
Citation: Rouillard, J.; Vannobel, J.-M.

Multimodal Interaction for Cobot

Using MQTT. Multimodal Technol.

Interact. 2023, 7, 78. https://

doi.org/10.3390/mti7080078

Academic Editor: Cristina

Portalés Ricart

Received: 29 June 2023

Revised: 19 July 2023

Accepted: 24 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Multimodal Technologies
and Interaction

Article

Multimodal Interaction for Cobot Using MQTT
José Rouillard * and Jean-Marc Vannobel

CNRS, Centrale Lille, University of Lille, UMR 9189 CRIStAL, F-59000 Lille, France
* Correspondence: jose.rouillard@univ-lille.fr

Abstract: For greater efficiency, human–machine and human–robot interactions must be designed
with the idea of multimodality in mind. To allow the use of several interaction modalities, such as the
use of voice, touch, gaze tracking, on several different devices (computer, smartphone, tablets, etc.)
and to integrate possible connected objects, it is necessary to have an effective and secure means of
communication between the different parts of the system. This is even more important with the use
of a collaborative robot (cobot) sharing the same space and very close to the human during their
tasks. This study present research work in the field of multimodal interaction for a cobot using the
MQTT protocol, in virtual (Webots) and real worlds (ESP microcontrollers, Arduino, IOT2040). We
show how MQTT can be used efficiently, with a common publish/subscribe mechanism for several
entities of the system, in order to interact with connected objects (like LEDs and conveyor belts),
robotic arms (like the Ned Niryo), or mobile robots. We compare the use of MQTT with that of
the Firebase Realtime Database used in several of our previous research works. We show how a
“pick–wait–choose–and place” task can be carried out jointly by a cobot and a human, and what this
implies in terms of communication and ergonomic rules, via health or industrial concerns (people
with disabilities, and teleoperation).

Keywords: multimodality; human–robot interaction; MQTT protocol; cobot; open-source; industrial
IoT; virtual worlds; assistive technologies

1. Introduction

In the domain of multimodality, health informatics, biomedical engineering, and hu-
man interaction at large, we have to design and implement multimodal solutions adaptable
to various users (patients, carers, health professionals) and contexts. Since Richard Bolt and
his famous “Put that there” [1], it has been well known that multimodal interaction can
provide more natural and easy-to-use interfaces. In our research, we focus on the use of
multimodal interfaces to interact with a connected environment, especially for users with
special needs. But, designing and developing such applications for people with specific
needs can be difficult, time consuming and expensive, for multiple reasons:

- The particular needs, according to cognitive and/or physical disabilities of the users;
- The calibration and sharp synchronization of sensors and effectors needed;
- The requirement to test various input and output solutions;
- The health situation and mental state changing from one session to another.

In previous works, we have introduced a Multimodal Interaction Framework based on
Firebase Realtime Database [2] and a Biomedical Framework for Enhanced Experimentation
—BIOFEE [3]. The interest of such intelligent systems built on a multimodal basis lies in the
fact that a decision is made through several independent information channels, with the
subsequent aggregation of these decisions [4].

Worldwide, the number of people with significant disabilities is approximately 1.3 billion,
or 16% of the world’s population. Among them, one in five people has a so-called severe
disability [5]. Thanks to years of research, today, assistive technologies can compensate
the user disabilities regarding physical, functional, cognitive or mental disabilities. But,

Multimodal Technol. Interact. 2023, 7, 78. https://doi.org/10.3390/mti7080078 https://www.mdpi.com/journal/mti

https://doi.org/10.3390/mti7080078
https://doi.org/10.3390/mti7080078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mti
https://www.mdpi.com
https://doi.org/10.3390/mti7080078
https://www.mdpi.com/journal/mti
https://www.mdpi.com/article/10.3390/mti7080078?type=check_update&version=1

Multimodal Technol. Interact. 2023, 7, 78 2 of 19

unfortunately, they are often expensive, designed for a specific disability (for paraplegic
people, blind people, deaf people, autistic people, elderly people. . .) and must be con-
figured according to each patient. However, assistive technologies offering multimodal
interfaces can accommodate a greater number of users than those offering traditional in-
terfaces [6]. A user deficient in one sense (voice, touch, etc.) can then compensate for his
handicap by alternative methods, without limiting the functionality of the system. The
simultaneous availability of several communication channels makes it possible to choose
the most practical, fast and intuitive channel according to the disability, the state of health
and the context.

From an engineering and developer point of view, those complex multimodal systems
have to be as flexible as possible. In software engineering, the terms frontend and backend
often refer to the separation of concerns between the presentation layer (in front of the user),
and the data access layer (backend) of a piece of software, or the physical infrastructure
or hardware. Nowadays, with the needs of communication for smartphones and other
connected objects (see IoT: Internet of Things), the notion of BaaS (Backend as a Service)
is emerging. BaaS is a service for providing web and mobile applications with a way to
easily build a backend solution. Features available include user management, scalable
databases, cloud storage, push notifications, authentication, and integration with social
networking services, thanks to custom software development kits (SDKs) and application
programming interfaces (APIs).

We have shown in previous work how to conceive, deploy and test such multimodal
and multichannel applications where push notifications are mainly used [7,8]. This also
means that multimodal applications based on this technology must be constantly connected
to the Internet, with a good quality network and bandwidth. This is not always possible
in medical or industrial environments, for example (see the case of limited, insecure, low-
capacity network). For instance, by choosing the Firebase database, developers may face
problems in terms of cost (the free plan is only sufficient for small applications), hosting
(Google Cloud platform) and database (NoSQL).

In this paper, we present our ongoing work on the notion of multimodal interac-
tion in the context of human–computer Interaction to improve the quality of life. Some
recent papers have been exploring the use of multimodality, with mobile robots or the
Brain–Computer Interface (BCI), for instance, by addressing the MQTT (Message Queuing
Telemetry Transport) protocol [9,10]. In the following, we present more detailed research
works that we have carried out in the field of multimodal interaction for a cobot using the
MQTT protocol. A cobot, or collaborative robot, is a robot intended for direct human–robot
interaction within a shared space, or where humans and robots are in close proximity.
Cobot applications contrast with traditional industrial robot applications in which robots
are isolated from human contact.

The article is organized in the following way: Section 2 presents multimodal com-
munication needs, with a focus on Firebase and MQTT tools. Section 3 describes case
studies using MQTT in virtual and real worlds, and Section 4 investigates the usage of
MQTT coupled to Webots in the context of industrial and multimodal cobots, before the
Discussion, Conclusion and Perspectives section.

2. Multimodal Communication Needs

Our present study focuses on two means of communication (firebase and mqtt), in-
creasingly used, in various fields (education, industry, health, home automation, robotics,
transport. . .) allowing different modalities of interaction with the user, which can be ex-
ploited according to the difficulty and cost of implementation, communication capabilities,
diversity of handicaps encountered, etc. This approach, particularly implemented during
interaction with robots, allows the setting up of remote systems or even teleoperation, for
the most sensitive cases (physical danger for humans, hostile environment. . .).

Multimodal Technol. Interact. 2023, 7, 78 3 of 19

2.1. Firebase Realtime Database

We proposed in a previous work the study of BIOFEE (Biomedical Framework for
Enhanced Experimentation), based on the Firebase Realtime Database, in order to design
web and mobile applications for patients suffering from progressive diseases. It allows
interaction with objects and robots to test various multimodal solutions, such as touch,
voice, gesture, eyes gaze, etc., to perform tasks according to the patient’s pathology.

Figure 1 describes the architecture of our multimodal BIOFEE framework. The user’s
devices (computers, smartphones. . .) are connected to a Firebase Realtime Database. This
allows each component of the system to be notified instantly when a modification occurs
in the database. The various input signals are then treated by the multimodal engine
to synthesize one user command. Then, the system reacts accordingly. A Wizard of Oz
module [11] is also available, in order to let a human (the wizard) inject commands when
the machines are not able to do it by themselves (a complex or ambiguous multimodal
request, for example).

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 3 of 19

2.1. Firebase Realtime Database
We proposed in a previous work the study of BIOFEE (Biomedical Framework for

Enhanced Experimentation), based on the Firebase Realtime Database, in order to design
web and mobile applications for patients suffering from progressive diseases. It allows
interaction with objects and robots to test various multimodal solutions, such as touch,
voice, gesture, eyes gaze, etc., to perform tasks according to the patient’s pathology.

Figure 1 describes the architecture of our multimodal BIOFEE framework. The user’s
devices (computers, smartphones…) are connected to a Firebase Realtime Database. This
allows each component of the system to be notified instantly when a modification occurs
in the database. The various input signals are then treated by the multimodal engine to
synthesize one user command. Then, the system reacts accordingly. A Wizard of Oz mod-
ule [11] is also available, in order to let a human (the wizard) inject commands when the
machines are not able to do it by themselves (a complex or ambiguous multimodal re-
quest, for example).

Figure 1. Architecture of our multimodal BIOFEE framework based on Firebase Realtime Database.

Most of the time, the used sensors are available in a smartphone (touch screen, voice
recognition, accelerometer, light detection, etc.), but it can also involve third-party appli-
cations connected to the Firebase database. For instance, Figure 2 shows an example of
eye gaze detection to perform a command in a Unity3D application [12]. The user can
choose various ways to interact with the system: the keyboard or mouse on a classic com-
puter, voice or buttons on a mobile device, tilting the smartphone one way or the other, in
a natural way, to move the ball on the PC screen, or a combination of those modalities,
sequentially.

(a) (b)

Figure 2. (a) Eye gaze detection (left direction); (b) performing a ball movement in a Unity 3D application.

