ν (z)

This section focus on sufficient conditions and necessary conditions for K ν (z) to be within the range of positive normal floating-point numbers (section 2.1) based on Yang and Chu's inequalities [START_REF] Yang | Monotonicity and inequalities involving the modified Bessel functions of the second kind[END_REF]. Section 2.3 presents the results for overflow while the results for underflow are presented in section 2.4.

Floating-point arithmetic.

Given a floating-point system, let P be the precision of the significand (in base 2). Let L and U be the smallest and largest exponents respectively. Then, the smallest positive normalized floating-point number is the underflow level B UFL = 2 L . The smallest positive denormalized number is B SDN = 2 L-P . The largest floating-point number is the overflow level B OFL = 1 -2 -P 2 U +1 . The values for single-precision and double-precision floating point arithmetic [START_REF] Kahan | IEEE standard 754 for binary floating-point arithmetic[END_REF] are reported in table 1. Underflow level

B UFL 2 -126 2 -1022 = 2 L ≈ 1.175 • 10 -38 ≈ 2.225 • 10 -308
Overflow level

B OFL 1 -2 -23 2 128 1 -2 -52 2 1024 = 1 -2 -P 2 U +1 ≈ 3.403 • 10 38 ≈ 1.797 • 10 308
The goal is then to get necessary conditions and sufficient conditions on ν and z for K ν (z) ≤ B OFL , K ν (z) ≥ B UFL or K ν (z) ≤ B SDN . To this end, Yang and Chu's inequalities [START_REF] Yang | Monotonicity and inequalities involving the modified Bessel functions of the second kind[END_REF] are used.

Yang and Chu's inequalities.

While asymptotic analyses (equations ( 2) and ( 4)) help getting an intuition on the numerical behavior, they do not provide with any bounds. A nonasymptotic characterization was given for real values by [START_REF] Miller | Completely monotonic functions[END_REF] who proved the complete monotonicity of z → z min ( 1 2 ,ν) e z K ν (z) for non-negative ν. More recently, [START_REF] Yang | Monotonicity and inequalities involving the modified Bessel functions of the second kind[END_REF] gave the following upper and lower bounds for z > 0 and ν ≥ 1:

K 1 2 (z) • 1 + a 1 z ν-1 2 < K ν (z) < K 1 2 (z) • 1 + b 1 z ν-1 2 (5) (1 + a 2 z) ν-1 2 < 2 Γ(ν) z 2 ν e z • K ν (z) < (1 + b 2 z) ν-1 2 (6)
with

a 1 := min c 0 , ν 2 + 1 4 and b 1 := max c 0 , ν 2 + 1 4 (7) 
a 2 := 1 max c 0 , ν -1 2 and b 2 := 1 min c 0 , ν -1 2 (8)
where

c 0 := 2 Γ(ν) √ π 2 2ν-1 . (9) 
Inequality ( 5) is the tightest when z is large. On the contrary, inequality [START_REF] Virtanen | SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF] is to be used for small value of z. The case ν ≤ 1 is handled in [START_REF] Yang | On approximating the modified Bessel function of the second kind[END_REF]. In the following, these inequalities are used to derive sufficient or necessary conditions to avoid overflow or underflow.

Arithmetic overflow.

Necessary condition.

To avoid overflow, a necessary condition is given by the following proposition.

Proposition 1 For B > 0 and z > 0, if ν ≥ 1 verifies:

ν ≥ 1 2 + log(B) + z 0 -1 2 log( π z0e ) W 0 2 z0e log(B) + z 0 -1 2 log π z0e with z 0 = max(z, π B 2 e ) (10) 
For instance, for z = 1, ν ≥ 29.8 (resp. ν ≥ 151.5) results in an overflow with single-precision (resp. double-precision). This necessary condition to avoid overflow for single-precision and double precision is plotted in figure 1.