Although functional, this approach is not trivial, and requires multiple steps to be
implemented. Developers have to create a project in Firebase, to define the access rights
for the database, and add an “application” to the project (here, the “Unity” option was
chosen from among iOS, Android, Unity, Web, and Flutter). Then, it is necessary to down-
load the configuration file obtained, as well as the Firebase SDK, to add into the Unity

Figure 1. Architecture of our multimodal BIOFEE framework based on Firebase Realtime Database.

Most of the time, the used sensors are available in a smartphone (touch screen, voice
recognition, accelerometer, light detection, etc.), but it can also involve third-party applica-
tions connected to the Firebase database. For instance, Figure 2 shows an example of eye
gaze detection to perform a command in a Unity3D application [12]. The user can choose
various ways to interact with the system: the keyboard or mouse on a classic computer,
voice or buttons on a mobile device, tilting the smartphone one way or the other, in a natural
way, to move the ball on the PC screen, or a combination of those modalities, sequentially.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 3 of 19

2.1. Firebase Realtime Database
We proposed in a previous work the study of BIOFEE (Biomedical Framework for

Enhanced Experimentation), based on the Firebase Realtime Database, in order to design
web and mobile applications for patients suffering from progressive diseases. It allows
interaction with objects and robots to test various multimodal solutions, such as touch,
voice, gesture, eyes gaze, etc., to perform tasks according to the patient’s pathology.

Figure 1 describes the architecture of our multimodal BIOFEE framework. The user’s
devices (computers, smartphones…) are connected to a Firebase Realtime Database. This
allows each component of the system to be notified instantly when a modification occurs
in the database. The various input signals are then treated by the multimodal engine to
synthesize one user command. Then, the system reacts accordingly. A Wizard of Oz mod-
ule [11] is also available, in order to let a human (the wizard) inject commands when the
machines are not able to do it by themselves (a complex or ambiguous multimodal re-
quest, for example).

Figure 1. Architecture of our multimodal BIOFEE framework based on Firebase Realtime Database.

Most of the time, the used sensors are available in a smartphone (touch screen, voice
recognition, accelerometer, light detection, etc.), but it can also involve third-party appli-
cations connected to the Firebase database. For instance, Figure 2 shows an example of
eye gaze detection to perform a command in a Unity3D application [12]. The user can
choose various ways to interact with the system: the keyboard or mouse on a classic com-
puter, voice or buttons on a mobile device, tilting the smartphone one way or the other, in
a natural way, to move the ball on the PC screen, or a combination of those modalities,
sequentially.

(a) (b)

Figure 2. (a) Eye gaze detection (left direction); (b) performing a ball movement in a Unity 3D application.

Although functional, this approach is not trivial, and requires multiple steps to be
implemented. Developers have to create a project in Firebase, to define the access rights
for the database, and add an “application” to the project (here, the “Unity” option was
chosen from among iOS, Android, Unity, Web, and Flutter). Then, it is necessary to down-
load the configuration file obtained, as well as the Firebase SDK, to add into the Unity

Figure 2. (a) Eye gaze detection (left direction); (b) performing a ball movement in a Unity
3D application.

Although functional, this approach is not trivial, and requires multiple steps to be
implemented. Developers have to create a project in Firebase, to define the access rights for
the database, and add an “application” to the project (here, the “Unity” option was chosen
from among iOS, Android, Unity, Web, and Flutter). Then, it is necessary to download the
configuration file obtained, as well as the Firebase SDK, to add into the Unity project. Then,

Multimodal Technol. Interact. 2023, 7, 78 4 of 19

the developers have to code, in C# for example, the necessary functions to write an element
in the NoSQL database and to be notified when an element is updated by others.

As stated previously, some researchers and developers prefer non-vendor lock-in
solutions (as Firebase is held by Google), and choose open-source projects, to have a better
control over the entire application development. Under these conditions, MQTT is a serious
alternative that deserves to be studied.

2.2. MQTT

Message Queuing Telemetry Transport, better known as MQTT, is a lightweight and re-
liable machine-to-machine (M2M) messaging protocol. Being an open OASIS standard [13]
and an ISO recommendation (ISO/IEC 20922), MQTT is also declared by the MQTT
organization [14] to be “The standard for IoT Messaging”. This reputation has not been
usurped. MQTT is widely chosen for IoT because the protocol is very easy to implement.
MQTT can be used locally or remotely, and simultaneously on different platforms, while
consuming minimal bandwidth.

MQTT’s success is first due to its ease of installation, which does not require imple-
menting client/server architecture, as such. Based on social network-type communication
(subscription to a discussion topic or publication), MQTT facilitates the communication
between microprocessor-based machines, making each independent and autonomous.
As illustrated in Figure 3, each machine carries out its work according to the informa-
tion it needs to do so and receives in real time, while also being able to inform the other
participants in the system.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 4 of 19

project. Then, the developers have to code, in C# for example, the necessary functions to
write an element in the NoSQL database and to be notified when an element is updated
by others.

As stated previously, some researchers and developers prefer non-vendor lock-in so-
lutions (as Firebase is held by Google), and choose open-source projects, to have a better
control over the entire application development. Under these conditions, MQTT is a seri-
ous alternative that deserves to be studied.

2.2. MQTT
Message Queuing Telemetry Transport, better known as MQTT, is a lightweight and

reliable machine-to-machine (M2M) messaging protocol. Being an open OASIS standard
[13] and an ISO recommendation (ISO/IEC 20922), MQTT is also declared by the MQTT
organization [14] to be “The standard for IoT Messaging”. This reputation has not been
usurped. MQTT is widely chosen for IoT because the protocol is very easy to implement.
MQTT can be used locally or remotely, and simultaneously on different platforms, while
consuming minimal bandwidth.

MQTT’s success is first due to its ease of installation, which does not require imple-
menting client/server architecture, as such. Based on social network-type communication
(subscription to a discussion topic or publication), MQTT facilitates the communication
between microprocessor-based machines, making each independent and autonomous. As
illustrated in Figure 3, each machine carries out its work according to the information it
needs to do so and receives in real time, while also being able to inform the other partici-
pants in the system.

MQTT’s success is also due to its large community of developers and users. MQTT
brokers, the entities that enable MQTT clients to communicate, as well as many clients,
can be found for any type of operating systems, and over dedicated clouds. The same can
be said for software stacks and libraries that exist for any development environment.

MQTT reaches a wide audience interested in DIY (do it yourself) applications and
domotics (home automation), but the protocol is due to IBM, which used it first to monitor
oil pipeline sensors linked to the existing Supervisory Control And Data Acquisition
(SCADA) system [15]. That said, a MQTT broker (or server) cannot be directly compared
to the OPC-UA data servers commonly used for industrial data sharing. Although both
are secured communication protocols, the main difference is that OPC UA induces a se-
mantic data representation model [16] and encourages system interoperability [17], while
MQTT mostly shares strings.

Figure 3. Typical MQTT communication between sensors and actuators through an HMI.

3. Case Studies Using MQTT
Below is a classic “switch on/off” example, demonstrable both in the virtual and real

worlds. The virtual world is implemented with the Webots environment tool [18]. The
same messages can also be used to communicate with physical sensors and effectors (such

Figure 3. Typical MQTT communication between sensors and actuators through an HMI.

MQTT’s success is also due to its large community of developers and users. MQTT
brokers, the entities that enable MQTT clients to communicate, as well as many clients, can
be found for any type of operating systems, and over dedicated clouds. The same can be
said for software stacks and libraries that exist for any development environment.

MQTT reaches a wide audience interested in DIY (do it yourself) applications and
domotics (home automation), but the protocol is due to IBM, which used it first to monitor
oil pipeline sensors linked to the existing Supervisory Control And Data Acquisition
(SCADA) system [15]. That said, a MQTT broker (or server) cannot be directly compared to
the OPC-UA data servers commonly used for industrial data sharing. Although both are
secured communication protocols, the main difference is that OPC UA induces a semantic
data representation model [16] and encourages system interoperability [17], while MQTT
mostly shares strings.

3. Case Studies Using MQTT

Below is a classic “switch on/off” example, demonstrable both in the virtual and real
worlds. The virtual world is implemented with the Webots environment tool [18]. The same
messages can also be used to communicate with physical sensors and effectors (such as
push buttons and LEDs), and virtual and real worlds can obviously be mixed in advanced
and multimodal scenarios.

Multimodal Technol. Interact. 2023, 7, 78 5 of 19

3.1. Webots and MQTT

Webots is an open-source robotics simulator. It is used in industry, in research, and in
education. The Webots project began in 1996, originally developed by Dr. Olivier Michel at
the Ecole Polytechnique Fédérale de Lausanne, Switzerland [19].

Figure 4 shows two states (on and off) of a floor light available in Webots. The
«pointLightIntensity» value of a floor light can be changed programmatically. The scripts
(controller, supervisor) can be written in C, C++, Java, Python and Matlab. We used Python,
which provides an easy way to integrate the MQTT protocol, in order to allow our virtual
world to be manipulated both from inside (by other scripts) and outside Webots.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 5 of 19

as push buttons and LEDs), and virtual and real worlds can obviously be mixed in ad-
vanced and multimodal scenarios.

3.1. Webots and MQTT
Webots is an open-source robotics simulator. It is used in industry, in research, and

in education. The Webots project began in 1996, originally developed by Dr. Olivier
Michel at the Ecole Polytechnique Fédérale de Lausanne, Switzerland [19].

Figure 4 shows two states (on and off) of a floor light available in Webots. The «point-
LightIntensity» value of a floor light can be changed programmatically. The scripts (con-
troller, supervisor) can be written in C, C++, Java, Python and Matlab. We used Python,
which provides an easy way to integrate the MQTT protocol, in order to allow our virtual
world to be manipulated both from inside (by other scripts) and outside Webots.

(a) (b)

Figure 4. A Webots virtual world presenting a floor light that can be remotely controlled by MQTT
messages. (a) light off; (b) light on.

Thus, thanks to a publish/subscribe mechanism, this world can be driven by third-
party applications. For instance, in a Windows 11 operating system, on which Mosquitto
has been installed, the DOS commands below allow, respectively, to publish an «ON»,
and publish an «OFF» message, and subscribe to a topic named «bci_team/led», via the
broker «test.mosquitto.org»:
mosquitto_pub -h test.mosquitto.org -t bci_team/led -m “ON”
mosquitto_pub -h test.mosquitto.org -t bci_team/led -m “OFF”
mosquitto_sub -h test.mosquitto.org -t bci_team/led

This software solution is interesting for testing the projects, locally and remotely. But
sometimes it is also necessary to provide users with various real effectors (push buttons,
sliders, potentiometer, etc.). The next section discusses this topic.

3.2. MQTT, ESP8266 or ESP32 and Arduino
It is very easy to perform the “switch on/off” task using ESP8266 and ESP32 ESPRES-

SIF chips [20]. These powerful Wi-Fi communication chips are very practical when sol-
dered onto Arduino boards, as we have done (WEMOS D1 R2—ESP8266 and WEMOS D1
R32—WROOM32). They can be programmed directly using the Arduino IDE, and are
compatible with Arduino daughter boards, especially the D1 R32, which has more pins
than the D1 R2. Figure 5 (left) shows the WEMOS D1 R2 board and the grove daughter
board with LED and push button, and (right) shows, in the case of the use of the WEMOS
D1 R32 board, how simple it is to declare the Wi-Fi access point, the MQTT parameters,
the pins used and the inclusion of the MQTT PubSubClient library. Subscribing to a topic,

Figure 4. A Webots virtual world presenting a floor light that can be remotely controlled by MQTT
messages. (a) light off; (b) light on.

Thus, thanks to a publish/subscribe mechanism, this world can be driven by third-
party applications. For instance, in a Windows 11 operating system, on which Mosquitto
has been installed, the DOS commands below allow, respectively, to publish an «ON», and
publish an «OFF» message, and subscribe to a topic named «bci_team/led», via the broker
«test.mosquitto.org»:

mosquitto_pub -h test.mosquitto.org -t bci_team/led -m “ON”
mosquitto_pub -h test.mosquitto.org -t bci_team/led -m “OFF”
mosquitto_sub -h test.mosquitto.org -t bci_team/led

This software solution is interesting for testing the projects, locally and remotely. But
sometimes it is also necessary to provide users with various real effectors (push buttons,
sliders, potentiometer, etc.). The next section discusses this topic.

3.2. MQTT, ESP8266 or ESP32 and Arduino

It is very easy to perform the “switch on/off” task using ESP8266 and ESP32 ESPRES-
SIF chips [20]. These powerful Wi-Fi communication chips are very practical when soldered
onto Arduino boards, as we have done (WEMOS D1 R2—ESP8266 and WEMOS D1 R32
—WROOM32). They can be programmed directly using the Arduino IDE, and are com-
patible with Arduino daughter boards, especially the D1 R32, which has more pins than
the D1 R2. Figure 5 (left) shows the WEMOS D1 R2 board and the grove daughter board
with LED and push button, and (right) shows, in the case of the use of the WEMOS D1
R32 board, how simple it is to declare the Wi-Fi access point, the MQTT parameters, the
pins used and the inclusion of the MQTT PubSubClient library. Subscribing to a topic, and
publishing or decoding the received strings is also really simple, and well-documented on
the internet [21,22].

Multimodal Technol. Interact. 2023, 7, 78 6 of 19

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 6 of 19

and publishing or decoding the received strings is also really simple, and well-docu-
mented on the internet [21,22].

(a) (b)

Figure 5. (a) ESP board; (b) MQTT Arduino-based programming.

3.3. MQTT, IOT2040 and Arduino
The IOT2040 device is a gateway provided by SIEMENS, widely used in the field of

IoT and IIoT (Industrial Internet of Things). This equipment can be used autonomously,
as is the case here, or in an industrial context, as we will see below. As illustrated in Figure
6, using the IOT2040’s on-board Arduino board is as easy as using a UNO board [23]. It is
just necessary to install the Intel Galileo package using the Arduino board’s manager, as
illustrated in Figure 7. The only difference in programming with the ESP32 boards con-
cerns the pins declaration that correspond to the UNO ones and the use of the Ethernet
library instead of the Wi-Fi one. Finally, MQTT communication is carried out in the same
way as with the ESP32 board, using the PubSubClient library.

Figure 6. IOT2040 on-board Arduino connector with LED driven using MQTT.

Figure 5. (a) ESP board; (b) MQTT Arduino-based programming.

3.3. MQTT, IOT2040 and Arduino

The IOT2040 device is a gateway provided by SIEMENS, widely used in the field of
IoT and IIoT (Industrial Internet of Things). This equipment can be used autonomously, as
is the case here, or in an industrial context, as we will see below. As illustrated in Figure 6,
using the IOT2040’s on-board Arduino board is as easy as using a UNO board [23]. It is
just necessary to install the Intel Galileo package using the Arduino board’s manager, as
illustrated in Figure 7. The only difference in programming with the ESP32 boards concerns
the pins declaration that correspond to the UNO ones and the use of the Ethernet library
instead of the Wi-Fi one. Finally, MQTT communication is carried out in the same way as
with the ESP32 board, using the PubSubClient library.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 6 of 19

and publishing or decoding the received strings is also really simple, and well-docu-
mented on the internet [21,22].

(a) (b)

Figure 5. (a) ESP board; (b) MQTT Arduino-based programming.

3.3. MQTT, IOT2040 and Arduino
The IOT2040 device is a gateway provided by SIEMENS, widely used in the field of

IoT and IIoT (Industrial Internet of Things). This equipment can be used autonomously,
as is the case here, or in an industrial context, as we will see below. As illustrated in Figure
6, using the IOT2040’s on-board Arduino board is as easy as using a UNO board [23]. It is
just necessary to install the Intel Galileo package using the Arduino board’s manager, as
illustrated in Figure 7. The only difference in programming with the ESP32 boards con-
cerns the pins declaration that correspond to the UNO ones and the use of the Ethernet
library instead of the Wi-Fi one. Finally, MQTT communication is carried out in the same
way as with the ESP32 board, using the PubSubClient library.

Figure 6. IOT2040 on-board Arduino connector with LED driven using MQTT. Figure 6. IOT2040 on-board Arduino connector with LED driven using MQTT.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 7 of 19

(a) (b)

Figure 7. IOT2040 MQTT Arduino-based programming. (a) Type of card; (b) Port COM.

3.4. MQTT: IOT2040 Industrial Approach Case Study
An industrial approach case study is illustrated in Figure 8. This describes a robot

cooperation task developed within the INCASE Interreg project [24]. The heart of our sys-
tem is based on a SIEMENS IOT2040 that can be directly connected to an industrial
PROFINET network, making it easy to communicate with an Industrial Human–Machine
Interface (HMI) as the KTP600 used and an S7 1200 SIEMENS PLC (Programmable Logic
Controller) (CPU 1212C). The IOT2040 runs a Yocto Linux operating system, and gives
access to convenient software (MQTT broker, Node-Red WEB HMI design, Arduino pro-
gramming compatibility…) as well as Internet connectivity [25]. The purpose of this case
study was to show that the robots and the conveyor could work together to accomplish a
task asked by an end user consisting of:
1. Cube color selection by the end user via KTP600. MQTT message published on a topic

to which robot #1 (on the right in Figure 8) and #2 (on the left in Figure 8) have sub-
scribed;

2. Robot #1 (on the right) takes a colored cube in the entry warehouse. It is supposed to
be the right one;

3. Robot #1 places the cube on the conveyor with the MQTT message published on a
topic to which robot #2 and the conveyor have subscribed;

4. The conveyor belt starts up and continues until the presence sensor detects the cube.
The conveyor sends an MQTT message to robot #2;

5. Robot #2 takes the cube and checks its color, using a sensor located in the middle,
between robots #1 and #2. If it corresponds to the expected one, the cube is stored in
the output warehouse and a message is published for the attention of the HMI, to let
it know that the task is achieved; if not, a message is published for robot #1, asking it
to evacuate the cube before placing another one on the conveyor.
An interesting programming possibility given by the IOT2040 is illustrated in Figure

8. The demonstrator uses two DOBOT Magician robots [26]. These robots must be initially
calibrated for the experiment to work, and the coordinates of the positions to reach in the
input and output warehouses need to be recorded in a database or calculated from a ref-
erence point. This can quickly become a constraint if you proceed in a supervised way,
using the S7 PLC. For example, we need HMI in the KTP600 other than the one intended
for the end user, or a joystick to be connected to the IOT2040, knowing that the PLC can
communicate with this device or with the robots using MQTT.

Figure 7. IOT2040 MQTT Arduino-based programming. (a) Type of card; (b) Port COM.