Proof Since, Kν is decreasing, one may assume that z ≥ π B 2 e . In practice, let us assume that z > π B 2 e ). The case z = π B 2 e ) will then be directly obtained by continuity. Since a 2 is defined in equation ( 8) is positive, inequality (6) yields:

Kν (z) > Γ(ν) 2 e -z 2 z ν (11) 
The Gamma function can be bounded from below using Karatsuba's inequalities [START_REF] Karatsuba | On the asymptotic representation of the Euler gamma function by Ramanujan[END_REF]. Since ν > 0 the Gamma function verifies:

8ν 3 + 4ν 2 + ν + 1 100 1 6 < νΓ(ν) √ π e ν ν < 8ν 3 + 4ν 2 + ν + 1 30 1 6 (12) 
Then for

ν ≥ 1, 2 e < Γ(ν) √ π e ν ν-1 2 < 1 (13) 
Plugged into inequality [START_REF] Temme | On the numerical evaluation of the modified Bessel function of the third kind[END_REF], this gives:

Kν (z) > 1 2 2π e ν e ν-1 2 e -z 2 z ν > e -z π ez 2(ν -1/2) ez ν-1 2 (14) 
Since W 0 (x) < x for all x > -1 e , the constraint z > π B 2 e yields to:

log(B) + z - 1 2 log( π ze ) > 0
Then, inequality (10) leads to:

2 ze (ν -1/2) ≥ exp W 0 2 ze log(B) + z - 1 2 log π ze 2 ze (ν -1/2) log 2 ze (ν -1/2) ≥ 2 ze log(B) + z - 1 2 log π ze 2 ze (ν -1/2) (ν-1/2) ≥ Be z ze π (15) 
Combining inequalities ( 14) and ( 15) proves proposition 1.

Sufficient condition.

A sufficient condition for non-overflow is then given by the following proposition.

Proposition 2 For z > 0, B > 0 and ν ≥ e 2(4 -e)

, if

ν ≤ log x 0 W 0 2 ze log x 0 - ze 2 with x 0 := B K 1 2 (z) 1 + 2 ze 1+ze 2 (16) 
where W 0 is the Lambert's function, then Kν (z) < B.

For instance, for z = 1, ν ≤ 27.7 (resp. ν ≤ 149.4) is a sufficient condition to avoid overflow with single-precision (resp. double-precision). This sufficient condition to avoid overflow for single and double precision is plotted in figure 1.

Proof Bounds on c 0 can be directly obtained from inequality (13):

2 ν e 2 e 1 2ν-1 < c 0 = 2 Γ(ν) √ π 1 ν-1 2 < 2 ν e (17) 
According to inequality (5), for ν ≥ e 2(4 -e) ,

Kν (z) < K 1 2 (z) 1 + 2ν ze (ν-1 2 ) = 1 + 2ν ze (ν+ ze 2 ) 1 + 2ν ze -( ze 2 + 1 2 ) K 1 2 (z) Kν (z) < 2 ze ν + ze 2 (ν+ ze 2 ) 1 + 2 ze -( ze 2 + 1 2 ) K 1 2 (z) (since ν ≥ 1) (18)
Since by definition, ν satisfies inequality [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF],

2 ze ν + ze 2 ≤ 2 ze log x 0 W 0 2 ze log x 0 = exp W 0 2 ze log x 0 2 ze ν + ze 2 (ν+ ze 2 ) ≤ x 0 = B K 1 2 (z) 1 + 2ν ze 1+ze 2
Hence, using inequality [START_REF] Kahan | IEEE standard 754 for binary floating-point arithmetic[END_REF], Kν (z) < B.

Arithmetic underflow.

Necessary condition.

A necessary condition to avoid underflow can be then obtained with the following proposition.

Proposition 3 For ν ≥ 1 and 0 < B ≤ 2 π 2e , if z verifies        2z ≥ log x 0 -log log x 0 + e e -1 log log x 0 log x 0 with x 0 := 2 2ν-1 π B 2 z ≥ max 2 e ν, ν 2 + 1 4 (19) 
then Kν (z) < B.

This necessary condition to avoid underflow for single-precision and doubleprecision is plotted in figure 1. Proposition 1 results in an underflow for z ≥ ν log 2+87.6 (resp. z ≥ ν log 2+709) for single-precision (resp. double precision) with z ≥ 2ν/e ≥ 2/e.

Proof Let ν, z and B verify the hypotheses of proposition 3. According to Hoorfar and Hassani's bounds on the Lambert's function W 0 [START_REF] Hoorfar | Inequalities on the Lambert W function and hyperpower function[END_REF] (theorem 2.7), since x 0 ≥ e, then: 2z ≥ W 0 (x 0 ). W 0 being increasing, this leads to

B ≥ 2 ν-1 2 K 1 2 (z) (20) 
With the previous bounds on c 0 (inequalities [START_REF] Yang | Monotonicity and inequalities involving the modified Bessel functions of the second kind[END_REF]), b 1 satisfies:

b 1 ≤ max 2 e ν, ν 2 + 1 4 ≤ z
As a result, inequalities (20) and ( 5) yield:

B ≥ 2 ν-1 2 K 1 2 (z) ≥ 1 + b 1 z ν-1 2 K 1 2 (z) ≥ Kν (z)
Sufficient condition.

A sufficient condition to avoid underflow comes directly from the monotonicity of K ν .

Proposition 4 For ν ≥ 1 2 and 0 < B ≤ π e , if z > 0 verifies 2z ≤ log x 0 -log log x 0 + 1 2 log log x 0 log x 0 with x 0 := π B 2 , ( 21 
)
then Kν (z) ≥ K 1 2 (z) ≥ B.
Proof Since x 0 ≥ e, according to [START_REF] Hoorfar | Inequalities on the Lambert W function and hyperpower function[END_REF], inequality [START_REF] Karatsuba | On the asymptotic representation of the Euler gamma function by Ramanujan[END_REF] 

implies that z ≤ 1 2 W 0 (x 0 ). Function W 0 being increasing, K 1 2 (z) ≥ B.
This sufficient condition to avoid underflow for single-precision and double precision is plotted in figure 1. Note that, As a result, z ≤ 85.3 for singleprecision and z ≤ 705 for double-precision are sufficient condition to avoid underflow.

Exponential scaling.

In practice, the use of the exponentially scaled function Kν (z) is sufficient to avoid underflow.

Proposition 5 Given a floating point arithmetic system with significand precision P (in base 2), L the smallest exponent and U the largest exponent. If L ≤ -(U + 1)/2, then there is no underflow with Kν (z) for ν ≥ 0 and z > 0.

Proof Using the monotonicity of ν → Kν and the lower bounds given by [START_REF] Yang | On approximating the modified Bessel function of the second kind[END_REF], since

z ≤ 1 -2 -P 2 U +1 < 2 U +1 Kν (z) > π 2z + 1/2 > 2 -(U +1)/2 ≥ 2 L .
In this section, sufficient condition and necessary conditions were given on ν and z for K ν (z) to lie within the range of positive normal floating-point numbers. These conditions are illustrated in figure 1. While underflow may be avoided with exponential scaling (proposition 5), to avoid overflow issues, an alternative is to directly compute the logarithm of K ν (z) using forward recursion. This is detailed in the next section. 21) and ( 16)). Necessary conditions are represented by dashed lines (inequalities ( 19) and ( 10)). Solid lines correspond to numerical estimation of the frontiers by dichotomic search.

Logarithm of K ν

In this section we consider the computation of log K ν (z). We assume that ν and z are positive real values. For ν < 0, one may use the fact that K ν (z) = K -ν (z).

Recurrence Relation.

Summing the logarithm of ratios.

A straightforward way of expressing log K ν is by summing the logarithms of the ratios r ν (z) defined as

r ν (z) := K ν+1 (z) K ν (z) = Kν+1 (z) Kν (z) (22) 
As a result, the logarithm of the Bessel function verifies

ν -ν 0 ∈ N, log K ν = log K ν0 (z) + ν-ν0-1 k=0 log r ν0+k (23) 
The ratio r ν0+k is often evaluated using its continued fraction formulation (equations (6.6.24-27) in [START_REF] Press | NUMERICAL RECIPES The Art of Scientific Computing Third Edition[END_REF])

K ν+1 (z) K ν (z) = 1 z ν + 1 2 + x + ν 2 - 1 4 1 b1+ a 2 b 2 + • • • with a n+1 = ν 2 -(n + 1/2) 2 and b n = 2(n + z),
Another standard way of computing the ratio is the forward recursion [START_REF] Xue | Recursive computation of logarithmic derivatives, ratios, and products of spheroidal harmonics and modified bessel functions and applications[END_REF]:

r ν = 1 r ν-1 + 2 ν z (24) 
When using this forward recursion, the stability of log K ν as a sum of log ratio is not direct and intuitively comes from the alternating nature of the propagated error on log r ν . Indeed, the relative error ν on r ν verifies (equation ( 24)):

ν+1 = -ν 1 + ν K ν (z) K ν+2 (z) (25) 
As a matter of fact, on may dramatically simplify the stability analysis by noticing that summing the logarithm of the ratio when the latter is computed by forward recursion is equivalent in term of error propagation to directly computing log K ν with the following second-order recurrence relation.

Forward Recursion.