Multimodal Technol. Interact. 2023, 7, 78 7 of 19

3.4. MQTT: IOT2040 Industrial Approach Case Study

An industrial approach case study is illustrated in Figure 8. This describes a robot
cooperation task developed within the INCASE Interreg project [24]. The heart of our
system is based on a SIEMENS IOT2040 that can be directly connected to an industrial
PROFINET network, making it easy to communicate with an Industrial Human–Machine
Interface (HMI) as the KTP600 used and an S7 1200 SIEMENS PLC (Programmable Logic
Controller) (CPU 1212C). The IOT2040 runs a Yocto Linux operating system, and gives
access to convenient software (MQTT broker, Node-Red WEB HMI design, Arduino pro-
gramming compatibility. . .) as well as Internet connectivity [25]. The purpose of this case
study was to show that the robots and the conveyor could work together to accomplish a
task asked by an end user consisting of:

1. Cube color selection by the end user via KTP600. MQTT message published on a
topic to which robot #1 (on the right in Figure 8) and #2 (on the left in Figure 8)
have subscribed;

2. Robot #1 (on the right) takes a colored cube in the entry warehouse. It is supposed to
be the right one;

3. Robot #1 places the cube on the conveyor with the MQTT message published on a
topic to which robot #2 and the conveyor have subscribed;

4. The conveyor belt starts up and continues until the presence sensor detects the cube.
The conveyor sends an MQTT message to robot #2;

5. Robot #2 takes the cube and checks its color, using a sensor located in the middle,
between robots #1 and #2. If it corresponds to the expected one, the cube is stored in
the output warehouse and a message is published for the attention of the HMI, to let
it know that the task is achieved; if not, a message is published for robot #1, asking it
to evacuate the cube before placing another one on the conveyor.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 8 of 19

We can also use the Node-Red flow programming tool already installed in our
IOT2040. This is illustrated in Figure 9. This is an interesting solution from three points of
view. First and foremost, it requires no programming skills for the PLC, and therefore for
the TIA Portal. Secondly, the Node-Red designed HMI can be accessed from a simple
browser on the local network, or from anywhere in the world if the IOT2040 is connected
to the Internet, of course securely. Finally, the Node is an open-source solution used in the
industry within the context of IIoT and Industry 4.0 for instance data acquisition, storage
tasks and monitoring [27], design and implementation of a SCADA architecture [28], or
as a useful software tool to store IoT device data onto a blockchain [29].

Communication with the DODOT robots becomes then very simple, knowing that
we operate using the MQTT messaging protocol for the process control.

This solution has been used several times without any malfunctions being observed
when restarting. However, we cannot guarantee the reliability of the solution in the long
term. That said, as these hardware and software tools are available on an industrial plat-
form, we can rely on SIEMENS’ reputation in considering long-term deployment.

Figure 8. Industrial case study. Robot cooperation by MQTT messaging.

Figure 9. Node-red interaction with robot #1.

Figure 8. Industrial case study. Robot cooperation by MQTT messaging.

An interesting programming possibility given by the IOT2040 is illustrated in Figure 8.
The demonstrator uses two DOBOT Magician robots [26]. These robots must be initially
calibrated for the experiment to work, and the coordinates of the positions to reach in
the input and output warehouses need to be recorded in a database or calculated from a
reference point. This can quickly become a constraint if you proceed in a supervised way,
using the S7 PLC. For example, we need HMI in the KTP600 other than the one intended
for the end user, or a joystick to be connected to the IOT2040, knowing that the PLC can
communicate with this device or with the robots using MQTT.

Multimodal Technol. Interact. 2023, 7, 78 8 of 19

We can also use the Node-Red flow programming tool already installed in our IOT2040.
This is illustrated in Figure 9. This is an interesting solution from three points of view.
First and foremost, it requires no programming skills for the PLC, and therefore for the
TIA Portal. Secondly, the Node-Red designed HMI can be accessed from a simple browser
on the local network, or from anywhere in the world if the IOT2040 is connected to the
Internet, of course securely. Finally, the Node is an open-source solution used in the
industry within the context of IIoT and Industry 4.0 for instance data acquisition, storage
tasks and monitoring [27], design and implementation of a SCADA architecture [28], or as
a useful software tool to store IoT device data onto a blockchain [29].

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 8 of 19

We can also use the Node-Red flow programming tool already installed in our
IOT2040. This is illustrated in Figure 9. This is an interesting solution from three points of
view. First and foremost, it requires no programming skills for the PLC, and therefore for
the TIA Portal. Secondly, the Node-Red designed HMI can be accessed from a simple
browser on the local network, or from anywhere in the world if the IOT2040 is connected
to the Internet, of course securely. Finally, the Node is an open-source solution used in the
industry within the context of IIoT and Industry 4.0 for instance data acquisition, storage
tasks and monitoring [27], design and implementation of a SCADA architecture [28], or
as a useful software tool to store IoT device data onto a blockchain [29].

Communication with the DODOT robots becomes then very simple, knowing that
we operate using the MQTT messaging protocol for the process control.

This solution has been used several times without any malfunctions being observed
when restarting. However, we cannot guarantee the reliability of the solution in the long
term. That said, as these hardware and software tools are available on an industrial plat-
form, we can rely on SIEMENS’ reputation in considering long-term deployment.

Figure 8. Industrial case study. Robot cooperation by MQTT messaging.

Figure 9. Node-red interaction with robot #1.

Figure 9. Node-red interaction with robot #1.

Communication with the DODOT robots becomes then very simple, knowing that we
operate using the MQTT messaging protocol for the process control.

This solution has been used several times without any malfunctions being observed
when restarting. However, we cannot guarantee the reliability of the solution in the long
term. That said, as these hardware and software tools are available on an industrial
platform, we can rely on SIEMENS’ reputation in considering long-term deployment.

4. Webots and MQTT for Cobot Solutions

We have seen that MQTT is powerful for machine-to-machine communication. But it is
also interesting for human–machine interaction. Indeed, one particularly interesting thing
that the use of the MQTT protocol allows is the chaining of tasks, following notifications
that can come from multiple sources. For example, imagine a scenario in which a robotic
arm interacts with a human in an industrial context. The robot’s task is to send a product
(e.g., a packet of biscuits) onto one of the two conveyor belts available, to its right or to its
left, as illustrated in Figure 10.

Multimodal Technol. Interact. 2023, 7, 78 9 of 19

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 9 of 19

4. Webots and MQTT for Cobot Solutions
We have seen that MQTT is powerful for machine-to-machine communication. But it

is also interesting for human–machine interaction. Indeed, one particularly interesting
thing that the use of the MQTT protocol allows is the chaining of tasks, following notifi-
cations that can come from multiple sources. For example, imagine a scenario in which a
robotic arm interacts with a human in an industrial context. The robot’s task is to send a
product (e.g., a packet of biscuits) onto one of the two conveyor belts available, to its right
or to its left, as illustrated in Figure 10.

Figure 10. In Webots, the cobot Ned Niryo picks up a packet of biscuits and waits for a human
decision to perform the next task (move left or right).

The user is in charge of the final decision, and has to collaborate with the robotic arm,
by sending it information. This can be done in various ways, according to the context and
profile of the user. The cobot (here a Ned Niryo, provided by Webots) can perform a «Pick
and Wait» movement when it receives a specific MQTT message (See «PICK_WAIT» in
the Table 1).

Table 1. MQTT topics and messages available to perform actions.

Topic Message Action

bci_team/box SPAWN Generate a new instance of a packet of bis-
cuits in front of the cobot.

bci_team/box PICK_WAIT
Perform various joint movements of the
cobot to pick up a packet of biscuits, and

raise it.

bci_team/arm LEFT Perform a left rotation of the cobot, and
open the gripper.

bci_team/arm RIGHT Perform a right rotation of the cobot, and
open the gripper.

So, after picking up a packet of biscuits, the cobot waits for a human decision. It can
be achieved by a voice command, a touch on a dedicated button in a graphical interface,
an eye-gaze, and so on. When a message is sent to a MQTT subject to which the cobot has
subscribed, this triggers the execution of a function (see callback mechanism). In our case,
a movement of the robotic arm to the right or to the left is activated. Then the opening of
the robot’s gripper releases the package of biscuits, which is then transited on one of the
two belts, as illustrated on Figure 11.

Figure 10. In Webots, the cobot Ned Niryo picks up a packet of biscuits and waits for a human
decision to perform the next task (move left or right).

The user is in charge of the final decision, and has to collaborate with the robotic arm,
by sending it information. This can be done in various ways, according to the context and
profile of the user. The cobot (here a Ned Niryo, provided by Webots) can perform a «Pick
and Wait» movement when it receives a specific MQTT message (See «PICK_WAIT» in
the Table 1).

Table 1. MQTT topics and messages available to perform actions.

Topic Message Action

bci_team/box SPAWN Generate a new instance of a packet of biscuits in front of
the cobot.

bci_team/box PICK_WAIT Perform various joint movements of the cobot to pick up a
packet of biscuits, and raise it.

bci_team/arm LEFT Perform a left rotation of the cobot, and open the gripper.
bci_team/arm RIGHT Perform a right rotation of the cobot, and open the gripper.

So, after picking up a packet of biscuits, the cobot waits for a human decision. It can
be achieved by a voice command, a touch on a dedicated button in a graphical interface,
an eye-gaze, and so on. When a message is sent to a MQTT subject to which the cobot has
subscribed, this triggers the execution of a function (see callback mechanism). In our case,
a movement of the robotic arm to the right or to the left is activated. Then the opening of
the robot’s gripper releases the package of biscuits, which is then transited on one of the
two belts, as illustrated on Figure 11.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 10 of 19

Figure 11. The cobot received the MQTT message «RIGHT» for the topic «bci_team/arm». Accord-
ingly, the packet is send to the conveyor belt situated on its right.

The developer can decide to code the published and subscribed functions in order to
chain the tasks, with more or less automation, and more or less exchange with humans,
depending on the level of complexity or security required. For example, when the Webots
supervisor receives a “SPAWN” message to generate a new packet of biscuits, it is possible,
following this, to request the cobot to execute a “PICK_WAIT” task, triggered (published)
by the supervisor. The Niryo controller will receive this message (thanks to a MQTT sub-
scribe mechanism), and will move the various joints of the robot in order to perform this
task. Another message, coming directly from the user will command a left or right move.

As illustrated in Figure 12, we used the Ned from the Niryo robot provided by
Webots to conduct tests on MQTT communication for a multimodal purpose. MQTT,
which is well known for machine–machine communication, is here also used for commu-
nication between the human operator and the cobot that can help him/her to achieve a
desired task.