The recurrence relation (1) verified by the Bessel function K ν can directly be adapted to its logarithm. Noting u ν := log K ν (z), (26) the second-order recurrence relation (1) becomes:

u ν+1 = u ν-1 + log 1 + 2ν z exp(u ν -u ν-1 ) . (27) 
Choosing ν 0 .

ν 0 is chosen, small enough for K ν0 (z) and K ν0+1 (z) to be computed with existing libraries with existing numerical libraries [9, 9, 13] while ensuring numerical stability. As detailed in the following section, numerical stability required u ν0 > 0. Hence, if u ν ≤ 0, then log K ν (z) is directly computed with existing numerical libraries. Otherwise, one may numerically choose

ν 0 := ν -ν - 1 2 + k (28) 
where k ∈ N is the smallest integer such that u ν0 > 0. Propositions 1 and 2 reduce the search range.

To avoid underflow, the exponentially scaled function Kν (z) (equation ( 3)) is used to compute the first two terms of the recurrence.

Note that these recurrence relations hold for complex numbers by considering the congruence modulo 2π for the logarithm to be properly defined:

z ← Re(z) + (Im(z) mod 2π) i

Numerical Stability

In this section we consider the numerical stability of the forward recursion (equation [START_REF] Hughett | Error bounds for numerical inversion of a probability characteristic function[END_REF].

Noting, U ν+1 := (u ν+1 , u ν ), the relation ( 27) can be rewritten as a firstorder recurrence relation:

U ν+1 = f (U ν ) with f : (x, y) → y + log 1 + 2ν z e x-y , x (29) 
The condition number for the infinity norm (e.g. [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]) is then given by:

κ ∞ (x, y) := J(x, y) ∞ • (x, y) ∞ f (x, y) ∞ ( 30 
)
where J is the Jacobian matrix. Considering that, in this case, its norm J(x, y) ∞ is simply one, for positive y, the condition number is lower or equal to 1: κ ∞ (x, y) ≤ 1. Hence, since f is a non-decreasing function, the forward recursion is stable. As explained in [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF], another risk that may affect the performance of the algorithm is the catastrophic cancellation which occurs when subtracting nearby numbers (with respect to the machine precision). The term that might be affected in the relation ( 27) is u ν -u ν-1 which corresponds to the log of the ratio Kν Kν-1 . Sufficient conditions on ν and z to avoid catastrophic cancellation could be derived from inequalities [START_REF] Gaunt | A simple proof of the characteristic function of student'stdistribution[END_REF] and [START_REF] Piessens | QUADPACK: A Subroutine Package for Automatic Integration[END_REF]. We do not details it in this paper. In practice this does not happen with the usual range of values.

Sufficient conditions of normality.

A few inequalities ensure that there is no underflow and overflow issues with the computation of u ν . First, based on theorem 1 and corollary 3 in [START_REF] Segura | Bounds for ratios of modified Bessel functions and associated Turán-type inequalities[END_REF], for z > 0 and ν ≥ - 1 2 ,

ν + √ ν 2 + z 2 z < exp (u ν+1 -u ν ) ≤ ν + 1 2 + (ν + 1 2 ) 2 + z 2 z (31) Hence, for z > 0, if 0 ≤ ν ≤ 1 2 (B OFL -1) • z -1 2
, there is neither overflow nor underflow for exp (u ν+1 -u ν ).

As for u ν (z), the variable being signed, we do not consider underflow. Instead, we looked for sufficient conditions for u ∈ [-B OFL , B OFL ]. While tight bounds can be obtained using proposition 2 and 4, simpler bounds are sufficient. The fact that u ≥ -B can be proved using the monotonicity of K ν and theorem 3.1 in [START_REF] Yang | On approximating the modified Bessel function of the second kind[END_REF]:

∀ν ≥ 0, u ν (z) ≥ u 0 (z) ≥ -z + 1 2 log π 2z + 1/2 ≥ -2z (32) 
As for the upper bound, with the monotonicity of K ν , one can assume that for ν ≥ e 2 2(e-2) , and z ≤ 1.

Lemma 6 For ν ≥ e 2 2(e-2) and z ≤ 1,

Kν (z) < ν z ν (33) 
Proof Using equations ( 17) and ( 13) in (6) yields:

Kν (z) < √ π 2 ν e ν-1 2 2 z ν 1 + z e 2 4ν ν-1 2
Since z ≤ 1 and ν ≥ e 2 2(e-2) , inequality (33) is obtained.