Specifically, a robot controller coded in Python is used to drive the Ned robot. A su-
pervisor, also coded in Python, is able to generate elements in the virtual world (see left
in Figure 12). In our case, the supervisor generates a packet of biscuits to respond to a
«SPAWN» MQTT message. These two scripts are communicating across MQTT messages.
Thus, a Wizard of Oz (human agent) (see Figure 1) can inject specific messages into the
system, to unblock a situation or intervene in place of a human or robot agent that is mo-
mentarily failing (because of fatigue, a network problem, misunderstanding of the com-
mand, the required level of security not being authorized, etc.).

Figure 12. A close capture of the Ned Niryo robot in Webots, holding a packet of biscuits and waiting
for human instructions. On the right part of the screen, the editable Python scripts are used to pro-
gram interaction with other robots or humans (MQTT).

Figure 11. The cobot received the MQTT message «RIGHT» for the topic «bci_team/arm». Accord-
ingly, the packet is send to the conveyor belt situated on its right.

The developer can decide to code the published and subscribed functions in order to
chain the tasks, with more or less automation, and more or less exchange with humans,
depending on the level of complexity or security required. For example, when the Webots
supervisor receives a “SPAWN” message to generate a new packet of biscuits, it is possible,

Multimodal Technol. Interact. 2023, 7, 78 10 of 19

following this, to request the cobot to execute a “PICK_WAIT” task, triggered (published)
by the supervisor. The Niryo controller will receive this message (thanks to a MQTT
subscribe mechanism), and will move the various joints of the robot in order to perform this
task. Another message, coming directly from the user will command a left or right move.

As illustrated in Figure 12, we used the Ned from the Niryo robot provided by Webots
to conduct tests on MQTT communication for a multimodal purpose. MQTT, which is
well known for machine–machine communication, is here also used for communication
between the human operator and the cobot that can help him/her to achieve a desired task.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 10 of 19

Figure 11. The cobot received the MQTT message «RIGHT» for the topic «bci_team/arm». Accord-
ingly, the packet is send to the conveyor belt situated on its right.

The developer can decide to code the published and subscribed functions in order to
chain the tasks, with more or less automation, and more or less exchange with humans,
depending on the level of complexity or security required. For example, when the Webots
supervisor receives a “SPAWN” message to generate a new packet of biscuits, it is possible,
following this, to request the cobot to execute a “PICK_WAIT” task, triggered (published)
by the supervisor. The Niryo controller will receive this message (thanks to a MQTT sub-
scribe mechanism), and will move the various joints of the robot in order to perform this
task. Another message, coming directly from the user will command a left or right move.

As illustrated in Figure 12, we used the Ned from the Niryo robot provided by
Webots to conduct tests on MQTT communication for a multimodal purpose. MQTT,
which is well known for machine–machine communication, is here also used for commu-
nication between the human operator and the cobot that can help him/her to achieve a
desired task.

Specifically, a robot controller coded in Python is used to drive the Ned robot. A su-
pervisor, also coded in Python, is able to generate elements in the virtual world (see left
in Figure 12). In our case, the supervisor generates a packet of biscuits to respond to a
«SPAWN» MQTT message. These two scripts are communicating across MQTT messages.
Thus, a Wizard of Oz (human agent) (see Figure 1) can inject specific messages into the
system, to unblock a situation or intervene in place of a human or robot agent that is mo-
mentarily failing (because of fatigue, a network problem, misunderstanding of the com-
mand, the required level of security not being authorized, etc.).

Figure 12. A close capture of the Ned Niryo robot in Webots, holding a packet of biscuits and waiting
for human instructions. On the right part of the screen, the editable Python scripts are used to pro-
gram interaction with other robots or humans (MQTT).

Figure 12. A close capture of the Ned Niryo robot in Webots, holding a packet of biscuits and waiting
for human instructions. On the right part of the screen, the editable Python scripts are used to
program interaction with other robots or humans (MQTT).

Specifically, a robot controller coded in Python is used to drive the Ned robot. A
supervisor, also coded in Python, is able to generate elements in the virtual world (see
left in Figure 12). In our case, the supervisor generates a packet of biscuits to respond to a
«SPAWN» MQTT message. These two scripts are communicating across MQTT messages.
Thus, a Wizard of Oz (human agent) (see Figure 1) can inject specific messages into the
system, to unblock a situation or intervene in place of a human or robot agent that is
momentarily failing (because of fatigue, a network problem, misunderstanding of the
command, the required level of security not being authorized, etc.).

Figure 13 represents a snippet of our Python program (ned_python.py) in charge of
the Ned robot movements, according to the MQTT messages received.

The next part of the article describes how a mobile application allows the use of
various interaction modalities (voice, touch, accelerometer, light sensor, etc.) very easily,
via App Inventor connected to MQTT.

Multimodal Technol. Interact. 2023, 7, 78 11 of 19

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 11 of 19

Figure 13 represents a snippet of our Python program (ned_python.py) in charge of
the Ned robot movements, according to the MQTT messages received.

Figure 13. Snippet of the Python program (ned_python.py) in charge of the robot movements, ac-
cording to the MQTT messages received.

The next part of the article describes how a mobile application allows the use of var-
ious interaction modalities (voice, touch, accelerometer, light sensor, etc.) very easily, via
App Inventor connected to MQTT.

4.1. Multimodality with App Inventor and MQTT
App Inventor for Android is an application development software created by Google,

currently maintained by the Massachusetts Institute of Technology [30]. We successfully
used App Inventor and an experimental component named “Firebase DB”, in previous
work [2] in order to create quickly and easily some mobile applications to deploy and test
multimodal prototypes.

For comparison, within the framework of our current work on MQTT, we used an
extension [31] allowing the easy integration of this protocol, within a mobile application
developed for Android. Figure 14 shows the App Inventor designer using this MQTT ex-
tension and the Android APK executable version obtained in order to interact with the
Webots Ned cobot. The «LEFT» and «RIGHT» buttons are colored the same way as the
colors of the baskets positioned at the end of the two conveyor belts in the Webots virtual
world. Moreover, if necessary, a vocal checkbox allows (or not) the use of a speech recog-
nizer and a text-to-speech component, which do not require physical (touch or gesture)
interaction with the mobile device.

Figure 13. Snippet of the Python program (ned_python.py) in charge of the robot movements,
according to the MQTT messages received.

4.1. Multimodality with App Inventor and MQTT

App Inventor for Android is an application development software created by Google,
currently maintained by the Massachusetts Institute of Technology [30]. We successfully
used App Inventor and an experimental component named “Firebase DB”, in previous
work [2] in order to create quickly and easily some mobile applications to deploy and test
multimodal prototypes.

For comparison, within the framework of our current work on MQTT, we used an
extension [31] allowing the easy integration of this protocol, within a mobile application
developed for Android. Figure 14 shows the App Inventor designer using this MQTT
extension and the Android APK executable version obtained in order to interact with
the Webots Ned cobot. The «LEFT» and «RIGHT» buttons are colored the same way as
the colors of the baskets positioned at the end of the two conveyor belts in the Webots
virtual world. Moreover, if necessary, a vocal checkbox allows (or not) the use of a speech
recognizer and a text-to-speech component, which do not require physical (touch or gesture)
interaction with the mobile device.

As explained with our App Inventor blocks of Figure 15, when a «PICK_WAIT»
message is received for the «bci_team/box» topic, if the checkbox is checked, then a
speech synthesis is triggered, inviting the user to choose a side (left or right), and speech
recognition is launched to obtain a vocal response.

Multimodal Technol. Interact. 2023, 7, 78 12 of 19Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 12 of 19

(a) (b)

Figure 14. App Inventor mobile application connected to MQTT to interact with the Webots Ned
cobot. (a) Designer view; (b) Android APK executable version.

As explained with our App Inventor blocks of Figure 15, when a «PICK_WAIT» mes-
sage is received for the «bci_team/box» topic, if the checkbox is checked, then a speech
synthesis is triggered, inviting the user to choose a side (left or right), and speech recog-
nition is launched to obtain a vocal response.

Figure 14. App Inventor mobile application connected to MQTT to interact with the Webots Ned
cobot. (a) Designer view; (b) Android APK executable version.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 12 of 19

(a) (b)

Figure 14. App Inventor mobile application connected to MQTT to interact with the Webots Ned
cobot. (a) Designer view; (b) Android APK executable version.

As explained with our App Inventor blocks of Figure 15, when a «PICK_WAIT» mes-
sage is received for the «bci_team/box» topic, if the checkbox is checked, then a speech
synthesis is triggered, inviting the user to choose a side (left or right), and speech recog-
nition is launched to obtain a vocal response.

Figure 15. App Inventor blocks snippet used to interact (touch or voice) with the Webots Ned cobot,
thanks to MQTT.

Multimodal Technol. Interact. 2023, 7, 78 13 of 19

4.2. Leap Motion, EMG and EEG

Now, let us imagine that, unfortunately, this user is no more able to click on a smart-
phone using a finger. Which other modalities could be used in this specific context? We
present briefly three other possibilities: a leap motion, an EMG and an EEG. We would like
to test if a residual muscular activity is detectable with an optical hand-tracking module,
such as a LeapMotion [32] for instance. A Leap Motion Controller (LMC) is used when
it becomes difficult for a person to press a push button, or for hygiene issues. The LMC
is a device that uses infrared cameras and hand-tracking technology to allow users to
interact with computers and other devices through gestures made with their hands. The
controller is often used in virtual reality (VR) and augmented reality (AR) applications, but
it can also be used with other types of software, especially with disabled people. Although
different studies and projects have been developed to use hand-tracking technology with
disabled people, such as a hand rehabilitation system to assist in developing muscle tone
and increase precision in gestures [33,34] for sign languages recognition [35], and in music
therapy sessions [36], it is not a common or a widely used technology.

Some limitations of the device include:

- A limited tracking range (10 to 70 cm) and a restricted angular view (120 to 140◦) [32];
- A possibility of bad tracking and lack of accuracy when hands or fingers are obscured

by other objects. It then needs a clear line of sight [37,38];
- Aa limited number of supported gestures. It may not be able to recognize complex

hand and finger movements like those used in sign languages [39];
- An interior use. The controller may not work properly in bright sunlight or other

harsh lighting conditions [40];
- A use limited to desktop computers. The LMC is not compatible with mobile devices [32];
- A high cost comparative to a mouse, a keyboard or a joystick. It may not be accessible

to all users.

On the other hand, benefits include:

- A high accuracy, especially for hand palms, thumb and index finger tips, making the
device well suited for use with individuals with limited movement abilities;

- A natural user interface, because the users can interact with their computers using
hand and finger gestures, as in the physical world;

- A portable use, since the controller is small, lightweight and easy to set up;
- Compatibility with a wide range of operating systems and programming languages,

making it easy to integrate into existing software systems or as a pointing device [41];
- A large developer community, especially for VR and AR applications;
- An alternative to traditional input devices such as mouse, keyboard and joystick, which

can be beneficial for users with certain types of physical or cognitive impairments.

In our case, the LMC is used as a complement or replacement for touch screens.
The JavaScript snippet presented in Figure 16 is used to analyze the data (numbers

and positions of the hands, fingers, extension moves, rotations, etc.) provided by a Leap
Motion device connected to the USB port of the local user machine. The developer has
selected what kind of gesture interaction will trigger a MQTT message. For example, a
slight movement of the index finger of each hand can be the trigger for a message published
on the «bci_team/arm» (the robot arm) topic, with the “right” or “left” value indicating
the choice of the user, and therefore the side to which the cobot will rotate before releasing
the gripper.

Multimodal Technol. Interact. 2023, 7, 78 14 of 19Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 14 of 19

Figure 16. Snippet of the JavaScript program in charge of publishing MQTT messages when the leap
motion is used.

In order to optimize the flow of data transmitted on the network via the MQTT pro-
tocol, we only publish new data for the Ned robot simulated in Webots if they are different
from the previous state (true or false) recorded by the leap motion (extended position of
the index finger) during successive frames which follow one another at a very high speed.

During our tests with users handling the leap motion, we realized that an ambiguity
is possible, for some people, concerning the choice to be made (right or left), depending
on the angle of view proposed by the Webots simulator.

An ergonomic way to reduce this ambiguity and cognitive overload is to rotate the
view, so that the user finds himself in the place of the cobot. The right-hand side of the
user will be the right-hand side of the robot, and vice versa, as illustrated in Figure 17.

In previous works [42,43], we have studied other interaction modalities, particularly
regarding electromyography (EMG) and electroencephalography (EEG). Figure 18 shows
signals used in our hybrid system: right joystick values, EMG from the right hand and
EEG from the C3 electrode. They were recorded during a right-hand movement which
lasted 5 s. This movement is well detected, thanks to joystick values and the EMG signal.
Indeed, EMG amplitude is greater during muscular contraction. Nevertheless, the EEG
signal needs more processing in order to highlight relevant information and detect a hand
movement.

Figure 16. Snippet of the JavaScript program in charge of publishing MQTT messages when the leap
motion is used.

In order to optimize the flow of data transmitted on the network via the MQTT
protocol, we only publish new data for the Ned robot simulated in Webots if they are
different from the previous state (true or false) recorded by the leap motion (extended
position of the index finger) during successive frames which follow one another at a very
high speed.

During our tests with users handling the leap motion, we realized that an ambiguity
is possible, for some people, concerning the choice to be made (right or left), depending on
the angle of view proposed by the Webots simulator.

An ergonomic way to reduce this ambiguity and cognitive overload is to rotate the
view, so that the user finds himself in the place of the cobot. The right-hand side of the user
will be the right-hand side of the robot, and vice versa, as illustrated in Figure 17.

In previous works [42,43], we have studied other interaction modalities, particularly
regarding electromyography (EMG) and electroencephalography (EEG). Figure 18 shows
signals used in our hybrid system: right joystick values, EMG from the right hand and EEG
from the C3 electrode. They were recorded during a right-hand movement which lasted
5 s. This movement is well detected, thanks to joystick values and the EMG signal. Indeed,
EMG amplitude is greater during muscular contraction. Nevertheless, the EEG signal needs
more processing in order to highlight relevant information and detect a hand movement.

Multimodal Technol. Interact. 2023, 7, 78 15 of 19Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 15 of 19

Figure 17. A leap motion is used to interact with a virtual robot. The point of view is user oriented,
and the left-hand movement will send a LEFT MQTT message.

(a) (b)

Figure 18. (a) A user can interact with a virtual world thanks to joysticks, hand movements or brain
activity; (b) corresponding signals from the joystick, EMG and EEG.

Figure 19 explains how we detect brain signal activity on a Laplacian around the CZ
electrode when the user activates his/her foot. In the same way, a movement of the left
hand (or the right hand) can be detected by focusing on the C4 (or the C3) electrode (the
contralateral side). The OpenViBE software can transmit this information across LSL (Lab-
Streaming Layer protocol) or MQTT protocols, for instance.

Figure 17. A leap motion is used to interact with a virtual robot. The point of view is user oriented,
and the left-hand movement will send a LEFT MQTT message.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 15 of 19

Figure 17. A leap motion is used to interact with a virtual robot. The point of view is user oriented,
and the left-hand movement will send a LEFT MQTT message.

(a) (b)

Figure 18. (a) A user can interact with a virtual world thanks to joysticks, hand movements or brain
activity; (b) corresponding signals from the joystick, EMG and EEG.

Figure 19 explains how we detect brain signal activity on a Laplacian around the CZ
electrode when the user activates his/her foot. In the same way, a movement of the left
hand (or the right hand) can be detected by focusing on the C4 (or the C3) electrode (the
contralateral side). The OpenViBE software can transmit this information across LSL (Lab-
Streaming Layer protocol) or MQTT protocols, for instance.

Figure 18. (a) A user can interact with a virtual world thanks to joysticks, hand movements or brain
activity; (b) corresponding signals from the joystick, EMG and EEG.

Figure 19 explains how we detect brain signal activity on a Laplacian around the
CZ electrode when the user activates his/her foot. In the same way, a movement of the
left hand (or the right hand) can be detected by focusing on the C4 (or the C3) electrode
(the contralateral side). The OpenViBE software can transmit this information across LSL
(LabStreaming Layer protocol) or MQTT protocols, for instance.

Multimodal Technol. Interact. 2023, 7, 78 16 of 19Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 16 of 19

Figure 19. The OpenViBE software used to detect brain activities, with or without residual muscle
activity.

Even if the patient is paralyzed, for example, and no muscle activity is detectable,
brain activity remains identifiable. For this reason, brain–computer interfaces (BCI) are
interesting when the patients do not have enough strength to engage their muscles (hand,
arm, legs, feet, etc.) while their cognitive activity remains intact.

5. Discussion, Conclusions and Perspectives
5.1. Discussion

In the literature, MQTT is seen as the standard protocol for communication in the IoT
context. Unlike MQTT, the Firebase solution we previously tested cannot be deployed lo-
cally, and may pose issues with privacy and access to services that require a reliable inter-
net connection.

During our experiments, users were all able to easily interact in a multimodal way,
depending on their own context of use (bi-manual touch on two smartphones placed side
by side, voice (ASR and TTS), and gesture with a leap motion), and they all appreciated
being able to switch between them seamlessly during the same session.

However, it should be noted that some users have mentioned a certain fatigue when
having to hold their arms up in the air in order to collaborate with the simulated robot
present in the Webots scene. Similarly, an improvement in the interface was requested by
users so that they could better locate themselves spatially in the virtual scene during col-
laborative tasks with cobots (see left/right disorientation).

The hypothesis of using MQTT, a standard and recognized communication solution,
and an IOT technology from the world of industry has shown that technology is not an
obstacle, and should not be an obstacle to the employment of disabled people.

The problem is less straightforward when it comes to interacting with people. We
have shown that human–machine interaction technologies can be easily integrated into an
IOT environment or used as a production tool. On the other hand, depending on the na-
ture of the disability and its evolution over time, or in the case of highly sterile conditions,
the problem becomes more complex. Our work prospects aim to combine several modes
of interaction to improve the system’s performance by sensor data fusion.

Figure 19. The OpenViBE software used to detect brain activities, with or without residual
muscle activity.

Even if the patient is paralyzed, for example, and no muscle activity is detectable,
brain activity remains identifiable. For this reason, brain–computer interfaces (BCI) are
interesting when the patients do not have enough strength to engage their muscles (hand,
arm, legs, feet, etc.) while their cognitive activity remains intact.

5. Discussion, Conclusions and Perspectives
5.1. Discussion

In the literature, MQTT is seen as the standard protocol for communication in the
IoT context. Unlike MQTT, the Firebase solution we previously tested cannot be deployed
locally, and may pose issues with privacy and access to services that require a reliable
internet connection.

During our experiments, users were all able to easily interact in a multimodal way,
depending on their own context of use (bi-manual touch on two smartphones placed side
by side, voice (ASR and TTS), and gesture with a leap motion), and they all appreciated
being able to switch between them seamlessly during the same session.

However, it should be noted that some users have mentioned a certain fatigue when
having to hold their arms up in the air in order to collaborate with the simulated robot
present in the Webots scene. Similarly, an improvement in the interface was requested
by users so that they could better locate themselves spatially in the virtual scene during
collaborative tasks with cobots (see left/right disorientation).

The hypothesis of using MQTT, a standard and recognized communication solution,
and an IOT technology from the world of industry has shown that technology is not an
obstacle, and should not be an obstacle to the employment of disabled people.