Hence, based on [START_REF] Hoorfar | Inequalities on the Lambert W function and hyperpower function[END_REF], a sufficient condition to avoid overflow of u ν is given by the proposition 7.

Proposition 7 Given B > 0, for ν ≤ 0 and 0 < z < B, if

max ν, e 2 2(e -2)
, ≤ B + y log y B with y := min{z, 1}

then u(z) < B.

As result, a sufficient condition for u ν (z) to avoid overflow is, to have:

ν ≤ B OFL + B UFL log B UFL B OFL , (35) 
which is the case with existing floating-point arithmetic systems.

Logarithm of I ν

Computing log K ν might be used to evaluate the logaritm log I ν of the modified Bessel function of the first kind using the Wronskian identity [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]:

W (I ν (z), K ν (z)) = - 1 z . (36) 
Indeed, using the recurrence relations [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF],

I ν (z) = ν z I ν (z) + I ν+1 (z) (37) 
K ν (z) = ν z K ν (z) -K ν+1 (z) (38) 
the Wronskian identity (equation (36)) becomes:

log I ν (z) = -log z -log K ν (z) -log I ν+1 (z) I ν (z) + K ν+1 (z) K ν (z) (39) 
Where the ratio Iν+1(z)

Iν (z)
may be evaluated either as a continued fraction (equation (6.6.21) in [START_REF] Press | NUMERICAL RECIPES The Art of Scientific Computing Third Edition[END_REF])

I ν+1 (z) I ν (z) = - ν z + 1 2(ν + 1)/z+ 1 2(ν + 2)/z+ • • •
or using a backward recursion [START_REF] Xue | Recursive computation of logarithmic derivatives, ratios, and products of spheroidal harmonics and modified bessel functions and applications[END_REF]. As detailed in this section, to avoid avoid overflow for K ν (z) a direct implementation of log K ν (z) based on a forward recursion might be used. The numerical stability of the recursion has been assessed. A numerical illustration is given in the next section.

4 Illustration: computing the characteristic function of Student's t-Distribution.

In this section, log K ν is used to compute the characteristic function (section 4.1) of Student's t-distribution (section 4.2). The computation's accuracy is indirectly assessed comparing the numerical evaluation of the probability density function (pdf ) with the Gil-Pelaez formula (equation (41) to evaluation with the closed-form formulation (section 4.3).

Characteristic functions and the Gil-Pelaez inversion formulae

Characteristic functions are a power tool to analyze probability distributions. For a real-valued random variable X with a probability density function f X and a cumulative distribution function F X , the characteristic function ϕ X is the Hermitian function defined as:

ϕ X : R → C t → E e itX = R e itx dF X (x) = R e itx f X (x) dx (40) 
It is especially useful to study linear combination of independent random variables. Indeed, the characteristic function of the sum of independent variables X, Y verifies ϕ X+Y = ϕ X ϕ Y . As for affined transformations, the characteritic function of aX + b verifies ϕ aX+b (t) = ϕ X (at)e itb with (t, a, b) ∈ R 3 .

Theses properties together with the inversion formula

f X (x) = 1 2π R e -itx ϕ X (t) dt = 1 π ∞ 0 Re e -itx ϕ X (t) dt, (41) 
and a direct corollary named the Gil-Pelaez Inversion formulae, [START_REF] Gil-Pelaez | Note on the inversion theorem[END_REF]:

F X (x) = 1 2 - 1 π ∞ 0 Im e -itx ϕ X (t) t dt (42) 
makes it also an interesting numerical tool [START_REF] Davies | Numerical inversion of a characteristic function[END_REF][START_REF] Hughett | Error bounds for numerical inversion of a probability characteristic function[END_REF][START_REF] Witkovskỳ | Numerical inversion of a characteristic function: An alternative tool to form the probability distribution of output quantity in linear measurement models[END_REF].

Characteristic function of Student's t-Distribution

The characteristic function φ ν of a Student's t-distribution with ν degrees of freedom has a closed-form. It is an even real-valued function verifying [START_REF] Gaunt | A simple proof of the characteristic function of student'stdistribution[END_REF][START_REF] Hurst | The characteristic function of the Student t-distribution[END_REF][START_REF] Dreier | A note on the characteristic function of the tdistribution[END_REF]:

φ ν (t) = K ν/2 ( √ νt) • ( √ νt) ν/2 Γ(ν/2)2 ν/2-1 (43) 
where K ν (z) is the modified Bessel function of the second kind and Γ is the Gamma function [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. Direct evaluation of the characteristic function φ ν (t) for large number of degrees of freedom ν 1 or near zero (t 1) can cause a significant loss of precision. As a matter of facts, equation (43) contains a ratio between very large numbers when ν 1 and a product between a very large number and a very small number for t 1 (cf. section 2). To alleviate the notations, let ψ ν be defined as,

ψ ν (z) := K ν (z) Γ(ν) z 2 ν , ν > 0, z ≥ 0 (44) 
The characteristic function φ ν of a Student's distribution is then simply expressed as:

φ ν (t) = 2ψ ν/2 ( √ νt) (45) 
A standard way to handle these numerical issues is to first compute the logarithm of the different terms:

ψ ν (z) := exp log K ν (z) -log Γ(ν) + ν log z 2 , ν > 0, z ≥ 0 (46)
where log K ν is computed as described in section 3.1 while the function log Γ(x) is already implemented in most numerical libraries [START_REF] Virtanen | SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF][START_REF]Programming languages -C++[END_REF].

Numerical illustration

To assess the computation's accuracy of the characteristic function of the Student's t-distribution (43), the probability density function p was numerically evaluated with the Gil-Pelaez formula (equation (41) and compared to its closed form formulation:

p(x) = Γ ν+1 2 √ νπ Γ ν 2 1 + x 2 ν -ν+1 2 (47) 
The Gauss-Kronrod quadrature formula implemented in the QUADPACK library [START_REF] Piessens | QUADPACK: A Subroutine Package for Automatic Integration[END_REF] (with default parameters) was used for numerical integration.

We compared the accuracy when computing the characteristic function directly using equation (44) (Direct), using using equation ( 46) with the Bessel function evaluated using [START_REF] Amos | A subroutine package for Bessel functions of a complex argument and nonnegative order[END_REF] (LogDirect) and using equation ( 46) with the logarithm of the Bessel function evaluated as detailed in section 3.1. Overflows values near 0 were replaced with 1, which correspond to a first order Taylor's series approximation. Results are presented on figures 2 and and 3 for single and double precision respectively.

Conclusion

In a nutshell, this note proposed a simple and stable recurrence relation to compute the logarithm of the modified Bessel function of the second kind for real number. It detailed how this could avoid underflow and overflow. The characteristic function was computed either using equation (44) (Direct), or using equation (46) with the Bessel function from [START_REF] Amos | A subroutine package for Bessel functions of a complex argument and nonnegative order[END_REF] (LogDirect) or using equation ( 46) and the logarithm of the Bessel function evaluated as detailed in section 3.1. Overflows values near 0 were replaced with 1, which correspond to a first order Taylor's series approximation.

Fig. 1

 1 Fig.1Conditions on ν and z for Kν (z) to lie with the range of positive normal floatingpoints. The conditions to avoid overflow for single-precision (resp. double-precision) are represented in orange (resp. brown). The conditions to avoid underflow for single-precision (resp. double-precision) are represented in orange (resp. gray). Sufficient conditions are represented by dotted lines (inequalities (21) and (16)). Necessary conditions are represented by dashed lines (inequalities[START_REF] Miller | Completely monotonic functions[END_REF] and (10)). Solid lines correspond to numerical estimation of the frontiers by dichotomic search.

Fig. 2 Fig. 3

 23 Fig.2Accuracy of the numerical evaluation of the probability density function of the Student's t-distribution with different degrees of freedom (df) with single-precision. The characteristic function was computed either using equation (44) (Direct), or using equation (46) with the Bessel function from[START_REF] Amos | A subroutine package for Bessel functions of a complex argument and nonnegative order[END_REF] (LogDirect) or using equation (46) and the logarithm of the Bessel function evaluated as detailed in section 3.1. Overflows values near 0 were replaced with 1, which correspond to a first order Taylor's series approximation.

Table 1

 1 Smallest positive denormalized number B SDN , underflow level B UFL and overflow level B OFL function of the significant precision P , smallest exponent L an largest exponent U for single-precision and double precision floating point arithmetic[START_REF] Kahan | IEEE standard 754 for binary floating-point arithmetic[END_REF].

	Name	Expression	Single Precision Double Precision
	Significand precision	P	23	52
	Smallest Exponent	L	-126	-1022
	Largest Exponent	U	127	1023
	Smallest positive	B SDN	2 -149	2 -1075
	denormalized number	= 2 L-P		

≈ 1.401 • 10 -45 ≈ 4.941 • 10 -324