The problem is less straightforward when it comes to interacting with people. We
have shown that human–machine interaction technologies can be easily integrated into an
IOT environment or used as a production tool. On the other hand, depending on the nature
of the disability and its evolution over time, or in the case of highly sterile conditions, the
problem becomes more complex. Our work prospects aim to combine several modes of
interaction to improve the system’s performance by sensor data fusion.

Multimodal Technol. Interact. 2023, 7, 78 17 of 19

5.2. Conclusions and Perspectives

In this article, we look at various personal assistance technologies. The choices we
have made concern the chain as a whole. From human–machine interaction with disabled
people to the means of exchanging information via networked communications, the aim is
to enable these people to interact more effectively with their domestic environment and to
facilitate their integration into the workplace.

Our results show that the joint use of industrial equipment (IOT2040) and open-source
hardware and software is a convincing solution in terms of robustness and interoperability.
Indeed, no message was lost during several days of intensive testing, for experiments
with healthy users with various types of equipment (laptops, smartphones and industrial
terminals) operating through different networks.

Currently, the MQTT messages received are immediately executed, but one could
consider a delay, allowing the user to send commands in multimodal ways, within a certain
window of time. Thus, a multimodal data fusion agent would be in charge of receiving
these intermediate data, coming from different possible sources (voice, touch, gaze tracking,
etc.) and would make a final decision to send these to the robot via a single MQTT message,
after having dealt with any possible conflicts [44]. This kind of solution was presented
in [2] for a paint application using Firebase and App Inventor (see multimodal engine on
Figure 1), and is certainly reproducible with MQTT.

Similar to MQTT, ROS [45] is based on publishing and subscribing mechanisms.
Accompanied by MoveIt [46], they are interesting for controlling robots and calculating
movement trajectories in a constrained environment. We have used them, across Docker, for
«Pick and Place» requests with Unity connected to Firebase, and it should be also possible
to use MQTT instead. However, setting them up is not as simple as advertised, as there
are many compatibility issues between versions (cf. ROS1 vs. ROS2, Moveit1 vs Moveit2).
For example, in Webots, a “Ned Niryo” virtual robot is available, and controllable with
ROS2, but if you use a real “Niryo One” robot, connected by USB or Wi-Fi, it will only be
controllable in the ROS1 version, or it is necessary to use a specific bridge between the two
versions of ROS1 and ROS2.

One of our prospective short-term studies will be verifying the usability of our tools
when patients will have to communicate with mobile robots like the PR2, visible in
Figure 20. We will also further improve the capabilities offered by our systems by in-
tegrating automatic data recording (score, time elapsed to complete a task, etc.) in order to
better compare the different modalities that can be used. Finally, in the medium and long
term, we are planning to add complex fusion and fission functionalities to our framework,
in order to support more natural interactions for patients.

Multimodal Technol. Interact. 2023, 7, x FOR PEER REVIEW 17 of 19

5.2. Conclusions and Perspectives
In this article, we look at various personal assistance technologies. The choices we

have made concern the chain as a whole. From human–machine interaction with disabled
people to the means of exchanging information via networked communications, the aim
is to enable these people to interact more effectively with their domestic environment and
to facilitate their integration into the workplace.

Our results show that the joint use of industrial equipment (IOT2040) and open-
source hardware and software is a convincing solution in terms of robustness and interop-
erability. Indeed, no message was lost during several days of intensive testing, for exper-
iments with healthy users with various types of equipment (laptops, smartphones and
industrial terminals) operating through different networks.

Currently, the MQTT messages received are immediately executed, but one could
consider a delay, allowing the user to send commands in multimodal ways, within a cer-
tain window of time. Thus, a multimodal data fusion agent would be in charge of receiv-
ing these intermediate data, coming from different possible sources (voice, touch, gaze
tracking, etc.) and would make a final decision to send these to the robot via a single
MQTT message, after having dealt with any possible conflicts [44]. This kind of solution
was presented in [2] for a paint application using Firebase and App Inventor (see multi-
modal engine on Figure 1), and is certainly reproducible with MQTT.

Similar to MQTT, ROS [45] is based on publishing and subscribing mechanisms. Ac-
companied by MoveIt [46], they are interesting for controlling robots and calculating
movement trajectories in a constrained environment. We have used them, across Docker,
for «Pick and Place» requests with Unity connected to Firebase, and it should be also pos-
sible to use MQTT instead. However, setting them up is not as simple as advertised, as
there are many compatibility issues between versions (cf. ROS1 vs. ROS2, Moveit1 vs
Moveit2). For example, in Webots, a “Ned Niryo” virtual robot is available, and control-
lable with ROS2, but if you use a real “Niryo One” robot, connected by USB or Wi-Fi, it
will only be controllable in the ROS1 version, or it is necessary to use a specific bridge
between the two versions of ROS1 and ROS2.

One of our prospective short-term studies will be verifying the usability of our tools
when patients will have to communicate with mobile robots like the PR2, visible in Figure
20. We will also further improve the capabilities offered by our systems by integrating
automatic data recording (score, time elapsed to complete a task, etc.) in order to better
compare the different modalities that can be used. Finally, in the medium and long term,
we are planning to add complex fusion and fission functionalities to our framework, in
order to support more natural interactions for patients.

Figure 20. Webots virtual world with interactive objects (lamp, curtain, bed) and PR2 Robot. Figure 20. Webots virtual world with interactive objects (lamp, curtain, bed) and PR2 Robot.

Multimodal Technol. Interact. 2023, 7, 78 18 of 19

Author Contributions: Conceptualization, J.R. and J.-M.V.; methodology, J.R. and J.-M.V.; software,
J.R. (Webots and MQTT, LeapMotion) and J.-M.V. (ESP, Arduino, IOT and MQTT, LeapMotion);
writing—original draft preparation, J.R.; writing—review and editing, J.R. and J.-M.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is containted within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bolt, R.A. “Put-that-there”: Voice and gesture at the graphics interface. ACM SIGGRAPH Comput. Graph. 1980, 14, 262–270.

[CrossRef]
2. Guedira, Y.; Rouillard, J. Multimodal Interaction Framework Based on Firebase Real-Time Database. In Universal Access in

Human-Computer Interaction. Access to Media, Learning and Assistive Environments, Proceedings of the 15th International Conference,
UAHCI 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, 24–29 July 2021; Proceedings, Part II;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 367–384. [CrossRef]

3. Rouillard, J.; Vannobel, J.-M.; Bekaert, M.-H. BIOFEE: Biomedical Framework for Enhanced Experimentation. In Proceedings of
the 14th International Conference on Applied Human Factors and Ergonomics, San Francisco, CA, USA, 23–24 July 2023.

4. Filist, S.A.; Al-Kasasbeh, R.T.; Shatalova, O.V.; Aikeyeva, A.A.; Al-Habahbeh, O.M.; Alshamasin, M.S.; Alekseevich, K.N.;
Khrisat, M.; Myasnyankin, M.B.; Ilyash, M. Classifier for the functional state of the respiratory system via descriptors determined
by using multimodal technology. Comput. Methods Biomech. Biomed. Eng. 2022, 1–19. [CrossRef] [PubMed]

5. World Health Organization. WHO|World Health Organization. Available online: https://www.who.int/ (accessed on
28 June 2023).

6. Oviatt, S.; Jacko, J.A.; Sears, A. (Eds.) The Human–Computer Interaction Handbook; Multimodal Interfaces; Lawrence Erlbaum
Associates: Mahawah, NJ, USA, 2003; pp. 286–301.

7. Rouillard, J. Multimodal and Multichannel issues in pervasive and ubiquitous computing. In Multimodality in Mobile Computing
and Mobile Devices: Methods for Adaptable Usability; Information Science Reference; Idea Group Inc.: Calgary, AB, Canada, 2009;
ISBN 978-1-60566-978-6.

8. Rouillard, J. Developing a multimodal application for a scientific experiment on smartphone: Case study, tools and results. In
Tools for Mobile Multimedia Programming and Development; Tjondronegoro, D., Ed.; Part of the Advances in Wireless Technologies
and Telecommunication (AWTT) Book Series; IGI Global: Dauphin, PA, USA, 2013; ISBN 9781466640542.

9. Zavala, S.P.; Chicaiza, K.O.; López, J.L.M.; Sulca, J.; Yoo, S.G. BCI Based Home Automation using User Controlled Blinks. J. Eng.
Appl. Sci. 2020, 15, 1377–1384. [CrossRef]

10. Švec, J.; Neduchal, P.; Hrúz, M. Multi-modal communication system for mobile robot. In IFAC-PapersOnLine; Elsevier: Amsterdam,
The Netherlands, 2022; pp. 133–138, ISSN 2405-8963. [CrossRef]

11. Hoffman, G. Openwoz: A Runtime-Configurable Wizard-Of-Oz Framework for Human-Robot Interaction. In Proceedings of the
2016 AAAI Spring Symposia, Palo Alto, CA, USA, 21–23 March 2016; Stanford University AAAI Press: Washington, DC, USA,
2016; pp. 121–126.

12. Unity Technologies. Unity Real-Time Development Platform|3D, 2D VR & AR Visualizations. Available online: https://unity.co
m/ (accessed on 26 April 2020).

13. OASIS Open MQTT. Available online: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt (accessed on
28 June 2023).

14. MQTT Organization. Available online: https://mqtt.org (accessed on 28 June 2023).
15. IBM MQTT. Available online: https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/ (accessed on 28 June 2023).
16. OPC USA. Available online: https://commsvr-com.github.io/Documentation/ModelDesigner/html/a2d55988-b59a-4a87-95b9

-933f6bbdf5bd.htm (accessed on 28 June 2023).
17. UA Information Model Concept. Available online: https://commsvr.gitbook.io/ooi/semantic-data-processing/informationmod

elconcept (accessed on 28 June 2023).
18. Webots, Webots, Open-Source Mobile Robot Simulation Software. Available online: http://www.cyberbotics.com (accessed on

28 June 2023).
19. Michel, O. Webots: Professional Mobile Robot Simulation. J. Adv. Robot. Syst. 2004, 1, 39–42.
20. ESP Rainmaker. Available online: https://www.espressif.com/ (accessed on 28 June 2023).
21. ESP32 MQTT. Available online: https://randomnerdtutorials.com/esp32-mqtt-publish-subscribe-arduino-ide/ (accessed on

28 June 2023).

https://doi.org/10.1145/965105.807503
https://doi.org/10.1007/978-3-030-78095-1_27
https://doi.org/10.1080/10255842.2022.2117551
https://www.ncbi.nlm.nih.gov/pubmed/36305552
https://www.who.int/
https://doi.org/10.36478/jeasci.2020.1377.1384
https://doi.org/10.1016/j.ifacol.2022.06.022
https://unity.com/
https://unity.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://mqtt.org
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://commsvr-com.github.io/Documentation/ModelDesigner/html/a2d55988-b59a-4a87-95b9-933f6bbdf5bd.htm
https://commsvr-com.github.io/Documentation/ModelDesigner/html/a2d55988-b59a-4a87-95b9-933f6bbdf5bd.htm
https://commsvr.gitbook.io/ooi/semantic-data-processing/informationmodelconcept
https://commsvr.gitbook.io/ooi/semantic-data-processing/informationmodelconcept
http://www.cyberbotics.com
https://www.espressif.com/
https://randomnerdtutorials.com/esp32-mqtt-publish-subscribe-arduino-ide/

Multimodal Technol. Interact. 2023, 7, 78 19 of 19

22. ESP-MQTT. Available online: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/mqtt.html
(accessed on 28 June 2023).

23. Siemens Simatic IoT2000-2020-2040. Available online: https://www.14core.com/siemens-simatic-iot2000-iot2020-iot2040-ardui
no-ide-integration (accessed on 28 June 2023).

24. Incase Project 2014–2020. Available online: https://www.incase2seas.eu (accessed on 28 June 2023).
25. Siemens Simatic IoT2000. Available online: https://www.siemens.com/global/en/products/automation/pc-based/iot-gateway

s/iot2000.html (accessed on 28 June 2023).
26. Dobot Magician. Available online: https://www.dobot-robots.com/products/education/magician.html (accessed on 28 June 2023).
27. Folgado, F.J.; González, I.; Calderón, A.J. Data acquisition and monitoring system framed in Industrial Internet of Things for PEM

hydrogen generators. Internet Things 2023, 22, 100795. [CrossRef]
28. Omidi, S.A.; Baig, M.J.A.; Iqbal, M.T. Design and Implementation of Node-Red Based Open-Source SCADA Architecture for a

Hybrid Power System. Energies 2023, 16, 2092. [CrossRef]
29. Lopez, N.; Agbu, A.; Oloyede, A.; Essien, E.; Eze, A.; Mhambe, C. Software tool to store IoT device data onto a blockchain. Softw.

Impacts 2023, 16, 100511. [CrossRef]
30. App Inventor, Google and MIT. Available online: http://ai2.appinventor.mit.edu (accessed on 28 June 2023).
31. PahoMQTT Extension for App Inventor. Available online: http://ullisroboterseite.de/android-AI2-PahoMQTT-en.html (accessed

on 28 June 2023).
32. Ultraleap Inc., Ultraleap—Hand Tracking Module. Available online: https://www.ultraleap.com/ (accessed on 28 June 2023).
33. Alimanova, M.; Borambayeva, S.; Kozhamzharova, D.; Kurmangaiyeva, N.; Ospanova, D.; Tyulepberdinova, G.; Gaziz, G.;

Kassenkhan, A. Gamification of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap Motion for Hand Re-
habilitation. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan,
10–12 April 2017; pp. 336–339. [CrossRef]

34. Cortés-Pérez, I.; Zagalaz-Anula, N.; Montoro-Cárdenas, D.; Lomas-Vega, R.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Leap Motion
Controller Video Game-Based Therapy for Upper Extremity Motor Recovery in Patients with Central Nervous System Diseases.
A Systematic Review with Meta-Analysis. Sensors 2021, 21, 2065. [CrossRef] [PubMed]

35. Galván-Ruiz, J.; Travieso-González, C.M.; Tejera-Fettmilch, A.; Pinan-Roescher, A.; Esteban-Hernández, L.; Domínguez-Quintana, L.
Perspective and Evolution of Gesture Recognition for Sign Language: A Review. Sensors 2020, 20, 3571. [CrossRef] [PubMed]

36. Baratè, A.; Elia, A.; Ludovico, L.A.; Oriolo, E. The Leap Motion Controller in Clinical Music Therapy—A Computer-based
Approach to Intellectual and Motor Disabilities. In Proceedings of the 10th International Conference on Computer Supported
Education—Volume 2: CSEDU, Funchal, Portugal, 15–17 March 2017; pp. 461–469, ISBN 978-989-758-291-2. [CrossRef]

37. Potter, L.E.; Araullo, J.; Carter, L. The leap motion controller: A view on sign language. In Proceedings of the 25th Australian
Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, (OzCHI 2013), Adelaide,
Australia, 25–29 November 2013; pp. 175–178. [CrossRef]

38. Vannobel, J.-M.; Bekaert, M.-H.; Baumann, J. Le Leap Motion Controller: De la souris gestuelle à la commande gestuelle, Deux
études de faisabilité. In Proceedings of the Handicap 2022 Conference, Paris, France, 8–10 June 2022.

39. Leap Motion JavaScript SDK v2.3 Documentation. Available online: https://developer-archive.leapmotion.com/documentation
/v2/javascript/devguide/Leap_Overview.html (accessed on 28 June 2023).

40. Insani, C.N.; Nurtanio, I.; Ilham, A.A. The effect of light on Leap Motion Controller in the classification of Sign Language
Translator System. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent
Systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019; pp. 296–300. [CrossRef]

41. Bachmann, D.; Weichert, F.; Rinkenauer, G. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device.
Sensors 2014, 15, 214–233. [CrossRef] [PubMed]

42. Rouillard, J.; Duprès, A.; Cabestaing, F.; Leclercq, S.; Bekaert, M.-H.; Piau, C.; Vannobel, J.-M.; Lecocq, C. Hybrid BCI Coupling
EEG and EMG for Severe Motor Disabilities. Procedia Manuf. 2015, 3, 29–36. [CrossRef]

43. Duprès, A.; Cabestaing, F.; Rouillard, J.; Tiffreau, V.; Pradeau, C. Toward a hybrid brain-machine interface for palliating
motor handicap with Duchenne muscular dystrophy: A case report. Ann. Phys. Rehabilitation Med. 2019, 62, 379–381.
[CrossRef] [PubMed]

44. Martin, J.C. Tycoon: Six primitive types of cooperation for observing, evaluating and specifying cooperations. In Proceedings of
the AAAI (Association for the Advancement of Artificial Intelligence), Orlando, FL, USA, 18–22 July 1999.

45. Robot Operating System (ROS). Open Source Robotics Foundation. Available online: https://www.ros.org/ (accessed on
28 June 2023).

46. MoveIt Motion Planning Framework. Available online: https://moveit.ros.org/ (accessed on 28 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/mqtt.html
https://www.14core.com/siemens-simatic-iot2000-iot2020-iot2040-arduino-ide-integration
https://www.14core.com/siemens-simatic-iot2000-iot2020-iot2040-arduino-ide-integration
https://www.incase2seas.eu
https://www.siemens.com/global/en/products/automation/pc-based/iot-gateways/iot2000.html
https://www.siemens.com/global/en/products/automation/pc-based/iot-gateways/iot2000.html
https://www.dobot-robots.com/products/education/magician.html
https://doi.org/10.1016/j.iot.2023.100795
https://doi.org/10.3390/en16052092
https://doi.org/10.1016/j.simpa.2023.100511
http://ai2.appinventor.mit.edu
http://ullisroboterseite.de/android-AI2-PahoMQTT-en.html
https://www.ultraleap.com/
https://doi.org/10.1109/irc.2017.76
https://doi.org/10.3390/s21062065
https://www.ncbi.nlm.nih.gov/pubmed/33804247
https://doi.org/10.3390/s20123571
https://www.ncbi.nlm.nih.gov/pubmed/32599793
https://doi.org/10.5220/0006771204610469
https://doi.org/10.1145/2541016.2541072
https://developer-archive.leapmotion.com/documentation/v2/javascript/devguide/Leap_Overview.html
https://developer-archive.leapmotion.com/documentation/v2/javascript/devguide/Leap_Overview.html
https://doi.org/10.1109/isriti48646.2019.9034602
https://doi.org/10.3390/s150100214
https://www.ncbi.nlm.nih.gov/pubmed/25609043
https://doi.org/10.1016/j.promfg.2015.07.104
https://doi.org/10.1016/j.rehab.2019.07.005
https://www.ncbi.nlm.nih.gov/pubmed/31415824
https://www.ros.org/
https://moveit.ros.org/

	Introduction
	Multimodal Communication Needs
	Firebase Realtime Database
	MQTT

	Case Studies Using MQTT
	Webots and MQTT
	MQTT, ESP8266 or ESP32 and Arduino
	MQTT, IOT2040 and Arduino
	MQTT: IOT2040 Industrial Approach Case Study

	Webots and MQTT for Cobot Solutions
	Multimodality with App Inventor and MQTT
	Leap Motion, EMG and EEG

	Discussion, Conclusions and Perspectives
	Discussion
	Conclusions and Perspectives

	References

